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1 Motivation and outlook

Dimensional reduction of higher-dimensional field theories down to four dimensions (4d)

has proven a very successful road towards the unification of gravitational and Yang-Mills

interactions [1, 2]. The first modern constructions go back to the seminal papers [3] and [4]

in the 70’s where the dimensional reductions of super Yang-Mills theory (SYM) and su-

pergravity (SUGRA) were discussed. Both cases, even though fundamentally different in

what concerns the theories to be reduced, display some universal features: i) appearance
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of a scalar potential V ii) generation of fermion mass terms iii) modification of the su-

persymmetry transformation rules for the fermions in the theory. The reduced Lagrangian

can schematically be viewed as

Lhigher-dim −→ L4d = Lkinetic + Lfermi − V , (1.1)

where the concrete expressions for the fermi mass terms in Lfermi and the scalar potential

V depend on the theory which is to be reduced.

Fetching ideas from SYM. Reducing N = 1, d = 10 SYM on a six-torus produces

N = 4, d = 4 SYM. The reduced Lagrangian is of the form1 [3]

L10d = −1

4
F 2 + iψ̄ 6Dψ −→ L4d = −1

4
F 2 + i ψ̄i 6Dψi +

1

2
(Dφij)

2

+
i

2
g (fφijψ̄iψj − c.c)

− 1

4
g2 (f φijφkl)

2 ,

(1.2)

where g is the gauge coupling constant, f represents the structure constants of the gauge

group and i = 1, . . . , 4 is a fundamental index of the R-symmetry group SU(4) ∼ SO(6)

emerging from the reduction. The four Weyl fermions ψi descend from the original

Majorana-Weyl fermion ψ in ten dimensions, whereas the scalar fields φij = φ[ij] cor-

respond to the six internal components of the 10d gauge fields and are subject to the

reality condition

φij =
1

2
εijkl φ

kl with φkl = (φkl)
∗ . (1.3)

A key observation [3] is that the reality condition (1.3) prevents the R-symmetry group of

the reduced theory to be extended to U(4) = U(1)× SU(4). The additional U(1) is simply

not compatible with this condition.

The interaction in the reduced theory stems from the non-abelian structure of the

theory in higher-dimensions (gf 6= 0). The L4d in the r.h.s. of (1.2) matches the general

form (1.1) for dimensionally reduced theories: the first line contains the kinetic terms for

the different fields, the second one corresponds to (scalar dependent) fermi mass terms

which are of order gf , and the last line is identified with a scalar potential of order (gf)2.

Last but not least, the supersymmetry (SUSY) transformation for the fermions in the

reduced theory reads

δεψ
i = Fµνγµνε

i − 6Dφijεj +
1

2
gfφijφjkε

k , (1.4)

so the last term implies a modification (linear order in gf like the fermi mass terms) with

respect to the standard transformation rule.

1We are not being precise in the definition of ψi in the r.h.s. of (1.2). This would imply introduc-

ing chirality projectors as well as a charge conjugation matrix which are not relevant at the level of the

discussion here.
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The SUGRA side of the story. Kaluza-Klein reductions ofN = 2, d = 10 supergravity

on a six-torus and of 11d supergravity on a seven-torus producesN = 8 (maximal) ungauged

supergravity in four dimensions [5, 6]. The resulting theory possesses an abelianG = U(1)28

gauge symmetry under which all the scalars coming from the reduction of the higher-

dimensional fields are neutral. As a consequence, no scalar potential or fermion mass

terms are generated

L10d/11d
ungauged−→ L4d = Lkinetic . (1.5)

However, certain background fluxes for the higher-dimensional fields can be turned

on in a way still compatible with N = 8 supersymmetry [7–11] inducing what is called

a gauging. The result of the reduction is then a gauged supergravity with a non-abelian

gauge group G and coupling constant g. The background fluxes are identified with the

structure constants of G and the situation becomes similar to the SYM reduction (1.2)

with f ≡ fluxes. As a consequence of the gauging, the scalars in the theory become

charged under G and both a scalar potential (quadratic on g · fluxes) and fermi mass terms

(linear on g · fluxes) are generated

L10d/11d
gauging−→ L4d = Lkinetic + Lfermi − V . (1.6)

The supersymmetry transformation rules for the gravitini and the dilatini get also modified

in a similar fashion to (1.4). In analogy to the SYM condition (1.3), the scalar fields

in maximal supergravity can be arranged into a tensor φIJKL = φ[IJKL] subject to the

reality condition

φIJKL =
1

4!
εIJKLMNPQ φ

MNPQ with φMNPQ = (φMNPQ)∗ . (1.7)

This time the index I = 1, . . . , 8 refers to the fundamental representation of the SU(8)

R-symmetry group emerging from the reduction. As for SYM, the reality condition (1.7)

prevents the R-symmetry group to be extended to U(8) = U(1)× SU(8).

The lack of the U(1) factor both in N = 4 SYM and N = 8 SUGRA in four dimensions

relates to the fact that these are CPT-self-conjugate multiplets of the supersymmetry

algebra.2 They satisfy the condition λMAX = N/4 with λMAX being the maximum helicity

state inside the supermultiplet. Because of self-conjugacy, CPT doubling is not necessary.

Then the scalars sit in a real representation of the R-symmetry group and the reality

conditions (1.3) and (1.7) preventing the U(1) factor have to be imposed.

A novel U(1) in maximal supergravity. The existence of a relevant U(1) in maximal

supergravity lying outside the SU(8) R-symmetry group but still inside the Sp(56) elec-

tromagnetic group of the theory, was exploited in ref. [13] to build a one-parameter family

of gauged supergravities with G = SO(8) gauging. This parameter was identified with an

electromagnetic phase ω which specifies the linear combination of electric (28 of them) and

magnetic (28 of them) vectors entering the gauging G (see figure 1), namely

AGµ = cosωAelecµ + sinωAmagnµ . (1.8)

2We thank J.P. Derendinger for pointing us this out and for useful discussions and explanations on this

issue. For further reading, see the lecture notes [12] and references therein.
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Figure 1. Orientation of the gauge group G inside the Sp(56) electromagnetic group of maximal

supergravity in four dimension. Setting ω = 0 corresponds to a purely electric gauging whereas

ω = π
2 corresponds to a purely magnetic choice.

The G2-invariant sector of this new family of SO(8) gauged supergravities was analysed

in refs [13, 14] and found to contain genuinely dyonic critical points at ω 6= 0 with no

counterpart in the standard electric case3 of ω = 0 [5, 17, 18]. Similar results followed from

the analysis of the SU(3)-invariant sector in ref. [19] based on a conjectured ω-dependent

superpotential compatible with the N = 2 structure of the truncated theory [20–22] as well

as with ω → −ω and ω → ω + π
4 identifications of the electromagnetic phase [13, 16, 19, 23].

In this way, an ω-dependent superpotential could be envisaged (up to an overall phase)

and the structure of SU(3)-invariant critical points investigated.

However, a supergravity derivation of the ω-dependent L4d including fermi mass terms

Lfermi and scalar potential V for the SU(3) truncation, as done in refs [20, 21] for the ω = 0

case, remains to be done. As we will see later, the precise knowledge of Lfermi happens to

be crucial for computing full mass spectra at ω 6= 0 and will allow us to check the stability

of critical points of V which could not be analysed in ref. [19]. The derivation of L4d can

be carried out within the framework of the embedding tensor [8, 24, 25] and we will present

it here. This is a purely four-dimensional supergravity formalism, so inverting the arrow

in (1.6) might not necessarily be possible. In other words, the connection to reductions of a

higher-dimensional theory is lost. Nevertheless, the knowledge of Lfermi (more concretely of

the T -tensor to be introduced later) as a function of ω and the scalar fields in the truncated

theory, might help in finding new reduction Ansätze for a higher-dimensional origin of the

electromagnetic phase along the lines of refs [26–28].

BPS domain-walls and flows equations. A second interest in deriving the explicit

form of the ω-dependent L4d is in the light of the AdS/CFT correspondence [29–31]. In its

3The ω-dependent family of maximal supergravities with a different G = SO(4, 4) gauging was also

investigated in ref. [15] and found to contain SO(4)-invariant unstable de Sitter critical points with arbitrary

light tachyons controlled by ω. This intriguing phenomenon of tachyon amelioration was connected to a

jump of gaugings involving an AdS/Mkw/dS transition in ref. [16].
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purely electric version (ω = 0), the SU(3)-invariant sector of the SO(8) gauged supergravity

has played a central role in constructing RG flows dual to domain-wall solutions that

interpolate between two AdS critical points of the scalar potential.4 If the AdS points

preserve some amount of supersymmetry the domain-wall is called BPS [33]. Then it can be

constructed by solving a set of first-order flow-equations defined in terms of a superpotential

W (φi) with asymptotic behaviour ∂φiW
∣∣
z→±∞ = 0, where z is the coordinate along the

direction transverse to the domain-wall. The flow-equations for the set {φi(z)} of scalar

fields are schematically given by [37]

∂φi

∂z
∝ Kij ∂W

∂φj
and

∂A

∂z
∝W (φi) , (1.9)

where A(z) is the scale factor in the domain-wall metric Ansatz and Kij is the (inverse)

Kähler metric accounting for non-canonically normalised kinetic terms for the scalars. In

ref. [20], the exact form of the superpotential W was extracted from the fermi mass terms

Lfermi in the case of a purely electric SO(8) gauging. Using that ω = 0 superpotential,

various BPS domain-walls were constructed in the literature [20, 21, 35–37]. In the dual

field theory picture they correspond to three-dimensional RG flows connecting an UV fixed

point at z → ∞ to an IR fixed point at z → −∞ (the scalars flow to a constant value

for BPS domain-walls). Furthermore, higher-dimensional embeddings as reductions of 11d

supergravity on AdS4×S7 (with a round, squashed, stretched or warped seven-sphere) with

a 4-form flux were found and connected to the theory of multiple M2-branes [37, 40–47].

The outline of the paper is as follows. Section 2 collects standard results in N = 8

gauged supergravity in the framework of the embedding tensor which will be extensively

used in this work (readers being familiar with the subject may go directly to section 2.4).

In section 3 we carry out a supergravity derivation of the scalar Lagrangian, the superpo-

tential(s) and the fermion mass terms for the SU(3)-invariant sector of N = 8 supergravity

with a dyonic SO(8) gauging. In section 4 we make use of these results to study the stabil-

ity of non-supersymmetric AdS critical points and to obtain BPS domain-walls at ω 6= 0.

We then discuss the results and make some final remarks. More technical computations

and lengthy expressions are put into the appendices.

