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Abstract
Background: Metabolite profiling, the simultaneous quantification of multiple metabolites in an
experiment, is becoming increasingly popular, particularly with the rise of systems-level biology.
The workhorse in this field is gas-chromatography hyphenated with mass spectrometry (GC-MS).
The high-throughput of this technology coupled with a demand for large experiments has led to
data pre-processing, i.e. the quantification of metabolites across samples, becoming a major
bottleneck. Existing software has several limitations, including restricted maximum sample size,
systematic errors and low flexibility. However, the biggest limitation is that the resulting data
usually require extensive hand-curation, which is subjective and can typically take several days to
weeks.

Results: We introduce the TargetSearch package, an open source tool which is a flexible and
accurate method for pre-processing even very large numbers of GC-MS samples within hours. We
developed a novel strategy to iteratively correct and update retention time indices for searching
and identifying metabolites. The package is written in the R programming language with
computationally intensive functions written in C for speed and performance. The package includes
a graphical user interface to allow easy use by those unfamiliar with R.

Conclusions: TargetSearch allows fast and accurate data pre-processing for GC-MS experiments
and overcomes the sample number limitations and manual curation requirements of existing
software. We validate our method by carrying out an analysis against both a set of known chemical
standard mixtures and of a biological experiment. In addition we demonstrate its capabilities and
speed by comparing it with other GC-MS pre-processing tools. We believe this package will greatly
ease current bottlenecks and facilitate the analysis of metabolic profiling data.
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Background
Metabolite profiling has become a powerful tool to
address biological problems. It has been used in a wide
range of applications, such as discovering the effects of
herbicides in plants [1], drugs in medical fields [2,3], or
molecular physiology and functional genomics [4-6].

GC-MS is by far the most widely applied analytical
method as it provides an efficient way to quantify hun-
dreds of metabolites in a single sample run [7-9]. In addi-
tion, robust extraction protocols exist and there is
continued development of data evaluation methods. See
[10] for a introduction to metabolomics using GC-MS.

The relatively low cost and high-throughput of GC-MS
instruments has led to data pre-processing becoming a
major bottleneck in metabolite profiling, particularly with
recent increases in experiment size. The typical GC-MS
pre-processing approach consists of peak detection and
mass spectra deconvolution, retention time alignment
across different samples and a normalisation step to
remove systematic variation in the data. Finally, the peak
information is collected and transformed into a data
matrix for statistical analysis. Many software tools are
available that can perform said steps, either using a non-
targeted approach, i.e., all the extracted peaks are used as
relevant information, or a metabolite-targeted approach,
where detected peaks are searched in existing compound
databases, matching their retention time and spectra.
Examples of GC-MS pre-processing software solutions
include AMDIS [11], Leco ChromaTOF [12], MetAlign
[13], XCMS [14] and Tagfinder [15].

Although deconvolution is a well accepted method, bio-
logical complexity of samples, e.g., co-eluting com-
pounds, causes errors in the deconvolution algorithm that
result in partially deconvoluted or mixed mass spectra tags
(MSTs). A widely accepted alternative to avoid this incon-
venience is the extraction of peak apex intensities for
selected masses [15]. This method has the advantage of
being both less computationally intensive and less error
susceptible. In spite of that, existing tools have other lim-
itations such as restrictions to maximum sample number,
long run-time and complicated peak identification. The
latter typically requires manual inspection and curation
that may take weeks to complete for an average experi-
ment.

Our aim was to develop a flexible and automated tool that
can pre-process data, identify and quantify metabolite lev-
els for even very large numbers of samples in a targeted
manner, whilst keeping processing time to a minimum.
Our approach uses peak apex intensities to avoid decon-
volution errors, a metabolite reference library based on
selective masses and retention time indices [16], conver-

sion and correction from retention time (RT) to retention
time index (RI), RI updating and metabolite identification
using multiple correlated masses [15,17].

Our software is implemented in the R language with com-
putationally intensive functions programmed in C for
speed and performance. The software is available as an R-
package within the framework of the Bioconductor
project [18].

Implementation
This section describes our GC-MS pre-processing
approach (Figure 1). In short, a sample definition file and
a reference library are required to identify the files to proc-
ess and to provide the metabolite information to be
searched for. Mass trace apices are extracted from every
chromatogram and stored in text files. At the same time,
RT is converted to RI. Selective masses from the reference
library are searched in a three-step RI updating procedure.
Every file, either chromatogram or peak list, is processed
one at a time, allowing the analysis of a large number of
samples. Also, since the most time consuming algorithms
are written in C, the overall processing time, from raw
chromatograms to a metabolite data matrix, is very short.

