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aDepartment of Astronomy and Theoretical Physics, Lund University,

Sölvegatan 14A, SE - 223 62 Lund, Sweden
bInstitute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics,
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1 Introduction

An analytical, ab initio description of Quantum Chromodynamics (QCD) in the hadronic

low-energy regime remains elusive. One of the most promising alternatives involves nu-

merical evaluation of the functional integral of QCD on a discretized space-time lattice.

Known as Lattice QCD, this approach has long been restricted for computational reasons

to large and unphysical values of the light quark masses. Recently, due to improvements

in computing power and algorithmics, calculations with significantly smaller quark masses

have become possible. A side effect of the lowered quark masses is an increase in the size

of finite-volume corrections, and a detailed treatment of such effects is thus called for.

Fortunately, in many cases the finite-volume corrections can be evaluated analytically

using Chiral Perturbation Theory (χPT) [1–3], which is the low-energy effective theory of

QCD. The application of χPT at finite volume was first performed by Gasser and Leutwyler

in ref. [4], and a review of recent work in this area can be found in ref. [5]. As many

Lattice QCD simulations are performed with unequal valence and sea-quark masses [6],

the properties of the light pseudoscalar mesons have also been calculated to next-to-next-

to-leading order (NNLO) in Partially Quenched χPT (PQχPT) in refs. [7–9]. Therefore,

it is also of interest to extend the finite-volume description of the relevant loop integrals to

account for the appearance of double poles in the PQχPT propagators. It should be noted

that χPT is applicable at finite volume as soon as the typical momenta of a given process

are sufficiently small. This imposes the restriction FπL > 1, where Fπ is the pion decay

constant and the volume V ≡ L3. This study deals with the so-called p-regime, in which

V is sufficiently large for zero-momentum fluctuations of the meson fields to be treated

perturbatively, which introduces the additional requirement m2
πF

2
πV ≫ 1, where mπ is the

pion mass. A multitude of finite-volume calculations exist at one-loop or next-to-leading

order (NLO), and it should also be noted that some work at NNLO has recently appeared.

This includes ref. [10], where the finite-volume corrections to the quark condensate were

calculated, and ref. [11] which considered mπ for the case of degenerate quark masses.

Our main objective is to show how the integrals needed in χPT calculations of pseu-

doscalar meson properties at NNLO and finite volume can be performed. As a starting

point, the known results at one-loop order are reviewed, and we also show how these can be

extended to higher order in d− 4. The methods for the one-loop integrals are then applied

to the two-loop “sunset” integrals for arbitrary masses and momenta. We focus here on

the integrals necessary for the calculation of form factors to NLO, and for the calculation

of masses, decay constants and two-point functions to two loops (NNLO).

This paper is structured as follows: section 2 discusses a few preliminaries. In section 3,

the derivation of the one-loop integrals at finite volume is revisited, with emphasis on the

treatment of PQχPT calculations at NLO. In section 4, the two-loop sunset integrals are

considered, and explicit expressions are given for the finite and divergent parts, for arbitrary

values of the quark masses and with the propagator structure of PQχPT fully accounted for.

Section 5 contains a numerical overview of the integrals presented in this study, along with

a concluding discussion in section 6. The appendices summarize the ingredients involving

modified Bessel functions and theta functions, along with basic integrals in d dimensions
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and comments on the notational conventions in earlier work. Some preliminary results

related to this study have been presented in refs. [12, 13].

2 Preliminaries

2.1 Finite-volume sums

At finite volume in a cubic box, integrals over momenta should be replaced by sums over

the allowed momenta. In one dimension of length L, with periodic boundary conditions,1

this entails a summation over the allowed momenta pn ≡ 2πn/L, with n ∈ Z integer. The

integrals over momenta should thus be replaced according to

∫

dp

2π
F (p) → 1

L

∑

n∈Z

F (pn) ≡
∫

V

dp

2π
F (p), (2.1)

where the latter notation will be used to indicate a finite-volume summation in the re-

mainder of this paper. Infinities will be treated by dimensional regularization, using the

convention d ≡ 4 − 2ε. The infinite-volume integrals have been treated extensively in the

literature, see e.g. ref. [15] including appendices and references therein.

In practice, it is often desirable to study deviations from the infinite-volume limit,

and we shall therefore use a framework in which the infinite-volume contribution can be

easily identified. This can be achieved by application of the Poisson summation formula

to eq. (2.1), yielding
1

L

∑

n∈Z

F (pn) =
∑

lp

∫

dp

2π
eilpp F (p), (2.2)

where the summation over lp spans a set of vectors of length nL such that n ∈ Z. The

term with n = 0 then represents the infinite-volume result, while the sum of all the other

terms is the finite-volume correction.

In the case of loop integrals over momenta in higher dimensions, eq. (2.2) should

be applied to all dimensions which have a finite extent. The four-vector lpµ then has

components (0, n1L, n2L, n3L) when three of the dimensions have a finite extent L. The

loop integrals in this paper are performed throughout in Euclidean space, with metric

gµν = δµν and signature (+,+,+,+). Throughout this paper, one of the dimensions (the

“time” dimension) is assumed to be much larger in extent than the other three dimensions,

which is the usual situation encountered in Lattice QCD.

2.2 Passarino-Veltman reduction

At infinite volume, a general method was developed by Passarino and Veltman [16] to obtain

a minimal set of integrals by reduction of the tensor integralsHµν to a set of scalar integrals.

This method relies on separation of the integrals into components that are scalars under

Lorentz transformations and prefactors that contain δµν and various momenta. Although

Lorentz-invariance is explicitly broken by the introduction of a finite size, it is still possible,

1We do not consider twisted boundary conditions as discussed in ref. [14]. These can be treated by

adding a shift to the allowed momenta, relative to the summations used here.
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in the frame where p · lp = 0, to rewrite the integrals in scalar components, provided that

a four-vector

tµ ≡ (1, 0, 0, 0) (2.3)

is introduced. The situation p · lp = 0 is referred to as the “center-of-mass” (cms) frame,

which is a situation often realized in Lattice QCD. Because of the remaining symmetries,

tµ is the only additional object required to rewrite the integrals in scalar components, but

we also introduce the tensor

tµν ≡ δµν − tµtν = diag(0, 1, 1, 1) (2.4)

as a convenient additional abbreviation.

3 One-loop integrals at finite volume

In general, the one-loop integrals in the NNLO expressions for the pseudoscalar meson

masses and decay constants contain a maximum of two propagators with distinct masses.

The simplest case with one propagator is denoted A, whereas the case with two distinct

propagators is denoted B. In PQχPT, some three-propagator integrals denoted C also

appear. These are due to the mixing of different lowest-order states in PQχPT, and they

can always be re-expressed in terms of the B integrals.

All of the integrals mentioned above have been extensively treated in the literature, see

e.g. refs. [4, 17–19]. However, it is instructive to review certain aspects of their derivation

and numerical evaluation here, since they form building blocks in the calculation of the

two-loop sunset integrals at finite volume.

3.1 One-propagator integrals

The basic one-loop, one-propagator integrals are

⌊X⌋ =
∫

V

ddr

(2π)d
X

(r2 +m2)n
, (3.1)

where X = 1, rµ and rµrν . By application of the Poisson summation formula for the finite

dimensions, eq. (3.1) may be written as

⌊X⌋ =
∑

lr

∫

ddr

(2π)d
X eilr ·r

(r2 +m2)n
, (3.2)

where the term with lr = 0 represents the infinite-volume contribution. In order to isolate

the finite-volume part, eq. (3.2) is decomposed according to

⌊X⌋ ≡ ⌊X⌋∞ + ⌊X⌋V , (3.3)

where the first term represents the infinite-volume result and will not be considered further.

The second term represents the finite-volume correction, and is free from divergences.

– 4 –
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First, we consider the case of X = 1. We rewrite eq. (3.1) using eq. (A.1) as

⌊1⌋V =
1

Γ(n)

′
∑

lr

∫

ddr

(2π)d

∫

∞

0
dλλn−1 eilr·re−λ(r2+m2), (3.4)

where the primed sum indicates that the term with lr = 0 is excluded. We next substitute

r ≡ r̄ + ilr/(2λ), and obtain

⌊1⌋V =
1

Γ(n)

′
∑

lr

∫

∞

0
dλλn−1 e−λm2

−
l2r
4λ

∫

ddr̄

(2π)d
e−λr̄2 , (3.5)

where the r̄ integral can be performed using eq. (C.3) and by rescaling r̄ ≡ r̃/
√
λ,

which gives

⌊1⌋V =
1

(4π)d/2Γ(n)

′
∑

lr

∫

∞

0
dλλn− d

2
−1 e−λm2

−
l2r
4λ . (3.6)

The (triple) sum and integral can be evaluated in different ways. The technique used

in refs. [4, 17] is to employ eq. (A.2), which yields

⌊1⌋V =
1

(4π)d/2Γ(n)

′
∑

lr

Kn− d
2

(

l2r
4
,m2

)

, (3.7)

where the modified Bessel functions Kν are defined in appendix A. The triple sum can be

simplified by observing that l2r = kL2, with k integer. We further define the factor x(k),

which indicates the number of times each value of k ≡ n2
1 + n2

2 + n2
3 occurs in the triple

sum. We then find
′

∑

lr

f(l2r) =
∑

k>0

x(k)f(k), (3.8)

which reduces the triple sum to a single sum. The final result is

⌊1⌋V =
1

(4π)d/2Γ(n)

∑

k>0

x(k)Kn− d
2

(

kL2

4
,m2

)

, (3.9)

where the arguments of Kν can be modified by rescaling λ before eq. (A.2) is applied. Also,

the sum over modified Bessel functions is found to converge fairly slowly.

The second method considered here involves performing the summation, and leaving

the integral to be evaluated numerically, see ref. [19]. We observe that

′
∑

lr

e−
l2r
4λ =





∑

l1

e−
L2

4λ
l21





3

− 1, (3.10)

using the relation l2r = (l21 + l22 + l23)L
2. The cubic power accounts for the summations

over l1, l2 and l3. The remaining sum in eq. (3.10) can be performed in terms of the theta

function θ30, which is defined in appendix B. This gives

⌊1⌋V =
1

(4π)d/2Γ(n)

∫

∞

0
dλλn− d

2
−1

[

θ30

(

e−L2/(4λ)
)3

− 1

]

e−λm2
, (3.11)

– 5 –



J
H
E
P
0
1
(
2
0
1
4
)
0
1
9

where, as a final step, we rescale λ to obtain

⌊1⌋V =
1

(4π)d/2Γ(n)

(

L2

4

)n− d
2
∫

∞

0
dλλn− d

2
−1

[

θ30(e
−1/λ)3 − 1

]

e−λm2L2

4 , (3.12)

which is also valid for mL ∼ 1.

Integrals with factors of rµ in the numerator are also required. Up to NNLO, these

are ⌊rµ⌋ and ⌊rµrν⌋. Proceeding as above, we obtain

⌊(rµ; rµrν)⌋V =
1

Γ(n)

′
∑

lr

∫

∞

0
dλλn−1 e−λm2

−
l2r
4λ

×
∫

ddr̄

(2π)d

[

r̄µ +
ilrµ
2λ

;

(

r̄µ +
ilrµ
2λ

)(

r̄ν +
ilrν
2λ

)]

e−λr̄2 , (3.13)

where we note that integrals odd in r̄ vanish, and that

∫

ddr̄ r̄µr̄ν f(r̄
2) =

δµν
d

∫

ddr̄ r̄2f(r̄2). (3.14)

The summations over the components of lr include both positive and negative contributions,

and are symmetric under interchange of spatial directions. The sums which are odd in the

components of lr then vanish, and

∑

lr

lrµlrνf(l
2
r) =

1

3
tµν

∑

lr

l2rf(l
2
r). (3.15)

Thus, the final results for the ⌊rµ⌋ and ⌊rµrν⌋ integrals are

⌊rµ⌋V = 0,

⌊rµrν⌋V =
1

Γ(n)

′
∑

lr

∫

∞

0
dλλn−1 e−λm2

−
l2r
4λ

∫

ddr̄

(2π)d

(

δµν
d

r̄2 − tµν
12λ2

l2r

)

e−λr̄2 ,

=
1

(4π)d/2Γ(n)

′
∑

lr

∫

∞

0
dλλn− d

2
−1

(

δµν
2λ

− tµν
12λ2

l2r

)

e−λm2
−

l2r
4λ , (3.16)

where the remaining integration can again be performed in terms of the modified Bessel

functions, giving

⌊rµrν⌋V =
1

(4π)d/2Γ(n)

∑

k>0

x(k)

[

δµν
2

Kn− d
2
−1

(

kL2

4
,m2

)

− tµν
12

kL2Kn− d
2
−2

(

kL2

4
,m2

)]

.

(3.17)

For the second method which involves the theta functions, we rewrite the sum using

the identity

∑

n∈Z3

n2q(n
2) = q

∂

∂q

[

∑

n∈Z3

q(n
2)

]

= q
∂

∂q

[

θ30(q)
3
]

= 3θ32(q)θ30(q)
2, (3.18)

– 6 –
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which is also valid for the primed sums, as the term with n = 0 does not contribute. After

rescaling λ, this gives

⌊rµrν⌋V =
1

(4π)d/2Γ(n)

(

L2

4

)n− d
2
−1 ∫ ∞

0
dλλn− d

2
−2 e−λm2L2

4

×
{

δµν
2

[

θ30

(

e−1/λ
)3

− 1

]

− tµν
λ

[

θ32

(

e−1/λ
)

θ30

(

e−1/λ
)2

]}

, (3.19)

and following the same steps as before, we also find

⌊rµrνrα⌋V = 0. (3.20)

3.2 Two-propagator integrals

The basic one-loop, two-propagator integrals are

〈X〉 =
∫

V

ddr

(2π)d
X

(r2 +m2
1)

n1((r − p)2 +m2
2)

n2
, (3.21)

where X = 1, rµ, rµrν and rµrνrα. By application of the Poisson summation formula for

the finite dimensions, eq. (3.21) may be written as

〈X〉 =
∑

lr

∫

ddr

(2π)d
X eilr·r

(r2 +m2
1)

n1((r − p)2 +m2
2)

n2
, (3.22)

where the term with lr = 0 represents the infinite-volume contribution. We again decom-

pose eq. (3.22) into the infinite-volume part and the finite-volume correction using

〈X〉 ≡ 〈X〉∞ + 〈X〉V , (3.23)

where the latter term is obtained from eq. (3.22) by replacing the unprimed sum with the

primed one, indicating that the term with lr = 0 is excluded.

