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1 Introduction

The Black Saturn solution of Elvang and Figueras is a five dimensional black hole with

disjoint event horizons with topology R×S3 and R×S1×S2 [1, 2]. It describes a spherical

black hole1 surrounded by a black ring.

In this article, we address the question of causality violations in the Black Saturn solu-

tion. The absence of closed causal curves is one of the desired properties of a solution to the

Einstein equations. Such property should be stable against small perturbations. Therefore,

the closed causal curves are not allowed in any Lorentzian metric that is sufficiently near

the original one. This leads to the notion of stable causality as introduced by Hawking [3].

Technically, a spacetime (M,gµν) is stably causal if and only if there exists a differentiable

function f on M such that ∇µf is a past directed timelike vector field [3, 4]. The non-unique

function f may be interpreted as a cosmic time that increases along every causal curve.

The natural guess for the Black Saturn is that the generalized Weyl t coordinate is

a cosmic time in the domain of outer communications (d.o.c.). Under this hypothesis,

the problem of stable causality of the d.o.c. was reduced in [1] to the study of the gψψ
component of the metric. Namely, stable causality will result from the following inequality

in the generalized Weyl coordinates

g(∇t,∇t) = gtt = −gψψ
Gy

< 0 , (1.1)

where Gy is a non-negative function which is zero only on the axis of the rotation of the

Killing field ∂ψ. In other words, it is sufficient to show that gψψ vanishes as fast as Gy on

the axis of the rotation of ∂ψ and that gψψ > 0 in the remaining part of the d.o.c.

Numerical evidence for positivity of gψψ in the plane of the ring (as defined in [2, section

3.8]) was already signalled in the original paper of Elvang and Figueras [2]. This numerical

evidence was extended in [1] to the part of spacetime covered by the generalized Weyl coor-

dinates away from points where ∂ψ vanishes. Before our work, all analytical proofs of stable

causality were restricted to the situation when the Komar angular momentum of the spheri-

cal component of the horizon is equal to zero: under this restriction, the positivity of gψψ in

the plane of the ring was established in [2], and stable causality of the d.o.c. was shown in [1].

1The adjective “spherical” refers to the topology of the horizon.
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In this article, we prove that the d.o.c. of the general Black Saturn solution is stably

causal. In addition, we show that the event horizons may be included to the domain of

stable causality, hence the Black Saturns are stably causal on the closure of the d.o.c.2

The calculations presented here3 involve manipulations of huge algebraic expressions

and were done with Mathematica. We use the same notation and definitions of auxiliary

functions as in [1].

2 Stable causality

In the generalized Weyl coordinates (t, ψ, ϕ, ρ, z) the d.o.c. corresponds to

{ρ > 0} ∪ {ρ = 0, z 6∈ [a5, a4] ∪ [a3, a2]} ,

where ai=1,...,5 are parameters. Since gψψ = gψψ(ρ, z, a1, . . . , a5), then we would like to

prove stable causality for a union of the following sets in R
7

Ṽa = {a1 < a5 < a4 < a3 < a2} , (2.1)

ṼI = {ρ > 0} ∩ Ṽa ,
ṼII = {ρ = 0, z < a1} ∩ Ṽa ,
ṼIII = {ρ = 0, a1 ≤ z < a5} ∩ Ṽa ,
ṼIV = {ρ = 0, a4 < z < a3} ∩ Ṽa ,
Ṽψ = {ρ = 0, a2 < z} ∩ Ṽa .

Hence, we have Ṽd.o.c. = ṼI ∪ ṼII ∪ ṼIII ∪ ṼIV ∪ Ṽψ. We are interested in non-degenerate

solutions, so the parameters are restricted to Ṽa. The “plane of the ring” corresponds to

ṼII ∪ ṼIII ∪ ṼIV , while Ṽψ is the intersection of the rotation axis of ∂ψ with the d.o.c.

The event horizons of the black ring and the spherical component coincide with ({ρ =

0} \ Ṽd.o.c.) ∩ Ṽa. We would like to show that gψψ > 0 on ṼI ∪ ṼII ∪ ṼIII ∪ ṼIV . Moreover,

since Gy vanishes as ρ2 on the axis of ∂ψ [1], then it is necessary to check that

lim
ρ→0+

gψψ
ρ2

> 0

on Ṽψ.