User input
There are three types of input that the user must supply:
chromatogram files, sample description and a reference
library.

GC-MS chromatograms must be first exported to the
widely accepted and platform-independent NetCDF file
format. This is usually performed by using the platform-

TargetSearch flow chartFigure 1
TargetSearch flow chart. TargetSearch pre-processing 
flow chart for the analysis of GC-MS data.
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specific GC-MS software (e.g. Leco ChromaTOF). Baseline
correction and smoothing could be performed before
exporting the chromatograms, but as this is not always
done, we implemented these steps so they can be per-
formed by TargetSearch.

The "sample description" file contains a list of sample
names, sample files and sample groups, which is used for
the downstream analyses.

Finally, the "reference library" file contains the informa-
tion on the MSTs that will be searched for in the chroma-
tograms. Required information is the metabolite name,
expected RI, selective masses, most abundant masses,
spectra and RI deviation. The file format can be tab-delim-
ited text containing said columns or the commonly used
NIST MS Search Software text format [19]. We developed
a novel iterative approach to RI assignment to take advan-
tage of the fact that RI variation decreases in the following
order: between experiment >> between samples >>
between masses from the same metabolite. Thus, we use
selective masses to identify the experiment RI from the
library RI, following that use this to find the sample RI
and finally use this to identify co-eluting masses for quan-
tification. TargetSearch can be used with freely available
public metabolite libraries, for example, in [16,20], with
commercial libraries, for example, [21] or in-house devel-
oped or curated libraries.

Peak identification and RI correction
Initially, TargetSearch performs baseline correction and
identifies the local apex intensities from the mass traces in
all chromatograms. The baseline correction algorithm is
based on [22] and should be performed if the exported
chromatograms were not baseline corrected by the vendor
software. This is controlled by the user. After that, Target-
Search finds the retention time of the RI markers, internal
standard compounds like alkanes or fatty acid methyl
esters, and converts the retention time to RI using a linear
interpolation [23]. The RI marker definition, time win-
dow and m/z values, have to be provided by the user in the
same way as for other software [12,15,24].

In addition, a report is created to allow the rapid assess-
ment of RI marker outliers. This is an essential step which
can be cumbersome and time-consuming using other
methods. The generated report contains a separate plot for
each retention index marker in which sample number is
plotted against the found retention time. Outliers are
highlighted on a per-day basis using a 3σ cut-off (or other
defined cut-off). Here, measurement days are defined in
the "sample description" file or can be detected automat-
ically using hierarchical clustering. This report allows a
fast assessment of outliers allowing the user to quickly
decide whether the sample should be removed from the

data set or not. It is also possible to manually edit the
found retention time, but this is in our experience rarely
necessary.

Finally, TargetSearch creates a tab delimited file per chro-
matogram file which contains a peak list, retention times
and converted RIs. For efficiency, it is possible to start sub-
sequent steps from these saved files by selecting "Apex
Data" instead of "NetCDF Data".

Library search
Metabolites are identified in three steps. First, for every
metabolite, selective masses are searched for in a given
time window around the expected RI, returning the
median RI of all selective masses. The expected RI of the
respective metabolite is updated to that value. In the sec-
ond step, TargetSearch searches the selected masses using
the updated RI and a given time deviation, usually smaller
than the one used in the first step. The intensities of the
selected masses are normalised to the median of the day,
and then used to extract other masses with correlated apex
profiles. The masses for which the Pearson correlation
coefficient is above a given threshold are taken as metab-
olite markers and their RIs are averaged on a per sample
basis. This average RI is taken to represent the exact posi-
tion where the metabolite elutes in the respective sample.
Finally, using this exact RI and a much smaller RI window,
TargetSearch searches again for the top masses and the
apex intensities are returned.

