
Ho et al. BMC Research Notes 2012, 5:391
http://www.biomedcentral.com/1756-0500/5/391

TECHNICAL NOTE Open Access

BetaSearch: a newmethod for querying
β-residue motifs
Hui Kian Ho1,2*, Graeme Gange1, Michael J Kuiper3 and Kotagiri Ramamohanarao1

Abstract

Background: Searching for structural motifs across known protein structures can be useful for identifying unrelated
proteins with similar function and characterising secondary structures such as β-sheets. This is infeasible using
conventional sequence alignment because linear protein sequences do not contain spatial information. β-residue
motifs are β-sheet substructures that can be represented as graphs and queried using existing graph indexing
methods, however, these approaches are designed for general graphs that do not incorporate the inherent structural
constraints of β-sheets and require computationally-expensive filtering and verification procedures. 3D substructure
search methods, on the other hand, allow β-residue motifs to be queried in a three-dimensional context but at
significant computational costs.

Findings: We developed a newmethod for querying β-residue motifs, called BetaSearch, which leverages the natural
planar constraints of β-sheets by indexing them as 2Dmatrices, thus avoidingmuch of the computational complexities
involved with structural and graph querying. BetaSearch exhibits faster filtering, verification, and overall query time
than existing graph indexing approaches whilst producing comparable index sizes. Compared to 3D substructure
search methods, BetaSearch achieves 33 and 240 times speedups over index-based and pairwise alignment-based
approaches, respectively. Furthermore, we have presented case-studies to demonstrate its capability of motif
matching in sequentially dissimilar proteins and described a method for using BetaSearch to predict β-strand pairing.

Conclusions: We have demonstrated that BetaSearch is a fast method for querying substructure motifs. The
improvements in speed over existing approaches make it useful for efficiently performing high-volume exploratory
querying of possible protein substructural motifs or conformations. BetaSearch was used to identify a nearly identical
β-residue motif between an entirely synthetic (Top7) and a naturally-occurring protein (Charcot-Leyden crystal
protein), as well as identifying structural similarities between biotin-binding domains of avidin, streptavidin and the
lipocalin gamma subunit of human C8.

Background
The β-sheet is a common secondary structure element
that plays important functional and structural roles
in proteins, for example, the ligand-binding pockets
of biotin-binding proteins and the structure of the
commonly-occurring TIM-barrel fold [1]. These pro-
cesses are often mediated by interactions between adja-
cent pairs of residues across β-strands. These include the
disulphide, ionic, and hydrogen bonds; and hydrophobic
packing interactions frequently involved in maintaining

*Correspondence: hohkhkh1@csse.unimelb.edu.au
1Department of Computing and Information Systems, The University of
Melbourne, Victoria, Australia
2National ICT Australia (NICTA), The University of Melbourne, Victoria, Australia
Full list of author information is available at the end of the article

the structural stability of a protein or in enzymatic active
sites [1]. The influence of pairwise interactions within
β-sheets and their tertiary structures have been studied
experimentally [2] and statistically [3,4], the results of
which have been used to predict β-sheet topology [5-7]
and tertiary structure [8]. These studies have provided
insights into the folding mechanisms of β-sheets although
it remains an open problem [4]. Examining interresidue
interactions at the single pairwise level however, pro-
vides only a limited view of a larger interaction network
within a β-sheet. We refer to these clusters of interacting
residues as β-residue motifs, which are contiguous subsets
of β-sheet residues connected by peptide and/or hydrogen
bonds (as shown in Figure 1D). Unlike sequence motifs,

© 2012 Ho et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81640216?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Ho et al. BMC Research Notes 2012, 5:391 Page 2 of 17
http://www.biomedcentral.com/1756-0500/5/391

β-residue motifs encode information about both the pep-
tide and bridge-partners of each residue. For the purposes
of this study, we consider β-residue motifs to be provi-
sional, since they may also exist via a general conservation
between homologs rather than as independent functional
units, as is the case for motifs in the traditional sense [9].
Many characteristic β-residue motifs are observed in

the Protein Data Bank (PDB) [10]. For example, the
β-sheets in leucine-rich repeat (LRR) domains contain
consecutive adjacent interstrand pairs of buried leucines
sterically-packed alongside their bridge-partners, con-
tributing to structural stability [11]. Other β-residue
motifs appear as a combination of inter- and intrastrand
residue neighbours, as is the case for the TCT motif of
certain antifreeze proteins [12] and glutamic acid/lysine
motifs [13]. The conserved biotin-binding site in strep-
tavidin [PDB:1STP] contains a β-residue motif of five
inward-directing residues of a β-barrel: S88, T90, W92,
W108, and L110. Identification of these β-residue motifs
can be used to search for other proteins with simi-
lar structural elements or function with low sequence
identities.
Searching for structural motifs, β-residue or otherwise,

in the PDB using linear approaches such as sequence
alignment is a difficult, if not impossible task because
interresidue interactions can occur across secondary
structures that are sporadically located throughout a pro-
tein sequence. Furthermore, pairwise residue interactions
are not accounted for in conventional multiple-sequence
alignment tools such as BLAST [14] and CLUSTALW
[15], given the one-dimensional nature of sequences.

The conventional approach to motif querying, involves
the use of protein substructure search methods that
structurally align the 3D atomic coordinates of a query
with known protein structures. These methods provide
a structural context to each query hit and generally
produce approximate matches in the form of a ranked
list of hits but may take hours to perform few queries
due to their reliance on structural alignment algorithms
[16].
Alternatively, protein structures can be represented

as graphs and queried for motifs using graph index-
ing approaches [17]. Unlike 3D substructure searches,
these methods perform exact matching by querying only
the discrete edge, node, and label features of graphs
rather than by 3D similarity between continuous coor-
dinates. The query matching algorithms used by exist-
ing graph indexing methods are based on solutions to
the subgraph isomorphism problem, described briefly as
follows:

A graph G = (V ,E) is defined by a set of vertices v ∈ V
and a set of edges e ∈ E where each edge represents a
connection between a pair of vertices

(
vi, vj

) ∈ V . A
graph is undirected if its edges are unordered pairs and
directed otherwise. The degree of a node is the number
of edges it has to other nodes.

If G1 and G2 are graphs defined as G1 = (V1,E1) and
G2 = (V2,E2), then G1 is a subgraph of G2 if
V1 ⊆ V2 ∧ E1 ⊆ E2. An isomorphism between G1
and G2 is a bijection f : V1 → V2 such that
∀(
vi, vj

) ∈ E1 ⇐⇒ (
f (vi), f (vj)

) ∈ E2.

Figure 1 An example β-sheet with its corresponding β-graph, β-matrix, and β-residue motif. Here we show an example conversion of a
β-sheet (a) to its graph representation (or “β-graph”) (b) and the β-matrix projection (c). A β-residue motif (d) is a sub-matrix of its source β-matrix,
or a connected subgraph of its source β-graph. The source code to perform these conversions are available for download (see Availability).

Ho et al. BMC Research Notes 2012, 5:391 Page 3 of 17
http://www.biomedcentral.com/1756-0500/5/391

A graph G1 is subgraph isomorphic to G2 if G3 is a
subgraph of G2 and there exists an isomorphism
between G3 and G1.

Graph representations of proteins [18] and β-sheets [17]
have been previously described in which nodes represent
residues and edges represent inter-residue interactions
such as peptide or hydrogen bonds. For simplicity, we
define a β-graph to be a graph representation of a β-
sheet in which each node is labelled with a residue name,
solid edges represent peptide bonds, and dotted edges
represent a bridge-partner relationship between adjacent
interstrand residue pairs (Figure 1B). β-residue motifs are
considered to be connected subgraphs of β-graphs whose
nodes are labelled with amino acids.
The planarity of β-graphs allows for a compact two-

dimensional representation. We define a β-matrix to be a
projection (or “flattening”) of a β-graph onto a 2D matrix
of amino acid characters. The residues in the same β-
strand are located in the same row and residues connected
by bridge edges lie in the same column (Figure 1C). β-
residue motifs are then considered to be submatrices of
β-matrices (Figure 1D).
Algorithms for detecting subgraph isomorphisms have

been described for general graphs [19,20] that run in time
factorial to the number of vertices in a query [21] and can-
not be solved in polynomial time, as it is proven to be
NP-complete for general graphs [22]. Naively performing
a subgraph test on every graph in a database is there-
fore computationally-expensive [23]. Consequently, graph
indexing methods were developed to simplify this prob-
lem. A potentially large number of non-matching graphs
can be pruned from the search by using indexing tech-
niques analogous to those in conventional search engines
[24]. Graphs can be indexed by various features using
disk- or memory-based indices. These approaches usually
consist of three stages:

1. Index construction: The features of each graph in a
database are obtained, each representing a graph
characteristic. A data structure, usually an inverted
index, is then constructed in which each feature is
associated with the set of their originating graphs.

2. Filtering: The features of the query graph are
obtained. An initial set of coarse-grained candidates
containing these features are retrieved from the
index (or indices). It is possible these candidates do
not contain any query matches.