2 Crash introduction to maximal supergravity

After the previous discussion on R-symmetries and U(1)’s, we now summarise general

results on N = 8 gauged supergravity in four dimensions (mostly from refs [8, 48]) and

elaborate more on the idea of dyonic gaugings [49].

2.1 Gaugings and scalar potential

The bosonic field content of the supergravity multiplet in maximal supergravity consists of

the metric gµν , 56 vector fields AM
µ (28 electric and 28 magnetic) and 70 complex scalars

4We refer the reader to refs. [32, 33] as well as section 9 in ref. [34] for general reading and also refs [20, 21,

35–37] for domain-walls in the SU(3)-invariant sector of the electric SO(8) supergravity. Other domain-walls

were explored in refs [38, 39] for different (electric) gaugings.
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ΣIJKL satisfying the self-duality condition

ΣIJKL =
1

4!
εIJKLMNPQ ΣMNPQ , (2.1)

with ΣIJKL = (ΣIJKL)∗, and which serve as coordinates in a coset space E7(7)/SU(8). The

index M = 1, . . . , 56 will refer to the fundamental representation of the (global) duality

group E7(7), whereas I = 1, . . . , 8 to that of the (local) R-symmetry group SU(8).

In the ungauged (non-interacting) case, the choice of an Sp(56,R) frame for the vector

fields will not affect Physics. Thus, as an example of symplectic transformation, electric-

magnetic duality will leave any observable invariant. However this picture changes dramat-

ically once a set of charges XMN
P is turned on and the theory becomes gauged (interacting).

In this case, symplectic transformations are no longer symmetries and these get reduced

to the duality group E7(7) ⊂ Sp(56,R).

The first sign that the theory has been gauged is that part of the duality group has

been promoted to a non-abelian gauge theory G ⊂ E7(7). The ordinary derivative is

then replaced by a covariant Dµ = ∂µ − gAM
µ ΘM

AtA involving the vector fields AM
µ , the

E7(7) generators tA with A = 1, . . . , 133 and the so-called embedding tensor ΘM
A. This

tensor acts as a selector of E7(7) generators to be promoted to local symmetries and hence

to be associated to gauge bosons. After a contraction with the E7(7) generators in the

fundamental representation, one obtains the charges XMN
P = ΘM

A [tA]N
P which play the

role of structure constants of the gauge algebra

[XM, XN] = −XMN
P XP , (2.2)

spanned by the generators XM. Maximal supersymmetry and gauge invariance impose a

set of respectively linear (LC) and quadratic constraints (QC) on the charges XMN
P. The

former are related to the restriction of ΘM
A to live in the 912 irrep of E7(7). The latter

come from the closure of the gauge brackets in (2.2) and read

ΩMN ΘM
A ΘN

B = 0 , (2.3)

where ΩMN is the Sp(56,R) invariant matrix (skew-symmetric) satisfying ΩMP ΩNP = δNM.

These two sets of constraints guarantee the consistency of the gauged supergravity.

The second sign is that a non-trivial scalar potential V (Σ) is generated for the scalars

spanning the E7(7)/SU(8) coset space. These scalars can be encoded inside a mixed coset

representative VMM(Σ) that involves a pair of fundamental E7(7) indices in two diffe-

rent basis:

i) the index M in the SL(8) basis decomposing as 56→ 28+28′, namely, M →[AB] ⊕[AB]

with A,B = 1, . . . , 8.

ii) the index M in the SU(8) basis decomposing as 56→ 28+28, namely, M →[IJ ] ⊕[IJ ]

with I, J = 1, . . . , 8.

Since the two types of indices are related by triality when expressed in terms of the common

SO(8) = SU(8) ∩ SL(8) subgroup, we can swap between the two basis by using invariant

– 6 –
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tensors [γIJ ]AB built as antisymmetric products of gamma matrices in the Majorana-Weyl

representation of SO(8). The change of basis is then given by the unitary matrix

UM
N =

1

2
√

2

(
[γIJ ]AB i [γIJ ]AB[
γIJ
]AB −i [γIJ]

AB

)
. (2.4)

Using the mixed E7(7)/SU(8) coset representative VMN(Σ), one can build the scalar-

dependent matrix

MMN = VMP VNQ ηPQ with ηPQ =

(
0 I28

I28 0

)
, (2.5)

in terms of which the non-trivial potential induced by the charges XMN
P of the gauged

supergravity reads

V (M) =
g2

672

(
XMN

RXPQ
SMMPMNQMRS − 7XMN

QXPQ
NMMP) . (2.6)

This potential is invariant under the linear action of E7(7) transformations and corresponds

to the V appearing in (1.6).

2.2 Fermi mass terms and SUSY transformations

The fermionic field content of the supergravity multiplet in maximal supergravity consists

of 8 gravitini ψIµ and 56 dilatini χIJK = χ[IJK]. The fermion mass terms in the Lagrangian

are given by

Lfermi =

√
2

2
gAIJ ψ

I
µ γ

µν ψ J
ν +

1

6
gAIJKL ψ

I
µ γ

µ χJKL

+ gAIJK,LMN χIJK χLMN + h.c. ,

(2.7)

where AIJK,LMN ≡
√

2
144 ε

IJKPQR[LM AN ]
PQR, and depend on the scalar fields ΣIJKL

of the theory. Fermion masses are then totally encoded into the independent tensors

AIJ =
(
AIJ

)∗
and AIJKL =

(
AIJKL

)∗
which transform in the 36 and the 420 of SU(8),

after imposing supersymmetry. Similarly to what happened with the embedding tensor

in (2.3), the fermion mass terms are also restricted by the set of quadratic constraints

coming from the consistency of the gauging. The above Lfermi is to be identified with the

one in (1.6).

The fermion mass terms can be used to compute mass spectra at maximally symmetric

solutions (AdS, Minkowski or dS). When evaluated at a critical point of the potential, the

scalar spectrum can be computed from

g−2
(
mass2

)
IJKL

MNPQ
= δMNPQ

IJKL

(
5

24
ARSTU ARSTU −

1

2
ARS ARS

)
+ 6 δ

[MN
[IJ

(
AKRS|P AQ]

L]RS −
1

4
ARS|PQ]ARS|KL]

)
− 2

3
A[I

[MNP AQ]
JKL] ,

(2.8)
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and, as usual in supergravity theories, stability5 is defined with respect to the normalised

mass matrix m2L2 = 3
|V0|

(
mass2

)
, where V0 denotes the value of the energy in the solution

and L2 = 3/|V0|. The masses of the vectors are obtained after diagonalising the mass matrix

g−2
(
mass2

)
M

N
= g−2

((
mass2

)
IJ

KL (
mass2

)
IJKL(

mass2
)IJKL (

mass2
)IJ

KL

)
, (2.9)

where

g−2
(
mass2

)
IJ

KL
= −1

6
A[I

NPQ δ
[K
J ] A

L]
NPQ +

1

2
A[I

PQ[K AL]
J ]PQ ,

g−2
(
mass2

)
IJKL

=
1

36
A[I

PQR εJ ]PQRMNS[K AL]
MNS .

(2.10)

This matrix has (at least) 28 null eigenvalues associated to the unphysical linear combina-

tions of vectors.

Finally, the counterparts of the last term in the modified SUSY transformation (1.4)

are given by

δεψ
I
µ = . . .+

√
2 gAIJγµεJ , δεχ

IJK = . . .− 2 gALIJKεL , (2.11)

where the dots stand for terms already present in the ungauged case [8]. The number of

supersymmetries preserved in a solution corresponds with the number of Killing spinors εJ

satisfying

gAIJ εJ =

√
−1

6
V0 εI . (2.12)

Therefore, the fermion mass terms can be used to thoroughly explore maximally symmetric

solutions of supergravity as well as the issues of stability and supersymmetry breaking.

2.3 The T -tensor

The fermion mass terms in (2.7) can be obtained from the so-called T -tensor. This tensor

is related to the embedding tensor XMN
P in (2.2) via a change of basis

TMN
P = VMM VNNXMN

P VPP , (2.13)

where VMM ≡ (V−1)M
M

is the scalar-dependent inverse mixed vielbein. The T -tensor

can then be understood as “dressing up” the embedding tensor with the scalar fields of

the theory.

Let us go one step further and decompose the T -tensor under the SU(8) maximal

compact subgroup of E7(7). Applying the index splitting M →[IJ ] ⊕[IJ ] to TMN
P yields var-

ious pieces: TIJKL
MN , TIJKLMN , . . . , T IJKLMN . Two of them become specially relevant

because, upon index contractions (tracing indices), give rise to the fermion mass terms

AIJ =
4

21
T IKJLKL and AIJKL = 2TMI

MJKL (2.14)

discussed in the previous section. This is the route we will follow in order to compute the

fermion mass terms, scalar/vector masses, etc. later on in the paper.

5For AdS solutions (V0 < 0) the Breitenlohner-Freedman (B.F.) bound [50] for stability does apply.

According to it, a solution is stable if m2L2 ≥ − 9
4
, where m2 denotes the lowest eigenvalue of the (mass2)

matrix and L2 = −3/V0 is the AdS radius.
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2.4 Dyonic gaugings

The possibility to embed a gauging dyonically inside the Sp(56,R) electromagnetic group

of maximal supergravity was pointed out in refs [8, 49, 51, 52] and made more con-

crete in ref. [13]. After this, various gauged supergravities models with G ⊂ SL(8) have

been explored in the literature. This set-up is compatible with choosing electric charges

(Xelec)N
P = Θ[AB]

A [tA]N
P of the form6

X[AB][CD]
[EF ] = −8 δ

[E
[AθB][Cδ

F ]
D] , X

[CD]
[AB] [EF ] = 8 δ

[C
[AθB][Eδ

D]
F ] , (2.15)

as well as magnetic charges (Xmag)N
P = Θ[AB]A [tA]N

P given by

X
[AB] [EF ]

[CD] = −8 δ
[A
[Cξ

B][Eδ
F ]
D] , X [AB][CD]

[EF ] = 8 δ
[A
[Eξ

B][Cδ
D]
F ] , (2.16)

where the index A is now restricted to run over the 63 generators of SL(8) ⊂ E7(7). The

symmetric matrices θ and ξ specify the gauging as a function of the number of positive,

negative and vanishing eigenvalues. The set of quadratic constraints in (2.3) take the form

of θξ = 1
8 Tr(θξ) I8. Provided θ is invertible, the solution reads

ξ = c θ−1 (2.17)

and allows for a parameter c interpolating between a purely electric gauging at c = 0 and

a purely magnetic one at c = ∞. Most of the time it will be more convenient to move to

a phase-like parameterisation

ω = Arg(1 + i c) , (2.18)

such that purely electric gaugings (c = 0) correspond to ω = 0, purely magnetic (c = ∞)

to ω = π
2 and dyonic gaugings to ω ∈ (0, π2 ).