Metabolite profile
The aim of TargetSearch is to return a metabolite profile
that is directly interpretable with little additional manual
curation. This is achieved by using many correlated
masses for accurate metabolite identification and quanti-
fication. TargetSearch details the set of masses that were
used for each metabolite. However, as metabolites with
similar selective masses and RIs can be present in metab-
olite libraries it is necessary to reduce redundancy. Target-
Search does this by selecting peaks for which the RI gap is
smaller than a defined cut-off and computing the Pearson
correlation between them. When two or more metabolites
within such a time-group are tightly correlated only the
one with more correlated masses is retained. The potential
ambiguity is given in the metabolite identity information.
This mostly occurs with large, comprehensive libraries
which contain many metabolites that elute at the same
time and are thus not distinguishable with any approach,
or metabolites that are not in the samples, but whose RI
and selective masses match one metabolite that indeed is
there. Such ambiguity is largely avoided in the case that a
curated or more selective library is used.

To aid objective metabolite identification a spectrum sim-
ilarity score per metabolite is given in the information sec-
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tion. The score includes either all library masses or only
the masses that correlate. The score is calculated according
to [25]. Let Im and Jm the intensities of mass trace m of sam-
ple spectrum and reference spectrum, respectively. Then
the score S is:

where N is the total number of masses. If one mass is
missing, then the intensity of that mass is zero.

Output
At the end, three matrices are given. One contains the so
called metabolite information. This consists of metabolite
names; number of correlating masses and the actual cor-
relating mass values, the library RI, found RI and the devi-
ation, spectra similarity score, and the number of samples
in which a given metabolite was found. The other two
matrices contain the normalised intensities and the RIs,
where columns are samples and rows metabolites.

Graphical user interface
In order to facilitate the use of TargetSearch for users unfa-
miliar with R, we provide a simple to use graphical user
interface (GUI). A screenshot can be seen in Figure 2.
Many parameters that would be set by calling TargetSearch
functions can be set here before running the complete
analysis. After the analysis is finished, the results are
stored in a set of text files that contain the matrices
described in the section above. To invoke the GUI, use the
R-command TargetSearchGUI().

Results and Discussion
In order to validate and demonstrate our method, we per-
formed pre-processing analyses of both a standard mix-
ture experiment and a biological example dataset. The
standard mixture dataset allows the performance of Tar-
getSearch to be objectively assessed by comparing the
results against the known concentration ranges, whilst the
analysis of a biological dataset and the resulting compari-
son to manual data curation provides an example of the
performance on an actual experiment. The standard mix-
ture experiment is described in the example in order to
demonstrate the analysis workflow, whilst only the inter-
pretation and comparison of results is presented for the
biological dataset.

Standard mixture experiment pre-processing
The following section describes the analysis of the stand-
ard mixture experiment containing 27 samples using Tar-
getSearch. It is worth noting that these samples were
measured in another laboratory (RIKEN Plant Science
Center, Japan), which shows that TargetSearch can work

for other data and not only for data generated by our GC-
MS platform. Each sample consisted of a mixture of 44
chemical standards at different proportions that were
measured as described by Kusano et al. [26]. All chemicals
used for GC-TOF/MS analysis were purchased from Wako
(Tokyo, Japan) or Sigma-Aldrich (Tokyo, Japan). See
Additional file 1 for a detailed list of the standard propor-
tions. The chromatograms are available for download via
DROP Met at http://prime.psc.riken.jp. We provide a
detailed R-script (Additional file 2) to perform the analy-
sis of the 27 samples. See the TargetSearch vignette or the
user manual for further options not covered here.

Data pre-processing example
The first step in GC-MS data pre-processing is to import
the chromatogram NetCDF files to TargetSearch. In order
to do that, the user must provide the sample ("sam-
ples.txt") and retention index ("rimLimits.txt") markers
definitions, as described in the user input subsection (see
Additional files 3 and 4). The following R-code shows
how both definition files are imported.

S
Imi Jmi

Imi Jmii

N

= −
−

+

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

×
=
∑1 1000

1

(1)

TargetSearch grahical user interfaceFigure 2
TargetSearch grahical user interface. A simple GUI for 
TargetSearch. Here, the user can set all the parameters, 
import or manually edit the sample files, retention markers 
definition and library for and run the analysis in one go.
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> samples <- ImportSamples("samples.txt",
RIpath=".", CDFpath=".")

> rimLimits <- ImportFameSettings("rimLim-
its.txt", row.names = 1)

The parameters set the directories where the chromato-
grams are located and where the extracted peak list files
will be saved. After that, the user needs to perform base-
line correction and peak identification. Obviously, base-
line correction is needed here because these
chromatograms have not already been corrected. Other-
wise this step is optional.