3. Verification: Each candidate is checked for a
subgraph that exactly matches the query. This is
performed using a subgraph test in most methods.

Graph indexing methods are loosely classified into three
categories: path-based, subgraph-based, and tree-based.

Path-based methods (GraphGrep [25], GraphFind [26],
GraphGrepSX [23], and SING [27]) index graphs using
paths as features. These methods construct an inverted
index I that maps each path p to a set of their originating
graphs

I : p 	→ {G : p ∈ G} (1)

where p is a sequence of connected vertices in a graph G

p = (
vi, vi+1, · · · , vi+k−1

)
(2)

∀k : 1 ≤ k ≤ lp (3)

where lp is the maximum path length. The filtering pro-
cess returns the set of candidate graphs C containing all
the paths of a query graph Q

C =
⋂

p∈ paths(Q)

I(p) (4)

and verification of each candidate is performed using the
VF2 algorithm [20].
Enumerating all paths up to and including length lp pro-

duces large feature sets and consequently, large indices.
GraphFind avoids these problems by pruning redundant
features using data mining techniques similar to those of
gIndex [28]. GraphGrepSX exploits feature redundancy by
implementing its index as a suffix tree where each string
is a path sequence. The suffix tree was shown to be more
space-efficient than the hash tables used by other path-
based methods [23]. Our empirical results corroborate
these findings (Table 1). SING uses a second filtering stage
that prunes candidates by using path locality information.
For example, a path p in a candidate must be surrounded
by the same paths as in the query. This improvement in fil-
tering comes at the cost of maintaining an auxiliary hash
table of locality information.
Subgraph-based methods (gIndex [28], FG-Index [29],

and GDIndex [30]) use subgraphs as features and retain
more topological information about graphs than paths
due to their more complex structures. Index construction
then requires time exponential to the number of nodes in
each graph which also produces larger indices than those
of path-based methods. These problems can be alleviated
to a degree by indexing only the most frequent subgraphs
[28].
Tree-based methods (TreePi [31], TreePi+δ [32], and

CTree [33]) use subtrees as features and are purported to
provide an ideal compromise between the small indices of
path-basedmethods and the specificity of subgraph-based
methods. Algorithmic operations on trees are generally
more asymptotically efficient than those on graphs, in par-
ticular, subtree isomorphism can be tested in polynomial
time [34]. However, previous results showed that certain
path-based methods are still an order of magnitude faster
in query time than existing tree-based methods [27].

Ho et al. BMC Research Notes 2012, 5:391 Page 4 of 17
http://www.biomedcentral.com/1756-0500/5/391

Table 1 Indexing times and disk sizes

Dataset size
Method

1,000 2,000 4,000 8,000 16,000

GraphGrepSX,lp = 4 27s 57s 1m 44s 3m 29s 7m 43s

2Mb 4Mb 9Mb 18Mb 37Mb

GraphGrepSX,lp = 10 49s 1m 44s 3m 31s 7m 09s 14m 50s

75Mb 142Mb 267Mb 496Mb 925Mb

SING,lp = 4 34s 1m 11s 2m 17s 4m 29s 9m 12s

10Mb 21Mb 42Mb 84Mb 169Mb

SING,lp = 10 4m 05s 8m 25s 16m 26s 32m 16s 1h 04m 39s

329Mb 636Mb 1187Mb 2243Mb 4279Mb

BetaSearch 9s 19s 56s 2m 03s 4m 04s

10Mb 20Mb 40Mb 81Mb 164Mb

The indexing times and disk sizes (italics) of each method. Indexing times were measured as the average over five repetitions. Disk sizes were measured using the
POSIX “stat” command.

GCoding [35] generates numeric representations of
graphs using encodings of their adjacency matrices and
cannot be classified into any of the above groups. These
representations allow efficient filtering without computa-
tionally expensive graph traversals or feature enumera-
tion. A specialised subgraph isomorphism test is used for
verification [35]. While these encodings provide a com-
pact index, expensive eigenvalue calculations are required
to compute them [27].
Each of these methods can be applied to a wide vari-

ety of problems because they were designed for general
graphs (i.e. graphs with an unrestricted degree and/or
node count) that do not make use of the inherent struc-
tural constraints of β-sheets. For example, each β-residue
has at most four neighbours: the preceding and following
peptide-bonded residues and one bridge-partner located
on each of the two adjacent hydrogen-bonded β-strands.
The problem of protein 3D substructure searching

involves searching a database of protein structures for
structures that contain substructures similar to a query
structure and remains a significant problem in struc-
ture biology. These substructures may be relevant to
biological processes such as binding sites, enzymatic func-
tion, or may be representative of a particular fold family
[16,36]. Current methods for substructure searching are
based on the comparison of three-dimensional coordi-
nates between structures and use computationally com-
plex structural alignment algorithms. Methods such as
Dali [37], DaliLite [38], and SHEBA [39] align protein
structures at the residue level, that is, they find one-to-one
residue alignments between pairs of proteins; methods
such as QPTableauSearch [40] and SATableauSearch [16]
align proteins at the level of secondary structure elements

(SSEs) and therefore lack residue-level specificity but are
generally faster [16]. A common drawback of these meth-
ods is that exhaustive pairwise comparisons are required
between the query and the each protein structure in
a database. This naive approach often leads to redun-
dant comparisons between highly similar structures or
structures with no obvious match, ultimately resulting in
queries requiring hours or even days to complete [16].
Recently, LabelHash [36,41] was developed primarily for

the 3D substructure matching of small motifs, commonly
between 4 and 15 residues. This method is unique among
structural search methods in general since it uses a pre-
computed index to vastly accelerate querying in a manner
similar to those of graph indexing approaches. Indeed,
the results in this paper show that LabelHash yields a
considerable performance boost in compute time over a
conventional pairwise structural alignment approach (see
Results and discussion).
In this paper we describe BetaSearch, a method that

allows fast querying of β-residue motifs in large datasets
of protein structures. Our method leverages the natural
planar constraints of β-sheets by indexing them as 2D
matrices, known as β-matrices. This approach avoids the
geometric, topological, and computational complexities
usually involved in 3D substructure or graph querying.
Furthermore, by using β-sheet representations indepen-
dent of a 3D coordinate system, BetaSearch identifies
matching β-residue motifs in structurally and sequentially
dissimilar proteins.

Results and discussion
Wehave compared the performance of BetaSearch against
state-of-the-art graph indexing and 3D substructure

Ho et al. BMC Research Notes 2012, 5:391 Page 5 of 17
http://www.biomedcentral.com/1756-0500/5/391

search methods separately. The results of three case stud-
ies are also presented, which provide biologically-relevant
contexts in which BetaSearch could be used.

Comparisons with graph indexingmethods
We compared BetaSearch against SING and Graph-
GrepSX. SING was shown to outperform existing meth-
ods in terms of query time on standard datasets
of chemical compounds, protein transcription net-
works, protein-interaction networks, and synthetic graphs
[27].
The elapsed indexing, total query, filtering, and verifi-

cation times were averaged over five repetitions. SING
and GraphGrepSX were run using lp = 4 and lp =
10, where lp denotes the path length. These values were
chosen by the authors of each method in their own com-
parisons [23,27]. We were unable to use larger lp values or
datasets of more than 16,000 β-sheets due to the memory
consumption of the SING and GraphGrepSX implemen-
tations. We therefore only reported results for datasets
up to and including N = 16,000. Accuracies of each
method were not measured since each query matches
at least one β-sheet and any non-matching β-sheet is
excluded at the filtering and verification stages of each
method.

Indexing
The elapsed times and disk space required for index con-
struction are shown in Table 1.
BetaSearch recorded the fastest indexing times with

a 1.9 times speed-up over the next fastest method
(GraphGrepSX,lp = 4) for the N = 16,000 dataset. The
size of the BetaSearch indices were similar to those of
SING,lp = 4 since trimers have an effective path length of
lp = 3 and both use hash tables.
The lp = 10 variants of SING and GraphGrepSX were

slower than their lp = 4 variants due to the increase
in the number of features generated in the former case.
This observation was consistent with those of general
graphs [23].

GraphGrepSX,lp = 4 generated the smallest indices
by a considerable margin through the use of a suffix
trees to store its indices. However, the results obtained in
the following sections show that the reduction in index
disk space came at a significant cost to the querying
time.
Furthermore, the BetaSearch index is limited only by

the size of the hard disk on which it is stored, whereas
the implementations of SING and GraphGrepSX used
in this study were memory-limited, requiring the entire
index to be loaded into memory in order for queries to be
performed.