The methods of section 3.1 also apply here. We begin by introducing Gaussian pa-

rameterizations for both propagators in eq. (3.22) in terms of the integration variables λ1

and λ2. In a second step, we switch to a new set of variables (λ, x) with λ1 ≡ xλ and

λ2 ≡ (1−x)λ. Alternatively, we may first combine the two propagators using the Feynman

parameterization
1

ambn
=

Γ(m+ n)

Γ(m)Γ(n)

∫ 1

0
dx

xm−1yn−1

(ax+ yb)m+n
, (3.24)

where y = 1 − x, and then treat the denominator according to eq. (A.1). In both cases,

the result is

〈X〉V =
1

Γ(n1)Γ(n2)

′
∑

lr

∫ 1

0
dx

∫

ddr

(2π)d

×
∫

∞

0
dλλn1+n2−1 xn1−1yn2−1X eilr ·re−λ[x(r2+m2

1)+y((r−p)2+m2
2)], (3.25)
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which is the equivalent of eq. (3.4). We now shift the integration variable to r ≡ r̄ +

il/(2λ) + yp and obtain for the simplest case

〈1〉V =
1

Γ(n1)Γ(n2)

′
∑

lr

∫ 1

0
dx

∫

∞

0
dλλn1+n2−1xn1−1yn2−1 eiylr ·pe−λm̃2

−
l2r
4λ

∫

ddr

(2π)d
e−λr̄2

=
1

(4π)d/2Γ(n1)Γ(n2)

′
∑

lr

∫ 1

0
dx

∫

∞

0
dλλn1+n2−

d
2
−1 xn1−1yn2−1 eiylr ·pe−λm̃2

−
l2r
4λ , (3.26)

where

m̃2 = xm2
1 + ym2

2 + xyp2, (3.27)

which differs from eq. (3.6) by the integration over x and the factor eiylr ·p. Due to the

summation over components of lrµ with alternating signs, this factor always produces real-

valued results. For the remaining integrals, we obtain

〈X〉V =
1

(4π)d/2Γ(n1)Γ(n2)

′
∑

lr

∫ 1

0
dx

∫

∞

0
dλλn1+n2−

d
2
−1xn1−1yn2−1⌈X⌉ eiylr ·pe−λm̃2

−
l2r
4λ ,

(3.28)

with

⌈rµ⌉ = ypµ +
ilrµ
2λ

,

⌈rµrν⌉ =
δµν
2

+ y2pµpν +
iy

2λ
{lr, p}µν −

lrµlrν
4λ2

,

⌈rµrνrα⌉ =
1

2

[

δµν

(

ypα +
ilrα
2λ

)

+ δµα

(

ypν +
ilrν
2λ

)

+ δνα

(

ypµ +
ilrµ
2λ

)]

+

(

ypµ +
ilrµ
2λ

)(

ypν +
ilrν
2λ

)(

ypα +
ilrα
2λ

)

, (3.29)

where {a, b}µν ≡ aµbν + bµaν .

3.2.1 Center-of-mass frame

In the cms frame, p = (p, 0, 0, 0) such that p · lr = 0 for all lr. The integrals in the cms

frame can be computed similarly to the one-propagator integrals, giving

〈1〉Vn1n2
=

Γ(n1 + n2)

Γ(n1)Γ(n2)

∫ 1

0
dxxn1−1yn2−1 ⌊1⌋Vn1+n2

,

〈rµ〉Vn1n2
=

Γ(n1 + n2)

Γ(n1)Γ(n2)

∫ 1

0
dxxn1−1yn2 pµ⌊1⌋Vn1+n2

,

〈rµrν〉Vn1n2
=

Γ(n1 + n2)

Γ(n1)Γ(n2)

∫ 1

0
dxxn1−1yn2−1

(

⌊rµrν⌋Vn1+n2
+ y2pµpν⌊1⌋Vn1+n2

)

,

〈rµrνrα〉Vn1n2
=

Γ(n1 + n2)

Γ(n1)Γ(n2)

∫ 1

0
dxxn1−1yn2−1

(

ypα⌊rµrν⌋Vn1+n2
+ ypµ⌊rνrα⌋Vn1+n2

+ ypν⌊rαrµ⌋Vn1+n2
+ y3pµpνpα⌊1⌋Vn1+n2

)

, (3.30)
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where the subscripts of the ⌊X⌋V indicate the value of n in the one-propagator integrals

given in section 3.1. Also, the one-propagator integrals in the above expressions are func-

tions of m̃2 rather than m2. We may then compute the integral over λ in ⌊X⌋V and obtain

a sum over modified Bessel functions. We are finally left with a single summation and an

integral over x, to be performed numerically.

The method introduced in section 3.1 where the summations are performed in terms

of theta functions is also applicable here, and yields a double integral over λ and x. In that

case, the integral over x can be performed analytically. By setting

m̃2 = −p2
(

x− m2
1 −m2

2 + p2

2p2

)2

+m2
2 +

(

m2
1 −m2

2 + p2
)2

4p2
,

z = x− m2
1 −m2

2 + p2

2p2
, (3.31)

the resulting integral with no additional powers of z is related to Dawson’s integral or

the error function (erf), depending on the sign of p2. The other cases are related to the

(complex-valued) incomplete Gamma function by the substitution z2 = u. However, a

straightforward numerical evaluation of the double integral converges sufficiently fast for

practical purposes.

3.2.2 Moving frame

In a general “moving frame”, p can have non-zero components in the dimensions of finite

length. In this case, the sums with odd powers of components of lr no longer vanish. In

general, the finite-volume corrections can depend on all components of p, and no simple

way of writing the result in terms of scalar functions of p2 exists, as only a discrete subgroup

of the three-dimensional rotation group remains as a symmetry in a finite cubic volume.

Nevertheless, the relevant expressions can be evaluated numerically, albeit with some

additional complications. For the formulation in terms of modified Bessel functions, the

summation is no longer exclusively dependent on l2r , and thus the reduction of the triple

sums using eq. (3.8) is no longer possible. For the formulation in terms of theta functions,

the summation over lr can still be performed separately for each dimension, provided

that the factors of θ330 are replaced by the product θ3(u1, q) θ3(u2, q)θ3(u3, q), where ui ≡
ypiL/(2π) and q ≡ e−1/λ. When factors of rµ appear in the integrands, derivatives w.r.t.

u and q, as well as uncontracted factors of lrµ, also need to be accounted for.

3.3 Summary of one-loop results

Next, we discuss the relations between the various one-loop integrals and summarize the

explicit expressions in a concise form. With the definition of eq. (3.1) in mind, we introduce

the more conventional notation

⌊1⌋V = AV ,

⌊rµ⌋V = 0,

⌊rµrν⌋V = δµνA
V
22 + tµνA

V
23,

⌊rµrνrα⌋V = 0, (3.32)
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where only the finite-volume correction has been retained. As discussed above, no simple

rewriting in scalar components is possible for the momentum-dependent integrals, except

in the cms frame with p = (p, 0, 0, 0). In that frame, we define

〈1〉V
∣

∣

cms
= BV ,

〈rµ〉V
∣

∣

cms
= pµB

V
1 ,

〈rµrν〉V
∣

∣

cms
= pµpνB

V
21 + δµνB

V
22 +BV

23tµν ,

〈rµrνrα〉V
∣

∣

cms
= pµpνpαB

V
31 + (δµνpα + δµαpν + δναpµ)B

V
32

+ (tµνpα + tµαpν + tναpµ)B
V
33, (3.33)

which correspond to the usual definitions at infinite volume, except for the terms involving

tµν , which appear only in the finite-volume contribution.

The Passarino-Veltman construction [16] produces relations between the various inte-

grals upon multiplication with pµ or δµν . Using

2p · r = (r2 +m2
1)− [(r − p)2 +m2

2]−m2
1 +m2

2, (3.34)

a number of relations can be obtained. These are

dAV
22(n) + 3AV

23(n) +m2AV (n) = AV (n− 1), (3.35)

p2BV
1 (n1, n2) +

1

2
(m2

1 −m2
2 − p2)BV (n1, n2) =

1

2
BV (n1 − 1, n2)−

1

2
BV (n1, n2 − 1),

p2BV
21(n1, n2) + dBV

22(n1, n2) + 3BV
23(n1, n2) +m2

1B
V (n1, n2) = BV (n1 − 1, n2),

p2BV
21(n1, n2) +BV

22(n1, n2) +
1

2
(m2

1 −m2
2 − p2)BV

1 (n1, n2)

=
1

2
BV

1 (n1 − 1, n2)−
1

2
BV

1 (n1, n2 − 1),

and

p2BV
31(n1, n2) + (d+ 2)BV

32(n1, n2) + 3BV
33(n1, n2) +m2

1B
V
1 (n1, n2) = BV

1 (n1 − 1, n2),

p2BV
31(n1, n2) + 2BV

32(n1, n2) +
1

2
(m2

1 −m2
2 − p2)BV

21(n1, n2) (3.36)

=
1

2
BV

21(n1 − 1, n2)−
1

2
BV

21(n1, n2 − 1),

p2BV
32(n1, n2) +

1

2
(m2

1 −m2
2 − p2)BV

22(n1, n2) =
1

2
BV

22(n1 − 1, n2)−
1

2
BV

22(n1, n2 − 1),

p2BV
33(n1, n2) +

1

2
(m2

1 −m2
2 − p2)BV

23(n1, n2) =
1

2
BV

23(n1 − 1, n2)−
1

2
BV

23(n1, n2 − 1),

where we note that the relations in eq. (3.36) are linearly dependent. Up to the order con-

sidered here, this leaves AV , AV
23, B

V and BV
23 as independent functions. We have checked

the validity of the above relations numerically for n1, n2 = 1, 2.

At NNLO in χPT, all one-loop integrals should be expanded around d = 4 up to and

including terms of O(ε). This is necessary, since products of two one-loop integrals appear
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throughout the NNLO expressions, including the factorizable parts of the two-loop sunset

integrals. We thus define

AV ≡ ĀV + εĀV ε + O(ε2),

BV ≡ B̄V + εB̄V ε + O(ε2), (3.37)

with similar expansions for all functions AV
i and BV

i in eqs. (3.32) and (3.33). The one-

propagator integrals can then be written as

ĀV =
1

16π2Γ(n)

∑

k>0

x(k)ÂV =
1

16π2Γ(n)

(

L2

4

)n−2 ∫ ∞

0
dλλn−3e−λm2L2

4 ÃV , (3.38)

using eqs. (3.9), (3.12), (3.17) and (3.19). The integrands can be expressed either in terms

of modified Bessel functions or theta functions, and are in each case given by

ÂV = Kn−2

(

kL2

4
,m2

)

, ÃV = θ30

(

e−1/λ
)3

− 1,

ÂV
22 =

1

2
Kn−3

(

kL2

4
,m2

)

, ÃV
22 =

2

λL2

[

θ30

(

e−1/λ
)3

− 1

]

,

ÂV
23 = − 1

12
kL2Kn−4

(

kL2

4
,m2

)

, ÃV
23 = − 4

λ2L2
θ32

(

e−1/λ
)

θ30

(

e−1/λ
)2

. (3.39)

The expansion in ε = (4− d)/2 can be performed using

(4π)ε = 1 + ε log(4π) +O(ε2),

Km+ε = Km + εK̃m +O(ε2),

(4πλL2)ε = 1 + ε log(4πλL2) +O(ε2), (3.40)

where the functions K̃m are related to the modified Bessel functions and are defined in

appendix A. For all quantities in eq. (3.39), the above results lead to

ÂV ε = log(4π) ÂV +AV (Km → K̃m),

ÃV ε = [log(4π) + log(λ) + 2 log(L)] ÃV , (3.41)

where Km → K̃m indicates that the functions Km should be replaced by the corresponding

expressions for K̃m.

For the one-loop two-propagator integrals, we find similar results, given by

B̄V =
1

16π2Γ(n1)Γ(n2)

∑

k>0

x(k)

∫ 1

0
dx xn1−1yn2−1B̂V (3.42)

=
1

16π2Γ(n1)Γ(n2)

∫ 1

0
dx xn1−1yn2−1

(

L2

4

)n1+n2−2 ∫ ∞

0
dλλn1+n2−3e−λ m̃2L2

4 B̃V ,
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with m̃2 = xm2
1 + (1− x)m2

2 + xyp2 and y = 1− x, where x(k) is defined in eq. (3.8). The

explicit expressions for the integrands are

B̂V = Kn1+n2−2

(

kL2

4
, m̃2

)

, B̃V = θ30

(

e−1/λ
)3

− 1,

B̂V
1 = yKn1+n2−2

(

kL2

4
, m̃2

)

, B̃V
1 = y

[

θ30

(

e−1/λ
)3

− 1

]

,

B̂V
21 = y2Kn1+n2−2

(

kL2

4
, m̃2

)

, B̃V
21 = y2

[

θ30

(

e−1/λ
)3

− 1

]

,

B̂V
22 =

1

2
Kn1+n2−3

(

kL2

4
, m̃2

)

, B̃V
22 =

2

λL2

[

θ30

(

e−1/λ
)3

− 1

]

,

B̂V
23 = − 1

12
kL2Kn1+n2−4

(

kL2

4
, m̃2

)

, B̃V
23 = − 4

λ2L2
θ32

(

e−1/λ
)

θ30

(

e−1/λ
)2

.