The RIcorrect function performs both algorithms and is
the most time consuming step of the whole pre-process-
ing analysis. In this stage it is possible to specify several
parameters: massRange parameter limits the mass values
(m/z) that will be included in the analysis, smoothing
Window parameter is the number of raw data points that
will be averaged in order to remove noise, IntThreshold
defines the minimum apex intensity to be listed, baseline
indicates that baseline correction will be performed, and
baseline.opts is a list object that contains the parameters
passed to the baseline algorithm.

> RImatrix <- RIcorrect(samples, rimLim-
its, massRange = c(75,550), + Window = 15,
IntThreshold = 50, baseline = TRUE, base-
line.opts = + list(threshold = 0.5))

The function returns a matrix (RImatrix) which contains
the retention times of the RI markers (rows) found in
every sample (columns) and creates a peak list tab delim-
ited file per chromatogram as described in the peak iden-
tification section.

This took around 13 minutes to run on an Intel® Core™2
CPU, 2.13 GHz, 2Gb of RAM computer. It should be men-
tioned that performing baseline correction doubles the
running time in comparison to the running time of
already corrected chromatograms, so is very useful to
select baseline correction when exporting the chromato-
grams with the vendor software.

As mentioned before, an essential step is to look for RI
markers outliers. This can be easily done by the function
FameOutliers which creates a separate plot for each marker
and reports whether or not outliers have been found (Fig-
ure 3). In this example, we did not find any outliers, but we
did observe a strong so-called "day effect" when comparing
the measurement day number 2 against days 3 and 4.

outliers <- FAMEoutliers(samples, RIma-
trix) Outliers Report:

===============

No outliers were found.

The next step is to import the library file (Additional file
5), which is done by the function ImportLibrary. Useful
options are TopMasses, which takes the top N most intense
masses from the reference spectrum to be searched for,
and RI_dev sets the RI deviations. The RI deviations can be
equal for all metabolites (a vector of length three), or indi-
vidual ones (a matrix of three columns and as many rows
as metabolites) for fine tuning, i.e., it is possible to set spe-
cific RI deviations per metabolite.

> lib <- ImportLibrary("metabLibrary.txt",
RI_dev = c(15,8,3), TopMasses = 20)

The metabolite search is performed in three steps as
explained in the library search subsection, where a smaller
window is used in every following step. Function median-
RILib searches the average RI of the selective masses and
returns an updated library object. Function sampleRI
searches for the selective masses in the samples using the
updated average RIs and returns a matrix where each ele-
ment (i, j) represents the average RI of metabolite i in sam-
ple j. Finally, function peakFind searches again for the top
masses and returns the apex intensities and RIs. The three
step search is performed by the following R-code.

> lib <- medianRILib(samples, lib)

> corRI <- sampleRI(samples, lib)

> peakData <- peakFind(samples, lib,
corRI)

The object peakData object has two slots containing all
apex raw intensities and RIs of all the masses that were
searched for in matrix form. The apex matrix can in prin-
ciple be used to perform further statistical analysis, by
either using R or other statistical tools. In addition, we
provide two functions, Profile and ProfileCleanUp, that cre-
ate a metabolite profile out of the raw apex data.

> metabProfile <- Profile(samples, lib,
peakData)

> finalProfile <- ProfileCleanUp(metabPro-
file, timeSplit = 2, r_thresh = 0.95)

The first function makes the metabolite profile and the
second one looks for possible ambiguities, which are con-
trolled by the parameters timeSplit and r_thresh. They
define the RI gap cut-off that is used to look for metabo-
lites whose RI distance is less than this gap and the corre-
Page 5 of 12
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lation threshold, respectively. A conceptually similar
approach so-called "time groups" is implemented in the
TagFider software [15]. A summary of the obtained
metabolite profile is shown in Table 1 (see Additional file
6 for the full profile). We could identify 43 of the 44
standards. All metabolites have at least seven correlating
masses, except maltose that has only four. The similarity
score (1) was over 790 for every metabolite except histi-
dine (443), fructose-6-phosphate (661) and maltose
(716). Only one ambiguous assignment was found:
ribose and arabinose. This may have happened because
both metabolites have very similar RIs, the same selective

masses and similar spectra. One way to resolve such ambi-
guity can be setting smaller RI deviations and/or using dif-
ferent selective masses.