Overall query times
The query time for a single query was calculated as
the sum of its filtering and verification times. The time
required to perform all the queries on a dataset was mea-
sured as the sum of its individual query times, shown
in Table 2. These results show that BetaSearch consis-
tently recorded the fastest querying times for all datasets
by at least an order of magnitude over the next fastest
method (SING,lp = 10) and a 109 times speed-up over
the baseline (GraphGrepSX,lp = 4) for the N = 16,000
dataset.
The trade-off between the index disk size and query-

ing times within the SING and GraphGrepSX vari-
ants can be seen in these results where the lp =
10 variants required four to five times as much disk
space but were at least twice as fast as the lp = 4
variants.
The overall query time speedups for all query sizes

were measured using the GraphGrepSX,lp = 4 as the
baseline, shown in Figure 2. Only the speedups for the
N = 2,000 and 16,000 datasets were shown for the pur-
poses of brevity. The speedups of each method generally
tapers down after queries of approximately six to seven
edges. This is an expected observation because larger β-
sheet subgraph queries are more specific than smaller
ones, resulting in fewer possible candidates and therefore
a reduced filtering and verification load.

Table 2 Overall query times (graph indexing comparisons)

Dataset size

Method 1,000 2,000 4,000 8,000 16,000

7205 14,516 29,101 58,795 117,415

GraphGrepSX,lp = 4 2m 10s 9m 13s 44m 16s 3h 19m 37s 15h 03m 54s

GraphGrepSX,lp = 10 1m 18s 6m 12s 24m 55s 1h 50m 52s 8h 02m 31s

SING,lp = 4 50s 3m 27s 12m 16s 52m 41s 3h 53m 45s

SING,lp = 10 20s 1m 19s 5m 16s 23m 06s 1h 37m 49s

BetaSearch 2s 7s 33s 2m 14s 8m 19s

The overall querying times of each method were measured as the average of five repetitions. The number of queries performed on each dataset are shown in italics. A
description of the query generation process is provided in the “Benchmarking datasets” section of this paper.

Ho et al. BMC Research Notes 2012, 5:391 Page 6 of 17
http://www.biomedcentral.com/1756-0500/5/391

2 4 6 8 10

1e
−

01
1e

+
01

1e
+

03
1e

+
05

query size (no. of edges)

sp
ee

du
p

(o
ve

r
G

ra
ph

G
re

pS
X

 lp
=

4)

Speedups in mean verification time (N=2000)

BetaSearch
SING lp=4
SING lp=10

GraphGrepSX lp=10
GraphGrepSX lp=4

2 4 6 8 10

1e
−

01
1e

+
01

1e
+

03
1e

+
05

query size (no. of edges)

sp
ee

du
p

(o
ve

r
G

ra
ph

G
re

pS
X

 lp
=

4)

Speedups in mean verification time (N=16000)

BetaSearch
SING lp=4
SING lp=10

GraphGrepSX lp=10
GraphGrepSX lp=4

2 4 6 8 10

1
2

5
10

20
50

10
0

20
0

50
0

query size (no. of edges)

sp
ee

du
p

(o
ve

r
G

ra
ph

G
re

pS
X

 lp
=

4)

Speedups in overall query time (N=2000)

BetaSearch
SING lp=4
SING lp=10

GraphGrepSX lp=10
GraphGrepSX lp=4

2 4 6 8 10

1
5

10
50

10
0

50
0

query size (no. of edges)

sp
ee

du
p

(o
ve

r
G

ra
ph

G
re

pS
X

 lp
=

4)

Speedups in overall query time (N=16000)

BetaSearch
SING lp=4
SING lp=10

GraphGrepSX lp=10
GraphGrepSX lp=4

a

c d

b

Figure 2 Speedups in mean verification and overall query times. The speedups in mean verification times and overall query times for the n =
2,000 and 16,000 datasets. The GraphGrepSX, lp = 4 times were used as baselines for each plot. Mean verification times were measured as the total
verification time divided by the total number of filtered candidates for each dataset.

Filtering
The filtering time was calculated as the time required to
perform filtering for all the queries of a given dataset.
The precision was calculated as the total number of actual
query matches divided by the total number of filtered can-
didates for all the queries of a given dataset. The filtering
results are shown in Table 3.
In contrast to their indexing performances, the lp =

10 variants of SING and GraphGrepSX generally out-
performed their lp = 4 variants. A larger lp value has
more specificity and therefore results in fewer numbers
of filtered candidates than a small lp value, reducing
the verification load. The BetaSearch and lp = 10 pre-
cision values were consistently near 1.0 for all datasets
and query sizes. The precision of the lp = 4 variants
were considerably lower than the lp = 10 variants due
to the aforementioned specificity limitations of smaller
path lengths.

Verification
We measured the mean verification time as the total
verification time for a dataset divided by the total num-
ber of filtered candidates for a dataset. The mean ver-
ification times were less than a second due to the rel-
atively small query graphs involved in this study. The
speedups of each method were measured using the
GraphGrepSX,lp = 4 times as the baseline and are shown
in Figure 2.
BetaSearch consistently recorded the fastest verifica-

tions across all query sizes and datasets, this is because
the BetaSearch verification algorithm runs in quadratic
time whereas the VF2 algorithm employed by SING and
GraphGrepSX was designed for general graphs and has
a potential non-polynomial time complexity [21]. The
largest speed-up by BetaSearch was achieved for queries
with two edges, since these queries equated to individual
trimers, there was no need for candidates to be verified.

Ho et al. BMC Research Notes 2012, 5:391 Page 7 of 17
http://www.biomedcentral.com/1756-0500/5/391

Table 3 Filtering times and precisions (graph indexing comparisons)

Dataset size
Method

1,000 2,000 4,000 8,000 16,000

GraphGrepSX,lp = 4 9s 40s 3m 04s 13m 30s 56m 27s

0.38 0.34 0.23 0.08 0.03

GraphGrepSX,lp = 10 10s 43s 3m 03s 13m 14s 55m 05s

0.92 0.97 0.97 0.34 0.20

SING,lp = 4 25s 1m 42s 6m 38s 28m 23s 2h 01m 40s

0.39 0.39 0.39 0.39 0.39

SING,lp = 10 13s 54s 3m 51s 16m 54s 1h 10m 32s

0.98 0.99 1.00 1.00 1.00

BetaSearch 2s 7s 32s 2m 13s 8m 16s

1.00 1.00 1.00 1.00 1.00

The filtering times and precisions (italics). Precision was calculated as the number of actual query matches divided by the number of filtered candidates for all queries
of a given dataset.

Comparisons with 3D substructure search methods
We have compared BetaSearch with LabelHash and
SHEBA since they each perform residue-level match-
ing. SHEBA was shown to be amongst the most accu-
rate substructure search methods in recent work [16],
however, LabelHash has yet to be evaluated against
other methods. LabelHash and SHEBA were run using
default search parameters. Comparisons with DaliLite
were unable to be performed due to the majority of our
queries and β-sheets not meeting the minimum number
of residues required by DaliLite. DaliLite was shown to

have accuracies comparable to SHEBA but with consider-
ably longer compute times [16].
Figure 3A shows the F1 scores computed across all query

sizes for each method. Exact matches for each method
were considered to be those with p′ = 1 for LabelHash and
m = 1 for SHEBA. We also computed F1 at p′ ≥ 0.999,
however, the F1 atm ≥ 0.999 was identical to that ofm =
1 so we instead computed F1 at m ≥ 0.95. BetaSearch,
by virtue of inherent exact matching, produces unranked
hits and consequently produces an F1 score of 1.0 for the
entire query set.

10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

query size (no. of residues)

F
1

(19, 0.61)

(40, 0.98)

(19, 0.91)

LabelHash p' >= 1
LabelHash p' >= 0.999
SHEBA m >= 1
SHEBA m >= 0.95
BetaSearch

a

10 20 30 40 50

0.
1

1.
0

10
.0

10
0.

0
10

00
.0

query size (no. of residues)

sp
ee

du
p

(o
ve

r
S

H
E

B
A

)

BetaSearch LabelHash SHEBA

b
Figure 3 Comparisons with 3D substructure search methods. (a) The F1 score versus query size, p′ andm denote the hit scores at which an
exact match is considered and all hits below this threshold are excluded. BetaSearch is an exact-matching method and does not produced ranked
hits, it therefore yields an F1 score of 1.0 for all queries. (b) The CPU time speedups of BetaSearch and LabelHash over SHEBA. Elapsed wallclock
times were nearly identical to the CPU times and were therefore omitted.

Ho et al. BMC Research Notes 2012, 5:391 Page 8 of 17
http://www.biomedcentral.com/1756-0500/5/391

LabelHash at p′ ≥ 0.999 clearly outperforms SHEBA
on all query sizes, however, neither method performed
particularly well on queries of 10 residues or less with
the worst F1 scores observed for queries of 4–5 residues,
which have the largest number of hits amongst all query
sizes (see Additional file 1: Figure S1A). Although, once
the queries reach sizes of 25 residues, LabelHash main-
tained F1 scores of at least 0.9 since the number of
possible hits closely approaches the number queries (see
Additional file 1: Figure S1B).
We measured the CPU times of each method and com-

puted the speedups over SHEBA. The wallclock times
were also measured but were omitted since they were
analogous to the CPU times. The CPU times of each
method for the ASTRAL95 query set were measured as
follows:

• SHEBA – 239 h 25 m
• LabelHash – 33 h 17 m
• BetaSearch – 0 h 59 m

Figure 3B shows the speedups at each query size.
BetaSearch achieved total speedups of 240 times over
SHEBA and 33 times over LabelHash. The largest
speedups of BetaSearch were obtained for queries of 4–15
residues, which are the sizes of commonly studied motifs
[41]. The improved performance of BetaSearch and Label-
Hash over SHEBA can be attributed to their use of indices
which removes the need to perform exhaustive pairwise
comparisons for each query against the dataset. This naive
approach to substructural searching can lead to query sets
taking days to complete [16,40].

