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We address the problem of realizing lightweight signal processing and control architectures for agents in multirobot systems.
Motivated by the promising results of neuromorphic engineering which suggest the efficacy of analog as an implementation
substrate for computation, we present the design of an analog-amenable signal processing scheme. We use control and dynamical
systems theory both as a description language and as a synthesis toolset to rigorously develop our computational machinery; these
mechanisms are mated with structural insights from behavior-based robotics to compose overall algorithmic architectures. Our
perspective is that robotic behaviors consist of actions taken by an agent to cause its sensory perception of the environment to
evolve in a desired manner. To provide an intuitive aid for designing these behavioral primitives we present a novel visual tool,
inspired vector field design, that helps the designer to exploit the dynamics of the environment. We present simulation results and
animation videos to demonstrate the signal processing and control architecture in action.
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1. Introduction

The problem of developing a control architecture for
autonomous robotic agents involves numerous challenges
pertaining to the best use of limited, nonideal information.
Beyond this, given the remote, energy-scarce environments
that robots have found application (e.g., space robotics,
underwater exploration, mobile sensor networks deployed in
inhospitable, unknown terrain) and the multiagent robotic
paradigm, the need for signal processing with lightweight
implementation (in terms of area and power complexity,
and low-latency autonomous computation) has become
increasingly important.

To minimize the economic cost of a multiagent system,
it is important that the complexity of each agent be con-
strained. Moreover, in robotic exploration problems (where
the agent must be able to maneuver effectively through
challenging and inaccessible environments) and mobile
sensor network applications, low agent complexity (e.g.,
in terms of compactness and energy usage) is demanded.
Further, it has been suggested [1] that robotics, the endeavor
of synthesizing artificial goal-directed machines, may offer
insight to biology, the study of goal-directed organisms in

nature. To that end, the development of synthesis methods
for autonomous machines that aim to approach the economy
of nature could be useful.

1.1. Why Analog Computation? Generally, the need for
lightweight signal processing suggests the use of special
purpose computers, as in the case of using a digital
signal processor over a general purpose one to imple-
ment numerically-intensive algorithms. Taking this idea of
application-specific processing hardware to the extreme, we
are led to custom realizations where the operations required
by the algorithm are mapped as directly as possible to
the computing primitives provided by the implementation
technology.

Of particular interest to us are custom analog systems,
due to (1) the plethora of innate physical characteristics
that can be exploited to obtain low-cost signal processing
primitives (e.g., Kirchoff ’s current law can be used to realize
an adder “for free”), (2) the reduced wiring complexity (e.g.,
for a 50 dB signal-to-noise ratio, an analog system requires
one or two wires to convey signals, whereas a digital system
requires eight wires), and (3) the ability to fine-tune the
hardware at a very low level (for VLSI realizations, which are
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preferable [2]). An excellent overview of the relative merits
of analog and digital implementations of signal processing
systems can be found in [3, 4]; in general, analog systems
confer their greatest advantage for processing that requires
moderate signal-to-noise ratios—levels that are pertinent
to robotic control where noisy, nonlinear sensors restrict
the fidelity of measurements of environmental data. Recent
results from the field of neuromorphic engineering [5–9]
demonstrate the efficacy of analog processing systems, from
the perspective of functionality and economy of implemen-
tation. Hence, inspired by this, we consider analog-amenable
signal processing and control architectures.

To that end, we need a principled means of synthesizing
analog machines. Connectionist [10] and empirical [11]
methods of realizing analog computation exist; however, the
lack of a rigorous synthesis methodology is a drawback. In
contrast, cybernetics—control theory and dynamical systems
theory [12–15]—offers rigorous toolsets that enable the
synthesis of analog automata. First, the continuous methods
of control theory are an appealing match for agents coping
with a physical environment that is, at practical scales of
perception, continuous. Beyond this, the use of control
theory can be viewed as the analog complement to the
digital situated automata approach [16]—both use dynam-
ical systems-based descriptions of the world, and rigorous
synthesis toolsets to develop formulations of computational
machinery that can be closely mapped to an implementation
technology.