In the present paper we will take a second look to the renowned SO(8) gauged super-

gravity, i.e. θ = ξ = diag(+1, . . . ,+1), but will open the door for ω 6= 0 orientations of the

gauging inside the electromagnetic Sp(56,R) group. This selects dyonic combinations of

vector fields to span the SO(8) gauge symmetry. As mentioned in the introduction, there

are the equivalence relations ω → −ω and ω → ω + π
4 for the choice of the electromagnetic

phase, hence reducing its relevant range to ω ∈ [0, π8 ].

3 N = 2 truncation

The dynamics of maximal supergravity results intractable if considering the entire set of

fields in the theory. For that reason, it is customary to restrict the field content to a simpler

subset invariant under the action of a certain subgroup of the R-symmetry group. We will

consider here an SU(3)-invariant sector of the theory whose precise embedding inside the

R-symmetry group is given by

SU(8) → SO(8) → SO(7) → G2 or SU(4) → SU(3)

8 → 8v → 1 + 7 → 1 + 7 or 1 + 1 + 6 → 1 + 1 + 3 + 3̄
(3.1)

6In the SL(8) basis of E7(7), the SL(8) generators correspond to block-diagonal generators.
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so we decide to identify the 8 of SU(8) with the 8v of the SO(8) gauge group without loss

of generality. As a result, the truncated theory contains four vectors — out of which only

two linear combinations are physical — transforming under the reduced electromagnetic

group Sp(4). The gauging in the truncated theory is simply the U(1) × U(1) commuting

with SU(3) inside SO(8). The decomposition of the eight gravitini in maximal supergravity

features two singlets revealing the N = 2 supersymmetry preserved by the truncation [22].

The 70 complex scalars in (2.1) split into self-dual (SD) and anti-self-dual (ASD)

irreducible representations (irreps) of SO(8). Schematically,

70 = 35s (SD) + i35c (ASD) . (3.2)

Fields in the 35s are proper scalars whereas those in the 35c are pseudo-scalars. In the

oxidation of the electric (ω = 0) SO(8) gauged supergravity to 11d supergravity, the

former are related to deformations of the S7 metric whereas the latter descend from the

antisymmetric 3-form in the theory. On the other hand, the corresponding operators in

the dual field theory are the traceless bosonic and fermionic bilinears, respectively. Given

its relevance in this work, we will describe in detail the truncation of the scalar sector.

3.1 SU(3)-invariant scalars

Let us denote the components of a real vector ~x ∈ 8v by ~x = (x1, . . . , x4 , x1̂, . . . , x4̂) and

introduce complex variables

zi = xi + i xî , z̄ī = xi − i xî with i = 1, . . . , 4 . (3.3)

These transform as 4 and 4̄ of SU(4) ⊂ SO(8) and have a further “1 + 3” splitting

zi = (z1 , za=2,3,4) , z̄ī = (z̄1̄ , z̄ā=2̄,3̄,4̄) (3.4)

under SU(3) ⊂ SU(4) with a and ā transforming in the 3 and 3̄ respectively. The self-

duality condition for the scalars in (2.1) is satisfied by the general SU(3)-invariant complex

four-form

Σ = (σ+ Σ+ + c.c) + (σ− Σ− + c.c)− σR J+ ∧ J+ − i σI J− ∧ J− , (3.5)

where σ+, σ− ∈ C and σR, σI ∈ R. The basis of invariant forms in (3.5) is built using the

SU(3)-invariant tensors { δaā , εabc , εāb̄c̄ }. These are the two real two-forms

J± =
i

2

(
± dz1 ∧ dz̄1̄ +

3∑
a=1

dza ∧ dz̄ā

)
(3.6)

and the two complex four-forms

Σ+ = dz1 ∧ dza ∧ dzb ∧ dzc and Σ− = dz̄1̄ ∧ dza ∧ dzb ∧ dzc , (3.7)

together with the conjugates Σ∗+ and Σ∗−. Inserting (3.6) and (3.7) into (3.5) and plugging

the complex variables in (3.3), one can read off the components of Σ using the original

coordinates (xi, xî).
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The scalar fields σR, σI ∈ R and σ+, σ− ∈ C in the SU(3)-truncation of maximal

supergravity describe the coset spaceMscalar = SL(2)
SO(2) ×

SU(2,1)
SU(2)×U(1) . It contains two factors

which are respectively the special Kähler (SK) and quaternionic Kähler (QK) manifolds

in the N = 2 truncated theory. The two supersymmetries are associated to the ψ1
µ and

ψ1̂
µ gravitini which are singlets under the SU(3) action. It becomes very convenient to

introduce a set of new variables

$ = σR + i σI = λ eiα,

$1 = Re(σ+) + i Im(σ−) = λ′
(
eiφ cos θ cosψ − e−iφ sin θ sinψ

)
,

$2 = −Im(σ+) + iRe(σ−) = λ′
(
eiφ cos θ sinψ + e−iφ sin θ cosψ

)
,

(3.8)

which amounts to an alternative expansion

Σ = Re($) J+ ∧ J+ + i Im($) J− ∧ J−

+ Re($1) Re(Σ+) + i Im($1) Re(Σ−) + Re($2) Im(Σ+) + i Im($2) Im(Σ−) .
(3.9)

Using this expansion, Re($), Re($1) and Re($2) correspond to scalars in the 35s whereas

Im($), Im($1) and Im($2) correspond to pseudo-scalars in the 35c, in agreement with

the splitting (3.2).

The complex scalar $ = λ eiα parameterises the SK manifold whereas ($1, $2) pa-

rameterises the QK manifold in terms of the modulus λ′ and the three SU(2) phases φ

and (θ, ψ). The main advantage of this parameterisation is that the U(1) × U(1) gauge

symmetry in the truncated theory can be used to gauge-fixing θ = ψ = 0 [18, 20, 22]. This

translates into $1 = λ′eiφ and $2 = 0, so that we are left with a theory containing four

real scalars (λ, α) and (λ′, φ). Furthermore, this gauge choice implies that there are no

four-forms with an odd number of hatted (unhatted) indices in the expansion (3.9), e.g.

Σ1̂234, Σ12̂3̂4̂, etc., since they only appear through Im(Σ+) and Im(Σ−). In the absence of

these “odd” forms, the truncated theory admits an intermediate N = 4 formulation à la

Schön&Weidner [53] that makes a connection to generalised type II flux compactifications

feasible [11]. We would like to look into this in the future.

3.2 The scalar Lagrangian

The Lagrangian for the scalar sector of maximal supergravity is given by

Lscalar = − 1

96
Tr(DµM DµM−1)− V (M) , (3.10)

where M ≡ MMN is the scalar-dependent matrix in (2.5) built from the mixed vielbein

VMP(λ, α, λ′, φ, θ, ψ). At this point we are not performing any gauge-fixing yet, so we deal

with a six real fields problem. The construction of the vielbein depends on the specific

choice of basis for the E7(7) generators and other related issues. In order to keep this

section alive, we have put all the details aside in the appendix A.

The covariant derivative induced by the gauging is totally encoded inside the ω-

dependent embedding tensor in (2.15)–(2.16) and reads

DµMMN = ∂µMMN − 2 g AP
µ XP(M

QMN)Q . (3.11)
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In this work we will consider vanishing vector fields AMµ = 0 compatible with maximally

symmetric solutions of the theory and also with BPS domain-wall configurations interpo-

lating between two of such solutions. As a consequence Dµ → ∂µ and the scalar Lagrangian

takes the form

Lscalar = −3 (∂µλ)2 − 3

4
sinh2(2λ) (∂µα)2 − 4 (∂µλ

′)2 − sinh2(2λ′) (∂µφ)2

− T (λ′, φ, θ, ψ)− V (λ, α, λ′, φ, θ, ψ) ,
(3.12)

where

T (λ′, φ, θ, ψ) =
[
sinh4(2λ′) cos2(2φ) + sinh2(2λ′)

]
(∂µθ)

2 +
1

4
sinh2(4λ′) (∂µψ)2

+
1

2
sinh2(4λ′) cos(2φ) (∂µθ)(∂µψ) ,

(3.13)

accounts for the kinetic energy associated to the fields (θ, ψ) which, as discussed before,

can be gauged away.

The computation of the scalar potential V (λ, α, λ′, φ, θ, ψ) for a dyonic gauging turns

out to be rather cumbersome mostly due to the cubic term XXMMM in (2.6). To carry it

out, it is helpful to use the parameter c in (2.17) instead of its compact version ω in (2.18).

We set the normalisation with an overall factor 1/(1 + c2). After a straightforward but

tedious computation, the c-dependent scalar potential in (3.12) reads

V(λ, α, λ′, φ) = (3.14)

=
g2

128 (1 + c2)

[
4
(

(c2 + 1) cosh(6λ) sinh2(2λ′) (19 cosh(4λ′) + 21)

− 4 sinh(2λ)
(

2 sinh2(2λ) cos(4φ) sinh4(2λ′)
(

(c2 − 1) cos(3α)− 2c sin(3α)
)

(3.15)

+ sinh2(2λ′)
(

3(c2 − 1) cos(α)
(

cosh(4λ)(3 cosh(4λ′) + 2 cos(2φ) + 3)

+ cosh(4λ′)− 6 cos(2φ)− 7
)

+ sinh2(2λ) (cosh(4λ′) + 3)
(

(c2 − 1) cos(3α)− 2c sin(3α)
)

+ 6 c sin(α)
(

cosh(4λ′)− 2 (cosh(4λ)− 3) cos(2φ)− 7
))

+ 3 sinh2(4λ′)
(

3c sin(α) cosh(4λ)− (c2 + 1) cos(2α) sinh(4λ) cos(2φ)
)))

+ 32 (c2 + 1) cosh3(2λ) cos(4φ) sinh4(2λ′) (3.16)

+ 3 (c2 + 1) cosh(2λ)
(

3 (cosh(8λ′)− 45)− 124 cosh(4λ′)
)

− 192 sinh(2λ) cosh2(2λ) cos(2φ) sinh2(2λ′) cosh(4λ′)
(

(c2 − 1) cos(α)− 2c sin(α)
)]
.