Case Studies
β-residue motifs can contribute both to the structural
and functional features of a protein. For researchers who
study protein structure, BetaSearch can be a useful tool
for surveying particular β-sheet configurations across
known protein structures. The frequency of a particular
motif may give an indication of its relative stability as a
β-sheet structural element. Researchers who study func-
tional aspects of β-sheets can use BetaSearch to identify
similar motifs in unrelated proteins, as we demonstrate
with the biotin-binding pockets of avidin and streptavidin.
BetaSearch is fast with a simple, intuitive search query
context that allows the researcher to efficiently make com-
parisons against known β-sheets.
A typical BetaSearch workflow involves the researcher

(i) inspecting a protein structure for a β-sheet of inter-
est, (ii) identifying a specific β-residue motif, and (iii)
manually entering the amino acids in the correspond-
ing β-matrix into BetaSearch. Alternatively, this workflow
can be automated, allowing BetaSearch to be used in
a data mining or knowledge-discovery capacity which

potentially allows interesting relationships between spe-
cific amino acid configurations and protein structures
or functions, which would not be intuitively revealed by
manual trial-and-error querying.
To demonstrate the capabilities and potential use-cases

of BetaSearch we present the results of three case studies.
These were drawn from real-world examples and illus-
trate the role β-residue motifs play in the structure and
function of proteins. We also provide the matches from
comparative queries using BLAST to demonstrate the
difference in matches between a conventional sequence-
based homology search and BetaSearch (see Additional
files 2, 3, and 4).

Case Study 1 - Synthetic motifs in the Top7 protein
Top7 [PDB:1QYS] is the only engineered protein (non-
hypothetical) not to be derived from the sequence or
structure of any other protein [42,43]. Most notably, it
adopts a unique fold that has yet to be observed in nature.
Its structure consists of an amphipathic β-sheet and two
α-helices. Inspection of the β-sheet revealed a repeating
β-residue motif (Figure 4A). Using this as a query, we
wanted to discover known protein structures that pos-
sessed this putative synthetic motif. BetaSearch was used
to query the PDB2011 dataset, which revealed matches
only in structures of the Charcot-Leyden crystal (CLC)
protein [PDB:1G86,1HDK,1LCL,1QKQ].
A structural alignment of Top7 and CLC around the

matching regions of the query motif (Figure 4B) shows
remarkably, that the β-strand topology and sidechain
directions are nearly identical. This does not suggest a
homology between the two proteins because Top7 is
entirely synthetic. However, our findings demonstrate
that the RosettaDesign [44] approach used to engineer
Top7 had inadvertently reproduced a known stable β-
residue motif ab initio. The CLC protein was not found
in a BLAST query of Top7 chain A (see Additional
file 2).

Case Study 2 - Biotin-binding domains
Streptavidin [PDB:1STP] and avidin [PDB:1VYO] are
structurally and functionally similar homologous proteins
that bind strongly to biotin despite having a sequence
identity of less than 35%. Both proteins consist of eight
antiparallel β-strands that fold into a β-barrel, inside
of which forms a highly conserved biotin-binding site.
The β-residue motifs that line this highly specific site
are shown in Figures 5A and 5B. When the residues
on the non-binding face of the β-sheet are ignored, the
two motifs are differentiated by only a single residue:
W1STP

92 ↔ F1VYO79 . The results from the corresponding
BLAST query are shown in Additional file 3.
We have characterised these biotin-binding sites as

a minimal, β-residue motif (Figure 5C). This putative

Ho et al. BMC Research Notes 2012, 5:391 Page 9 of 17
http://www.biomedcentral.com/1756-0500/5/391

extract query

Top7
[PDB: 1QYS]

Top7 (red) and
CLC (green)

structural alignment

structural alignment
of the matching -residue

motif regions

match

Charcot-Leyden Crystal (CLC)
[PDB: 1LCL]

Y
V

I

V

T

Q

T

S

a b
Figure 4Matching the Top7 and CLC β-sheets (Case Study 1). The amphipathic query (a) is a characterisation of the repeating amphipathic
region in the Top7 protein (bold). This query was matched only in the CLC protein [PDB: 1LCL]. A structural alignment (b) around the query-matching
regions of both proteins where the strand and sidechain directions are conserved. The structural alignment was generated using the PyMOL “align”
command: “fetch 1QYS; fetch 1LCL; align 1QYS & (resi 8+19+50+81+90), 1LCL & (resi 20+93+102+110)”.

motif is evolutionary conserved between the avidins
and has not yet been shown to be recurrent in evolu-
tionarily distant proteins. Using this query, BetaSearch
not only identifies the structures of avidin and strep-
tavidin, but also xenavidin—a biotin-binding protein
from Xenopus tropicalis (frog). A number of seem-
ingly unrelated proteins were also matched including
uncharacterised proteins from Roseovarius nubinhibens
[PDB:3BVC] andOceanicola granulosus [PDB:2RG4]; and
the human complement protein C8 gamma [PDB:1IW2].
The complete set of matching β-sheets is listed
in Additional file 4.
Inspection of the uncharacterised proteins reveal a

similar arrangement of residues to the known-biotin
binding proteins but with less room for the ligand to bind.
More tantalising is the match with the gamma subunit of
human C8 which is a crucial component of the cytolytic
membrane attack complex (MAC) [45]. This subunit has
a characteristic lipocalin fold with a distinctive binding
pocket similar to the avidins, however, the ligand target
of C8 gamma remains unknown [45]. Based on the spatial

similarities of this binding pocket with the biotin-binding
sites of avidin, one may suggest that these proteins could
have an affinity for biotin or a biotin-like compounds.
These results demonstrate that a relatively small β-

residue motif query can be matched in unrelated proteins.
This capability can be particularly useful in characterising
proteins of unknown function by similarities in β-residue
motifs to those of known function.

Case Study 3 - β-strand pairing prediction
One of the unsolved problems of tertiary structure predic-
tion is the ability to predict the pairs of β-strands which
are hydrogen bonded, and therefore adjacent, in a β-sheet
[46]. Information about adjacent β-strands can be used
to determine the overall topology of a β-sheet. A number
of β-sheet topology prediction algorithms exist that are
based on well-known machine learning methods [46-49].
We used BetaSearch to predict the β-strand pairings

of the five-stranded β-sheet found in chain A of c-src
tyrosine kinase [PDB: 1A09]. This β-sheet contains five
strands, is non-barreled, non-bifurcated, and therefore

Ho et al. BMC Research Notes 2012, 5:391 Page 10 of 17
http://www.biomedcentral.com/1756-0500/5/391

(a) (b)

(c)

(d)
Figure 5 Querying biotin-binding β-residue motifs (Case Study 2). The (a) streptavidin and (b) avidin biotin-binding motifs are well conserved
with the residues on the binding face coloured red. (c) The minimal biotin-binding β-residue motif used to query potential biotin-binding proteins.
(d) The query was matched in the gamma chain of the human complement C8 protein [PDB:1IW2]. The β-matrices shown in (a), (b), and (d) have
been abbreviated for clarity and are sub-matrices of larger β-matrices.

Ho et al. BMC Research Notes 2012, 5:391 Page 11 of 17
http://www.biomedcentral.com/1756-0500/5/391

has four native strand pairings. A score for each possible
strand pair was computed as a function of the number
of hits, in a BetaSearch index, obtained for each inter-
strand 4-mer query. The top four pairs ranked by pair-
ing scores were considered as predictions. Strand pairing
scores were computed for parallel and antiparallel orien-
tations, as shown in Table 4. These results demonstrated
that each of the native strand pairs were correctly pre-
dicted. The procedures used to perform these predictions
are described in the Methods section. Our mechanisms
for strand pair scoring are by no means a definitive solu-
tion to β-sheet topology prediction. They can, however,
be used in existing algorithms such as BetaPro [47] which
require preliminary β-strand or β-residue pairing scores
in order for predictions to be made. A large scale evalu-
ation of our BetaSearch-based prediction method is the
topic of future work.