B̂V
31 = y3Kn1+n2−2

(

kL2

4
, m̃2

)

, B̃V
31 = y3

[

θ30

(

e−1/λ
)3

− 1

]

,

B̂V
32 =

y

2
Kn1+n2−3

(

kL2

4
, m̃2

)

, B̃V
32 = y

2

λL2

[

θ30

(

e−1/λ
)3

− 1

]

,

B̂V
33 −

y

12
kL2Kn1+n2−4

(

kL2

4
, m̃2

)

, B̃V
33 = − 4y

λ2L2
θ32

(

e−1/λ
)

θ30

(

e−1/λ
)2

, (3.43)

where each case has again been given in terms of modified Bessel functions or theta func-

tions. The functions B̄V ε can be obtained from the above expressions using the equivalent

of eq. (3.40), along with corresponding changes in eq. (3.41). However, the functions ĀV ε

and B̄V ε are expected to cancel completely in a full calculation within the MS scheme.

This cancellation has already been demonstrated at NNLO for the scalar condensate in

ref. [10], and for mπ in two-flavour ChPT in ref. [11].

4 Two-loop sunset integrals at finite volume

First, we recall that some NNLO work at finite volume already exists. In ref. [10], the finite-

volume corrections were calculated for the quark condensate, and in ref. [11] for mπ. The

former only involved products of one-loop integrals, while the latter only required consider-

ation of the sunset integrals with degenerate masses. In this section, we provide completely

general expressions for the sunset integrals, for arbitrary, non-degenerate masses. At finite

volume, we define the basic sunset integral as

〈〈X〉〉 ≡
∫

V

ddr

(2π)d
dds

(2π)d
X

(r2 +m2
1)

n1(s2 +m2
2)

n2((r + s− p)2 +m2
3)

n3
, (4.1)

where the required operators X are 1, rµ, sµ, rµrν , rµsν and sµsν . In eq. (4.1), the ni are

always non-zero and positive. If one of the ni is zero or negative, the integral becomes sepa-

rable into a product of two one-loop integrals, which we have already dealt with in section 3.
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Application of the Poisson summation formula for all momenta in a finite dimen-

sion yields

〈〈X〉〉 =
∑

lr,ls

∫

ddr

(2π)d
dds

(2π)d
X eilr ·reils·s

(r2 +m2
1)

n1(s2 +m2
2)

n2((r + s− p)2 +m2
3)

n3
, (4.2)

where 〈〈X〉〉(1, 2, 3) will be used as a short-hand notation indicating which of the arguments

(ni,m
2
i ) are associated with the first, second and third propagators in eq. (4.2), respectively.

The vectors lr, ls are of the form (0, k1L, k2L, k3L) with ki ∈ Z. Eq. (4.2) can then be

decomposed according to

〈〈X〉〉 ≡ 〈〈X〉〉∞ + 〈〈X〉〉V , (4.3)

where 〈〈X〉〉∞ denotes the infinite-volume result with lr = ls = 0. The sunset integrals

at infinite volume have been evaluated in several different ways (see e.g. refs. [20–24]) and

will not be considered further here. The second term in eq. (4.3) represents the finite-

volume correction. The present approach to the finite-volume correction is along the lines

of refs. [20, 21], combined with an extension of the methods for the one-loop integrals

in section 3.

We further decompose 〈〈X〉〉V into terms where one of the possible loop momenta is

not quantized and a contribution where both are quantized, according to

〈〈X〉〉V ≡ 〈〈X〉〉r + 〈〈X〉〉s + 〈〈X〉〉t + 〈〈X〉〉rs, (4.4)

with

〈〈X〉〉r =
′

∑

lr

∫

ddr

(2π)d
dds

(2π)d
X eilr ·r

(r2 +m2
1)

n1(s2 +m2
2)

n2((r + s− p)2 +m2
3)

n3
,

〈〈X〉〉s =
′

∑

ls

∫

ddr

(2π)d
dds

(2π)d
X eils·s

(r2 +m2
1)

n1(s2 +m2
2)

n2((r + s− p)2 +m2
3)

n3
,

〈〈X〉〉t =
′

∑

lt

∫

ddr

(2π)d
dds

(2π)d
X eilt·(p−r−s)

(r2 +m2
1)

n1(s2 +m2
2)

n2((r + s− p)2 +m2
3)

n3
,

〈〈X〉〉rs =
′′

∑

lr,ls

∫

ddr

(2π)d
dds

(2π)d
X eilr·reils·s

(r2 +m2
1)

n1(s2 +m2
2)

n2((r + s− p)2 +m2
3)

n3
, (4.5)

where a “singly primed” sum indicates that the term with l = 0 has been excluded. For

the “doubly primed” sums, all contributions with lr = 0, ls = 0 or lr = ls have been

removed, i.e. the retained terms satisfy lr 6= 0, ls 6= 0 and lr 6= ls. The sum of all the terms

in eq. (4.5) reproduces the full finite volume correction in eq. (4.2). Here, it should be

taken into account that p is also quantized in the finite dimensions, such that the spatial

momentum components satisfy

pi ≡
2πji
L

, eilr ·p = eils·p = eilt·p = 1. (4.6)
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We note that 〈〈X〉〉rs is always finite, whereas 〈〈X〉〉r, 〈〈X〉〉s and 〈〈X〉〉t may contain

a non-local divergence, depending on the operator X and the values of the ni. If these

integrals should be finite, they can be included in 〈〈X〉〉rs by summation over all values of

lr and ls (except of course lr = ls = 0).

4.1 Simplest sunset integral

We first restrict ourselves to the simplest case of 〈〈1〉〉 with n1 = n2 = n3 = 1, which allows

us to outline our procedure in a straightforward way. We will then proceed to give the

expressions for the general case using the formalism established here.

From eqs. (4.1), (4.2) and (4.5), and keeping in mind eq. (4.6), we find that the sunset

integrals exhibit a high degree of symmetry with respect to interchanges of r, s and t =

p−r−s, together with lr, ls and lt. Substituting (r, s) → (s, r) and (r, t) → (t, r), including

the respective li, leads to the relations

〈〈1〉〉(1, 2, 3) = 〈〈1〉〉(2, 1, 3) = 〈〈1〉〉(3, 2, 1),
〈〈1〉〉∞(1, 2, 3) = 〈〈1〉〉∞(2, 1, 3) = 〈〈1〉〉∞(3, 2, 1),

〈〈1〉〉V (1, 2, 3) = 〈〈1〉〉V (2, 1, 3) = 〈〈1〉〉V (3, 2, 1),
〈〈1〉〉rs(1, 2, 3) = 〈〈1〉〉rs(2, 1, 3) = 〈〈1〉〉rs(3, 2, 1),
〈〈1〉〉r(1, 2, 3) = 〈〈1〉〉r(1, 3, 2),
〈〈1〉〉r(1, 2, 3) = 〈〈1〉〉s(2, 1, 3) = 〈〈1〉〉t(3, 2, 1), (4.7)

where we recall that the notation (1, 2, 3) refers to the propagators, as exhibited in eq. (4.2).

From the last relation in eq. (4.7), we find that the evaluation of 〈〈1〉〉r and 〈〈1〉〉rs suffices

to obtain the full result.

4.1.1 Simplest sunset integral with one quantized loop momentum

First, we calculate 〈〈1〉〉r. We begin by combining two of the propagators with a Feynman

parameter x, giving

〈〈1〉〉r =
′

∑

lr

∫

ddr

(2π)d
dds

(2π)d
eilr·r

(r2 +m2
1)(s

2 +m2
2)((r + s− p)2 +m2

3)

=
′

∑

lr

∫

ddr

(2π)d
eilr ·r

(r2 +m2
1)

∫ 1

0
dx

∫

dds̃

(2π)d
1

(

s̃2 +m2
)2 , (4.8)

where we have shifted the integration variable according to sµ ≡ s̃µ−x(r−p)µ, and defined

m2 ≡ (1− x)m2
2 + xm2

3 + x(1− x)(r − p)2. (4.9)

The integration over s̃ may then be performed in terms of standard d-dimensional integrals

in Euclidean space, given in appendix C.1. This gives

〈〈1〉〉r =
′

∑

lr

∫

ddr

(2π)d
eilr·r

(r2 +m2
1)

∫ 1

0
dx

Γ
(

2− d
2

)

(4π)
d
2

(m2)
d
2
−2, (4.10)
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where the expansion to O(ε) may be performed using

Γ
(

2− d
2

)

(4π)
d
2

(m2)
d
2
−2 =

1

16π2

[

λ0 − 1− log(m2)
]

+ O(ε), (4.11)

where λ0 ≡ 1/ε + log(4π) + 1 − γ. The term proportional to λ0 involves the one-loop

integral AV , which has been treated in section 3. This also contains the nonlocal divergence,

and contributes

〈〈1〉〉r,A =
λ0

16π2
⌊1⌋V (1,m2

1) (4.12)

to 〈〈1〉〉r. For clarity, we have added the arguments n1 = 1 and m2
1 to the notation for the

one-loop integral. The remaining terms in eq. (4.11) contribute

〈〈1〉〉r,F = − 1

16π2

′
∑

lr

∫

ddr

(2π)d
eilr·r

(r2 +m2
1)

∫ 1

0
dx

[

1 + log(m2)
]

, (4.13)

where we can set d = 4 directly. In order to deal with the dependence of m2 or r, we

perform a partial integration in x to obtain

〈〈1〉〉r,F = − 1

16π2

′
∑

lr

∫

d4r

(2π)4
eilr·r

(r2 +m2
1)

[

1 + log(m2
3)

−
∫ 1

0
dxx

m2
3 −m2

2 + (1− 2x)(r − p)2

m2

]

. (4.14)

Here, the first two terms once more contain a one-loop integral, and we refer to this

part as 〈〈1〉〉r,G, with the remainder labeled 〈〈1〉〉r,H . Further, we introduce the Gaussian

parameters λ1 and λ4 according to eq. (A.1) for the denominators (r2 + m2
1) and m2,

respectively. This gives

〈〈1〉〉r,F ≡ 〈〈1〉〉r,G + 〈〈1〉〉r,H ,

〈〈1〉〉r,G = −1 + log(m2
3)

16π2
⌊1⌋V (1,m2

1),

〈〈1〉〉r,H =
1

16π2

′
∑

lr

∫

d4r

(2π)4

∫

∞

0
dλ1dλ4

∫ 1

0
dx

× x
[

m2
3 −m2

2 + (1− 2x)(r − p)2
]

eilr ·r−λ1(r2+m2
1)−λ4m2

, (4.15)

where we may complete the square in the exponential factor by substituting

r ≡ 1√
λ5

r̃ +
ilr
2λ5

+
x(1− x)λ4

λ5
p,

λ5 ≡ λ1 + x(1− x)λ4. (4.16)
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The r̃ integral can then be performed using eq. (C.3), which gives

〈〈1〉〉r,H =
1

(16π2)2

′
∑

lr

∫

∞

0
dλ1dλ4

∫ 1

0
dx

x

λ2
5

×
[

m2
3 −m2

2 +
1− 2x

λ2
5

(

2λ5 + λ2
1p

2 − l2r
4
− iλ1lr · p

)]

× e
−

(

λ1m2
1+λ4(1−x)m2

2+λ4xm2
3+

λ1λ4x(1−x)
λ5

p2+
l2r
4λ5

−i
λ4x(1−x)

λ5
lr·p

)

. (4.17)

Here, a more symmetric form can be obtained by substituting λ2 ≡ (1−x)λ4 and λ3 ≡ xλ4

as integration variables, giving

〈〈1〉〉r,H =
1

(16π2)2

′
∑

lr

∫

∞

0
dλ1dλ2dλ3

λ3

λ̃2

[

m2
3 −m2

2 +
λ2 − λ3

λ̃

(

2 +
λ3 + λ2

λ̃
p̃2
)]

e−M2
,

(4.18)

with

M2 ≡ λ1m
2
1 + λ2m

2
2 + λ3m

2
3 +

λ1λ2λ3

λ̃
p2 +

λ2 + λ3

λ̃

l2r
4
− i

λ2λ3

λ̃
lr · p,

λ̃ ≡ λ1λ2 + λ2λ3 + λ3λ1,

p̃ ≡ ilr
2

− λ1p, (4.19)

which can be evaluated numerically with the methods discussed in section 4.1.3.

4.1.2 Simplest sunset integral with two quantized loop momenta

Second, we calculate 〈〈1〉〉rs. We introduce Gaussian parameterizations for all three prop-

agators using eq. (A.1) and set d = 4, giving

〈〈1〉〉rs =
′′

∑

lr,ls

∫

∞

0
dλ1dλ2dλ3

∫

d4r

(2π)4
d4s

(2π)4

× e−(λ1m2
1+λ2m2

2+λ3m2
3−ilr·r−ls·s+λ1r2+λ2s2+λ3(r+s−p)2), (4.20)

after which we perform the redefinition

r ≡ 1√
λ1 + λ3

r̃ − λ3

λ1 + λ3
(s− p) +

i

2(λ1 + λ3)
lr, (4.21)

and shift s by

s ≡
√
λ1 + λ3
√

λ̃
s̃+

λ1λ3

λ̃
p+

i(λ1 + λ3)

2λ̃
ls −

iλ3

2λ̃
lr, (4.22)

where we have again made use of λ̃ ≡ λ1λ2 + λ2λ3 + λ3λ1. We note that an analogous

transformation results by first redefining s and then shifting r. The result is

〈〈1〉〉rs =
′′

∑

lr,ls

∫

∞

0
dλ1dλ2dλ3

∫

d4r̃

(2π)4
d4s̃

(2π)4
λ̃−2e−r̃2−s̃2−M̃2

=
1

(16π2)2

′′
∑

lr,ls

∫

∞

0
dλ1dλ2dλ3 λ̃

−2e−M̃2
, (4.23)
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with

M̃2 ≡ λ1m
2
1 + λ2m

2
2 + λ3m

2
3 +

λ1λ2λ3

λ̃
p2 +

λ2

λ̃

l2r
4
+

λ1

λ̃

l2s
4
+

λ3

λ̃

(lr − ls)
2

4

− i
λ2λ3

λ̃
lr · p− i

λ1λ3

λ̃
ls · p. (4.24)

We note that the arguments of the exponential functions in eqs. (4.18) and (4.23) coincide

when ls = 0.