The dyonic potential does not depend on the fields (θ, ψ) which can be gauged-away at any

value of c, in analogy to the purely electric gauging c = 0 studied in ref. [21]. The reason

is that the c parameter encodes an Sp(56) rotation that does not modify the embedding

SU(3) ⊂ SO(8). On the other hand, the above scalar potential is invariant under the

transformations φ → φ + π and φ → −φ. The latter will be connected later to the

existence of two different superpotentials in the N = 2 truncated theory.
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3.3 The fermi mass terms

In this section we compute the fermi mass terms AIJ and AIJKL in (2.7) as a function

of the scalars (after gauge-fixing θ = ψ = 0) and the electromagnetic phase ω in (2.18).

To do so, we follow the prescription described in section 2.3: first we build the T -tensor

in (2.13) using the explicit form of the mixed vielbein VPP(λ, α, λ′, φ) and then extract AIJ

and AIJKL by taking the traces in (2.14).

3.3.1 Gravitino-gravitino terms

The computation of the gravitino-gravitino couplings AIJ(λ, α, λ′, φ) reveals an splitting

of the the ω-dependence of the form

AIJ = eiωAIJ+ + e−iωAIJ− . (3.17)

Recalling the index decomposition I → 1 ⊕ a ⊕ 1̂ ⊕ â, the mass terms for the two grav-

itini which are singlets under SU(3) and therefore survive the truncation to the N = 2

theory read

A11
+ =

3

2
ei(2α+2φ) cosh(λ) sinh2(λ) sinh2(2λ′) + cosh3(λ) f1(λ′, φ),

A11
− =

3

2
ei(α+2φ) sinh(λ) cosh2(λ) sinh2(2λ′) + e3iα sinh3(λ) f1(λ′, φ),

(3.18)

together with

A1̂1̂
± (λ, α, λ′, φ) = A11

± (λ, α, λ′,−φ) . (3.19)

The remaining six non-singlet gravitini which are projected out in the truncated theory

acquire a mass term

Aaa+ =
1

8
cosh(λ)

[
4 e−2iα sinh2(λ) sinh2(2λ′) cos(2φ) + cosh(2λ) g1(λ′)− cosh(4λ′) + 5

]
,

Aaa− =
e−iα

8
sinh(λ)

[
4 e2iα cosh2(λ) sinh2(2λ′) cos(2φ) + cosh(2λ) g1(λ′) + cosh(4λ′)− 5

]
,

(3.20)

together with

Aââ± (λ, α, λ′, φ) = Aaa± (λ, α, λ′, φ) . (3.21)

In order to shorten the above expressions, as well as some forthcoming ones, we have

introduced the functions

f1(λ′, φ) = cosh4(λ′) + e4iφ sinh4(λ′) , g1(λ′) = 3 cosh(4λ′) + 1, . (3.22)

As a check of consistency, the expressions in refs [20, 21] for the pure electric SO(8) gauging

are exactly recovered7 by setting ω = 0.

7By redefining the fields as p = cosh(λ) , q = sinh(λ) , r = cosh(λ′) and t = sinh(λ′), the mass term A11

in (3.17) is written as

A11 = ei ω
(
p3
(
r4 + t4e4iφ

)
+ 6p q2 r2 t2e2i(α+φ)

)
+ e−i ω

(
e3iαq3

(
r4 + t4e4iφ

)
+ 6q p2 r2 t2ei(α+2φ)

)
,

which exactly reproduces the expression (2.29) in ref. [21] when ω = 0. The rest of the fermion mass terms

also match precisely if setting ω = 0.
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3.3.2 Gravitino-dilatino terms

An explicit computation of the AIJKL tensor shows once more a simple ω-dependence of

the form

AIJKL = A+I
JKL eiω +A−IJKL e−iω , (3.23)

as for the gravitino-gravitino mass terms (3.17). Moreover, because of the gauge choice

θ = ψ = 0, all the components involving an odd number of hatted (unhatted) indices vanish:

A1̂
abc = 0 , Aaabĉ = 0 , etc. In order to present the different terms, it is again convenient

to organise the fermions according to the index decomposition I → 1 ⊕ a ⊕ 1̂ ⊕ â. Below

we just list those fermions for which a fermi-fermi coupling is generated

gravitini dilatini

ψ1
µ χabc , χ1̂aâ , χab̂ĉ ,

ψaµ χ1b̂ĉ , χâ11̂ , χâbb̂ , χ1̂bĉ , χ1bc ,

ψ1̂
µ χâb̂ĉ , χ1aâ , χabĉ ,

ψâµ χ1̂bc , χa11̂ , χabb̂ , χ1bĉ , χ1̂b̂ĉ ,

(3.24)

where the first gravitino only couples to the first row of dilatini, the second to the second

row and so on. As an example, there is a mass term Lfermi ⊃ 1
6 gAa

â11̂ ψ̄aµ χâ11̂ given by

A+a
â11̂ = −1

4
cosh(λ)

[
2 cosh2(λ) sinh2(2λ′) cos(2φ) + e2iα sinh2(λ)g1(λ′)

]
,

A−aâ11̂ = −e
3iα

4
sinh(λ)

[
2 sinh2(λ) sinh2(2λ′) cos(2φ) + e−2iα cosh2(λ)g1(λ′)

]
.

(3.25)

The complete set of non-vanishing gravitino-dilatino couplings is listed in appendix B.

Knowing all the fermion mass terms in (2.7) will allow us to compute the full N = 8 mass

spectra at any critical point of the scalar potential (3.14) by using the mass formulae (2.8)

and (2.9).

3.4 N = 2 superpotentials

Due to the N = 2 supersymmetry preserved by the SU(3)-truncation, there exist two

superpotentials, we will denote by W1 and W1̂, from which the scalar potential in (3.14)

can be derived. The W1 and W1̂ superpotentials are identified with the A11 and A1̂1̂ mass

terms of the two SU(3)-singlet gravitini in (3.17) [21]. As a consequence, they depend on

the fields (λ, α, λ′, φ) as well as on the electromagnetic parameter ω, namely,

W1 = eiωA11
+ + e−iωA11

− or W1̂ = eiωA1̂1̂
+ + e−iωA1̂1̂

− . (3.26)

Looking at the form of (3.18), it is easy to see that both superpotentials remain invariant

under the shift φ→ φ+π and, by virtue of (3.19), are exchanged by the reflection φ→ −φ.

Using any of the two complex superpotentials above,

W = W1(λ, α, λ′, φ) or W = W1̂(λ, α, λ′, φ) , (3.27)
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the scalar potential can be derived as8

V (λ, α, λ′, φ) = g2

[
2

3
|∂λW |2 +

1

2
|∂λ′W |2 − 6 |W |2

]
= g2

[
2

3
(∂λ|W |)2 +

8

3 sinh2(2λ)
(∂α|W |)2

+
1

2
(∂λ′ |W |)2 +

2

sinh2(2λ′)
(∂φ|W |)2 − 6 |W |2

]
.

(3.28)

In going from the first line to the second in (3.28) we write W = |W |eiArg(W ) and use the

relations

|W | ∂λArg(W ) = − 2

sinh(2λ)
∂α|W | ,

|W | ∂λ′Arg(W ) = ∓ 2

sinh(2λ′)
∂φ|W | .

(3.29)

It is straightforward to check that the ω-dependent superpotentials W1 and W1̂ in (3.27)

satisfy the conditions (3.29) for the upper and lower sign choice respectively, and that the

scalar potential computed from (3.28) by plugging (3.26) exactly matches the one in (3.14)

computed from (2.6). The real and ω-dependent function |W (λ, α, λ′, φ)| will become the

relevant one when looking at BPS domain-wall configurations in the next section.

Let us now introduce new complex variables

z = tanh(λ) eiα and ζ12 = tanh(λ′) eiφ . (3.30)

Using the form of the gravitino-gravitino mass terms in (3.18), and after some algebra

manipulations, the W1 superpotential in (3.26) takes the form

W1(z, ζ12) =

(
eiω + e−iωz3

) (
1 + ζ4

12

)
+ 6 z

(
e−iω + eiωz

)
ζ2

12

(1− |z|2)
3
2 (1− |ζ12|2)2

. (3.31)

The above superpotential represents the generalisation to arbitrary values of ω of the one

derived in ref. [22], which now we know corresponds to ω = 0. A conjectured ω-dependent

superpotential was first presented in ref. [19]. Even though the generalisation hinged on

symmetry arguments9 involving the periodicity of ω, a full-fledged supergravity derivation

of the ω-dependent superpotential was missing. Here we have provided such a derivation

using the framework of the embedding tensor, finding that the conjectured superpotential

in ref. [19] was correct up to an overall phase that could not be determined by symmetry

arguments therein.

4 Scalar dynamics and BPS domain-walls

The dynamics of the SU(3)-invariant scalar sector is encoded in the action

Sscalar =

∫
d4x
√
−g
(

1

2
R− 1

2
Kij(∂µΣi)(∂µΣj)− V (Σi)

)
, (4.1)

8The different coefficients with respect to refs [20, 21] stem from a different normalisation:

λhere = λthere/2
√

2 and λ′here = λ′there/2
√

2.
9It was based on the invariant classifiers computed in ref. [13].
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where we have collectively denoted Σi = (λ, α, λ′, φ). The field-space metric Kij can be

read off from (3.12) finding

Kij =


6 0 0 0

0 3
2 sinh2(2λ) 0 0

0 0 8 0

0 0 0 2 sinh2(2λ′)

 , (4.2)

and the scalar potential V (Σi) was given in (3.14) (alternatively (3.28)). We will make a

domain-wall Ansatz for the space-time metric

ds2 = e2A(z) ηαβ dx
αdxβ + dz2 with ηαβ = diag(−1,+1,+1) , (4.3)

where z ∈ (−∞,∞) is the coordinate transverse to the domain-wall and A(z) is the

scale factor.

The non-vanishing components of the Einstein equations Gµν = Tµν obtained from the

action (4.1) read

3 (∂zA)2 + 2 ∂2
zA = −1

2
Kij(∂zΣ

i)(∂zΣ
j)− V (Σ) ,

3 (∂zA)2 =
1

2
Kij(∂zΣ

i)(∂zΣ
j)− V (Σ) .