Conclusion
We have described a method for indexing and query-
ing β-residue motifs, called BetaSearch, that is at least
an order of magnitude faster than state-of-the-art graph
indexing methods. These speedups are achieved by index-
ing β-sheets as 2D matrices of amino acids known as
β-matrices. This representation leverages the inherent
planar structural constraints of β-sheets, thereby avoid-
ing much of the computational complexity involved in
querying and indexing 3D or graph representations of
protein structures. BetaSearch is therefore able to achieve
quadratic-time querying. Filtering precisions were close
to 1.0 for all datasets and query sizes, resulting in near
minimal verification time.
When compared with existing 3D substructure search

methods, BetaSearch achieves a 240 times speedup over
the baseline (SHEBA) and a 33 times speedup over the

Table 4 The predicted strand pairing scores for the 1A09
chain A β-sheet (Case Study 3)

Pair Parallel Antiparallel Total

score score score

∗4,5 4.86 4.99 9.85
∗2,3 4.59 4.60 9.19
∗3,4 4.32 4.31 8.64
∗1,2 4.09 4.09 8.18

3,5 3.12 3.09 6.21

2,4 2.98 2.97 5.96

1,3 2.95 2.97 5.93

1,4 2.72 2.72 5.44

2,5 2.33 2.33 4.66

The strand pairing scores generated for the β-sheet in chain A of c-src tyrosine
kinase. The top four scoring pairs (predicted) are delineated and the native pairs
are denoted with an asterisk.

next fastest method (LabelHash). The demonstrated effi-
ciency of BetaSearch lends itself well to the rapid explo-
ration of probable motif or β-sheet conformations in a
matter of minutes, rather than days or weeks with 3D-
based methods. Furthermore, the ability of BetaSearch to
perform exact matching ensures that correct hits are not
missed.
Our three case studies demonstrated the utility of

BetaSearch in biological contexts. We discovered that
the synthetic Top7 protein shares an identical β-residue
motif with a known naturally-occurring protein—the
Charcot-Leyden crystal. A small query derived from the
biotin-binding motif of avidins easily identified unre-
lated biotin-binding proteins and is suggestive of biotin-
binding in others including the gamma subunit of the
human C8 complement protein. BetaSearch, with its
ability to identify functional similarity from unrelated pro-
teins can potentially help characterise the proteins in the
PDB with unknown function. We also demonstrated how
BetaSearch could be used to predict strand pairing in
β-sheets, which could help reduce the search space of
more complex supersecondary or tertiary structure pre-
diction tasks. Although our work has focused on substruc-
tural motifs in β-sheets, our algorithm can be modified
to perform querying of any substructural motif involv-
ing pairwise interactions, such as the well-characterised
hydrogen-bond pairings in helices and turns. Indeed,
this is an avenue of development we are currently
exploring.
It is our intention for BetaSearch to be used by pro-

tein researchers to supplement conventional sequence
and structural search methods. For example, the effi-
ciency of the BetaSearch filtering and verification algo-
rithms introduces the possibility for their use as a
rapid “first-pass” filter to improve the querying perfor-
mance of other methods. Such an application would
be non-trivial to develop but could potentially reduce
conventional structural query times from hours to
minutes.

Findings
The pseudocode for each of the algorithms described in
this section is provided in the Supplementary Materials.

Trimers
A trimer is a path of three amino acids in a β-matrix con-
figured in the shape of an ‘L’ (an L-trimer), vertically in
the same column (a V-trimer), or horizontally in the same
row (an H-trimer). Trimers are the features by which β-
matrices are indexed in BetaSearch. An example of the
trimer extraction process is shown in Additional file 1:
Figure S2.
A trimer t has a number of attributes that encode its

configuration and location within a β-matrix:

Ho et al. BMC Research Notes 2012, 5:391 Page 12 of 17
http://www.biomedcentral.com/1756-0500/5/391

• t.SEQ: a three letter string of residues spanned by the
trimer where
if t.SEQ = “abc′′

then t.SEQ[0]→ “a′′, t.SEQ[1]→ “b′′, t.SEQ[2]→ “c′′.
• t.CLASS: an integer representing the class of the

trimer, defined as

t.CLASS =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if t is an L-trimer
3 if t is a V-trimer and t.SEQ[0] �= t.SEQ[2]
5 if t is an H-trimer and t.SEQ[0] �= t.SEQ[2]
15 if t is a V-trimer and t.SEQ[0]= t.SEQ[2]
31 if t is an H-trimer and t.SEQ[0]= t.SEQ[2] .

• t.ID: a (t.CLASS,t.SEQ) tuple.
• t.ORIENT: an integer value such that t.ORIENT

∈ {0, 1, 2, 3 }. These values describe the possible
orientations of a trimer and were chosen to allow the
calculation of x- and y-axis trimer reflections using
the bitwise-XOR (‘⊕’) operator. Orientation
reflections are calculated as

t′.ORIENT =
{
t.ORIENT ⊕ 1 if reflected in the y-axis
t.ORIENT ⊕ 2 if reflected in the x-axis

where t’ is the reflection of t. Additional file 1: Figure
S2 shows how trimer orientations are determined for
each trimer class.

• t.EQ-ORIENTS: an integer that encodes the equivalent
orientations of t.ORIENT, defined as

t.EQ-ORIENTS =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2t.ORIENT if t.CLASS = 1
3 if t.CLASS = 3 and t.SEQ[0]< t.SEQ[2]

12 if t.CLASS = 3 and t.SEQ[0]> t.SEQ[2]

5 if t.CLASS = 5 and t.SEQ[0]< t.SEQ[2]

10 if t.CLASS = 5 and t.SEQ[0]> t.SEQ[2]

15 otherwise,

such that

t.EQ-ORIENTS & i =
{
1 if orientation i is equivalent to t.ORIENT
0 otherwise,

where ‘<’ and ‘>’ are the lexicographic less-than and
greater-than operators; and ‘&’ is the bitwise-AND
operator. The equivalent orientations of a trimer are
encoded using bitmasks such that orientation i is
equivalent to t.ORIENT if the ith bit of t.CLASS is set
to 1. The t.CLASS value for each type of trimer is an
encoding of the minimum t.CLASS value for the class.

• t.ROW: the row coordinate of t.SEQ[1] within its
β-matrix.

• t.COL: the column coordinate of t.SEQ[1] within its
β-matrix.

• t.COORD: a (t.ROW,t.COL) tuple.
• t.SPAN1, t.SPAN2: the row (t.ROW-SPAN) or column

spans (t.COL-SPAN) of a trimer, depending on the
trimer class. Each span is an ordered tuple (i, j) where
i is the coordinate of t.SEQ[1] and j is the coordinate
of either t.SEQ[0] or t.seq[2], depending on the trimer

type. L-trimers have one row span and one column
span, V-trimers have two row spans, and H-trimers
have two column spans. Examples of the spans for
each trimer are shown in Additional file 1: Figure S3.

Index construction
BetaSearch uses three indices:D,R, and C.

• D is an inverted index that maps each trimer id to
the set of β-matrices in which they are contained,
defined as

D[id] 	→ {b ∈ B : id ∈ b.TRIMER-IDS}
where B is the set of β-matrices in the dataset.

• Rmaps a compound key κR to a trimer t, defined by

R[κR] 	→ t
where κR = (t.MATRIX-ID, t.ID, t.EQ-ORIENTS,

t.COORD, t.ROW-SPAN)

such that class /∈ {3, 15}.
• C maps a compound key κC to a trimer t, defined by

C[κC] 	→ t
where κC = (t.MATRIX-ID, t.ID, t.EQ-ORIENTS,

t.COORD, t.COL-SPAN)

such that t.CLASS /∈ {5, 31}.
L-trimers are indexed in R and C; whereas H-trimers

are indexed only in C because they do not contain any
row spans, conversely, V-trimers are indexed only in R
because they do not contain any column spans. The
BUILD-INDICES procedure in Additional file 1: Algorithm
S1 describes the index construction algorithm.

Time complexity
Each entry in a β-matrix is the intersection of at most six
trimers: four L-trimers (one in each of the four orienta-
tions), one V-trimer, and one H-trimer. BUILD-INDICES
runs in O(6mn) time wherem is the maximum number of
residues in a β-matrix and n is the number of β-matrices.

Filtering
A query is a well-formed β-matrix Q. Preprocessing Q
requires the following steps:

1. Enumerate the query trimers and storing them in
Q.TRIMERS.

2. Store the corresponding trimer IDs in Q.TRIMER-IDS.

Partially matching candidates are obtained by pruning
the β-matrices in D using two filters. The FIRST-FILTER
procedure, described in Additional file 1: Algorithm S2,
prunes the β-matrices in D that do not contain the entire
set of trimer IDs in Q.TRIMER-IDS.

Ho et al. BMC Research Notes 2012, 5:391 Page 13 of 17
http://www.biomedcentral.com/1756-0500/5/391

β-matrices are indexed in a single arbitrary orien-
tation, therefore a procedure for comparing a query
against all orientations of a candidate is required. The
naive approach enumerates and stores the x- and y-axes
reflections of each β-matrix, effectively tripling the index
size. Alternatively, the x- and y-axes reflections of the
query are enumerated and compared with a candidate,
effectively tripling the filtering time.
We have developed an algorithm that prunes invalid

candidates without enumerating reflections of the candi-
date or the query. The algorithm is implemented as the
SECOND-FILTER procedure described in Additional file 1:
Algorithm S3, where only the candidates congruent to
Q are retained from C1. A query Q is congruent to a
candidate c if

⋂
q∈Q.TRIMERS
t ∈ c.TRIMERS

{q.ORIENT ⊕ t.ORIENT : t.ID=q.ID} �=∅

where ‘ ⊕′ is the bitwise-XOR operator.
(5)

The CONGRUENT procedure defined in Additional file 1:
Algorithm S3 implements Equation 5 using bitwise
operations that enable constant-time set unions and
intersections.