4.1.3 Numerical evaluation

Next, we discuss the numerical evaluation of eq. (4.23). For this purpose, it is convenient

to switch to the variables x, y, z and λ,

λ1 ≡ xλ, λ2 ≡ yλ, λ3 ≡ (1− x− y)λ = zλ, λ̃ = λ2(xy + yz + zx) ≡ λ2σ, (4.25)

where σ ≡ xy + yz + zx and x+ y + z = 1. We also introduce the quantities

ln ≡ lr − ls,

Srs ≡ −yz

σ
lr · p−

xz

σ
ls · p,

Yrs ≡
y

4σ
l2r +

x

4σ
l2s +

z

4σ
l2n,

Zrs ≡ xm2
1 + ym2

2 + zm2
3 +

xyz

σ
p2, (4.26)

which brings eq. (4.23) into the form

〈〈1〉〉rs =
1

(16π2)2

′′
∑

lr,ls

∫

∞

0
dλ

∫ 1

0
dx

∫ 1−x

0
dy σ−2λ−2 e−λZrs−

Yrs
λ eiSrs . (4.27)

As for the one-loop integrals, we may either perform the summations in terms of theta

functions, or the λ integration in terms of modified Bessel functions. In terms of the latter,

the result is

〈〈1〉〉rs =
1

(16π2)2

′′
∑

lr,ls

∫ 1

0
dx

∫ 1−x

0
dy σ−2K−1 (Yrs, Zrs) e

iSrs , (4.28)

where we note that in the cms frame where Srs = 0, we may write

′′
∑

lr,ls

f(l2r , l
2
s , l

2
n) =

∞
∑

kr,ks,kn=1

x(kr, ks, kn) × f(krL
2, ksL

2, knL
2), (4.29)

similarly to eq. (3.8). Here, the factor x(kr, ks, kn) denotes the number of times a given

triplet of squares appears when the components of lr and ls are varied over all positive and

negative integer values. In terms of theta functions, we find in the cms frame

〈〈1〉〉rs =
1

(16π2)2

∫ 1

0
dx

∫ 1−x

0
dy

∫

∞

0
dλ

e−λZrs

(σλ)2

[

θ
(2)
0

(

yL2

4σλ
,
xL2

4σλ
,
zL2

4σλ

)3

− θ30

(

e−
(x+z)L2

4σλ

)3

− θ30

(

e−
(y+z)L2

4σλ

)3

− θ30

(

e−
(x+y)L2

4σλ

)3

+ 2

]

, (4.30)
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where the contributions with l2r , l
2
s or l2n equal to zero have been subtracted. The Ja-

cobi and Riemann theta functions are defined in appendix B, see also eq. (4.91) and the

accompanying discussion.

The expression for 〈〈1〉〉r,H in eq. (4.18) is clearly similar and can be treated along the

same lines. In terms of modified Bessel functions, the terms with a single sum over lr may

be treated similarly to the one-loop integrals using eq. (3.8). Alternatively, the summation

can be performed in terms of theta functions. The relevant expressions will be given when

we summarize the full results for the sunset integrals.

4.2 Permutation properties

The finite-volume sunset integrals satisfy a number of relations which simplify the calcu-

lations, and provide useful checks on the numerics. These are the more general versions of

eq. (4.7). When applied to the full sunset integrals 〈〈X〉〉, the variable interchanges (s, r),

(r, t) and (s, t), with t = p− r − s, yield the relations

〈〈1〉〉(1, 2, 3) = 〈〈1〉〉(2, 1, 3) = 〈〈1〉〉(3, 2, 1),
〈〈rµ〉〉(1, 2, 3) = 〈〈rµ〉〉(1, 3, 2),
〈〈sµ〉〉(1, 2, 3) = 〈〈rµ〉〉(2, 1, 3),

〈〈rµrν〉〉(1, 2, 3) = 〈〈rµrν〉〉(1, 3, 2),
〈〈sµsν〉〉(1, 2, 3) = 〈〈rµrν〉〉(2, 1, 3),
〈〈rµsν〉〉(1, 2, 3) = 〈〈rµsν〉〉(2, 1, 3), (4.31)

where the notation (1, 2, 3) is explained in the context of eq. (4.2), and refers to the masses

m2
i and powers ni of the propagators in eq. (4.1).

Further, we may derive the relations

pµ〈〈1〉〉(1, 2, 3) = 〈〈rµ〉〉(1, 2, 3) + 〈〈rµ〉〉(2, 1, 3) + 〈〈rµ〉〉(3, 1, 2),
〈〈rµsν + sµrν〉〉(1, 2, 3) = 〈〈rµrν〉〉(3, 1, 2)− 〈〈rµrν〉〉(1, 2, 3)− 〈〈rµrν〉〉(2, 1, 3)

− pµ〈〈rν〉〉(3, 1, 2)− pν〈〈rµ〉〉(3, 1, 2) + pµpν〈〈1〉〉(1, 2, 3), (4.32)

where the latter one follows from the identity

rµsν + sµrν = (r + s− p)µ(r + s− p)ν − rµrν − sµsν − pµ(−r − s+ p)ν

− (−r − s+ p)µ pν + pµpν , (4.33)

from which it also follows that all parts of 〈〈rµsν〉〉 that are symmetric in µ and ν can

be rewritten in terms of other integrals. In particular, at infinite volume 〈〈rµsν〉〉 can be

expressed in terms of 〈〈rµrν〉〉 using various permutations of the m2
i and ni. This also holds

for the case of m1 = m2 and n1 = n2. The relations (4.31) and (4.32) are also separately

valid for 〈〈X〉〉∞, 〈〈X〉〉V and 〈〈X〉〉rs, but not for the other components of eq. (4.4).

From the above considerations, we can deduce what integrals should be calculated in

order to obtain a complete description. As 〈〈X〉〉r, 〈〈X〉〉s and 〈〈X〉〉t are closely related,
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we can obtain the required cases of 〈〈X〉〉s using

〈〈1〉〉s(1, 2, 3) = 〈〈1〉〉r(2, 1, 3; lr → ls),

〈〈rµ〉〉s(1, 2, 3) = 〈〈sµ〉〉r(2, 1, 3; lr → ls),

〈〈rµrν〉〉s(1, 2, 3) = 〈〈sµsν〉〉r(2, 1, 3; lr → ls),

〈〈rµsν〉〉s(1, 2, 3) = 〈〈sµrν〉〉r(2, 1, 3; lr → ls), (4.34)

and for the 〈〈X〉〉t we find2

〈〈1〉〉t(1, 2, 3) = 〈〈1〉〉r(3, 2, 1; lr → −lt),

〈〈rµ〉〉t(1, 2, 3) = 〈〈−rµ − sµ + pµ〉〉r(3, 2, 1; lr → −lt),

〈〈rµrν〉〉t(1, 2, 3) = 〈〈(r + s− p)µ(r + s− p)ν〉〉r(3, 2, 1; lr → −lt),

〈〈rµsν〉〉t(1, 2, 3) = 〈〈−rµsν − sµsν + pµsν〉〉r(3, 2, 1; lr → −lt), (4.35)

from which we conclude that a complete description entails the calculation of 〈〈X〉〉rs for

X = 1, rµ, rµrν and rµsν , and of 〈〈X〉〉r for X = 1, rµ, sµ, rµrν , rµsν and sµsν . We also

note that the 〈〈X〉〉r are symmetric under the interchange (m2, n2) ↔ (m3, n3) for X = 1,

rµ and rµrν .

For conciseness, we now introduce a set of functions to be used in the remainder of the

text. In an arbitrary frame, we define

〈〈1〉〉V ≡ HV ,

〈〈rµ〉〉V ≡ HV
1 pµ +HV

3µ,

〈〈sµ〉〉V ≡ HV
2 pµ +HV

4µ,

〈〈rµrν〉〉V ≡ HV
21 pµpν +HV

22 δµν +HV
27µν ,

〈〈rµsν〉〉V ≡ HV
23 pµpν +HV

24 δµν +HV
28µν ,

〈〈sµsν〉〉V ≡ HV
25 pµpν +HV

26 δµν +HV
29µν , (4.36)

where the HV
3µ, H

V
4µ, H

V
27µν , H

V
26µν and HV

28µν contain instances of the vectors lr or ls with

uncontracted Lorentz indices. In the cms frame, such contributions with one Lorentz index

vanish, and the bilinear ones become proportional to tµν . In the cms frame, we therefore

have a simplified set of functions

〈〈1〉〉V ≡ HV ,

〈〈rµ〉〉V ≡ HV
1 pµ,

〈〈sµ〉〉V ≡ HV
2 pµ,

〈〈rµrν〉〉V ≡ HV
21 pµpν +HV

22 δµν +HV
27 tµν ,

〈〈rµsν〉〉V ≡ HV
23 pµpν +HV

24 δµν +HV
28 tµν ,

〈〈sµsν〉〉V ≡ HV
25 pµpν +HV

26 δµν +HV
29 tµν . (4.37)

2Here, we used the fact that the spatial components of p satisfy periodic boundary conditions, and hence

e
il

t
·p = 1.

– 19 –



J
H
E
P
0
1
(
2
0
1
4
)
0
1
9

Because of this structure, 〈〈rµsν〉〉 is symmetric in µ, ν and can be obtained using eq. (4.32).

Still, we include 〈〈rµsν〉〉 as a useful check on our numerics, and because it appears in the

expressions for the sunset integrals with one quantized loop momentum. Our numbering

scheme for the sunset integrals has been chosen to be consistent with ref. [20]. We also

refer to the components of the functions Hi by appending the indices (r,G), (r,H) etc.,

which were introduced in the detailed treatment of the simplest sunset integral.

4.3 Sunset integrals with one quantized loop momentum

Here, we follow along the lines of section 4.1.1 and account for all needed cases of 〈〈X〉〉r
with X = 1, rµ, sµ, rµrν , rµsν and sµsν . Again, the first step is to combine the last

two propagators with a Feynman parameter x and shift the integration variable by sµ ≡
s̃µ − x(r − p)µ. The integral over s̃ can then be performed using eq. (C.1). Using the

notation f(rα) for additional factors of rµ, rν , this gives

〈〈f(rα)〉〉r =
∫

ddr

(2π)d
eilr ·r f(rα)

(r2 +m2
1)

n1

∫ 1

0
dx

Γ
(

2− d
2

)

(4π)
d
2

(m2)
d
2
−2, (4.38)

〈〈f(rα)sµ〉〉r =
∫

ddr

(2π)d
eilr·r f(rα)

(r2 +m2
1)

n1

∫ 1

0
dx

Γ
(

2− d
2

)

(4π)
d
2

(m2)
d
2
−2(−x)(r − p)µ, (4.39)

〈〈sµsν〉〉r =
∫

ddr

(2π)d
eilr ·r

(r2 +m2
1)

n1

∫ 1

0
dx

[

Γ
(

2− d
2

)

(4π)
d
2

(m2)
d
2
−2 x2(r − p)µ(r − p)ν

+
Γ
(

1− d
2

)

(4π)
d
2

(m2)
d
2
−1

δµν
2

]

, (4.40)

where the remaining integral over r is always finite because of the factor eilr ·r. It is then

sufficient to expand the s̃ integral in ε, while keeping only the singular and O(1) terms as

in eq. (4.11). We rewrite the singular terms using λ0 ≡ 1/ε+ln(4π)+1−γ, and define the

components of the sunset integrals proportional to λ0 with the subscript A as in eq. (4.12).

In terms of the one-loop integrals defined in section 3, we find for the non-zero cases with

n2, n3 = 1, 2 the expressions

〈〈1〉〉n111
r,A =

λ0

16π2
⌊1⌋V (n1,m

2
1),

〈〈sµ〉〉n111
r,A =

λ0

16π2

pµ
2
⌊1⌋V (n1,m

2
1),

〈〈rµrν〉〉n111
r,A =

λ0

16π2
⌊rµrν⌋V (n1,m

2
1),

〈〈rµsν〉〉n111
r,A =

λ0

16π2

−1

2
⌊rµrν⌋V (n1,m

2
1),

〈〈sµsν〉〉n111
r,A =

λ0

16π2

{

[

δµν

(

−m2
2

4
− m2

3

4
− p2

12

)

+
pµpν
3

]

⌊1⌋V (n1,m
2
1)

+

(

1

3
δµαδνβ − 1

12
δµνδαβ

)

⌊rαrβ⌋V (n1,m
2
1)

}

,

〈〈sµsν〉〉n121
r,A = 〈〈sµsν〉〉n112

r,A =
λ0

16π2

δµν
4

⌊1⌋V (n1,m
2
1), (4.41)
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where the superscripts denote the ni in the sunset integrals. Also, the one-loop integrals

now show explicitly the m2
i and ni of the denominator they involve. As the above integrals

contain a non-local divergence, they should always cancel in physical results.

We now proceed to treat the terms containing log(m2). As before, we first perform a

partial integration in x, giving

∫ 1

0
dxxn log(m2) =

1

n+ 1
log(m2

3)

− 1

n+ 1

∫ 1

0
dxxn+1

[

m2
3 −m2

2 + (1− 2x)(r − p)2
] 1

m2 , (4.42)

after which we denote the terms with negative powers of m2 as 〈〈X〉〉r,H , and the others

as 〈〈X〉〉r,G, as defined in eq. (4.15) for the case of the simplest sunset integral. We note

that the 〈〈X〉〉r,G can again be expressed in terms of one-loop integrals. For n2, n3 = 1, 2,

the non-zero cases are

〈〈1〉〉n111
r,G =

1

16π2

(

−1− log(m2
3)
)

⌊1⌋V(n1,m
2
1),

〈〈sµ〉〉n111
r,G =

1

16π2

pµ
2

(

−1− log(m2
3)
)

⌊1⌋V(n1,m
2
1),

〈〈rµrν〉〉n111
r,G =

1

16π2

(

−1− log(m2
3)
)

⌊rµrν⌋V (n1,m
2
1),

〈〈rµsν〉〉n111
r,G =

1

16π2

1

2

(

1 + log(m2
3)
)

⌊rµrν⌋V(n1,m
2
1),

〈〈sµsν〉〉n111
r,G =

1

16π2

{[

δµν log(m
2
3)

(

m2
2

4
+

m2
3

4
+

p2

12

)

− pµpν
3

(

1 + log(m2
3)
)

]

⌊1⌋V(n1,m
2
1)

+

[−1

3
δµαδνβ

(

1 + log(m2
3)
)

+
1

12
δµνδαβ log(m

2
3)

]

⌊rαrβ⌋V(n1,m
2
1)

}

,

〈〈sµsν〉〉n121
r,G = 〈〈sµsν〉〉n112

r,G =
1

16π2

−δµν
4

(

1 + log(m2
3)
)

⌊1⌋V(n1,m
2
1). (4.43)

We note that the decomposition of the parts of the sunset integrals which do not depend

on λ0 into 〈〈X〉〉r,G and 〈〈X〉〉r,H is clearly not unique, as it depends on the choice of

Feynman parameterization. For example, had we chosen y = 1 − x instead of x as the

Feynman parameter, we would have obtained terms containing log(m2
2) in the 〈〈X〉〉r,G.