It turns out to be convenient to view gψψ as a function of ρ, µ1, . . . , µ5, where µi =
√

ρ2 + (z − ai)2 − (z − ai). In this parametrization, the translational symmetry of z, ai is

explicit. The analogues of the sets4 (2.1) are now in R
6

Vµ = {ρ ≤ µ1 ≤ µ5 ≤ µ4 ≤ µ3 ≤ µ2} , (2.2)

VI = {ρ > 0} ∩ Vµ ,
2In fact, our proof remains valid for a family of the Black Saturn solutions with conical singularities on

the axes of the periodic Killing fields ∂ψ, ∂ϕ.
3The Mathematica code is available at http://th.if.uj.edu.pl/∼szybka/BScausality.
4These sets are not equivalent to (2.1) because V4 ⊂ VIV , V2 ⊂ Vψ, where V4, V2 correspond to the sets

that are defined in the old parametrization as {ρ = 0, z = a4} ∩ Ṽa, {ρ = 0, z = a2} ∩ Ṽa, respectively.
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VII = {ρ = 0, µ1 > 0} ∩ Vµ ,
VIII = {ρ = 0, µ1 = 0, µ5 > 0} ∩ Vµ ,
VIV = {ρ = 0, µ4 = 0, µ3 > 0} ∩ Vµ ,
Vψ = {ρ = 0, µ2 = 0} ∩ Vµ ,

and, of course, Vd.o.c. ⊂ VI ∪ VII ∪ VIII ∪ VIV ∪ Vψ. It follows from the definition of µi that

if µi = µj for i 6= j, then ρ = µi = µj = 0. This parametrization turns out to be more

helpful in completing the proof.

The numerator and the denominator of gψψ , when written as polynomials in ρ, µi,

and some c1, c2, q contain tens of thousands monomials [1, 2]. One may check with a

direct Mathematica calculation that some non-trivial factors from the numerator and

the denominator cancel and the original form of gψψ may be simplified to

gψψ =
µ4µ5A

2 − µ3B
2

µ1µ4HxF
, (2.3)

where
A = (µ2p1(µ5p2 + c2qµ1µ3p3) + c1µ3p4(−qρ2p5 + c2µ1µ4p6)) ,

B = (µ5p1(qµ1p2 − c2µ4ρ
2p3) + c1µ2µ4p4(µ1µ5p5 + c2qµ3p6)) ,

p1 = (µ3 − µ1)(µ1µ4 + ρ2) ,

p2 = (µ2 − µ4)(µ1µ2 + ρ2)(µ2µ3 + ρ2) ,

p3 = (µ2 − µ1)(µ2µ5 + ρ2) ,

p4 = µ1(µ5 − µ1) ,

p5 = (µ2 − µ1)(µ2 − µ4)(µ2µ3 + ρ2) ,

p6 = (µ1µ2 + ρ2)(µ2µ5 + ρ2) ,

(2.4)

and pi ≥ 0. The functions Hx, F are non-negative and they were defined in [2]. It follows

from the analysis in [1] that zeros of HxF exist only for ρ = 0 and they cancel with the

zeros of the numerator of gψψ.

The parameters c1, c2, q depend only on ai and do not depend on ρ, z. However, if one

assumes that ρ, µi are independent variables, then c1, c2, q are finite continuous functions

of ρ, µi and are given by

c21 =
(µ3 − µ1)(µ4 − µ1)µ5(µ1µ3 + ρ2)(µ1µ4 + ρ2)

µ1µ3µ4(µ5 − µ1)(µ1µ5 + ρ2)
, (2.5)

q =
c1c2µ4(µ2 − µ1)(µ1µ2 + ρ2)

c1µ1(µ2 − µ4)(µ2µ4 + ρ2) + c2µ2(µ4 − µ1)(µ1µ4 + ρ2)
, (2.6)

where we imposed (2.5) on c1 in the formula for q. The formula for c2 in terms of ρ, µi is

to long to be usefully cited here. It may be derived from equations (4.2), (5.1) in [1], but

it is not necessary for our calculations.

The formulas (2.5), (2.6) are explicitly valid in VI ∪ VII . They are also valid in the

remaining part of the d.o.c. provided the limit ρ→ 0+ is carefully taken. If µi(ρ = 0) = 0,

then taking this limit should be preceded by the substitution µi → ρ2µ̂i, where µ̂i > 0 [1].