Since the chemical standards were measured using differ-
ent proportions (Additional file 1), we examined the cor-
relation between the abundance estimation with the
input concentration in order to further confirm the Target-
Search results. There is a clear correlation for all the metab-
olites (Table 1, Additional file 7). Most of the metabolites
(29) had a correlation coefficient greater than 0.9 and the
lowest coefficient was 0.69. Here we showed that with lit-

Retention index markers reportFigure 3
Retention index markers report. Retention time of the first four retention index markers in the standard mixture experi-
ment. Samples and retention times are represented in the x and y-axis, respectively. Different days of measurement are indi-
cated by numbers 2, 3 and 4. A so-called day effect is observed between days 2, and 3 and 4, manifested as a retention time 
shift.
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tle effort we can perform a metabolite analysis that can be
used with little manual curation needed (only 4 of 44 has
to be manually checked).

Visualisation
After GC-MS pre-processing, the user can visually com-
pare the averaged metabolite spectra with the reference
spectra. Our software include two functions to do so. plot-
Spectra and plotAllSpectra. They plot a spectra contrast

between averaged metabolite spectra, obtained by com-
puting the median intensity of every mass across the sam-
ples, and reference spectra for a given metabolite (Figure
4). This allows the user to quickly validate the results by
visually inspecting the contrasted spectra. In addition, the
metabolite spectra can also be exported as a MSP format
file (function writeMSP), which can be imported into
NIST for further comparisons against other metabolite
libraries.

Table 1: Summary of the standard mixture metabolite profiling.

Name Mass count RI Score RI dev Sample Count Corr Coef

Glycolic acid 20 1056.8 977 6.2 27 0.874
Alanine 19 1090.0 950 0.7 27 0.968
Valine 20 1213.5 960 -4.7 27 0.982
Leucine 7 1267.9 995 -1.8 27 0.988
Isoleucine 7 1289.7 993 -1.1 27 0.990
Proline 20 1299.2 869 -1.2 27 0.987
Nicotinic acid 13 1301.5 959 -1.7 27 0.986
Glycine 15 1305.0 790 -0.5 27 0.976
Fumaric acid 20 1346.1 880 0.1 27 0.982
Serine 21 1353.2 929 0.1 27 0.991
Threonine 21 1380.1 917 -0.6 27 0.997
Glutaric acid 20 1402.7 961 -1.7 27 0.947
Alanine, beta- 21 1429.8 929 -5.0 27 0.994
Homoserine 20 1443.7 949 -1.5 27 0.820
Aspartic acid 20 1510.0 915 -0.2 27 0.983
Methionine 20 1519.2 922 -4.7 27 0.985
Butyric acid, 4-amino- 19 1530.0 967 -3.5 27 0.950
Glutaric acid, 2-oxo- 19 1567.0 955 1.2 27 0.951
Phenylalanine 21 1635.3 936 -6.0 27 0.982
Ribose | Arabinose 20 | 20 1662.7 | 1662.7 915 | 942 4.2 | -4.7 27 0.829
Suberic acid 20 1695.0 867 -0.3 27 0.985
Aconitic acid 19 1736.9 977 3.6 27 0.919
Shikimic acid 15 1791.4 975 1.1 27 0.986
Citric acid 17 1806.1 920 -1.6 27 0.948
Isocitric acid 9 1804.6 909 0.0 27 0.828
Arginine 16 1817.8 826 -3.4 27 0.993
Quinic acid 14 1845.0 882 -1.8 27 0.896
Fructose 22 1854.3 922 1.9 27 0.867
Mannose 21 1869.1 908 -0.1 27 0.689
Lysine 20 1912.0 856 0.3 27 0.993
Histidine 17 1914.1 443 -2.5 27 0.983
Galacturonic acid 22 1926.8 948 0.7 27 0.783
Tyrosine 21 1934.0 955 -1.4 27 0.988
Sinapic acid 20 2056.1 962 -2.4 27 0.868
Inositol, myo- 21 2085.0 911 -1.2 27 0.959
Caffeic acid 21 2133.0 957 0.2 27 0.913
Phytol 21 2169.7 954 -0.6 27 0.745
Tryptamine 19 2244.2 864 -14.8 27 0.838
Fructose-6-phosphate 12 2286.3 661 6.5 27 0.738
Cystine 13 2290.0 860 0.6 27 0.971
Glucose-6-phosphate 21 2301.9 958 5.2 27 0.866
Maltose 4 2723.7 716 3.4 27 0.741
Trehalose 16 2729.8 853 0.3 27 0.949

The summarised metabolite profile of the chemical standards (see Additional file 6 for full information). Name: metabolite name; Mass count: the 
number of correlating masses; RI: averaged RI; Score: spectrum similarity according to (1); RI dev; RI deviation from the expected RI; Sample Count: 
the number of samples in which the metabolite was found; Corr Coef: the correlation coefficient between metabolite input concentration and 
abundance estimation.
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We additionally provide a function to visualise chromato-
graphic peaks in a given sample, which may also help to
identify metabolites. See the TargetSearch vignette for
examples.