Also, the decomposition does not commute with derivatives w.r.t. masses, note e.g. that

〈〈1〉〉n112
r,G = 0 6= −(∂/∂m2

3)〈〈1〉〉n111
r,G .

The remaining part 〈〈X〉〉r,H is algebraically the most complicated, but again follows

exactly the procedure for the simplest sunset integral. First, we introduce Gaussian param-

eterizations for the negative powers of m2 and (r2 +m2
1) using eq. (A.1) with parameters

λ4 and λ1, respectively. While the expressions corresponding to 〈〈1〉〉r,H in eq. (4.15) are

relatively lengthy, they all share the same basic structure. In particular, they all contain

the same exponential factor, for which we may complete the square using the substitutions

of eq. (4.16). The resulting integrals can then be performed by means of eq. (C.3). Finally,

we define λ2 ≡ (1−x)λ4 and λ3 ≡ xλ4 and perform the substitutions of eq. (4.25) to obtain

an integral in terms of x, y, z and λ.
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Before we give explicit expressions for 〈〈X〉〉r,H , we briefly discuss the methods used to

obtain them. Due to the complexity of the required analytical manipulations, we have found

it convenient to use FORM [25] according to the procedure outlined above. Alternatively,

as described in ref. [12], a number of tricks can be used to considerably simplify the task.

For example, powers of rµ can be introduced into the numerators of the sunset integrals

by taking derivatives w.r.t. lr, giving

〈〈rµ〉〉r = −i
∂

∂lrµ
〈〈1〉〉r. (4.44)

It is also noteworthy that integrals such as 〈〈sµ〉〉r are very similar to the case of 〈〈1〉〉r,
differing only in an additional factor of x(r − p)µ. This leads to relations such as

〈〈sµ〉〉 = 〈〈xrµ〉〉 − pµ〈〈x1〉〉, (4.45)

where the factor of x is understood to be included in the respective integrals. Due to

the length and complexity of the resulting expressions for 〈〈X〉〉r,H , we make use of the

auxiliary quantities

δ ≡ y − z

σ
, A ≡ m2

3 −m2
2 + δρx2p2,

ρ ≡ y + z

σ
, B ≡ ixδρ lr · p,

σ ≡ xy + yz + zx, C ≡ δρ

4
l2r ,

τ ≡ yz

σ
, D ≡ A− B

λ
− C

λ2
, (4.46)

and

Y ≡ ρ

4
l2r , Z ≡ xm2

1 + ym2
2 + zm2

3 +
xyz

σ
p2, (4.47)

and we also introduce the notation

〈〈X〉〉n1n2n3
r,H =

1

Γ(n1)(16π2)2

′
∑

lr

∫ 1

0
dx

∫ 1−x

0
dy

∫

∞

0
dλ

× (xλ)n1−1

λσ2
[[X]]

n1n2n3
r,H e−λY−

Z
λ
+ iyz

σ
lr·p. (4.48)

With these abbreviations, we obtain

[[1]]
n111
r,H = z

(

D +
2δ

λ

)

,

[[1]]
n121
r,H = y,

[[1]]
n112
r,H = z,

[[1]]
n122
r,H = yzλ, (4.49)
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for the simplest sunset integral, and

[[rµ]]
n111
r,H = [[1]]

n111
r,H

(

iρlrµ
2λ

+ τpµ

)

+
zρδ

λ

(

ilrµ
2λ

− xpµ

)

,

[[rµ]]
n121
r,H = y

(

iρlrµ
2λ

+ τpµ

)

,

[[rµ]]
n112
r,H = z

(

iρlrµ
2λ

+ τpµ

)

,

[[rµ]]
n122
r,H = yzλ

(

iρlrµ
2λ

+ τpµ

)

, (4.50)

[[sµ]]
n111
r,H =

−z2

2σ

(

D +
3δ

λ

)(

ilrµ
2λ

− xpµ

)

,

[[sµ]]
n121
r,H =

−zy

σ

(

ilrµ
2λ

− xpµ

)

,

[[sµ]]
n112
r,H =

−z2

σ

(

ilrµ
2λ

− xpµ

)

,

[[sµ]]
n122
r,H =

−yz2λ

σ

(

ilrµ
2λ

− xpµ

)

, (4.51)

for X = rµ, sµ. With {a, b}µν = aµbν + aνbµ, we find for the bilinear operators

[[rµrν ]]
n111
r,H = z

{

ρ

2λ

(

D +
3δ

λ

)

δµν + τ

[

τD +
2δ

λ
(τ − ρx)

]

pµpν

+
iρ

2λ

[

τD +
δ

λ
(3τ − ρx)

]

{p, lr}µν −
ρ2

4λ2

(

D +
4δ

λ

)

lrµlrν

}

,

[[rµrν ]]
n121
r,H = y

[

ρ

2λ
δµν + τ2pµpν +

iρτ

2λ
{p, lr}µν −

ρ2

4λ2
lrµlrν

]

,

[[rµrν ]]
n112
r,H = z

[

ρ

2λ
δµν + τ2pµpν +

iρτ

2λ
{p, lr}µν −

ρ2

4λ2
lrµlrν

]

,

[[rµrν ]]
n121
r,H = yzλ

[

ρ

2λ
δµν + τ2pµpν +

iρτ

2λ
{p, lr}µν −

ρ2

4λ2
lrµlrν

]

, (4.52)

[[rµsν ]]
n111
r,H =

z2

2σ

{

−1

2λ

(

D +
3δ

λ

)

δµν +

[

τD +
δ

λ
(3τ − ρx)

](

xpµpν −
i

2λ
pµlrν

)

+
ρ

4λ2

(

D +
4δ

λ

)

(lrµlrν + 2ixλlrµpν)

}

,

[[rµsν ]]
n121
r,H =

yz

σ

[−1

2λ
δµν + τxpµpν −

iτ

2λ
pµlrν +

iρx

2
lrµpν +

ρ

4λ2
lrµlrν

]

,

[[rµsν ]]
n112
r,H =

z2

σ

[−1

2λ
δµν + τxpµpν −

iτ

2λ
pµlrν +

iρx

2
lrµpν +

ρ

4λ2
lrµlrν

]

,

[[rµsν ]]
n122
r,H =

yz2λ

σ

[−1

2λ
δµν + τxpµpν −

iτ

2λ
pµlrν +

iρx

2
lrµpν +

ρ

4λ2
lrµlrν

]

, (4.53)

– 23 –



J
H
E
P
0
1
(
2
0
1
4
)
0
1
9

and

[[sµsν ]]
n111
r,H =

z3

3σ2

(

D +
4δ

λ

)(

x2pµpν −
ix

2λ
{p, lr}µν −

1

4λ2
lrµlrν

)

+ δµν

{

− m2
2z

2

(

D +
2δ

λ

)

− Az2

4ρσ

(

D +
2δ

λ

)

− τz

2ρλσ

(

D +
3δ

λ

)

+
z2

σ2

(

D +
4δ

λ

)[

z + 3y

12

(

ixp · lr
λ

+
l2r
4λ2

)

− zx2p2

3

]

− x2z2δ2p2

2λσ2

}

,

[[sµsν ]]
n121
r,H =

yz2

σ2

(

x2pµpν −
ix

2λ
{p, lr}µν −

1

4λ2
lrµlrν

)

+ δµν

[

1

4

(

τ

ρ
+ z

)

D +
zδ

λ
+

z3

ρσ2λ

]

,

[[sµsν ]]
n112
r,H =

z3

σ2

(

x2pµpν −
ix

2λ
{p, lr}µν −

1

4λ2
lrµlrν

)

+ δµν

[

1

4

(

−τ

ρ
+ z

)

D +
z2

σλ
− z3

2ρσ2λ

]

,

[[sµsν ]]
n122
r,H =

yz3λ

σ2

(

x2pµpν −
ix

2λ
{p, lr}µν −

1

4λ2
lrµlrν

)

+ δµν

[

τ

2ρ
(1− τ) +

zτ

2

]

. (4.54)

Given these expressions for 〈〈X〉〉r,H , we may proceed as for the one-loop integrals and

choose between performing the summations in terms of theta functions, or evaluating the

λ integral in terms of modified Bessel functions. The results quoted in eqs. (4.49)–(4.54)

make no assumptions on the momentum p. Below, we restrict ourselves to the cms frame

where p · lr = 0 or p = (p, 0, 0, 0). This case is the most commonly encountered, and the

expressions for a moving frame can be obtained along similar lines.

4.3.1 Center-of-mass frame: Bessel functions

Here, we have performed the integration over λ in terms of the functions Kν(Y, Z) defined

in appendix (A.2). We note that the summation only depends on l2r , such that eq. (3.8)

is applicable. We have suppressed the arguments (Y, Z) in order to keep the expressions

short and concise. The expressions always contain the abbreviated part

∫

B =
1

Γ(n1)(16π2)2

′
∑

lr

∫ 1

0
dx

∫ 1−x

0
dy

xn1−1

σ2
, (4.55)

and numerical results for selected examples are given in section 5. For the simplest sunset

integrals, we find

Hr,H;n111 =

∫

Bz (AKn1−1 + 2δKn1−2 − CKn1−3) ,

Hr,H;n121 =

∫

ByKn1−1,

Hr,H;n112 =

∫

BzKn1−1,

Hr,H;n122 =

∫

BzyKn1 , (4.56)
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and for X = rµ, sµ we find

Hr,H;n111
1 =

∫

Bz (τAKn1−1 + (2τ − ρx)δKn1−2 − τCKn1−3) ,

Hr,H;n121
1 =

∫

Byτ Kn1−1,

Hr,H;n112
1 =

∫

Bzτ Kn1−1,

Hr,H;n122
1 =

∫

Bzyτ Kn1 , (4.57)

Hr,H;n111
2 =

∫

B
xz2

2σ
(AKn1−1 + 3δKn1−2 − CKn1−3) ,

Hr,H;n121
2 =

∫

B
xyz

σ
Kn1−1,

Hr,H;n112
2 =

∫

B
xz2

σ
Kn1−1,

Hr,H;n122
2 =

∫

B
xyz2

σ
Kn1 , (4.58)

respectively. For X = rµrν , we have

Hr,H;n111
21 =

∫

Bzτ (τAKn1−1 + 2(τ − ρx)δKn1−2 − τCKn1−3) ,

Hr,H;n121
21 =

∫

Byτ2Kn1−1,

Hr,H;n112
21 =

∫

Bzτ2Kn1−1,

Hr,H;n122
21 =

∫

Byzτ2Kn1 , (4.59)

Hr,H;n111
22 =

∫

B
zρ

2
(AKn1−2 + 3δKn1−3 − CKn1−4) ,

Hr,H;n121
22 =

∫

B
yρ

2
Kn1−2,

Hr,H;n112
22 =

∫

B
zρ

2
Kn1−2,

Hr,H;n122
22 =

∫

B
yzρ

2
Kn1−1, (4.60)

Hr,H;n111
27 =

∫

B
−zρ2l2r
12

(AKn1−3 + 4δKn1−4 − CKn1−5) ,

Hr,H;n121
27 =

∫

B
−yρ2l2r

12
Kn1−3,

Hr,H;n112
27 =

∫

B
−zρ2l2r
12

Kn1−3,

Hr,H;n122
27 =

∫

B
−yzρ2l2r

12
Kn1−2, (4.61)
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for X = rµsν , we find

Hr,H;n111
23 =

∫

B
xz2

2σ
(τAKn1−1 + (3τ − ρx)δKn1−2 − τCKn1−3) ,

Hr,H;n121
23 =

∫

B
xyzτ

σ
Kn1−1,

Hr,H;n112
23 =

∫

B
xz2τ

σ
Kn1−1,

Hr,H;n122
23 =

∫

B
xyz2τ

σ
Kn1 , (4.62)

Hr,H;n111
24 =

∫

B
−z2

4σ
(AKn1−2 + 3δKn1−3 − CKn1−4) ,

Hr,H;n121
24 =

∫

B
−yz

2σ
Kn1−2,

Hr,H;n112
24 =

∫

B
−z2

2σ
Kn1−2,

Hr,H;n122
24 =

∫

B
−yz2

2σ
Kn1−1, (4.63)

Hr,H;n111
28 =

∫

B
z2ρl2r
24σ

(AKn1−3 + 4δKn1−4 − CKn1−5) ,

Hr,H;n121
28 =

∫

B
yzρl2r
12σ

Kn1−3,

Hr,H;n112
28 =

∫

B
z2ρl2r
12σ

Kn1−3,

Hr,H;n122
28 =

∫

B
yz2ρl2r
12σ

Kn1−2, (4.64)

and for X = sµsν , we have

Hr,H;n111
25 =

∫

B
x2z3

3σ2
(AKn1−1 + 4δKn1−2 − CKn1−3) ,

Hr,H;n121
25 =

∫

B
x2yz2

σ2
Kn1−1,

Hr,H;n112
25 =

∫

B
x2z3

σ2
Kn1−1,

Hr,H;n122
25 =

∫

B
x2yz3

σ2
Kn1 , (4.65)

Hr,H;n111
26 =

∫

B

{−z

12
A

(

6m2
2 + 3

z

ρσ
A+

4x2z2p2

σ2

)