(4.4)

These two equations can be combined to obtain the simple monotonicity relation

∂2
zA = −1

2
Kij(∂zΣ

i)(∂zΣ
j) ≤ 0 , (4.5)

so that ∂zA will decrease along the domain-wall solution. The Euler-Lagrange equations

for the scalars

�Σi +
[
∂ρg

ρµ + Γννρ g
ρµ
]

(∂µΣi) + Γijk(∂ρΣ
j)(∂ρΣk)−Kij(∂jV ) = 0 , (4.6)

with Γµνρ and Γijk denoting Christoffel symbols in space-time and field-space, give rise to

the following equations of motion:

0 = �λ+ 3 (∂zA) (∂zλ)− 1

4
sinh(4λ) (∂zα)2 − 1

6
∂λV

0 = sinh2(2λ)�α+ 3 sinh2(2λ) (∂zA) (∂zα) + 2 sinh(4λ) (∂zα) (∂zλ)− 2

3
∂αV

0 = �λ′ + 3 (∂zA) (∂zλ
′)− 1

4
sinh(4λ′) (∂zφ)2 − 1

8
∂λ′V

0 = sinh2(2λ′)�φ+ 3 sinh2(2λ′) (∂zA) (∂zφ) + 2 sinh(4λ′) (∂zφ) (∂zλ
′)− 1

2
∂φV

(4.7)

We will obtain AdS solutions to the above system of equations as well as BPS domain-

wall configurations which additionally satisfy first-order flow equations.
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4.1 AdS solutions

Maximally symmetric solutions are characterised by scalar fields getting a constant vacuum

expectation value (VEV), i.e. ∂µΣi = 0. The equations in (4.7) boil down to extremisation

conditions

∂λV = ∂αV = ∂λ′V = ∂φV = 0 , (4.8)

and the Einstein equations reduce to Gµν+V0 gµν = 0. The cosmological constant V0 is just

the scalar potential evaluated at the critical point. The space-time metric then becomes

that of Anti-de Sitter (AdS), Minkowski (Mkw) or de Sitter (dS) space for V0 < 0, V0 = 0

and V0 > 0, respectively. In the case of AdS, which is the relevant in this paper, the

solution to the scale factor in (4.4) is of the form A(z) =
√
−V0/3 z + cst (the constant

can be eliminated by rescaling xα) and the metric reads

ds2 = e2z/L ηαβ dx
αdxβ + dz2 , (4.9)

where L2 = −3/V0 is the AdS radius. By applying the radial coordinate redefinition

r = e−z/L, the most familiar form of the AdS metric ds2 = L2

r2
(ηαβ dx

αdxβ +dr2) is recast.

The AdS boundary (z →∞) is mapped to r = 0 and the deep interior (z → −∞) to r =∞.

4.1.1 Glossary of AdS critical points at ω = 0

The structure of SU(3)-invariant critical points of the purely electric SO(8) gauged super-

gravity at ω = 0 was classified thirty years ago by Warner in ref. [18]. In this case, the

theory is known to contain an AdS solution at the origin preserving N = 8 supersymme-

try and G0 = SO(8) residual symmetry as well as other five types of AdS critical points

preserving smaller (super)symmetry. The relevant data for these points10 is summarised

in table 1.

On the other hand, the issues of perturbative stability and higher-dimensional origin

of these critical points have also been thoroughly investigated (see ref. [27] for a list of

references). The analysis of the SU(3)-invariant sector at ω = 0 showed that, whenever

supersymmetry did not protect solutions to have instabilities, these showed up somewhere

in the full N = 8 spectrum. However, counterexamples to this were found soon after by

analysing the SO(4)-invariant sector of the theory still with ω = 0 [54, 55] as well as within

the G2-invariant sector with ω 6= 0 [14]. The scalar mass spectra at these points turned

out [14, 16] to be independent of ω.

4.1.2 Glossary of critical points at ω 6= 0

The structure of SU(3)-invariant critical points at ω 6= 0 was explored in ref. [19] using

a superpotential differing from (3.31) by an overall phase, as discussed in section 3.4.

However it is clear from (3.28) that the scalar potential is not sensitive to overall phases,

so the critical points associated to (3.31) coincide with those found in ref. [19]. Turning on

ω was found to modify the location and energy of the critical points existing at ω = 0 as

10An exact form is known for the numbers in table 1 (see appendix A in ref. [22]). We typed the numerical

values in order to compare with other tables in the text for which only numerical values are available.
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SUSY G0 g−2 V0 |W1| |W1̂| λ0 α0 λ′0 φ0 Stability

N = 8 SO(8) −6 1 1 0 0 0 0 X

N = 2 U(3) −7.794 1.140 1.140 0.275 0 0.329 ±π
2 X

N = 1 G2 −7.192

1.095∗ 1.341

0.259 ±0.310π 0.259

±0.310π

X
±1.310π

1.341 1.095∗
∓0.310π

∓1.310π

N = 0 SO(7)±

−6.687 1.227 1.227 0.201 0 0.201
0

×
π

−6.988 1.254 1.254 0.241 ±π
2 0.241

±π
2

∓π
2

N = 0 SU(4) −8 3
2

3
2 0 0 0.441 ±π

2 ×

Table 1. The SU(3)-invariant critical points of the SO(8) gauged supergravity at ω = 0. For those

solutions preserving N = 1, the mark ∗ singles out the superpotential (W1 vs W1̂) with respect to

which supersymmetry is preserved.

well as to create new ones with no counterpart at ω = 0. As a check of the scalar potential

in (3.14), we have exhaustively verified the set of critical points found in ref. [19]. The

entire set of AdS solutions can be divided into two categories:

i) points which are shifted counterparts of those at ω = 0: these points have the same

normalised mass spectra as their counterparts at ω = 0, hence inheriting their sta-

bility properties [13, 14, 19]. The list of these points at ω = π
8 is shown in table 2.

ii) points with no counterpart at ω = 0: these points are genuinely associated to dyonic

SO(8) gaugings. There are novel N = 1 AdS solutions with either G2 or SU(3)

residual symmetry as well as non-supersymmetric critical points preserving either G2

or SU(3) too. The set of these points at ω = π
8 is summarised in table 3.

Perturbative stability of the non-supersymmetric point preserving G2 was checked in

refs [14, 19]. However, the lack of a derivation from scratch of the ω-dependent supergravity

quantities, concretely of the fermi mass terms, made an analysis of stability for the novel

non-supersymmetric and SU(3)-preserving point impossible. Now we are at the position

to perform such an analysis here.

4.1.3 Stability of the new N = 0, G0 = SU(3) critical point

This AdS solution was shown to have ω-dependent mass spectra in ref. [19]. Furthermore,

the scalar masses for the SU(3)-singlets were computed at ω = π
8 and found to satisfy

the B.F. bound, but the stability of the full scalar spectrum remained an open question.

Plugging the VEVs of the scalars displayed in table 3 into the fermion mass terms derived

in the previous section, it is now straightforward to compute the full scalar mass spectrum

via the mass formula in (2.8). The outcome for the 70 scalar masses at ω = π
8 is
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SUSY G0 g−2 V0 |W1| |W1̂| λ0 α0 λ′0 φ0 Stability

N = 8 SO(8) −6 1 1 0 0 0 0 X

N = 2 U(3) −8.354 1.180 1.180 0.315

0.171π

0.375

±π
2

X
1.329π

0

π

N = 1 G2 −7.943

1.151∗ 1.409

0.329

0.373π

0.329

0.373π

X

1.373π

1.127π
1.127π

0.127π

1.409 1.151∗

0.373π
−0.373π

−1.373π

1.127π
−1.127π

−0.127π

N = 0 SO(7)±

−6.748 1.232 1.232 0.210
0

0.210

0

×

π

−π
2 ±π

2

−7.771 1.322 1.322 0.320
π

0.320

0

π

π
2 ±π

2

N = 0 SU(4) −8.581 1.553 1.553 0.115
π

0.488

0

×π

π
2 ±π

2

Table 2. The shifted SU(3)-invariant critical points of the SO(8) gauged supergravity at ω = π
8 .

These points have a counterpart at ω = 0. For those solutions preserving N = 1, the mark ∗ singles

out the superpotential (W1 vs W1̂) with respect to which supersymmetry is preserved.

m2 L2 = 6.223 (×1) , 5.914 (×1) , 1.138 (×1) , −1.275 (×1) ,

−1.641 (×12) , −0.908 (×12) , −1.504 (×8) , −0.235 (×8) ,

−1.073 (×6) , 0 (×20) ,

(4.10)

where the four masses in the first row correspond to the SU(3)-singlets in the truncated

theory. The rest of the scalar masses, however, could not be computed before and show

that this point is perturbatively stable with respect to fluctuations of all the scalars in

maximal supergravity. As usual in supergravity theories, the masses of some of the non-

singlet fields are smaller than those of the singlets. Notice also the presence of 20 massless

fields (Goldstone bosons) reflecting the spontaneous SO(8) → SU(3) symmetry breaking

at this vacuum.
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SUSY G0 g−2 V0 |W1| |W1̂| λ0 α0 λ′0 φ0 Stability

N = 1 G2 −7.040

1.083∗ 1.327

0.242 −π
4 0.242

−π
4

X
3π
4

1.327 1.083∗
π
4

−3π
4

N = 1 SU(3) −10.392

1.316∗ 2.632

0.275 3π
4 0.573

π
4

X
−3π

4

2.632 1.316∗
−π

4

3π
4

N = 0 G2 −10.170

2.762 1.595 0.467 3π
4 0.467

3π
4

X
−π

4

1.595 2.762 0.467 3π
4 0.467

−3π
4

π
4

N = 0 SU(3) −10.237

2.747 1.467

0.400

0.702π

0.512

0.785π

X [ see (4.10) ]

1.785π

0.798π
−0.285π

−1.285π

1.467 2.747

0.702π
−0.785π

−1.785π

0.798π
0.285π

1.285π

Table 3. The genuine SU(3)-invariant critical points of the SO(8) gauged supergravity at ω = π
8 .

These points have no counterpart at ω = 0. For those solutions preserving N = 1, the mark ∗

singles out the superpotential (W1 vs W1̂) with respect to which supersymmetry is preserved.

The masses for the vectors after the symmetry breaking can also be computed imme-

diately using again the fermi mass terms we derived and the mass formula in (2.9). At

ω = π
8 , they are given by

m2 L2 = 4.520 (×1) , 2.321 (×1) , 3.194 (×6) , 2.757 (×6) ,

0.128 (×6) , 0 (×8) ,
(4.11)

where one identifies the eight massless vectors associated to the SU(3) residual symmetry.

The first two masses correspond to the SU(3)-singlets and reflect the complete breaking of

the U(1)×U(1) gauging in the truncated theory.