Time complexity
The FIRST-FILTER algorithm runs in O (|pmin|·
|Q.TRIMER-IDS|) time where |pmin| is the cardinality of
the smallest postings set and |Q.TRIMER-IDS| is the num-
ber of unique trimer ids in the query. A postings set is
a set in the index of β-matrices containing a particular
query trimer. The SECOND-FILTER algorithm runs in
O (|Q.TRIMER-IDS| · |C1|) time where |C1| is the number
of candidates returned by FIRST-FILTER.

Verification
Most graph indexing methods use the VF2 [20] or Ull-
mann [19] algorithms for candidate verification. Other
methods use algorithms optimised for the data structures
of their features and indices.
Constraining β-graphs to the simpler structures of β-

matrices has enabled us to develop a quadratic time candi-
date verification algorithm that does not rely on subgraph
isomorphism tests.
A graph G of the query is constructed, in which each

vertex is a trimer q ∈ Q.TRIMERS and each edge e =
(qsrc, qdes) indicates a span overlap (i.e. t.COL-SPAN
or t.ROW-SPAN) between adjacent query trimers qsrc
and qdes. The algorithm to construct a query graph
is implemented in the MAKE-QUERY-GRAPH procedure
described in Additional file 1: Algorithm S4.
The remainder of the verification algorithm attempts

to find a subgraph of a candidate c that matches G by

matching each pair (qsrc, qdes) to a pair (tsrc, tdes) ∈
c.TRIMERS, where a match between pairs is defined by

MATCH-PAIRS (qsrc, qdes, tsrc, tdes) =
REL-ORIENT (qsrc, qdes) ⇐⇒ REL-ORIENT (tsrc, tdes)
∧ OVERLAPS (qsrc, qdes) ⇐⇒ OVERLAPS (tsrc, tdes)
∧ OVERLAP-TYPE (qsrc, qdes)

⇐⇒ OVERLAP-TYPE (tsrc, tdes)
∧ OVERLAP-SPAN-NUMS (qsrc, qdes)

⇐⇒ OVERLAP-SPAN-NUMS (tsrc, tdes)
(6)

and a match between a queryQ and a candidate c occurs if

∧
qsrc, qdes ∈G

⎛
⎝ ∨

tsrc, tdes ∈ c
MATCH-PAIRS(qsrc, qdes, tsrc, tdes)

⎞
⎠
(7)

The keys by which trimers are indexed in R and
C contain their locations and geometric configurations
within a candidate, allowing MATCH-PAIRS to be tested
in constant-time.MATCH-PAIRS is implemented using the
procedures defined in Additional file 1: Algorithm S8.
The VERIFY-CANDIDATE procedure in Additional file 1:
Algorithm S6 describes our algorithm for verifying a sin-
gle candidate.

Time complexity
The MAKE-QUERY-GRAPH procedure runs in
O(|Q.TRIMERS|) time where |Q.TRIMERS| is the number
of trimers in the query. The VERIFY-CANDIDATE proce-
dure runs in O(|Q.TRIMERS|2) time, which is called by the
VERIFY procedure in Additional file 1: Algorithm S7 to
verify each filtered candidate in C2. Therefore, the overall
time complexity of our candidate verification algorithm is
O

(|Q.TRIMERS| + |C2| · |Q.TRIMERS|2).
β-strand pairing prediction
For Case Study 3, we constructed a BetaSearch index
from the ASTRAL95 dataset, as per the 3D substruc-
ture search comparisons. The secondary structures for
the β-sheet were using DSSP. Each β-strand sequence
was delineated as contiguous substrings of “E” secondary
structure assignments. Scores for each possible β-strand
pairing

(
i, j

)
were computed as follows:

1. Let I be the index generated from the ASTRAL95
dataset.

2. Let SP and SA be the strand pairing score matrices for
the parallel and antiparallel strand pairs, respectively.

3. Let M be a matrix whereMij contains the number of
4-mers between strands i and j. We define a 4-mer as
a single occurrence of two-consecutive bridge

Ho et al. BMC Research Notes 2012, 5:391 Page 14 of 17
http://www.biomedcentral.com/1756-0500/5/391

pairings. For example, the β-matrix
(
A B C
D E F

)
has

the 4-mers –
(
A B
D E

)
and

(
B C
E F

)
.

4. For each strand pair
(
i, j

)
:

(a) For each alignment a of j on i :

(i) For each 4-mer m of a:

(A) Let hP and hA be the
number of hits returned
from querying I for the
parallel and antiparallel
orientations of m,
respectively.
Set SPij ← SPij + hP
Set SAij ← SAij + hA
SetMij ← Mij + 1

(b) Let seq sep
(
i, j

)
be the number of residues

separating strands i and j.

Set SPij ← SPij
Mij

− log
[
seq sep

(
i, j

)]
Set SAij ← SAij

Mij
− log

[
seq sep

(
i, j

)]

The total score for a strand pair was defined as

score
(
i, j

) = SPij + SAij (8)

Evaluation
The graph indexing methods were evaluated according
to their filtering, verification, and overall query times.
The sizes of the indices generated by each method were
measured using the POSIX “stat” command. The filter-
ing precision was calculated as the total number of hits
divided by the total number of filtered candidates for all
queries of a given dataset size.
A “hit” for a query against a β-sheet occurs when it con-

tains (or is) an exact match of the query structure. Unlike
BetaSearch, LabelHash and SHEBA perform approximate
matching and return a list of hits ranked by a structural
similarity score. For LabelHash, this is a statistically-
determined p-value where a low value indicates a close
match. SHEBA ranks hits according to them-value which
is the number of aligned residues between a query and a
result, divided by the number of residues in the larger of
the two structures. For simplicity, we denote the Label-
Hash score for a hit as p′ = 1 − p. These scores need to
be thresholded in order to obtain exact matches so that
all hits with scores below a given threshold are ignored
and those above the threshold are assigned the same rank.
Once a suitable hit score threshold is chosen, the querying
accuracy of each method can be computed by counting a
hit as a true positive (TP) if the query is exactly matched

within a β-sheet, a false positive (FP) if it is not, or a false
negative (FN) if a correct β-sheet hit is absent from the
list of results. We can then calculate the recall, as

recall = TP
TP

+ FN (9)

which denotes the proportion of exactly-matching β-
sheets out of all correct β-sheet hits. and the precision, as

precision = TP
TP

+ FP (10)

which denotes the proportion of correct β-sheet hits in
a list of hits. These two measures are commonly used
to evaluate conventional document retrieval systems [24],
as well as protein structural search methods [16]. The
F-score, defined as

Fβ = (
1 + β2) · precision · recall

β2 · precision + recall
(11)

is the harmonic mean of the precision and recall values. It
provides a convenient way of evaluating the query preci-
sion and recall as a single value. The β parameter allows
emphasis to be placed on precision or recall depending
on the query performance goals. We used the F1 score in
our 3D substructure search comparisons as a measure of
query accuracy.

Datasets
For the graph indexing comparisons, the January 3, 2011
(PDB2011) snapshot of the PDB was used to generate
a dataset of 209,127 β-sheets. A number of PDB files
were excluded due to discrepancies in their content [50].
β-sheets exhibiting poor planarity, such as those with sig-
nificantly pronounced twisting or curvature, were also
excluded.
The DSSP [51] algorithm was used to assign secondary

structures to each PDB file. Residues with a secondary
structural assignment of “E” or “b” were considered to
form part of a β-strand. DSSP also assigns bridge part-
ner relationships between residues on adjacent β-strands,
which were used to determine the bridge edges in β-
graphs.
We used Pro-Origami [52] to generate β-graphs and a

topological sort was used to generate the β-matrix from
the peptide and bridge edges of each β-graph.
Subsets containing 1,000; 2,000; 4,000; 8,000; and 16,000

β-sheets were randomly selected from the dataset. These
sizes were used in previous benchmarks [23,27]. Graph-
GrepSX and SING were unable to be run on datasets of
32,000 or more due to the memory consumption of their
respective implementations, we therefore restricted the
sizes of our datasets accordingly.
Each β-graph was preprocessed by inserting “dummy”

nodes in place of a labelled edge. Each dummy node was

Ho et al. BMC Research Notes 2012, 5:391 Page 15 of 17
http://www.biomedcentral.com/1756-0500/5/391

labelled with either a “b” to denote a bridge edge or a “z”
to denote a peptide edge in order to avoid conflict with
the labels of residue nodes. Preprocessing was required
because edge-labelled graphs were not supported by SING
or GraphGrepSX.
Queries were generated in the same manner as in previ-

ous benchmarks [23]. A query was created from each β-
graph by randomly selecting a root node and performing
a random breadth-first traversal until the query obtained
the degrees d such that 2 ≤ d ≤ 10. Queries were not gen-
erated from β-graphs with insufficient edges. Each query
contained a single wildcard node that matched any amino
acid. To enable wildcard matching on all methods, each
query was repeated by replacing the wildcard node with
each of the 20 amino acids. The β-matrices for each query
were generated for use by BetaSearch. The total num-
bers of queries generated for each query size are shown in
Additional file 1: Table S1.
For the case studies, we generated the required indices

from all the β-matrices in the PDB2011 dataset. Each
β-matrix was assigned a sheet identifier of the format
“<PDB ID><chain ID> SHEET <number>”. For exam-
ple, the sheet ID of the first β-matrix in chain A of
ubiquitin [PDB:1UBQ] is “1UBQA SHEET 000”.
For the 3D substructure search comparisons, the

ASTRAL SCOP 1.75A 95% sequence identity non-
redundant dataset [53] of protein structures (ASTRAL95)
were used. β-sheets were extracted and filtered as
per the graph indexing datasets and a total of 29,341
β-sheets were obtained. A subset of 26,669 β-sheets
containing between 4 and 50 residues, inclusive,
were used as queries. The β-matrices correspond-
ing to each β-sheet were generated and used with
BetaSearch.