Biological dataset pre-processing
The biological dataset consisted of wild-type Col-0 Arabi-
dopsis thaliana seedling samples. Three week old seedlings,
grown on solid MS medium with 1% sucrose, were kept
for 4h under either continuous light or darkness. Metabo-
lites were extracted from pools of seedlings in a total of
four biological replicates. Extraction and derivatisation of
metabolites from leaves using GC-MS were performed as
outlined by Lisec et al. [24]. GC-MS data were obtained
using an Agilent 7683 series autosampler (Agilent Tech-
nologies GmbH, Waldbronn, Germany), coupled to an
Agilent 6890 gas chromatograph - Leco Pegasus 2 time-of-
flight mass spectrometer (LECO, St. Joseph, MI, USA).
Identical chromatogram acquisition parameters were used
as those previously described by Weckwerth et al. [27].

A similar pre-processing analysis as the one described for
the standard mixture dataset was performed. We used a
fatty acid methyl esters (FAMEs) as RI marker standards
(Additional file 8) and an in-house reference library com-
posed of 153 metabolites (Additional file 9). This library

was manually curated and in addition to known metabo-
lites includes several unknown metabolites that have been
observed in previous experiments.

After running TargetSearch, we manually compared the
final profile with the deconvoluted peak profiles obtained
with LECO (see Additional file 10 for full profile with
manual annotations). The profile list contained 138
entries in total, of which 131 metabolites were unambig-
uously assigned. The 7 ambiguous assignments corre-
sponded to 14 metabolites (2 metabolites per entry). The
remaining 8 metabolites (of the 153) were neither present
in the final profile nor in the chromatograms as con-
firmed by manual inspection. Based on our previous expe-
rience, we routinely only consider metabolites to be
present if at least 3 correlating masses at the correct RI are
identified (this excludes the duplicate isotope pairs that
are often observed to correlate). Taking this into account,
we would consider 101 metabolites to be identified in this
experiment. We thus checked these manually and found
that 96 were correctly assigned (these were all assigned a
similarity score above 600), 1 ambiguity was wrongly
resolved, i.e., the correct metabolite was not the one sug-
gested; 1 ambiguity could not be resolved manually, due
to similar RIs and reference spectra; 1 metabolite was not
found in the chromatograms; and 2 metabolites were not

Comparison between identified metabolite spectra and reference spectraFigure 4
Comparison between identified metabolite spectra and reference spectra. Comparison example between the aver-
aged (blue) and reference spectra (red) of glycolic acid (right) and histidine (left). This type of comparisons can be used to 
assess the quality of individual identified peaks. In this example, histidine may need a closer inspection to elucidate what causes 
the difference.
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found but 2 peaks (unknowns) were found at their
expected retention time. The later could be anticipated in
the profile since the similarity score reported by TargetS-
earch was below 400.

Although we would not routinely work with the remain-
ing 37 entries (38 metabolites in total) that did not meet
our correlating masses minimum, we additionally manu-
ally inspected these. Their classification was as follows: 31
metabolites, including 1 ambiguity, were not found in the
chromatograms; 5 metabolites were only found in a few
of the chromatograms at low abundance and 2 metabo-
lites were present but overloaded. In summary, 96 of 101
metabolites found by TargetSearch were correctly
assigned. Similarly, 31 of 38 metabolites that we consid-
ered to have too few correlating masses to be present were
manually confirmed not to be present in the chromato-
grams. Just 5 metabolites were found by our software but
could not be confirmed to sufficient confidence by man-
ual curation, whilst 7 metabolites were not reported by
TargetSearch but were present in the chromatograms. This
gives over 91% of assignment accuracy, counting the true
positives and true negatives ratio. The results are illus-
trated in Figure 5.