We want to highlight that (up to our knowledge) this is the first example of a non-

supersymmetric and nevertheless fully stable critical point in new maximal supergravity

with a scalar mass spectrum being sensitive to the electromagnetic phase ω. Previous

stable cases were insensitive [13, 14] and those being sensitive were unstable [15, 16].
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4.2 BPS domain-walls

We now move to study BPS domain-wall configurations where the scalars develop a profile

Σi(z) and the scale factor A(z) is no longer linear in z. By plugging the domain-wall

Ansatz (4.3) into the action (4.1) one finds

SDW(A,Σi) =
a

2

∫ ∞
−∞

dz e3A
[

6 (∂zA)2 −Kij(∂zΣ
i)(∂zΣ

j)− 2V (Σi)
]
, (4.12)

where a is the area transverse to the domain-wall direction. The energy per unit of trans-

verse area is then given by [33]

EDW(A,Σi) = −1

a
SDW(A,Σi)

=
1

2

∫ ∞
−∞

dz e3A
[
−6 (∂zA)2 +Kij(∂zΣ

i)(∂zΣ
j) + 2V (Σi)

]
.

(4.13)

The fact that V can be obtained from a superpotential as (3.28) allows the energy den-

sity (4.13) to be written à la Bogomol’nyi (completing squares) by using the relations

in (3.29) [20]. Then it is extremised by BPS domain-wall solutions for which gravita-

tional stability is guaranteed [33]. These solutions are found to satisfy the first-order set

of equations11

∂zA = ∓
√

2 g |W | ,

∂zλ = ± g
√

2

3
∂λ|W | , ∂zα = ± g 4

√
2

3 sinh2(2λ)
∂α|W |,

∂zλ
′ = ± g 1

2
√

2
∂λ′ |W | , ∂zφ = ± g

√
2

sinh2(2λ′)
∂φ|W |,

(4.14)

and connect two supersymmetric AdS points at z = ±∞ along a steepest descent path12

of |W |. At the two end points, one has ∂zΣ
i ∝ ∂Σi |W | = 0 and, using the AdS/CFT

correspondence, the dual field theory is conjectured to flow from an UV fixed point at the

boundary of AdS (z → +∞) to an IR fixed point at the deep interior (z → −∞). When

approaching these asymptotic regions, the scale factor behaves as A(z) ∼ L−1z
∣∣
z→±∞ with

gradients L−1
UV = ∓g

√
2 |WUV| and L−1

IR = ∓g
√

2 |WIR|, respectively.

Using the (inverse) metric Kij in (4.2), the flow equations in (4.14) can be written in

the more compact form

∂zA = ∓
√

2 g |W | and ∂zΣ
i = ±2

√
2 g Kij ∂Σj |W | . (4.15)

Near the asymptotic regions at z → ±∞, the non-linear flow is well approximated by a

linear one satisfying

∂zΣ
i ∼ − 1

L0
∆i

j (Σj − Σj
0) , (4.16)

11As shown in ref. [21], the gauge choice θ = ψ = 0 holds along the flow such that the kinetic function

T (λ′, φ, θ, ψ) in (3.13) does not contribute to the energy density.
12The actual flow occurs in the opposite direction as V |z→±∞ ∼ −6g2|W |2 and it runs from higher to

lower values of the potential.
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where Σi
0 denote the VEVs of the scalars at one of the asymptotic AdS points, L0 is the AdS

radius and the matrix ∆i
j is also evaluated at that point. The eigenvalues of ∆i

j encode

the masses of the fields and therefore also the conformal dimension of the dual operators.

The aim is to solve the set (4.15) of differential equations numerically using the ω-

dependent superpotential |W | in section 3.4. From now on, we will take W = W1 in (3.26)

without entailing a loss of generality13 and investigate two types of BPS domain-walls:

i) domain-walls flowing between two supersymmetric points in table 2, so they can be

understood as ω-deformations of others existing at ω = 0 ii) domain-walls which have no

counterpart at ω = 0 as they flow towards some of the genuine supersymmetric points

in table 3.

4.2.1 Domain-walls with ω = 0 counterpart

Examples of BPS domain-walls interpolating between the N = 8 & SO(8) point and either

the N = 1 & G2 or the N = 2 & U(3) point have been constructed in the electric case of

ω = 0 [35–37]. In addition, the connection to BLG theory and deformations thereof by

adding mass terms was put forward in refs [37, 45, 46]. Here we will numerically solve the

first-order equations in (4.15) to determine how the flows get modified when turning on

the electromagnetic phase ω.

In order to plot the flows of the four-field superpotential W (λ, α, λ′, φ), it is necessary

to take a two-dimensional slice. We will take

W (λ, λ′) = W (λ, α∗, λ′, φ∗) , (4.17)

with sections α∗(λ′) and φ∗(λ′) of the form

α∗ =
λ′2 − λ′2(2)

λ′2(1) − λ′
2
(2)

α(1) +
λ′2 − λ′2(1)

λ′2(2) − λ′
2
(1)

α(2) , φ∗ =
λ′2 − λ′2(2)

λ′2(1) − λ′
2
(2)

φ(1) +
λ′2 − λ′2(1)

λ′2(2) − λ′
2
(1)

φ(2) .

(4.18)

The above choice of slice is then guaranteed to catch pairs of critical points located at

Σ(1) and Σ(2). Let us emphasise that, irrespective of the slicing, we are solving the actual

system of first-order equations in (4.15) and not any projected version of it.

Setting ω = 0, the N = 8 & SO(8) point is located at the origin λ0 = λ′0 = 0 whereas

the other two points are located at

N = 1 & G2 : λ0 = λ′0 = 0.259 , α0 = φ0 = 0.310π ,

N = 2 & U(3) : λ0 = 0.275 , λ′0 = 0.329 , α0 = 0 , φ0 =
π

2
,

(4.19)

and correspond to values |W0|SO(8) = 1, |W0|G2 = 1.095 and |W0|U(3) = 1.140 of the

superpotential. Generic solutions to the flow-equations typically run off to infinity but, as

observed in ref. [37], there is a (one parameter family) cone of flows from the N = 8 & SO(8)

point to the N = 2 & U(3) point passing arbitrarily close to the N = 1 & G2 point. This

13To be consistent with this choice, one has to select the (∗-marked) AdS solutions preserving W1 and

not W1̂ for those domain-walls flowing towards N = 1 points in tables 2 and 3.
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1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

z

ÈW
È

Figure 2. Contours of the superpotential at ω = 0 showing BPS domain-walls interpolating

between SO(8) ↔ U(3) (upper straight red line), SO(8) ↔ G2 (lower straight red line) and G2 ↔
U(3) (curved red line) supersymmetric AdS vacua. The dashed blue lines represent generic SO(8)↔
U(3) steepest descents passing arbitrarily close to the G2 point. One of these arbitrarily close paths

is depicted in the right plot.

behaviour is illustrated in figure 2. The scalar masses and the set of eigenvalues of ∆i
j

in (4.16) read

N = 1 & G2 : m2L2 = 6.449 , −2.242 , 1.551 , −1.425 ,

∆ = −1.449 , 1.408 , 3.449 , 0.592 ,

N = 2 & U(3) : m2L2 = 7.123 , 2.000 , 2.000 , −1.123 ,

∆ = −1.562 , 3.562 , −0.562 , 2.562 .

(4.20)

Because of supersymmetry, the eigenvalues of ∆i
j come in pairs adding to 2. The

N = 1 & G2 point corresponds to one irrelevant operator of dimension 3 − ∆ (∆ < 0),

two non-normalisable modes (0 < ∆ < 3
2) and one normalisable mode (∆ > 3

2). The

N = 2 & U(3) point corresponds to two irrelevant operators of dimension 3−∆ (∆ < 0)

and two normalisable modes (∆ > 3
2) [37].

Turning on ω = π
8 shifts the location of the asymptotic AdS points and changes the

profiles of the flows. Some steepest descents are depicted in figure 3. There are again flows

between the three AdS points located now at the origin and at

N = 1 & G2 : λ0 = λ′0 = 0.329 , α0 = φ0 = 0.373π ,

N = 2 & U(3) : λ0 = 0.315 , λ′0 = 0.375 , α0 = 0.171π , φ0 =
π

2
.

(4.21)

The corresponding values of the superpotential are |W0|SO(8) = 1, |W0|G2 = 1.151 and

|W0|U(3) = 1.180. The scalar masses and the eigenvalues of ∆i
j are not sensitive to the

electromagnetic phase. Making a dyonic choice of the gauging does not change the quali-

tative features of these flows. In particular, there is still a (one parameter family) cone of

flows from the N = 8 & SO(8) to the N = 2 & U(3) point passing arbitrarily close to the
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Figure 3. Contours of the superpotential at ω = π
8 showing BPS domain-walls interpolating

between SO(8) ↔ U(3) (upper straight red line), SO(8) ↔ G2 (lower straight red line) and G2 ↔
U(3) (curved red line) supersymmetric AdS vacua. The dashed blue lines represent generic SO(8)↔
U(3) steepest descents passing arbitrarily close to the G2 point. One of these arbitrarily close paths

is depicted in the right plot.

N = 1 & G2 point, as happened for their electric counterparts. However, as we will see

next, a new flow connecting the N = 2 & U(3) point to the novel14 N = 1 & G∗2 point in

table 3 also exists.

4.2.2 Domain-walls without ω = 0 counterpart

Let us now describe dyonic flows at ω = π
8 which do not have an electric counterpart at

ω = 0. These are flows involving either the novel N = 1 & G∗2 or the N = 1 & SU(3) points

in table 3.

In the first case, there are flows connecting the N = 8 & SO(8) point at λ0 = λ′0 = 0

to the genuine N = 1 & G∗2 and the N = 2 & U(3) points located at

N = 1 & G∗2 : λ0 = λ′0 = 0.242 , α0 = −π
4
, φ0 =

3π

4
,

N = 2 & U(3) : λ0 = 0.315 , λ′0 = 0.375 , α0 = 0.171π , φ0 =
π

2
.