Implementation
The graph indexing comparisons were performed on a
2.66 Ghz Intel Nehalem 8-core processor with 48 GB of
main memory running CentOS. The source code to SING
and GraphGrephSX were provided by the authors of their
respective publications. All methods were implemented in
C++, compiled using g++ version 4.3, and depend on the
Boost C++ version 1.42.0 libraries [54]. BetaSearch addi-
tionally requires Redis [55] version 2.0.4 and the official
Redis C headers [56].
The indices in SING and GraphGrepSX were imple-

mented as modified C++ STL “std::map” containers in
the memory spaces of their respective processes. In con-
trast, BetaSearch stores its indices using Redis hash tables
that are stored in (disk-based) virtual memory and oper-
ates external to BetaSearch as a concurrent process. It
is therefore subject to interprocess communication over-
head during filtering and indexing, which are included in
our experimental timings.

The 3D substructure search comparisons were per-
formed on the same platform with 8 GB of main memory.
BetaSearch was re-implemented in Python 2.7 using the
Whoosh Python Search Library [57]. LabelHash 1.0.2 [58]
and SHEBA 3.1.1 [59] were downloaded and used. The
LabelHash index was built from the PDB coordinates of
all the ASTRAL95 β-sheets, which were extracted from
their original structures using ProDy [60]. The BetaSearch
index was built from the β-matrix representations of each
β-sheet.

Structural renderings and alignments
We used PyMOL [61] to generate 3D renderings and
structural alignments of proteins.

Availability and requirements
• Project name: BetaSearch
• Project homepage: http://www.csse.unimelb.edu.

au/∼hohkhkh1/betasearch
• Operating system(s): Ubuntu Linux 11.10+ (http://

www.ubuntu.com)
• Programming language(s): Python
• Other requirements: A complete listing of Python

module dependencies is provided on the project
homepage.

• License: None
• Any restrictions to use by non-academics:

BetaSearch can be used free-of-charge by
non-academics, provided appropriate citation and
credit is given to the authors of this publication.

Additional files

Additional file 1: Supplementary materials (supplement.pdf). This
PDF file contains additional information about our experiments as well as
the pseudocode for each algorithm referenced in this paper.

Additional file 2: Results from a BLAST query of Top7 chain A
(1QYSA-BLAST-results.txt). This plain text file contains the accession
numbers of the protein sequences obtained from a BLAST query of Top7
[PDB:1QYS] chain A. The query parameters are defined in this file.

Additional file 3: Results from a BLAST query of streptavidin chain A
(1STPA-BLAST-results.txt). This plain text file contains the accession
numbers of the protein sequences obtained from a BLAST query of
streptavidin [PDB:1STP] chain A. The query parameters are defined in this
file.

Additional file 4: Matching β-sheets from Case Study 2 (case-study-2-
matches.txt). This plain text file contains all the matching β-sheets in our
dataset from the biotin-binding β-residue motif query defined in Figure 5C.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
HH, GG, and KR contributed to the design of the algorithms. HH implemented
the algorithms and evaluation software, performed the experimental analyses,
and prepared the manuscript and figures. MJK contributed to the evaluation
of the case studies. All authors read and approved the final manuscript.

http://www.csse.unimelb.edu.au/~hohkhkh1/betasearch
http://www.csse.unimelb.edu.au/~hohkhkh1/betasearch
http://www.ubuntu.com
http://www.ubuntu.com
http://www.biomedcentral.com/content/supplementary/1756-0500-5-391-S1.pdf
http://www.biomedcentral.com/content/supplementary/1756-0500-5-391-S2.txt
http://www.biomedcentral.com/content/supplementary/1756-0500-5-391-S3.txt
http://www.biomedcentral.com/content/supplementary/1756-0500-5-391-S4.txt

Ho et al. BMC Research Notes 2012, 5:391 Page 16 of 17
http://www.biomedcentral.com/1756-0500/5/391

Funding
This work was supported by a Victorian Life Sciences Computation Initiative
(VLSCI) [grant number VR0127] on its Peak Computing Facility at the University
of Melbourne, an initiative by the Victorian Government. HH is supported by a
NICTA PhD scholarship. NICTA (National ICT Australia) is funded by the
Australian Government’s Department of Communications; Information
Technology and the Arts; Australian Research Council through Backing
Australia’s Ability; ICT Centre of Excellence programs.

Acknowledgements
We would like to thank:

• The reviewers for their feedback in improving the quality of this article.
• R. Di Natale, R. Giugno, V. Bonnici, and D. Shasha for their assistance and

providing the GraphGrepSX and SING source code.
• M. Moll for his assistance with the LabelHash software.
• A. Stivala for his assistance with the Pro-Origami source code.
• The VLSCI systems support staff for their assistance with our HPC

technical requests.

Author details
1Department of Computing and Information Systems, The University of
Melbourne, Victoria, Australia. 2National ICT Australia (NICTA), The University of
Melbourne, Victoria, Australia. 3Victorian Life Sciences Computation Initiative
(VLSCI), The University of Melbourne, Victoria, Australia.

Received: 10 May 2012 Accepted: 15 June 2012
Published: 30 July 2012

References
1. Kessel A, Ben-Tal N: Introduction to proteins: structure, function, andmotion.

London: CRC Press; 2010.
2. Zaremba SM, Gregoret LM: Context-dependence of amino acid

residue pairing in antiparallel β-sheets. J Mol Biol 1999, 291:463–479.
3. Parisien M, Major F: Ranking the factors that contribute to protein

β-sheet folding. Proteins 2007, 68:824–829.
4. Wathen B, Jia Z: Folding by numbers: primary sequence statistics and

their use in studying protein folding. Int J Mol Sci 2009, 10:1567–1589.
5. Hubbard TJP: Use of β-strand interaction pseudo-potentials in

protein structure prediction andmodelling. In Proceedings of the 27th
Hawaii International Conference on System Sciences; 1994:336–344.

6. Zhu H, Braun W: Sequence specificity, statistical potentials, and
three-dimensional structure prediction with self-correcting distance
geometry calculations of β-sheet formation in proteins. Prot Sci 1999,
8:326–342.

7. Steward RE, Thornton JM: Prediction of strand pairing in antiparallel
and parallel β-Sheets using information theory. Proteins 2002,
48:178–191.

8. Rajgaria R, Wei Y, Floudas CA: Contact prediction for beta and
alpha-beta proteins using integer linear optimization and its impact
on the first principles 3D structure prediction method ASTRO-FOLD.
Proteins 2010, 78:1825–1846.

9. Bork P, Koonin E: Protein sequence motifs. Curr Opin Struct Biol 1996,
6:366–376.

10. Berman HM, Westbrook J, Fend Z, Gilliland G, Bhat TN, Weissig H,
Shindyalov IN, Bourne PE: The protein data bank. Nucleic Acids Res 2000,
28:235–242.

11. Bella J, Hindle KL, McEwan PA, Lovell SC: The leucine-rich repeat
structure. Cell Mol Life Sci 2008, 65:2307–2333.

12. Liou YC, Tocilij A, Davies PL, Jia Z:Mimicry of ice structure by surface
hydroxyls and water of a β-helix antifreeze protein. Nature 2000,
406:322–324.

13. Makabe K, McElheny D, Tereshko V, Hilyard A, Gawlak G, Yan S, Koide A,
Koide S: Atomic structures of peptide self-assembly mimics. Proc Natl
Acad Sci USA 2006, 103:17753–17758.

14. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman
DJ: Gapped BLAST and PSI-BLAST: a new generation of protein
database search programs. Nucleic Acids Res 1997, 25:
3389–3402.

15. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA,
McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD,

Gibson TJ, Higgins DG: ClustalW and ClustalX version 2. Bioinformatics
2007, 23:2947–2948.

16. Stivala A, Wirth A, Stuckey PJ: Fast and accurate protein substructure
searching with simulated annealing and GPUs. BMC Bioinformatics
2010, 11.