Kn1−1

+

[

−zδm2
2 +

z2

6ρσ2
(m2

3 −m2
2) (5z + 3y)− z2A

6ρσ2
(2z + 9y)

]

Kn1−2

+

[

z2l2r
24σ2

(

(z + 3y)A− 2z(m2
3 −m2

2)
)

− 3yz2δ

2ρσ2
+

z

2
m2

2C

]

Kn1−3

+
z2l2rδ

24σ2
(2z + 9y)Kn1−4 −

z2Cl2r
48σ2

(z + 3y)Kn1−5

}

,
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Hr,H;n121
26 =

∫

B

[

1

4

(

τ

ρ
+ z

)(

AKn1−1 −
2z

σ
Kn1−2 − CKn1−3

)

+ τKn2−2

]

,

Hr,H;n112
26 =

∫

B
z2

4ρσ

(

AKn1−1 +
2y

σ
Kn1−2 − CKn1−3

)

,

Hr,H;n122
26 =

∫

B
τ

2ρ

(

1 +
z2

σ

)

Kn1−1, (4.66)

Hr,H;n111
29 =

∫

B
−z3l2r
36σ2

(AKn1−3 + 4δKn1−4 − CKn1−5) ,

Hr,H;n121
29 =

∫

B
−yz2l2r
12σ2

Kn1−3,

Hr,H;n112
29 =

∫

B
−z3l2r
12σ2

Kn1−3,

Hr,H;n122
29 =

∫

B
−yz3l2r
12σ2

Kn1−2. (4.67)

4.3.2 Center-of-mass frame: theta functions

Next, instead of computing the integrals over x, y and λ, we have performed the summation

in terms of the theta functions, previously encountered for the one-loop and simplest sunset

integrals. In the cms frame, we make use of eqs. (3.10), (3.18), and

∑

n∈Z3

(n2)2q(n
2) =

(

q
∂

∂q

)2




∑

n∈Z3

q(n
2)



 =

(

q
∂

∂q

)2
(

θ30(q)
3
)

= 3θ34(q)θ30(q)
2 + 6θ32(q)

2θ30(q), (4.68)

where we note that eq. (4.68) can immediately be used for the primed sums by setting

lr = nL, as the term with n = 0 does not contribute. We rescale λ such that the argu-

ment of all theta functions is e−1/λ, which we suppress for brevity. Further, we introduce

the abbreviation

∫

T =
1

Γ(n1)(16π2)2

∫ 1

0
dx

∫ 1−x

0
dy

∫

∞

0
dλ

(xλ̂)n1−1

λσ2
e−λ̂Z , (4.69)

where λ̂ ≡ λρL2/4. For the simplest sunset integral, we have

Hr,H;n111 =

∫

Tz

[(

A+
2δ

λ̂

)

(

θ330 − 1
)

− 3δρ

4λ̂2
L2θ32θ

2
30

]

,

Hr,H;n121 =

∫

T y
(

θ330 − 1
)

,

Hr,H;n112 =

∫

T z
(

θ330 − 1
)

,

Hr,H;n122 =

∫

T yzλ̂
(

θ330 − 1
)

, (4.70)
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and for the Hr,H
1 and Hr,H

2 , we find

Hr,H;n111
1 =

∫

T z

[(

τA+
2τδ

λ̂
− xδρ

λ̂

)

(

θ330 − 1
)

− 3δρτ

4λ̂2
L2θ32θ

2
30

]

,

Hr,H;n121
1 =

∫

T yτ
(

θ330 − 1
)

,

Hr,H;n112
1 =

∫

T zτ
(

θ330 − 1
)

,

Hr,H;n122
1 =

∫

T yzτλ̂
(

θ330 − 1
)

, (4.71)

Hr,H;n111
2 =

∫

T
xz2

2σ

[(

A+
3δ

λ̂

)

(

θ330 − 1
)

− 3δρ

4λ̂2
L2θ32θ

2
30

]

,

Hr,H;n121
2 =

∫

T
xyz

σ

(

θ330 − 1
)

,

Hr,H;n112
2 =

∫

T
xz2

σ

(

θ330 − 1
)

,

Hr,H;n122
2 =

∫

T
xyz2λ̂

σ

(

θ330 − 1
)

, (4.72)

respectively. For the Hr,H
21 , Hr,H

22 , and Hr,H
27 , we find

Hr,H;n111
21 =

∫

T zτ

[(

τA+
2τδ

λ̂
− 2xδρ

λ̂

)

(

θ330 − 1
)

− 3τδρ

4λ̂2
L2θ32θ

2
30

]

,

Hr,H;n121
21 =

∫

T yτ2
(

θ330 − 1
)

,

Hr,H;n112
21 =

∫

T zτ2
(

θ330 − 1
)

,

Hr,H;n122
21 =

∫

T yzτ2λ̂
(

θ330 − 1
)

, (4.73)

Hr,H;n111
22 =

∫

T
zρ

2λ̂

[(

A+
3δ

λ̂

)

(

θ330 − 1
)

− 3δρ

4λ̂2
L2θ32θ

2
30

]

,

Hr,H;n121
22 =

∫

T
yρ

2λ̂

(

θ330 − 1
)

,

Hr,H;n112
22 =

∫

T
zρ

2λ̂

(

θ330 − 1
)

,

Hr,H;n122
22 =

∫

T
yzρ

2

(

θ330 − 1
)

, (4.74)

Hr,H;n111
27 =

∫

T
−zρ2

4λ̂2

[(

A+
4δ

λ̂

)

L2θ32θ
2
30 −

δρ

4λ̂2
L4

(

θ34θ
2
30 + 2θ232θ30

)

]

,

Hr,H;n121
27 =

∫

T
−yρ2

4λ̂2
L2θ32θ

2
30,

Hr,H;n112
27 =

∫

T
−zρ2

4λ̂2
L2θ32θ

2
30,

Hr,H;n122
27 =

∫

T
−yzρ2

4λ̂
L2θ32θ

2
30, (4.75)
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respectively, and for the Hr,H
23 , Hr,H

24 , and Hr,H
28 , we have

Hr,H;n111
23 =

∫

T
xz2

2σ

[(

τA+
3τδ

λ̂
− xδρ

λ̂

)

(

θ330 − 1
)

− 3τδρ

4λ̂2
L2θ32θ

2
30

]

,

Hr,H;n121
23 =

∫

T
xyzτ

σ

(

θ330 − 1
)

,

Hr,H;n112
23 =

∫

T
xz2τ

σ

(

θ330 − 1
)

,

Hr,H;n122
23 =

∫

T
xyz2τ λ̂

σ

(

θ330 − 1
)

, (4.76)

Hr,H;n111
24 =

∫

T
−z2

4σλ̂

[(

A+
3δ

λ̂

)

(

θ330 − 1
)

− 3δρ

4λ̂2
L2θ32θ

2
30

]

,

Hr,H;n121
24 =

∫

T
−yz

2σλ̂

(

θ330 − 1
)

,

Hr,H;n112
24 =

∫

T
−z2

2σλ̂

(

θ330 − 1
)

,

Hr,H;n122
24 =

∫

T
−yz2

2σ

(

θ330 − 1
)

, (4.77)

Hr,H;n111
28 =

∫

T
z2ρ

8σλ̂2

[(

A+
4δ

λ̂

)

L2θ32θ
2
30 −

δρ

4λ̂2
L4

(

θ34θ
2
30 + 2θ232θ30

)

]

,

Hr,H;n121
28 =

∫

T
yzρ

4σλ̂2
L2θ32θ

2
30,

Hr,H;n112
28 =

∫

T
z2ρ

4σλ̂2
L2θ32θ

2
30,

Hr,H;n122
28 =

∫

T
yz2ρ

4σλ̂
L2θ32θ

2
30, (4.78)

respectively. Finally, for the Hr,H
25 , Hr,H

26 , and Hr,H
29 , we find

Hr,H;n111
25 =

∫

T
x2z3

3σ2

[(

A+
4δ

λ̂

)

(

θ330 − 1
)

− 3δρ

4λ̂2
L2θ32θ

2
30

]

,

Hr,H;n121
25 =

∫

T
x2yz2

σ2

(

θ330 − 1
)

,

Hr,H;n112
25 =

∫

T
x2z3

σ2

(

θ330 − 1
)

,

Hr,H;n122
25 =

∫

T
x2yz3λ̂

σ2

(

θ330 − 1
)

, (4.79)

Hr,H;n111
26 =

∫

T

{[

− zm2
2

2

(

A+
2δ

λ̂

)

+
z2

6ρσ2λ̂
(5z + 3y)

(

m2
3 −m2

2

)

− 3yz2

2ρσ2λ̂

(

A+
δ

λ̂

)

− z2A

12ρσ

(

3A+
4z

λ̂σ
+

4x2zρp2

σ

)]

(

θ330 − 1
)

+

[

z2δ

8σ2λ̂3
(2z+9y) +

z2

8σ2λ̂2

(

(z + 3y)A− 2z(m2
3 −m2

2)
)

+
3zδρ

8λ̂2
m2

2

]

L2θ32θ
2
30

− z2δρ

64σ2λ̂4
(z + 3y)L4

(

θ34θ
2
30 + 2θ232θ30

)

}

,
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Hr,H;n121
26 =

∫

T

{[

1

4

(

z +
τ

ρ

)

A+
zδ

λ̂
+

z3

2ρσ2λ̂

]

(

θ330 − 1
)

− 3δρ

16λ̂2

(

z +
τ

ρ

)

L2θ32θ
2
30

}

,

Hr,H;n112
26 =

∫

T

{[

1

4

(

z − τ

ρ

)

A+
z2

2σλ̂
− z3

2ρσ2λ̂

]

(

θ330 − 1
)

− 3δρ

16λ̂2

(

z − τ

ρ

)

L2θ32θ
2
30

}

,

Hr,H;n122
26 =

∫

T
τ

2ρ

(

1 +
z2

σ

)

(

θ330 − 1
)

, (4.80)

and

Hr,H;n111
29 =

∫

T
−z3

12σ2λ̂2

[(

A+
4δ

λ̂

)

L2θ32θ
2
30 −

δρ

4λ̂2
L4

(

θ34θ
2
30 + 2θ232θ30

)

]

,

Hr,H;n121
29 =

∫

T
−yz2

4σ2λ̂2
L2θ32θ

2
30,

Hr,H;n112
29 =

∫

T
−z3

4σ2λ̂2
L2θ32θ

2
30,

Hr,H;n122
29 =

∫

T
−yz3

4σ2λ̂
L2θ32θ

2
30. (4.81)

4.4 Sunset integrals with two quantized loop momenta

Here, we follow the treatment of section 4.1.2, and generalize to all integrals 〈〈X〉〉rs with

X = 1, rµ, sµ, rµrν , rµsν and sµsν . All of these are not needed for completeness, but the

redundant ones enable a check on our results by means of the relations given in section 4.2.

We again introduce Gaussian parameterizations for the propagators using eq. (A.1), and

then shift the momenta using eqs. (4.21) and (4.22). This leads to

〈〈X〉〉rs =
1

Γ(n1)Γ(n2)Γ(n3)(4π)d

′′
∑

lr,ls

∫

∞

0
dλ1dλ2dλ3

λn1−1
1 λn2−1

2 λn3−1
3

λ̃d/2
[[X]]rs e

−M̃2
, (4.82)

where M̃2 is defined in eq. (4.23), and λ̃ ≡ λ1λ2 + λ2λ3 + λ3λ1. For the [[X]]rs, we find

[[1]]rs = 1,

[[rµ]]rs =
1

λ̃

(

λ2λ3pµ +
i

2
λ2lrµ +

i

2
λ3lnµ

)

,

[[sµ]]rs =
1

λ̃

(

λ1λ3pµ +
i

2
λ1lsµ − i

2
λ3lnµ

)

,

[[rµrν ]]rs =
λ2
2λ

2
3

λ̃2
pµpν +

λ2 + λ3

2λ̃
δµν +

iλ2
2λ3

2λ̃2
{p, lr}µν +

iλ2λ
2
3

2λ̃2
{p, ln}µν

− 1

4λ̃2

(

λ2
2lrµlrν + λ2λ3{lr, ln}µν + λ2

3lnµlnν
)

,

[[rµsν ]]rs =
λ1λ2λ

2
3

λ̃2
pµpν −

λ3

2λ̃
δµν −

iλ2λ
2
3

2λ̃2
pµlnν +

iλ1λ
2
3

2λ̃2
pν lnµ +

iλ1λ2λ3

2λ̃2
(pµlsν + pν lrµ)

+
1

4λ̃2

(

λ2
3lnµlnν + λ2λ3lrµlnµ − λ1λ3lnµlsν − λ1λ2lrµlsν

)

,

– 30 –



J
H
E
P
0
1
(
2
0
1
4
)
0
1
9

[[sµsν ]]rs =
λ2
1λ

2
3

λ̃2
pµpν +

λ1 + λ3

2λ̃
δµν +

iλ2
1λ3

2λ̃2
{p, ls}µν −

iλ1λ
2
3

2λ̃2
{p, ln}µν

− 1

4λ̃2

(

λ2
1lsµlsν − λ1λ3{ls, ln}µν + λ2

3lnµlnν
)

, (4.83)

where ln ≡ lr − ls. We may now switch integration variables to to x, y, z ≡ 1− x− y and

λ as in eq. (4.25), which gives us an integral similar to eq. (4.27).