The simplification (2.3) is a significant one. Even if one does not substitute formulas

for c1, c2, q, the original expression for gψψ written as a rational function contained 106995

monomials. This number was reduced to 2344 in the simplified formula.
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In order to present the proof in a concise form, we introduce the following operators.

Let N , D denote operators acting on a rational functions that return polynomials: a

numerator or a denominator, respectively. The result is not unique and the action of N , D

is given only up to an overall factor. However, this non-uniqueness is not important for our

problem. We also define substitution operators Sq, respectively Sc2
1
, that return the rational

function which is obtained after q, respectively c21, has been substituted in the original

expression using (2.6), respectively (2.5). One should note that Sq and Sc2
1

do not commute

with N and D in general. The formula for c2, in contrast to the formula for c1, contains a

square root that cannot be eliminated by taking c22. We prefer to preserve the polynomial

form of the evaluated expressions, hence we will substitute only c21 and avoid substituting c2.

The calculations described below were done with Mathematica. We present them

here in a brief form. It follows from the smoothness of the Black Saturns [1] that the

expressions evaluated below are regular.

We start with the analysis of gψψ on VI (ρ > 0).5 The denominator of gψψ is given by

µ1µ4HxF and it is a positive function on VI . The numerator of gψψ is equal to Ξ+Ξ−, where

Ξ± =
√
µ4µ5A±√

µ3B . (2.7)

If Ξ+Ξ− > 0, then gψψ > 0 on VI , as desired. Firstly, we check at a random point6 P ∈ VI
that Ξ±|P > 0. Since both Ξ+ and Ξ− are continuous in ρ, µi, then it is sufficient to show

that they cannot vanish. The functions Ξ± are linear in q, as may be seen from (2.4), (2.7).

We substitute q into Ξ± and examine the numerators of the resulting expressions. We would

like to show that none of them (NSqΞ±) has zeros. By inspection, we find that NSqΞ±

are quadratic in c2. Since c2 is real, a negative discriminant of NSqΞ± with respect to c2
would imply that none of the equations NSqΞ± = 0 has a solution. We calculate these

discriminants ∆± and they turn out to be fourth order in c1. Next, we substitute c21 into ∆±

using (2.5) and taking c41 = (c21)2, c31 = c1c
2
1. With a help of Mathematica we have derived

Sc2
1
∆±=w±

µ1µ
2
2µ4µ

5/2
5

(µ1 − µ2)2(µ3 − µ1)(µ4 − µ1)(µ2 − µ4)2(µ1µ2 + ρ2)2(µ1µ4 + ρ2)2

(µ5 − µ1)(µ1µ5 + ρ2)2
.

The factors multiplying w± are strictly positive, and w± are complicated polynomials in ρ,√
µi. These polynomials are linear in c1 (with non-vanishing coefficients in front of c1 as it

will follow from our further analysis). We check at a random point P ′ ∈ VI that w±|P ′ < 0,

hence if w± have no zeros, then ∆± < 0. Let c±
1

be solutions to the equations w± = 0. A

Mathematica calculation reveals that c+
1

= −c−
1

. We set U = (c±
1

)2−Sc2
1
c21 and calculate

U =
µ5(µ2

1 + ρ2)2

4µ2
1
µ3µ4(µ1 − µ5)2(µ1µ5 + ρ2)2

Û

Ũ
,

where Û , Ũ are complicated polynomials7 in ρ, µi with signs unknown so far. The coeffi-

cient in front of Û/Ũ is strictly positive. Now, we succeeded in making the signs of Û , Ũ

5VI = {ρ > 0} ∩ Vµ as indicated in (2.2), but for the sake of brevity we will remind only first part of the

definitions.
6We impose the equation satisfied by c2 in such checks, but this is actually not necessary.
7The polynomial Ũ is a full square.
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explicit by writing them in terms of the new positive functions

∆51 = µ5 − µ1 , ∆45 = µ4 − µ5 , ∆34 = µ3 − µ4 , ∆23 = µ2 − µ3 .