17. Parisien M: Les feullets beta dans les protéines. Annotation,
comparaison et construction.Master’s thesis. Université de Montréal
2005.

18. Amitai G, Shemesh A, Sitbon E, Shklar M, Netanely D, Venger I,
Pietrokovski S: Network analysis of protein structures identifies
functional residues. J Mol Biol 2004, 344:1135–1146.

19. Ullmann JR: An algorithm for subgraph isomorphism. J ACM 1976,
23:31–42.

20. Cordella LP, Foggia P, Sansone C, Vento M: A (sub)graph isomorphism
algorithm for matching large graphs. IEEE T Pattern Anal 2004,
10:1367–1372.

21. Zampelli S: A constraint programming approach to subgraph
isomorphism. PhD thesis. Université catholique de Louvain 2008.

22. Cook SA: The complexity of theorem-proving procedures. In
Proceedings of the 3rd ACM Symposium on Theory of Computing;
1971:151–158.

23. Bonnici V, Ferro A, Giugno R, Pulvirenti A, Shasha D: Enhancing graph
database indexing by suffix tree structure. In Pattern Recognition in
Bioinformatics, Volume 6282 of Lecture Notes in Computer Science.
Springer; 2010:195–203.

24. Manning CD, Raghavan P, Schütze H: Introduction to Information Retrieval.
Cambridge: Cambridge University Press; 2008.

25. Giugno R, Shasha D: GraphGrep: a fast and universal method for
querying graphs. In Proceedings of the 16th International Conference on
Pattern Recognition, 2002, Volume 2; 2002:112–115.

26. Ferro A, Giugno R, Mongiovi M, Pulvirenti A, Skripin D, Shasha D:
GraphFind: enhancing graph searching by low support data mining.
BMC Bioinformatics 2008, 9.

27. Di Natale R, Ferro A, Giugno R, Mongiovi M, Pulvirenti A, Shasha D: SING:
subgraph search in non-homogeneous graphs. BMC Bioinformatics
2010, 11.

28. Yan X, Yu PS, Han J: Graph indexing based on discrimintative
frequent structure analysis. ACM T Database Syst 2005, 30(4):960–993.

29. Cheng J, Ke Y, Ng W, Lu A: FG-Index: towards verification-free query
processing on graph databases. In Proceedings of the 2007 ACM SIGMOD
International Conference on the Management of Data; 2007:857–872.

30. Williams DW, Huan J, Wang W: Graph database indexing using
structured graph decomposition. In IEEE 23rd International Conference
on Data Engineering, 2007; 2007:976–985.

31. Zhang S, Hu M, Yang J: TreePi: a novel graph indexing method. In IEEE
23rd International Conference on Data Engineering, 2007; 2007:966–975.

32. Zhao P, Yu JX, Yu PS: Graph indexing: tree + delta <= graph. In
Proceedings of the VLDB Endowment; 2007:938–949.

33. He H, Singh AK: Closure-tree: an index structure for graph queries. In
Proceedings of the 22nd International Conference on Data Engineering
(ICDE’06); 2006:38.

34. Shamir R, Tsur D: Faster subtree isomorphism. In Proceedings of the 5th
Israel Symposium on the Theory of Computing Systems; 1997:267–280.

35. Zou L, Chen L, Yu JX, Lu Y: A novel spectral coding in a large graph
database. In Proceedings of the 11th International Conference on Extending
Database Technology (EDBT’08); 2008:181–192.

36. Moll M, Bryant DH, Kavraki LE: The LabelHash server and tools for
substructure-based functional annotation. Bioinformatics 2011, 27.

37. Holm L, Sander C:Mapping the protein universe. Science 1996,
273:595–602.

38. Holm L, Park J: DaliLite workbench for protein structure comparison.
Bioinformatics 2000, 16:566–567.

39. Jung J, Lee B: Protein structure alignment using environmental
profiles. Prot Sci 2000, 13:535–543.

40. Stivala A, Wirth A, Stuckey PJ: Tableau-based protein substructure
search using quadratic programming. BMC Bioinformatics 2009, 10.

41. Moll M, Bryant DH, Kavraki LE: The LabelHash algorithm for
substructure matching. BMC Bioinformatics 2010, 11.

42. Kuhlman B, Dantas G, Ireton GC, Varani G, Stoddard BL, Baker D: Design
of a novel globular protein fold with atomic-level accuracy. Science
2003, 302:1364–1368.

Ho et al. BMC Research Notes 2012, 5:391 Page 17 of 17
http://www.biomedcentral.com/1756-0500/5/391

43. Havranek JJ: Specificity in computational protein design. J Biol Chem
2010, 285:31095–31099.

44. Liu Y, Kuhlman B: RosettaDesign server for protein design. Nucleic
Acids Res 2006, 34:W235–W238.

45. Rosado CJ, Kondos S, Bull TE, Kuiper MJ, Law RHP, Buckle AM, Voskoboinik
I, Bird PI, Trapani JA, Whisstock JC, Dunstone MA: The MACPF/CDC
family of pore-forming toxins. Cell Microbiol 2008, 10:1765–1774.

46. Brown WM, Martin S, Chabarek JP, Strauss C, Faulon JL: Prediction of
β-strand packing interactions using the signature product. J Mol
Model 2006, 12:355–361.

47. Cheng J, Baldi P: Three-stage prediction of protein β-sheets by neural
networks, alignments and graph algorithms. Bioinformatics 2005,
21:75–84.

48. Jeong JK, Berman P, Przytycka TM: Bringing folding pathways into
strand pairing prediction. In Lecture Notes in Computer Science, Volume
4645. Springer; 2007:38–48.

49. Aydin Z, Altunbasak Y, Erdogan H: Bayesian models and algorithms for
protein β-sheet prediction. In IEEE/ACM Transactions on Computational
Biology and Bioinformatics, Volume 8. Springer; 2011:395–409.

50. Schierz AC, Soldatova LN, King RD: Overhauling the PDB. Nat Biotechnol
2007, 25:437–442.

51. Kabsch W, Sander C: Dictionary of protein secondary structure:
pattern recognition of hydrogen-bonded and geometrical features.
Biopolymers 1983, 22:2577–2637.

52. Stivala AD, Wybrow M, Wirth A, Whisstock JC, Stuckey PJ: Automatic
generation of protein structure cartoons with Pro-origami.
Bioinformatics 2011, 27:3315–3316.

53. Brenner M, Koehl P, Levitt M: The ASTRAL compendium for sequence
and structure analysis. 2000, 28:254–256.

54. Boost v1.42.0. [http://www.boost.org/users/history/version 1 42 0]
55. Redis. [http://www.redis.io]
56. hiredis. [https://github.com/antirez/hiredis]
57. Whoosh Python search library. [https://bitbucket.org/mchaput/

whoosh/wiki/Home]
58. LabelHash 1.0.2. [http://labelhash.kavrakilab.org/downloads/python27/

LabelHash-1.0.2-Linux64.tar.gz]
59. SHEBA 3.1.1. [https://ccrod.cancer.gov/confluence/download/

attachments/63341259/sheba-3.1.1.tar.gz]
60. Bakan A, Meireles LM, Bahar I: ProDy: protein dynamics inferred from

theory and experiments. Bioinformatics 2011, 27:1575–1577.
61. Schrödinger LLC: The PyMOLMolecular Graphics System, Version

1.3r1. 2010.

doi:10.1186/1756-0500-5-391
Cite this article as: Ho et al.: BetaSearch: a new method for querying β-
residue motifs. BMC Research Notes 2012 5:391.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

http://www.boost.org/users/history/version_1_42_0
http://www.redis.io
https://github.com/antirez/hiredis
https://bitbucket.org/mchaput/whoosh/wiki/Home
https://bitbucket.org/mchaput/whoosh/wiki/Home
http://labelhash.kavrakilab.org/downloads/python27/LabelHash-1.0.2-Linux64.tar.gz
http://labelhash.kavrakilab.org/downloads/python27/LabelHash-1.0.2-Linux64.tar.gz
https://ccrod.cancer.gov/confluence/download/attachments/63341259 /sheba-3.1.1.tar.gz
https://ccrod.cancer.gov/confluence/download/attachments/63341259 /sheba-3.1.1.tar.gz

	Abstract
	Background
	Findings
	Conclusions

	Background
	Results and discussion
	Comparisons with graph indexing methods
	Indexing
	Overall query times
	Filtering
	Verification

	Comparisons with 3D substructure search methods
	Case Studies
	Case Study 1 - Synthetic motifs in the Top7 protein
	Case Study 2 - Biotin-binding domains
	Case Study 3 - -strand pairing prediction

	Conclusion
	Findings
	Trimers
	Index construction
	Time complexity

	Filtering
	Time complexity

	Verification
	Time complexity

	-strand pairing prediction
	Evaluation
	Datasets
	Implementation
	Structural renderings and alignments

	Availability and requirements
	Additional files
	Additional file 1
	Additional file 2
	Additional file 3
	Additional file 4

	Competing interests
	Authors' contributions
	Funding
	Acknowledgements
	Author details
	References