Based on this example analysis and our experience with
several other biological datasets, errors can be made by
TargetSearch in the following cases: metabolites with sim-
ilar selective masses and spectra that elute at similar reten-
tion times; low abundant metabolites may cause spurious
correlations, whilst overloaded peaks often elude the peak
detection algorithm or disrupt correlation; finally, metab-
olites not present in the library that elute in the place
where another metabolite is expected, as occurred in two
cases in this analysis.

Many of these issues can be solved by changing the
parameter definitions and in general the resulting dataset
is more objectively linked to these parameters than the

decisions involved in a typical manual curation. Metabo-
lite identification issues for example can be solved by
increasing the intensity threshold during the peak detec-
tion stage, or by changing the correlation cut-off. We also
note that most of these errors are inherent to metabolite
profiling per se rather than being specific to our software
and are thus also addressed by other technical aspects of
the experiment (e.g. saturation/sample overloading or
low-abundance).

Performance
We developed this package with the intention to process
as many chromatograms as possible in a single run and to
be fast. To asses performance, we compared the process-
ing speed of TargetSearch with other GC-MS pre-process-
ing software: XCMS and Tagfinder. First, we wanted to see
what was the maximum number of chromatograms that

Comparison between identified metabolites by TargetSearch and manual curationFigure 5
Comparison between identified metabolites by Tar-
getSearch and manual curation. The venn diagrams 
show the number of metabolites considered to be either 
present or not present by TargetSearch in comparison to the 
manual curation. Left hand side: 96 metabolites identified by 
TargetSearch that were confirmed by manual curation. Right 
hand side: 31 metabolites not identified by TargetSearch and 
confirmed by manual curation. Both diagrams: 5 metabolites 
found by our software but not confirmed by manual curation, 
whilst 7 metabolites were not reported by TargetSearch but 
were present in the chromatograms.

Table 2: Performance comparison of pre-processing analysis using Tagfinder, XCMS and TargetSearch.

Tagfinder XCMS TargetSearch

Maximum number of samples 70 645 > 1025

Pre-processing step:
Peak extraction 3442 3634 2779
Peak import 271 - -
RI correction 255 29 -
Profile building 3050 1740 195
Total time 7018 5403 2974
Total time per sample 35.1 27.0 14.9

All parameters were set to default in order to obtain the maximum number of samples, but only 1025 samples were available. Times were 
compared using 200 samples. Before running this analysis, Tagfinder intensity threshold was set to 200 to allow the 200 samples to be imported. 
Time is expressed in seconds. Peak import is not necessary in XCMS and TargetSearch. RI correction is performed together with Peak extraction in 
TargetSearch.
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can be processed by said tools. TargetSearch could process
our largest experiment - 1025 baseline corrected chroma-
tograms (Caldana et al., unpublished), taking around 6
hours to get a final data matrix (Intel® Core™2 CPU, 2.13
GHz, 2Gb of RAM). However, neither XCMS nor Tag-
finder were able to process anywhere near that number of
chromatograms with the same computer. We then
reduced the number of chromatograms to 200 so we
could compare the processing times. TargetSearch proved
to be much faster than XCMS and Tagfinder. Results are
summarised in Table 2.

Conclusions
Here we presented the TargetSearch software for the data
pre-processing of GC-MS based metabolite profiling
experiments. Our method includes a novel strategy to iter-
atively correct and update retention times and uses effi-
cient criteria for searching and identifying metabolites.
This massively reduces the time from data acquisition to
biological interpretation, particularly as good quality data
can be directly obtained with limited need for manual
curation. Another advantage over other software, is the
ability to analyse virtually any number of samples, at least
over 1000, which otherwise is a major limitation of exist-
ing software, whilst maintaining a fast processing speed.
We also provide a GUI intended to assist users not famil-
iar with R. Using a dilution mixture dataset we found that
TargetSearch accurately identified the chemical compo-
nents and reported abundance estimates which very well
reproduced the input concentrations. Using a real biolog-
ical experiment, the accuracy in terms of automated pro-
filing was over 90%. These results show that TargetSearch
greatly facilitates the analysis of metabolic profiling data
and creates substantial time savings allowing scientists to
focus more on the biology under investigation.

Availability and requirements
Project name: TargetSearch

Project homepage: http://bioconductor.org/packages/
2.5/bioc/html/TargetSearch.html

Operating System: Platform independent

Programming language: R, C

Other requirements: R > = 2.7

License: GPL version 2 or newer
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Index; GUI: Graphical User Interface.
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