In what follows, we restrict ourselves to the cms frame with p · lr = p · ls = 0, which

simplifies the expressions greatly. The results for a moving frame can again be obtained

using the same methods. In the cms frame, the exponential factors depend only on the

components of lr and ls via l2r , l
2
s and l2n. This allows us to write

′′
∑

lr,ls

lrµf(l
2
r , l

2
s , l

2
n) =

′′
∑

lr,ls

lrµf(l
2
r , l

2
s , l

2
n) = 0,

′′
∑

lr,ls

lrµlrνf(l
2
r , l

2
s , l

2
n) =

tµν
3

′′
∑

lr,ls

l2rf(l
2
r , l

2
s , l

2
n),

′′
∑

lr,ls

lsµlsνf(l
2
r , l

2
s , l

2
n) =

tµν
3

′′
∑

lr,ls

l2sf(l
2
r , l

2
s , l

2
n),

′′
∑

lr,ls

lrµlsνf(l
2
r , l

2
s , l

2
n) =

tµν
3

′′
∑

lr,ls

lr · lsf(l2r , l2s , l2n),

lr · ls =
1

2

(

l2r + l2s − l2n
)

. (4.84)

4.4.1 Center-of-mass frame: Bessel functions

As for the sunset integrals with one quantized loop momentum, the integral over λ can

again be performed in terms of the modified Bessel functions Kν(Yrs, Zrs), where Yrs and

Zrs are defined in eq. (4.26). These arguments will be suppressed for brevity. While the

sextuple summation over the components of lr and ls can be reduced to a triple sum using

eq. (4.29), we find that the remaining summations converge fairly slowly for moderate

values of miL. In the following expressions, we set d = 4 since no divergences appear.

Using the notation

∫

D ≡ 1

Γ(n1)Γ(n2)Γ(n3)(16π2)2

′′
∑

lr,ls

∫ 1

0
dx

∫ 1−x

0
dy

xn1−1yn2−1zn3−1

σ2
, (4.85)

and m ≡ n1 + n2 + n3 − 4, we obtain

Hrs;n1n2n3 =

∫

DKm,

H
rs;n1n2n3
1 =

∫

D
yz

σ
Km,

H
rs;n1n2n3
2 =

∫

D
xz

σ
Km, (4.86)
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for the simplest sunset integral and the scalar components of the integrals with one Lorentz

index. For the components of the sunset integrals with two Lorentz indices, we find

H
rs;n1n2n3
21 =

∫

D
y2z2

σ2
Km,

H
rs;n1n2n3
22 =

∫

D
y + z

2σ
Km−1,

H
rs;n1n2n3
27 =

∫

D
1

12σ2

[

−y(y + z) l2r + yz l2s − z(y + z) l2n

]

Km−2, (4.87)

H
rs;n1n2n3
23 =

∫

D
xyz2

σ2
Km,

H
rs;n1n2n3
24 =

∫

D
−z

2σ
Km−1,

H
rs;n1n2n3
28 =

∫

D
1

24σ2

[

(2yz − σ) l2r + (2xz − σ) l2s + (2z2 + σ) l2n

]

Km−2, (4.88)

and

H
rs;n1n2n3
25 =

∫

D
x2z2

σ2
Km,

H
rs;n1n2n3
26 =

∫

D
x+ z

2σ
Km−1,

H
rs;n1n2n3
29 =

∫

D
1

12σ2

[

xz l2r − x(x+ z) l2s − z(x+ z) l2n

]

Km−2. (4.89)

4.4.2 Center-of-mass frame: theta functions

In the cms frame, the double summation can be performed in terms of the theta functions,

as encountered in the treatment of the simplest sunset integral. If we define

λ̄ ≡ 4σ

L2
λ, lr ≡ nrL, ls ≡ nsL, nn ≡ nr − ns, (4.90)

we find

′′
∑

lr,ls

e−
yl2r
4σλ

−
xl2s
4σλ

−
zl2n
4σλ =

′′
∑

nr,ns

e−
y

λ̄
n2
r−

x

λ̄
n2
s−

z

λ̄
n2
n

=
∑

nr,ns

e−
y

λ̄
n2
r−

x

λ̄
n2
s−

z

λ̄
n2
n −

∑

nr

e−
y+z

λ̄
n2
r −

∑

ns

e−
x+z

λ̄
n2
s −

∑

nr

e−
x+y

λ̄
n2
r + 2

= θ
(2)
0

(y

λ̄
,
x

λ̄
,
z

λ̄

)3
− θ30

(

e−
y+z

λ̄

)3
− θ30

(

e−
x+z

λ̄

)3
− θ30

(

e−
x+y

λ̄

)3
+ 2

≡ Θ0

(y

λ̄
,
x

λ̄
,
z

λ̄

)

, (4.91)

which was already used in eq. (4.30). Here, the terms involving θ30 subtract the contribu-

tions with (ns = 0, nn = nr), (nr = 0, nn = −ns), and (nn = 0, nr = ns). The constant

term corrects for the case when (nr = ns = 0) is subtracted to often. By taking derivatives
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w.r.t. x, y, z, we also find

′′
∑

lr,ls

l2r e
−

yl2r
4σλ

−
xl2s
4σλ

−
zl2n
4σλ = 3L2 θ

(2)
02

(y

λ̄
,
x

λ̄
,
z

λ̄

)

θ
(2)
0

(y

λ̄
,
x

λ̄
,
z

λ̄

)2

− 3L2 θ32

(

e−
y+z

λ̄

)

θ30

(

e−
y+z

λ̄

)2
− 3L2 θ32

(

e−
x+y

λ̄

)

θ30

(

e−
x+y

λ̄

)2

≡ 3L2Θ02

(y

λ̄
,
x

λ̄
,
z

λ̄

)

. (4.92)

If we introduce the abbreviation
∫

S ≡ 1

Γ(n1)Γ(n2)Γ(n3)(16π2)2

∫ 1

0
dx

∫ 1−x

0
dy

∫

∞

0
dλ

× xn1−1yn2−1zn3−1λn1+n2+n3−5

σ2
e−λZrs , (4.93)

we can express the scalar components as

Hrs;n1n2n3 =

∫

SΘ0

(y

λ̄
,
x

λ̄
,
z

λ̄

)

,

H
rs;n1n2n3
1 =

∫

S
yz

σ
Θ0

(y

λ̄
,
x

λ̄
,
z

λ̄

)

,

H
rs;n1n2n3
2 =

∫

S
xz

σ
Θ0

(y

λ̄
,
x

λ̄
,
z

λ̄

)

, (4.94)

H
rs;n1n2n3
21 =

∫

S
y2z2

σ2
Θ0

(y

λ̄
,
x

λ̄
,
z

λ̄

)

,

H
rs;n1n2n3
22 =

∫

S
y + z

2λσ
Θ0

(y

λ̄
,
x

λ̄
,
z

λ̄

)

,

H
rs;n1n2n3
27 =

∫

S
L2

4σ2λ2

[

−y(y + z)Θ02

(y

λ̄
,
x

λ̄
,
z

λ̄

)

+ yzΘ02

(x

λ̄
,
y

λ̄
,
z

λ̄

)

− z(y + z)Θ02

( z

λ̄
,
x

λ̄
,
y

λ̄

)]

, (4.95)

H
rs;n1n2n3
23 =

∫

S
xyz2

σ2
Θ0

(y

λ̄
,
x

λ̄
,
z

λ̄

)

,

H
rs;n1n2n3
24 =

∫

S
−z

2λσ
Θ0

(y

λ̄
,
x

λ̄
,
z

λ̄

)

,

H
rs;n1n2n3
28 =

∫

S
L2

8σ2λ2

[

(2yz − σ)Θ02

(y

λ̄
,
x

λ̄
,
z

λ̄

)

+ (2xz − σ)Θ02

(x

λ̄
,
y

λ̄
,
z

λ̄

)

+ (2z2 + σ)Θ02

( z

λ̄
,
x

λ̄
,
y

λ̄

) ]

, (4.96)

and

H
rs;n1n2n3
25 =

∫

S
x2z2

σ2
Θ0

(y

λ̄
,
x

λ̄
,
z

λ̄

)

,

H
rs;n1n2n3
26 =

∫

S
x+ z

2λσ
Θ0

(y

λ̄
,
x

λ̄
,
z

λ̄

)

,

H
rs;n1n2n3
29 =

∫

S
L2

4σ2λ2

[

xzΘ02

(y

λ̄
,
x

λ̄
,
z

λ̄

)

− x(x+ z)Θ02

(x

λ̄
,
y

λ̄
,
z

λ̄

)

− z(x+ z)Θ02

( z

λ̄
,
x

λ̄
,
y

λ̄

) ]

. (4.97)
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n L = 3 fm L = 4 fm L = ∞
AV 1 2.99758 · 10−4 7.79162 · 10−5 −4.21046 · 10−4

AV 2 1.85663 · 10−2 5.98396 · 10−3 1.53036 · 10−2

AV
22 1 3.81017 · 10−6 7.16805 · 10−7 2.34818 · 10−6

AV
22 2 1.49879 · 10−4 3.89581 · 10−5 −2.10523 · 10−4

AV
23 1 −7.02467 · 10−6 −1.46116 · 10−6 –

AV
23 2 −2.20354 · 10−4 −6.47885 · 10−5 –

Table 1. Numerical results for the one-propagator “tadpole” integrals, for m = 0.1395GeV, which

corresponds to mL ≈ 2.12 (L = 3 fm) and mL ≈ 2.83 (L = 4 fm). The corresponding continuum

integrals are shown in the column labeled L = ∞. The continuum results employ the MS subtraction

scheme with µ = 0.77GeV. Note that the “23” case has no continuum counterpart. All results are

given in units of the appropriate powers of GeV, and the pole configurations n of the propagators

are given in appendix D.

5 Numerical results

As a numerical check of the results presented here, we have evaluated all integrals in terms

of modified Bessel functions as well as theta functions, and checked these for agreement

with each other. We have also verified the expected integral relations by numerical

differentiation w.r.t. m2
1, m

2
2 and m2

3. Furthermore, we have checked that the expected

symmetries under interchange of masses are satisfied. For the sunset integrals, this can be

non-trivial as the permutation symmetries are not explicitly conserved by the analytical

methods employed here. We have also verified that the one-loop results satisfy the integral

relations in eq. (3.35) and (3.36). For reference, we present numerical results with 6 digits

of precision. Implementations of the full set of sunset integrals are available from the

authors in C++ and Mathematica.

Numerical results for the one-propagator or “tadpole” integrals, defined in eq. (3.32),

are given in table 1. We note that there is no infinite-volume counterpart of the AV
23

integral. In figure 1, we show the ratio of the finite-volume correction to the infinite-

volume result as a function of mL. For the two-propagator or “bubble” integrals, defined

in eq. (3.33), results for one set of input parameters are given in table 2. We only quote

the results for n1 = n2 = 1. As evident from eq. (3.43), the necessary modifications for the

remaining cases are minor. Figure 2 shows the ratio of the finite volume corrections to the

corresponding infinite-volume integrals as a function of m1L.

We now turn to the main objective of this study, which is an exhaustive evaluation

of the sunset integrals at finite volume. The full expressions for the sunset integrals are

defined in eq. (4.37), where each one is decomposed according to eq. (4.4). The components

labeled 〈〈X〉〉r are further decomposed into a non-locally divergent part and the functions

〈〈X〉〉r,G of eq. (4.43) and 〈〈X〉〉r,H of section 4.3.1 or 4.3.2. The equivalent expressions for

〈〈X〉〉s and 〈〈X〉〉t can be obtained from the set of relations given in eqs. (4.34) and (4.35).
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L = 3 fm L = 4 fm L = ∞
BV 1.23828 · 10−3 3.21648 · 10−4 4.02489 · 10−3

BV
1 1.28452 · 10−4 2.47609 · 10−5 4.97497 · 10−2

BV
21 3.57770 · 10−5 5.14256 · 10−6 4.57124 · 10−1

BV
22 1.57142 · 10−5 2.96746 · 10−6 2.11523 · 10−3

BV
23 −2.87678 · 10−5 −6.05375 · 10−6 –

BV
31 1.65184 · 10−5 1.90690 · 10−6 1.47521 · 10−4

BV
32 2.36759 · 10−6 3.13466 · 10−7 3.23347 · 10−4

BV
33 −5.22655 · 10−6 −7.77244 · 10−7 –

Table 2. Numerical results for the two-propagator “bubble” integrals, for m1 = 0.1395GeV,

m2 = 0.495GeV, and p2 = m2
1, which corresponds to m1L ≈ 2.12 (L = 3 fm) and m1L ≈ 2.83

(L = 4 fm). The corresponding continuum integrals are shown in the column labeled L = ∞. The

continuum results employ the MS subtraction scheme with µ = 0.77GeV. Note that the “23” and

“33” cases have no continuum counterpart. All results are given in units of the appropriate powers

of GeV. Only the case of n1 = n2 = 1 is given.
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Figure 1. Ratio of finite-volume corrections to infinite-volume results for the “tadpole” integrals,

for m = 0.1395GeV. The continuum results employ the MS subtraction scheme with µ = 0.77GeV.

We compare the “23” case to the “22” case at infinite volume, as the former has no infinite-volume

counterpart. The left panel shows the results for n = 1, the right panel for n = 2, see appendix D for

the pole configurations of the propagators. All results are in units of the appropriate powers of GeV.