(4.22)

The superpotential takes values |W0|SO(8) = 1, |W0|G∗2 = 1.083 and |W0|U(3) = 1.180 at

these points. In the linearised region around the N = 1 & G∗2 point, the mass spectrum and

the eigenvalues of ∆i
j coincide with those for the N = 1 & G2 point (4.20). The behaviour

of the steepest descents seems no longer as smooth as it was in figure 3 even though a

(one parameter family) cone of flows from the N = 8 & SO(8) to the N = 2 & U(3) point

passing arbitrarily close to the N = 1 & G∗2 point still exists. This time we observe paths,

e.g. the upper straight red line in figure 4, passing through these flows before getting the

N = 2 & U(3) point. This is a consequence of the choice of field variables we have used

to build the steepest descents. We have verified this by applying the field redefinitions

14In order to avoid confusion between the N = 1 points preserving G2 in table 2 and in table 3, we have

attached the labels G2 and G∗2 respectively.
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Figure 4. Contours of the superpotential at ω = π
8 showing BPS domain-walls interpolating

between SO(8) ↔ U(3) (upper straight red line), SO(8) ↔ G∗
2 (lower straight red line) and G∗

2 ↔
U(3) (curved red line) supersymmetric AdS vacua. The dashed blue lines represent generic SO(8)↔
U(3) steepest descents passing arbitrarily close to the G∗

2 point. One of these arbitrarily close paths

is depicted in the right plot.

in (3.30). In terms of the new variables (z, ζ12), the set of red line paths displayed in

the figures 3 and 4 (and also figure 5) precisely reconstruct the physically inequivalent

portions15 (half of the left plot and one quarter of the right plot) of figure 6 in ref. [56].

Remarkably, the very convenient parameterisation we used to perform the supergravity

computations in the previous sections, is also adequate to capture all the types of flows

at ω = π
8 .

In the second case, there are flows connecting the N = 8 & SO(8) point at λ0 = λ′0 = 0

to the N = 1 & G2 and the genuine N = 1 & SU(3) points located at

N = 1 & G2 : λ0 = λ′0 = 0.329 , α0 = φ0 = 0.373π ,

N = 1 & SU(3) : λ0 = 0.275 , λ′0 = 0.573 , α0 =
3π

4
, φ0 =

π

4
.

(4.23)

The corresponding values of the superpotential are |W0|SO(8) = 1, |W0|G2 = 1.151 and

|W0|SU(3) = 1.316. When approaching the N = 1 & SU(3) point, the mass spectrum and

the eigenvalues of ∆i
j are given by

N = 1 & SU(3) : m2L2 = 6.449 , 6.449 , 1.551 , 1.551 ,

∆ = −1.449 , −1.449 , 3.449 , 3.449 .
(4.24)

Supersymmetry again requires the eigenvalues of ∆i
j to come in pairs adding to 2. This

point then corresponds to two irrelevant operators of dimension 3 − ∆ (∆ < 0) and two

15Upon submission of version 1 of this manuscript, we became aware of the preprint [56] where an

exhaustive study of domain-walls and RG flows at ω 6= 0 has been carried out in terms of the field variables

(z, ζ12). Therein, the sets of flows in figures 3 and 4 have been shown to combine together and determine a

unique cone of physically inequivalent flows at ω = π
8

having the flows to the N = 1 & G2 and N = 1 & G∗2
points as boundaries.
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Figure 5. Contours of the superpotential at ω = π
8 showing BPS domain-walls interpolating

between SO(8)↔ SU(3) (upper almost straight red line), SO(8)↔ G2 (lower straight red line) and

G2 ↔ SU(3) (curved red line) supersymmetric AdS vacua. The dashed blue lines represent generic

SO(8)↔ SU(3) steepest descents passing arbitrarily close to the G2 point. One of these arbitrarily

close paths is depicted in the right plot.

normalisable modes (∆ > 3
2). We have numerically determined the steepest descent tra-

jectories and found a regular behaviour: they smoothly lie inside a (one parameter family)

cone of flows from the N = 8 & SO(8) to the N = 1 & SU(3) point passing arbitrarily close

to the N = 1 & G2 point. This is shown in figure 5. As a final comment, the N = 1 & SU(3)

point turns out to be the one with the lowest energy at ω = π
8 .

5 Summary & final remarks

In this paper we have revised the SU(3)-invariant sector of the one-parameter family of

SO(8) gauged supergravities discovered in ref. [13]. Using the powerful framework of the

embedding tensor, we performed a supergravity derivation of the scalar Lagrangian (sec-

tion 3.2), the fermion mass terms (section 3.3 + appendix B) and the N = 2 superpoten-

tial(s) (section 3.4) as a function of the electromagnetic phase ω and the six real scalars in

the theory.

The precise knowledge of the fermi mass terms allowed us to check the stability of a

non-supersymmetric AdS critical point preserving SU(3) symmetry which only exists for

ω 6= 0, hence being genuinely dyonic. We find that this AdS solution is fully stable under

scalar fluctuations and has a mass spectrum that is sensitive to the electromagnetic phase.

As mentioned in the main text, this is the only example (up to our knowledge) of such a

critical point in new maximal supergravity.

In the second part of the paper, we presented some first results on BPS domain-walls

for ω 6= 0. Making use of the ω-dependent superpotential(s) in (3.26), we derived the first-

order flow equations in (4.15) and solved them numerically at ω = π
8 . In this way we

obtained various flows between the (descending in energy) N = 8 & SO(8), N = 1 & G∗2,

N = 1 & G2, N = 2 & U(3) and N = 1 & SU(3) supersymmetric AdS points in tables 2
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Figure 6. Flows between supersymmetric AdS points at ω = π
8 .

and 3 (see figure 6). Some of them have a purely electric counterpart and behave in a

similar way, e.g. steepest descents smoothly lie inside the bounding cone. The others will

not have such a smooth behaviour as they flow towards or pass nearby an AdS point which

simply does not exist at ω = 0. In these cases, it would be very interesting to explore

how the bounding cones blow up when taking the limit ω → 0 in which the N = 1 & G∗2
and N = 1 & SU(3) points run off to infinity in field space [19]. A dedicated study of

domain-walls in dyonic gauged supergravities will be presented somewhere else.

We would like to finish by commenting on potential applications of our results and

also future directions. The first one concerns the search for a reduction Ansatz of 11d

supergravity that could accommodate the electromagnetic phase ω. To this end, if it is at

all possible, the knowledge of the T -tensor and the fermion mass terms could play a central

role [27]. We have derived these quantities as a function of the phase ω and the scalars

in the SU(3)-invariant sector. This sector of the theory already encompasses many of the

AdS points for which an 11d lifting could be figured out in the case of an electric SO(8)

gauging (ω = 0). For this reason, we believe that the ω-dependent expressions obtained

here might help in getting some insights in this direction. A second remark concerns the

conjectured three-dimensional RG flows that the BPS domain-walls at ω = π
8 would be

dual to. In the case of ω = 0, these were connected to deformations of the BLG theory of

M2-branes by a mass term of the form [37, 45, 46]

∆WBLG =
1

2
m1 Φ2

1 +
1

2
m1̂ Φ2

1̂
, (5.1)

and the bounding cone for the steepest descents in figure 2 was related to the (m1,m1̂)
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mass parameters. Therefore, a possible generalisation to ω 6= 0 again demands the role

of the electromagnetic phase to be better understood in the context of 11d supergravity.

That goes beyond the scope of this work. Here, our aim was to construct flows between

supersymmetric AdS points in new maximal supergravity. Nevertheless, the types of flows

that we obtained for a dyonic SO(8) gauging could help in this task. We hope to come

back to these issues in the future.
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A Unitary gauge & E7(7)/SU(8) parameterisation

The N = 8 supergravity multiplet in four dimensions contains 70 real scalars which param-

eterise an element V of the coset space
E7(7)

SU(8) . The SU(8) in the denominator represents the

maximal compact subgroup, so, in the unitary gauge, the physical scalars are associated

to the non-compact generators of E7(7). In order to build the 56 × 56 coset representa-

tive VMN ∈ E7(7)

SU(8) with both indices in the SU(8) basis, we will make extensive use of the

Γ-matrices of SO(8) ⊂ SU(8) we discuss now.

Majorana SO(8) spinors will be defined with an index down χµ. For the Γ-matrices

and the charge conjugation matrix C we adopt the conventions in ref. [57]

[Γa]µ
ν =

(
0 [γa]αβ̇

[γ̄a]α̇β 0

)
and Cµν =

(
Iαβ 0

0 Iα̇β̇

)
, (A.1)

where a = 1, . . . , 8 is the vector index transforming in the 8v, µ = 1, . . . , 16 is a Majorana

spinorial index and α , α̇ = 1, . . . , 8 are left- and right-handed Majorana-Weyl spinorial

indices transforming in the 8s and the 8c, respectively. The splitting of the Majorana

index is then of the form µ = α ⊕ α̇. The matrices C = Cµν and C−1 = Cµν can be used to

lower and rise indices resulting in Γ-(p)forms

[Γa1...ap ]µν = Γ[a1 · · ·Γap] C , (A.2)

with definite symmetry properties. The γa building blocks are the 8× 8 matrices

γ1 = iσ2 ⊗ iσ2 ⊗ iσ2 , γ5 = σ3 ⊗ iσ2 ⊗ I2,
γ2 = I2 ⊗ σ1 ⊗ iσ2 , γ6 = iσ2 ⊗ I2 ⊗ σ1,

γ3 = I2 ⊗ σ3 ⊗ iσ2 , γ7 = iσ2 ⊗ I2 ⊗ σ3,

γ4 = σ1 ⊗ iσ2 ⊗ I2, γ8 = I2 ⊗ I2 ⊗ I2,

(A.3)

built from the standard σ1,2,3 Pauli matrices. As a result one finds [γ̄a] = [γa]t, as well as

the Clifford algebra

γa γ̄b + γb γ̄a = 2δab I8 with δab = I8 , (A.4)

so the matrices δab and δab can then be used to rise and lower indices in the 8v.
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Two relevant Γ-(p)forms in (A.2) are those for p = 2, 4. Out of these, we can extract

the pieces
p = 2 : [γab]αβ , [γ̄ab]α̇β̇ (antisymmetric)

p = 4 : [γabcd]αβ , [γ̄abcd]α̇β̇ (symmetric)
(A.5)

The former (p = 2) are used to build the change of basis in (2.4) after the index identifi-

cation a↔ I and α↔ A. This translates into: [γab]αβ ↔ [γIJ ]AB, etc. The latter (p = 4)

satisfy the (anti)self-duality conditions

[γabcd]αβ =
1

4!
εabcdefgh [γefgh]αβ and [γ̄abcd]α̇β̇ = − 1

4!
εabcdefgh [γ̄efgh]α̇β̇ (A.6)

and are used to split the 70 real scalars in the theory into self-dual (SD) and anti-self-dual

(ASD) ones transforming in the 35s and 35c of SO(8), respectively. Then, the self-duality

condition (2.1) for complex scalars transforming in the 70 of SU(8) is automatically fulfilled

by the combination 70 = 35s + i35c.