The coefficients in Û , Ũ in front of ρ, µ1, ∆ij turn out8 to be positive and belong to

[9, 13705432344] ∩ Z , [1, 137075730] ∩ Z ,

respectively. Since ρ, µ1, ∆ij are strictly positive, then it follows that Û , Ũ are strictly

positive and the equation U = 0 does not have solutions. Therefore, c±
1

6= Sc2
1
c1 and the

polynomials w± cannot vanish. This means that the discriminants of NSqΞ± in respect to

c2 are negative (∆± < 0) and there are no real c2 that would satisfy any of the equations

Ξ± = 0. Finally, this implies that gψψ > 0 on VI (for ρ > 0), as desired. To complete the

proof it is sufficient to repeat the analysis above in the remaining part of the d.o.c.

For ρ = 0 the denominator of gψψ (given by µ1µ4HxF ) is not strictly positive any

more. However, it follows from the Black Saturns’ smoothness [1] that whenever the de-

nominator of gψψ vanishes the numerator of gψψ (equal to Ξ+Ξ−) vanishes as well and

the limit limρ→0+ gψψ is finite. Moreover, the continuity of gψψ implies that this limit is

non-negative, possibly zero.

On VII (ρ = 0, µ1 > 0) the argument proceeds along the same lines as for VI . Inter-

mediate expressions have different form, but the reasoning is analogous. We have found

U =
µ2

1

4µ3µ4µ5(µ1 − µ5)2
Û

Ũ
.

The coefficients in the polynomials Û , Ũ in front of µ1, ∆ij range in

[9, 7882] ∩ Z , [9, 184] ∩ Z ,

respectively. Hence, U > 0 and none of the expressions NSqΞ± vanishes, and gψψ > 0 on

VII .

In order to study gψψ on VIII (ρ = µ1 = 0, µ5 > 0) we substitute µ1 = ρ2µ̂1 into Ξ±

(the numerator of gψψ is given by Ξ+Ξ−). It turns out that ρ4 factors out in each term

Ξ±. On the other hand, ρ8 factors in µ1µ4HxF (the denominator of gψψ). We set

Ξ̆± = lim
ρ→0+

Ξ±

ρ4

and repeat the proof for Ξ̆± as in the case ρ > 0. We have

U =
1

4µ̂2
1
µ3µ4µ5(1 + µ̂1µ5)2

Û

Ũ
.

Finally, the coefficients in the polynomials Û , Ũ in front of the strictly positive functions

µ̂1, ∆ij are again greater than zero and in

[9, 8714] ∩ Z , [9, 184] ∩ Z ,

8We have µ1 > ρ, but ∆ij do not have to form monotonically increasing sequence like µi.
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respectively. Therefore, gψψ > 0 on VIII , as expected.

We continue our analysis on VIV (ρ = µ4 = 0, µ3 > 0). Here, µ1 = ρ2µ̂1, µ5 = ρ2µ̂5,

µ4 = ρ2µ̂4. We note that 0 < µ̂1 < µ̂5 < µ̂4. The calculations are similar to the calculations

for VIII . A factor ρ16 appears both in the numerator and the denominator of gψψ, thus we

define

Ξ̆± = lim
ρ→0+

Ξ±

ρ8
,

and apply our standard analysis to Ξ̆±. The formula for U is

U =
µ̂5

4µ̂2
1
µ̂4µ2

2
µ3

3
(µ̂1 − µ̂5)2(1 + µ̂1µ2)2

Û .

In the final step we introduce ∆51 = ρ2∆̂51, ∆45 = ρ2∆̂45 and the coefficients in Û in front

of strictly positive functions µ̂1, ∆̂51, ∆̂45, ∆34, ∆23 are greater than zero and belong to

[9, 5852] ∩ Z. Hence, gψψ > 0 on VIV , as desired.

In the case of the rotation axis of the periodic Killing field ∂ψ (the set Vψ, where

ρ = µi = 0), the analysis is slightly more involved. We substitute µi = ρ2µ̂i into Ξ±. Then,

we have verified that Ξ± ∼ ρ15 for generic c1 and q. However, a Mathematica calculation

reveals that for our choice of c21 and q (the equations (2.5), (2.6)) the leading terms vanish

and we have at least Ξ± ∼ ρ16. Therefore, we drop the leading terms in Ξ± and analyse

the remaining higher order terms. We denote them with Ξ′
±. Next, we set

Ξ̆± = lim
ρ→0+

Ξ′
±

ρ16
,

and apply our standard procedure to Ξ̆±. We have found that

Sc2
1
∆± = −4µ̂1µ̂

2
2µ̂4µ̂

3
5(µ̂1 − µ̂2)2(µ̂3 − µ̂1)3(µ̂4 − µ̂1)(µ̂2 − µ̂4)2

µ̂5 − µ̂1

,

which is strictly negative because 0 < µ̂1 < µ̂5 < µ̂4 < µ̂3 < µ̂2. Thus, we have Ξ+Ξ− ∼ ρ32.