Finally, the components labeled 〈〈X〉〉rs are given in section 4.4.1 and 4.4.2. In order to

illustrate the various components of the sunset integrals, we show 〈〈1〉〉r,G, 〈〈1〉〉r,H , 〈〈s〉〉rs
and the full result 〈〈1〉〉, for two sets of input parameter values in figure 3, relative to the
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Figure 2. Ratio of finite-volume corrections to infinite-volume results for the “bubble” integrals,

for m1 = 0.1395GeV, m2 = 0.495GeV, and p2 = m2
1. The continuum results employ the MS

subtraction scheme with µ = 0.77GeV. We compare the “23” case to the “22” case and the “33”

case to the “32” case at infinite volume, as the former have no infinite-volume counterparts. The

top panel shows B and B1, the bottom left panel shows B21, B22 and B23, and the bottom right

panel shows B31, B32 and B33. All results are in units of the appropriate powers of GeV. Only the

case of n1 = n2 = 1 is given.

infinite-volume results3 from ref. [20], which are

H(m2
π,m

2
π,m

2
π,−m2

π, µ
2) ≈ −3.73840 · 10−5 GeV−2,

H(m2
π,m

2
π,m

2
K ,−m2

K , µ2) ≈ −6.74071 · 10−5 GeV−2. (5.1)

3These include the finite parts of the terms containing a non-local divergence.
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i Hr,G
i Hr,H

i Hrs
i HV

i

0 −2.20831 · 10−7 2.02141 · 10−6 5.94236 · 10−7 4.05528 · 10−6

1 – 1.01508 · 10−7 6.66810 · 10−8 6.04122 · 10−7

2 −1.10415 · 10−7 5.90020 · 10−7 7.22532 · 10−8 –

21 – 9.16777 · 10−9 1.58703 · 10−8 1.97612 · 10−7

22 −2.80694 · 10−9 2.54254 · 10−8 6.99086 · 10−9 −9.22444 · 10−8

27 5.17506 · 10−9 −4.65135 · 10−8 −1.22274 · 10−8 −6.10707 · 10−8

23 – 3.56590 · 10−8 9.04928 · 10−9 8.30916 · 10−8

24 1.40347 · 10−9 −7.90209 · 10−9 −9.62049 · 10−10 −1.38446 · 10−8

28 −2.58753 · 10−9 1.44459 · 10−8 1.73731 · 10−9 2.31182 · 10−8

25 – 2.63673 · 10−7 1.81386 · 10−8 –

26 −8.80371 · 10−9 −6.26120 · 10−8 7.46258 · 10−9 –

29 1.72502 · 10−9 −6.94178 · 10−9 −1.33169 · 10−8 –

Table 3. Numerical results for a subset of scalar components of the sunset integrals with n1 =

n2 = n3 = 1. The contributions Hr,G
i are defined in terms of eq. (4.43), using the decomposition

into scalar components given by eq. (4.37). The expressions for the Hr,H
i are given in section 4.3.1

and 4.3.2, and those for Hrs
i can be found in section 4.4.1 and 4.4.2. The full results for each

scalar component in the decomposition of eq. (4.37) is given in the column labeled HV
i (except for

cases that involve a trivial exchange of m1 and m2). As an example, for the simplest sunset integral

(i = 0) we have HV = Hr,G+Hr,H+Hs,G+Hs,H+Ht,G+Ht,H+Hrs. All results are for L = 3 fm,

m1 = 0.1395GeV, m2 = 0.15GeV, m3 = 0.495GeV, p2 = −0.16 GeV2 and µ = 0.77GeV, given in

units of the appropriate powers of GeV.

For reference, we also provide the numerical values of the full sunset integrals as well as

the G and H components in table 3 for a box size of L = 3 fm.

We cannot compare directly with the work of ref. [11] since they only quote numerical

results for the correction to the mass, not for the separate integrals.

6 Conclusions

In conclusion, we have presented a complete treatment of the two-loop sunset integrals at

finite volume. We have also discussed in detail the required one-loop integrals and shown

how to expand these to higher order in d − 4 when necessary. As the main result of our

work, we have provided complete expressions for the sunset integrals which are suitable for

numerical evaluation. Implementations of the full set of sunset integrals are also available

from the authors in C++ and Mathematica. The numerical evaluation has been performed

both in terms of modified Bessel functions and theta functions, which have been shown to

be numerically equivalent. Depending on the desired quantity and precision, one of these

methods is typically preferable. For moderate miL, the sunset integrals with two quantized

loop momenta are better evaluated in terms of theta functions, as the number of terms

needed in the triple summation over l2r , l
2
s and l2n in order to obtain acceptable precision is
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Figure 3. Ratio of finite-volume corrections to infinite-volume results for the simplest sunset

integrals. The notation is according to table 3. In the left panel m1 = m2 = m3 = 0.1395GeV,

and in the right panel m1 = m2 = 0.1395GeV with m3 = 0.495GeV. In both cases p2 = −m2
3. All

results employ the MS scheme with µ = 0.77GeV, and are given in units of the appropriate powers

of GeV. Only the case of n1 = n2 = n3 = 1 is shown.

quite large. For small miL, the theta-function method is clearly superior in all cases. For

large miL, the numerical evaluation in terms of modified Bessel functions is usually faster.

So far, we have not shown any results on the NNLO calculations at finite volume. In

the extant NNLO calculations at infinite volume, many integral relations have been used

which are no longer valid at finite volume. Therefore, these NNLO expressions need to

first be recomputed using the more general set of finite-volume sunset integrals presented

here. Work in this direction is in progress [26].
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A Modified Bessel functions

Many of the loop integrals encountered at finite volume can be expressed in terms of the

modified Bessel functions Kν(z), and we summarize here the most significant recurring

results used in the main text. If the integral in question is finite, the propagator factors in
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the denominator can be conveniently rewritten using the Gaussian parameterization

1

an
=

1

Γ(n)

∫

∞

0
dλ λn−1e−aλ, (A.1)

upon which the relevant integrals can be brought into the form

Kν(Y, Z) =

∫

∞

0
dλ λν−1e−Zλ−Y/λ = 2

(

Y

Z

) ν
2

Kν

(

2
√
Y Z

)

. (A.2)

Also, the expansion of the finite-volume integrals to O(ε) around d = 4 generates the

related functions

K̃ν(Y, Z) ≡ 1

2
ln

(

Y

Z

)

Kν(Y, Z) + 2

(

Y

Z

) ν
2

K̃ν

(

2
√
Y Z

)

, (A.3)

where K̃ν(z) ≡ ∂Kν(z)/∂ν denotes the derivative of the modified Bessel functions w.r.t.

the order ν. Further, differentiation of Kν(Y, Z) w.r.t. p2 involves the functions K′

ν(Y, Z),

given by

K′

ν(Y, Z) ≡ ∂Kν(Y, Z)

∂p2
=

∂Z(p2)

∂p2

(

Y

Z(p2)

) ν
2

×
[

(

Y

Z(p2)

) 1
2

K̃ ′

ν

(

2
√

Y Z(p2)
)

− ν

2Z(p2)
K̃ν

(

2
√

Y Z(p2)
)

]

, (A.4)

where K ′

ν(z) ≡ dKν(z)/dz. For clarity, the dependence on p2 has been made explicit in

eq. (A.4). The modified Bessel functions satisfy K
−ν(z) = Kν(z), as well as the recur-

sion relation

Kν+1(z) =
2ν

z
Kν(z) +Kν−1(z). (A.5)

The derivatives are given by

K ′

ν(z) ≡
d

dz
Kν(z) = −Kν−1(z)−

ν

z
Kν(z), (A.6)

which are also directly provided by standard computer libraries for the Bessel functions.

The K̃ν(z) ≡ ∂Kν(z)/∂ν can be expressed in terms of the Kν themselves via

K̃0(z) = 0,

K̃1(z) =
1

z
K0(z),

K̃2(z) =
2

z
K1(z) +

2

z2
K0(z),

K̃3(z) =
3

z
K2(z) +

6

z2
K1(z) +

8

z3
K0(z),

K̃n(z) =
n!

2

n−1
∑

k=0

(z

2

)k−n Kk(z)

(n− k)k!
, (A.7)
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where higher orders than those given explicitly are not needed for the present considera-

tions. Finally, for large values of z, the modified Bessel functions behave as

Kν(z) =

√

π

2z
e−z +O

(

e−z

z3/2

)

, (A.8)

which leads to an exponential fall-off for large values of the argument.

B Theta functions

In the main text, we make use of a variety of theta functions. For the one-loop integrals,

the third Jacobi theta function

θ3(u|τ) ≡
∑

n

eπi(τn
2+2nu), (B.1)

is needed, for which an alternative definition is

θ3(u, q) ≡
∑

n

q(n
2)eπi2nu = 1 + 2

∑

n>0

q(n
2) cos(2πnu), (B.2)

where τ ≡ − i
π log q. In the literature, the arguments q and τ are often suppressed, and the

factor of π in the argument of the cosine may also be absent. The Jacobi theta function

is defined for Im τ > 0 or |q| < 1, such that the series converges absolutely. An important

property of θ3 is the “modulus symmetry”

θ3(u+ 1|τ) = θ3(u|τ), θ3(u|τ) =
1√
−iτ

e−πiu
2

τ θ3

(

u

τ

∣

∣

∣

−1

τ

)

, (B.3)

which is also known as Jacobi’s imaginary transformation. For small q, the summation

can be evaluated directly, and for larger q the second relation in eq. (B.3) may be used to

obtain rapid convergence.

We also need the Riemann theta function in g dimensions, defined by

θ(g)(z|τ) ≡
∑

n∈Zg

e2πi(
1
2
nT τn+nT z), (B.4)

where n denotes a g-dimensional column vector with integer components, z is a complex,

g-dimensional column vector and τ is a complex, symmetric matrix with a positive-definite

imaginary part. The latter requirement ensures that the summation over n converges abso-

lutely. We note that the most commonly encountered notation is simply θ. The Riemann

theta function also satisfies a modular symmetry, generated by the transformations

θ(g)(z + y|τ) = θ(g)(z|τ),
θ(g)(z|τ) = θ(g)(az|aτaT ),

θ(g)(z|τ + b) = θ(g)(z +
1

2
diag(b)|τ),

θ(g)(τ−1z| − τ−1) =
√

det(−iτ) eπiz
T τ−1z θ(g)(z|τ), (B.5)
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where y denotes a column vector with integer components, a and a−1 are both g×g matrices

with integer elements, and b is a symmetric g × g matrix with integer elements as well.

The use of these transformations for the efficient evaluation of the Riemann theta function

is explained in ref. [27]. The instances of the Jacobi and Riemann theta functions used in

the main text are

θ30(q) ≡
∑

n

q(n
2) = θ3(u = 0, q),

θ32(q) ≡
∑

n

n2q(n
2)e−xn2

= q
∂

∂q
θ3(u = 0, q),

θ34(q) ≡
∑

n

n4q(n
2) =

(

q
∂

∂q

)2

θ3(u = 0, q),

θ
(2)
0 (α, β, γ) ≡

∑

n1,n2

e−αn2
1−βn2

2−γ(n1−n2)2 ,

θ
(2)
02 (α, β, γ) ≡

∑

n1,n2

n2
1 e

−αn2
1−βn2

2−γ(n1−n2)2 , (B.6)

where it should be noted that θ
(2)
0 (α, β, γ) is fully symmetric in the arguments, and that

θ
(2)
02 = −(∂/∂α) θ(2).

C Integrals in arbitrary dimensions

When the finite-volume integrals contain a non-local divergence, the expressions

∫

ddr

(2π)d
1

(r2 +∆)n
=

1

(4π)
d
2

Γ
(

n− d
2

)

Γ(n)
∆

d
2
−n, (C.1)

∫

ddr

(2π)d
rµrν

(r2 +∆)n
=

1

(4π)
d
2

Γ
(

n− d
2 − 1

)

Γ(n)
∆

d
2
−n+1 δµν

2
, (C.2)

are used in Euclidean space for arbitrary dimensions d ≡ 4 − 2ε. As detailed in the main

text, the expansion of the above results around ε = 0 allows for the non-local divergences

to be isolated. We also recall some further results for arbitrary d,

∫

ddr = rd−1dr dΩd =
2

Γ(d2)
π

d
2 rd−1dr,

∫

ddr̃

(2π)d
e−r̃2 =

1

(4π)
d
2

,

∫

ddr̃

(2π)d
r̃2e−r̃2 =

1

(4π)
d
2

d

2
,

∫

ddr̃

(2π)d
r̃4e−r̃2 =

1

(4π)
d
2

d

2

(

d

2
+ 1

)

, (C.3)

which are used throughout the main text.
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n n1 n2 n3

1 1 1 1

2 2 1 1

3 1 2 1

4 1 1 2

5 2 2 1

6 2 1 2

7 1 2 2

8 2 2 2

Table 4. Table of “pole configurations”, i.e. the relationship between the collective index n and

the exponents n1, n2 and n3 of the propagator factors (p2 +m2
i )

n
i in the sunset integrals.

D Notation for double poles

In the main text, the notation A(n,m2) and B(n1, n2,m
2
1,m

2
2, p

2) has been used for the

one-loop integrals with one and two propagators, respectively. However, we wish to remind

the reader that the established notation in the literature reserves the symbol A for A(1,m2)

and the symbol B for B(1, 1,m2
1,m

2
2, p

2). Along these lines, integrals with three and four

propagators are usually denoted C and D, respectively.

For the sunset integrals in PQχPT, some or all of the propagators can appear doubled.

This gives eight possible configurations of single and double poles. In earlier NNLO work

on PQχPT, a collective index n was introduced to specify the pole configuration [7–9], as a

short-hand notation for the triplet (n1, n2, n3). The correspondence is shown in table 4. It

should be noted that the cases of n = 4 and n = 6 are superfluous due to integral relations,

and the case of n = 8 appears only in calculations of the flavour-neutral meson properties

in PQχPT.

E Translation to Minkowski conventions

While we have used the Euclidean formalism throughout, it is also of interest to recall

how the expressions for the one-loop and sunset integrals can be translated to Minkowski

conventions. The required substitutions are

∫

dqr

(2π)d
−→ 1

i

∫

dqr

(2π)d
,

δµν −→ −gµν

p · q, p2 −→ −p · q, − p2

tµν −→ −tµν

1

p2 +m2
−→ − 1

p2 −m2
, (E.1)

where tµν corresponds to the spatial part of the metric.
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[19] D. Bećirević and G. Villadoro, Impact of the finite volume effects on the chiral behavior of

fK and BK , Phys. Rev. D 69 (2004) 054010 [hep-lat/0311028] [INSPIRE].

[20] G. Amorós, J. Bijnens and P. Talavera, Two point functions at two loops in three flavor

chiral perturbation theory, Nucl. Phys. B 568 (2000) 319 [hep-ph/9907264] [INSPIRE].

[21] J. Gasser and M. Sainio, Two loop integrals in chiral perturbation theory,

Eur. Phys. J. C 6 (1999) 297 [hep-ph/9803251] [INSPIRE].

[22] S. Groote, J. Körner and A. Pivovarov, On the evaluation of a certain class of Feynman

diagrams in x-space: Sunrise-type topologies at any loop order,

Annals Phys. 322 (2007) 2374 [hep-ph/0506286] [INSPIRE].

[23] S. Groote, J. Korner and A. Pivovarov, On the evaluation of sunset-type Feynman diagrams,

Nucl. Phys. B 542 (1999) 515 [hep-ph/9806402] [INSPIRE].
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