The next step is to build the 56 × 56 generators of E7(7) in the SU(8) basis, identify

the non-compact ones and exponentiate them to build the coset representative VMN. Tak-

ing (A.6) as the starting point, a systematic construction of the E7(7) generators in the

SU(8) basis is explained in detail in the very useful appendix A of ref. [58]. Following the

prescription there, the E7(7) generators tA with A = 1, . . . , 133 being the adjoint index, are

organised as

tA → tA=1,...,35︸ ︷︷ ︸
35s

⊕ tA=36,...,70︸ ︷︷ ︸
35c︸ ︷︷ ︸

70 non-compact

⊕ tA=71,...,105︸ ︷︷ ︸
35v

⊕ tA=106,...,133︸ ︷︷ ︸
28→ SO(8)︸ ︷︷ ︸

63 compact→ SU(8)

, (A.7)

so that the physical scalars of the theory will be associated with the first 70 generators.

The coset representative is then explicitly built out of the generators as

VMN = Exp

[
35∑
m=1

ϕ(s)
m [tm]M

N +
35∑
m=1

ϕ(c)
m [t35+m]M

N

]
, (A.8)

where ϕ
(s)
m=1,...,35 and ϕ

(c)
m=1,...,35 account for all the real scalars of maximal supergravity.

The SU(8) self-dual four-form in (2.1) is constructed as16

ΣIJKL =

35∑
m=1

(
ϕ(s)
m [Sm]abcd + iϕ(c)

m [Cm]abcd

)
δabcdIJKL , (A.10)

where the expression for the tensors [Sm]abcd and [Cm]abcd in terms of (A.6) can again be

found in ref. [58].

16We use normalised δαβγδIJKL Kronecker symbols with weight one such that

Σ1234 =

35∑
m=1

(
ϕ(s)
m [Sm]1234 + i ϕ(c)

m [Cm]1234
)
, (A.9)

and similarly for the rest of components of ΣIJKL.
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With all the above ingredients, the prescription to build the mixed coset representative

VMN entering the scalar matrix (2.5) for a givenG0-invariant sector of maximal supergravity

is as follows:

1) The precise embedding of G0 inside the R-symmetry group SU(8) specifies the set

of G0-invariant four-forms and therefore the set of components in ΣIJKL which are

compatible with the residual symmetry.

2) After identifying the G0-invariant components inside ΣIJKL, it is immediate to read

off which fields ϕ
(s)
m and ϕ

(c)
m are activated in the expansion (A.10) and plug them

into (A.8) to obtain the coset representative VMN in the SU(8) basis.

3) Finally we obtain the mixed E7(7)/SU(8) coset representative VMN = [U−1]M
P VPN by

applying the (inverse) change of basis in (2.4). This is the vielbein we need in order

to obtain the scalar matrix MMN in (2.5).

Example: SU(3)-invariant sector. Let us work out explicitly the case of the SU(3)-

invariant sector that we analyse in this paper. The expansion (3.5) singles out the set of

SU(3)-invariant forms in (3.6) and (3.7). Matching them to the expression in (A.10) picks

out the scalars

ϕ
(s)
6 =

ϕ
(s)
4

2
= ϕ

(s)
2 , ϕ

(s)
3 = 2ϕ

(s)
2 − ϕ

(s)
1 , ϕ

(s)
5 = ϕ

(s)
2 − ϕ

(s)
1 ,

ϕ
(s)
7 = ϕ

(s)
1 + ϕ

(s)
2 , ϕ

(s)
15 = −ϕ(s)

2 + 2ϕ
(s)
1 , ϕ

(s)
32 = −ϕ(s)

2 − 2ϕ
(s)
1 ,

ϕ
(s)
17 = ϕ

(s)
20 = −ϕ(s)

22 = −ϕ(s)
25 , (A.11)

as well as

ϕ
(c)
6 =

ϕ
(c)
4

2
= ϕ

(c)
2 , ϕ

(c)
1 = ϕ

(c)
2 + ϕ

(c)
7 , ϕ

(c)
3 = ϕ

(c)
2 − ϕ

(c)
7 ,

ϕ
(c)
5 = 2ϕ

(c)
2 − ϕ

(c)
7 , ϕ

(c)
10 = ϕ

(c)
2 + 2ϕ

(c)
7 , ϕ

(c)
33 = ϕ

(c)
2 − 2ϕ

(c)
7 ,

ϕ
(c)
12 = ϕ

(c)
27 = −ϕ(c)

13 = −ϕ(c)
28 . (A.12)

In terms of the scalars in (3.8), the independent fields are given by

ϕ
(s)
1 = −1

4
λ cos(α) , ϕ

(s)
2 = −1

2
λ′ cos(φ) cos(θ + ψ) ,

ϕ
(c)
7 = −1

4
λ sin(α) , ϕ

(c)
2 = −1

2
λ′ sin(φ) cos(θ − ψ) ,

(A.13)

and, after multiplication by the corresponding E7(7) generators, they completely deter-

mine the coset representative VMN(λ, α, λ′, φ, θ, ψ) in (A.8). The ultimate mixed vielbein

VMN(λ, α, λ′, φ, θ, ψ) entering (2.5) is then obtained by acting with [U−1]M
P
.

B Gravitino-dilatino mass terms

In this appendix we present the explicit form of the AIJKL tensor corresponding to the

gravitino-dilatino mass terms in (3.24).
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Couplings involving the ψ1
µ gravitino. There are three of these couplings in (3.24).

Their expressions are

A+1
abc =

e−3i(α+φ)

2
sinh(λ) sinh(2λ′)

[
3 e2i(α+φ) cosh2(λ) cosh(2λ′) + sinh2(λ)j1(λ′, φ)

]
A−1

abc =
e−3iφ

2
cosh(λ) sinh(2λ′)

[
3 e−2i(α−φ) sinh2(λ) cosh(2λ′) + cosh2(λ)j1(λ′, φ)

]
A+1

1̂aâ = −e
−2i(α+2φ)

4
cosh(λ)

[
e2i(φ+α)h1(λ) sinh2(2λ′) + 4 sinh2(λ)f2(λ′, φ)

]
A−1

1̂aâ = −e
i(α−4φ)

4
sinh(λ)

[
e2i(φ−α)h2(λ) sinh2(2λ′) + 4 cosh2(λ)f2(λ′, φ)

]
(B.1)

together with the additional A±1
ab̂ĉ = −A±1

abc. The scalar-dependent functions entering

the above couplings read

f2(λ′, φ) = sinh4(λ′) + e4iφ cosh4(λ′) , g2(λ′) = cosh(4λ′) + 3 ,

j1(λ′, φ) = sinh2(λ′) + e4iφ cosh2(λ′) , h1(λ) = 3 cosh(2λ)− 1 ,

j2(λ′, φ) = cosh2(λ′) + e4iφ sinh2(λ′) , h2(λ) = 3 cosh(2λ) + 1 ,

(B.2)

and are introduced to reduce the size of the expressions.

Couplings involving the ψ1̂
µ gravitini. The situation for these couplings is analogous

to the case of the ψ1
µ gravitino discussed before. The set of couplings consists of

A+1̂
âb̂ĉ =

e−i(3α+φ)

2
sinh(λ) sinh(2λ′)

[
3 e2i(α+φ) cosh2(λ) cosh(2λ′) + sinh2(λ)j2(λ′, φ)

]
A−1̂

âb̂ĉ =
e−iφ

2
cosh(λ) sinh(2λ′)

[
3 e−2i(α−φ) sinh2(λ) cosh(2λ′) + cosh2(λ)j2(λ′, φ)

]
A+1̂

1aâ =
e−2iα

4
cosh(λ)

[
e2i(α+φ)h1(λ) sinh2(2λ′) + 4 sinh2(λ)f1(λ′, φ)

]
A−1̂

1aâ =
eiα

4
sinh(λ)

[
e2i(φ−α)h2(λ) sinh2(2λ′) + 4 cosh2(λ)f1(λ′, φ)

]
(B.3)

together with A±1̂
abĉ = −A±1̂

âb̂ĉ. A quick comparison between (B.1) and (B.3) makes the

similarities between the two SU(3)-singlet gravitini manifest.

Couplings involving the ψaµ gravitini. There are five couplings between these gravitini

and the set of dilatini in (3.24). These are given by

A+a
1b̂ĉ=

e−i(α+φ)

8
sinh(2λ′)

[
4 sinh(λ) cosh2(λ)j2(λ′, φ)− e2i(α+φ)r1(λ) cosh(2λ′)

]
A−a1b̂ĉ=

ei(2α−φ)

8
sinh(2λ′)

[
4 sinh2(λ) cosh(λ)j2(λ′, φ) + e2i(φ−α)r2(λ) cosh(2λ′)

]
A+a

â11̂ =−1

4
cosh(λ)

[
2 cosh2(λ) sinh2(2λ′) cos(2φ) + e2iα sinh2(λ)g1(λ′)

]
A−aâ11̂ =−e

3iα

4
sinh(λ)

[
2 sinh2(λ) sinh2(2λ′) cos(2φ) + e−2iα cosh2(λ)g1(λ′)

]
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A+a
âbb̂=−1

8
cosh(λ)

[
4 e−2iα sinh2(λ) sinh2(2λ′) cos(2φ) + cosh(2λ)g1(λ′)− g2(λ′)

]
A−aâbb̂=−e

−iα

8
sinh(λ)

[
4 e2iα cosh2(λ) sinh2(2λ′) cos(2φ)+cosh(2λ)g1(λ′)+g2(λ′)

]
A+a

1̂bĉ=
e−i(α+3φ)

4
sinh(λ) sinh(2λ′)

[
2 cosh2(λ)j1(λ′, φ)+e2i(φ+α)h2(λ) cosh(2λ′)

]
A−a1̂bĉ=

ei(2α−3φ)

4
cosh(λ) sinh(2λ′)

[
2 sinh2(λ)j1(λ′, φ)+e2i(φ−α)h1(λ) cosh(2λ′)

]
(B.4)

as well as A±a1bc = −A±a1b̂ĉ. The new functions appearing in (B.4) are

r1(λ) = sinh(λ)− 3 sinh(3λ), r2(λ) = cosh(λ) + 3 cosh(3λ) , (B.5)

and complete the set of functions we will introduce to simplify the expressions.

Couplings involving the ψâµ gravitini. The couplings to these gravitini match those

already found for their counterparts ψaµ. They are given by

A±â1̂bc = A±a1̂bĉ, A±âa11̂ = −A±aâ11̂, A±âabb̂ = −A±aâbb̂,

A±â1bĉ = A±a1b̂ĉ, A±â1̂b̂ĉ = −A±a1̂bĉ,
(B.6)

and complete the set of gravitino-dilatino couplings of the SU(3)-truncated theory.
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