The denominator of gψψ (given by µ1µ4HxF ) behaves like ρ30 and gψψ vanishes like ρ2.

This, together with positivity of gψψ for ρ > 0 and continuity of gψψ, implies that

lim
ρ→0+

gψψ
ρ2

> 0

on the axis of the rotation of ∂ψ and the inequality (1.1) holds. It completes the proof of

stable causality of the Black Saturns’ d.o.c.

The generalized Weyl coordinates cover also the sets

Vbr = {ρ = 0, µ5 = 0, µ4 > 0} ∩ Vµ ,
Vsb = {ρ = 0, µ3 = 0, µ2 > 0} ∩ Vµ ,

which have been ignored in our analysis so far. The set VBR = Vbr ∪ V4 corresponds to the

event horizon of a black ring and the set VSB = Vsb ∪ V2 corresponds to the event horizon

– 6 –
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of a spherical black hole.9 The closure of Vd.o.c. is given by Vd.o.c. ∪ VBR ∪ VSB. Since

V4 ⊂ VIV , V2 ⊂ Vψ, it remains to apply our analysis on Vbr, Vsb.

On Vbr (ρ = µ5 = 0, µ4 > 0) we substitute µ1 = ρ2µ̂1, µ5 = ρ2µ̂5 into Ξ±. Then,

it turns out that ρ7 factors out of Ξ± and ρ14 factors out of the denominator of gψψ
(µ1µ4HxF ). We define

Ξ̆± = lim
ρ→0+

Ξ±

ρ7
,

and calculate the discriminants ∆± of NSqΞ± in respect to c2. Next, we substitute c21 into

∆± and obtain

Sc2
1
∆± = −w±

µ̂1µ̂
3
5µ

4
2µ

4
3µ4(1 + µ̂1µ2)2(1 + µ̂1µ4)2(µ2 − µ4)2

µ̂5 − µ̂1

,

where the coefficient behind w± is strictly greater than zero. This time w± are polynomials

in ρ, µ̂1, µ̂5, µ4, µ3, µ2. They become explicitly positive if written in terms of µ̂1, ∆̂51, ∆45,

∆34, ∆23 with coefficients in the range [3, 16] ∩ Z. Then, Sc2
1
∆± < 0 and gψψ > 0 on Vbr.

The analysis of positivity of gψψ on Vsb (ρ = µ3 = 0, µ2 > 0) mimics the calculations

on Vbr. There are the following changes. We substitute µ1 = ρ2µ̂1, µ5 = ρ2µ̂5, µ4 = ρ2µ̂4,

µ3 = ρ3µ̂4 into Ξ±. We set

Ξ̆± = lim
ρ→0+

Ξ±

ρ12
,

and obtain

Sc2
1
∆± = −4µ̂1µ̂4µ̂

3
5µ

4
2(1 + µ̂1µ2)2(1 + µ̂3µ2)(1 + µ̂4µ2)(1 + µ̂5µ2)(µ̂3 − µ̂1)3(µ̂4 − µ̂1)

µ̂5 − µ̂1

,

which is strictly negative. Therefore, gψψ > 0 on Vsb.

In summary, our analysis applied to Vbr, Vsb establishes that gψψ > 0 there. The strict

positivity of gψψ remains valid on V4 ⊂ VIV , V2 ⊂ Vψ, as we know from the analysis of the

sets VIV , Vψ. Therefore, gψψ > 0 holds on both event horizons VBR, VSB . This implies

that the inequality (1.1) is satisfied on the event horizons. They may be included to the

Black Saturns’ domain of stable causality and the Black Saturns are stably causal on the

closure of the d.o.c.

We stress that we have not assigned a particular value to c2 in our calculations so all

results hold also for the Black Saturns with conical singularities on the axes of the rotation

of the periodic Killing fields ∂ψ, ∂ϕ.
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