1.2. Contributions. In this work, we address the problem
of realizing lightweight cognitive faculties for agents in
multi-robot systems. Specifically, we extend the work of
[17–19] in two directions: (1) towards purely reactive (i.e.,
memoryless) analog behaviors, and (2) towards multi-agent
systems. We use control and dynamical systems theory both
as a description language and as a synthesis toolset to realize
signal processing schemes amenable to analog implementa-
tion. These mechanisms are mated with structural insights
from behavior-based robotics to compose the overall control
architecture.

We present the use of a novel visual tool—vector field
design—to address the synthesis of reactive behaviors for
single agent and multi-agent navigation; the tool is based
on a dynamical model of the embodied agent-environment
system, and it enables the roboticist to design behaviors that
exploit these dynamics. A reactive action selection scheme
is used to “stitch” together these behavioral controllers;
simulation results of the resulting composite system are
presented.

We note that vector field design has been seen in the
context of computer graphics. In [20], a rigorous framework
is developed for synthesizing vector fields with desirable
properties; these vector fields are then computed, online,
to assist with computer graphics and image processing
applications. The proposed work, by contrast, has distinct
challenges due to the lightweight processing requirements
of practical field robotics. Hence, in the proposed work,
we employ vector fields only at design time (or “compile
time”) in order to eliminate the cost of computing a

spatially-extended two-dimensional function as a function
of real-time sensor information. At run time, the product
of this vector field driven design—a control law—is used to
implement various robotic behaviors.

2. Preliminaries

2.1. Problem Formulation. Consider an autonomous navi-
gation problem where a population of agents must reach a
target. Moreover, we want the agents to self-organize into
a spatially-distributed configuration in a region about the
target (e.g., for a sensor network application, we would like to
form a connected network of agents that covers this region).
Since we desire lightweight signal processing and cognition,
we assume that (1) the agent only has access to local
information about its environment via short-range sensing
faculties, (2) the agent does not have a priori information
about the environment, and (3) the agent cannot use active
communication to coordinate with other agents. Regarding
the third point, we note that in many applications (e.g., in
hostile environments), a communications channel may not
always be available, and if one is we often want to maximize
bandwidth for other, more pertinent uses (e.g., execution of
distributed sensor fusion algorithms).

We note here that, in general, the design of con-
trol schemes for multi-agent systems is not restricted
solely to physically-embodied robotic agents with such
limited perceptual faculties. For example, in the computer
graphics community, information which is not limited to
physically-grounded local sensors can be used to great
effect in achieving realistic, globally-optimal results as in
[21].

2.2. Machine Organization. Robotic agents are situated
in physical environments where they must contend with
concurrent phenomena with dynamics over multiple time
scales. Subsumption [22] is a structure for the design of
reactive systems (i.e., systems where physically-grounded
cognition [23] realizes a tight coupling between sensation
and actuation) where a partititioning of functionality into
levels of competance addesses the multi-scale nature of
the world, and layering of control addresses parallelism.
Behavior-based robotics [24] views the development of
functionality in terms of the design of elementary behav-
iors (primitives for guiding the agent based on specifying
temporally-extended action trends that tend to bring the
agent to favorable circumstances) that can be combined—
through an action selection [25] strategy—to realize more
sophisticated composite behaviors.

In [17, 18] an analog subsumption architecture was
presented—illustrated in Figure 1—in which the nesting of
rigorously-derived control loops addressed the multi-scale
nature of the environment. In the following we address
the problem of designing concurrent behavioral primitives
for the navigation layer (C1/E1); for brevity, in this work
we subsume the competence provided by the (C0/E0) layer
by assuming that velocity commands from C1 are realized
instantaneously by C0. The time-scale separation between
C1/E1 (slower) and C0/E0 (faster) justifies this.
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Figure 1: Nesting of controllers coupled to the environment;
controller Ci regulates its sensory perception of the environment,
Ei. The derivation of Ci considers a plant model, Pi, of the world
“downstream” from it according to the recursion P0 := E0 and
Pi := Ci−1Pi−1Ei.
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Figure 2: Two agents, Mi and Mj , whose respective local coordinate
systems are specified by the lk1 and lk2 axes (k ∈ {i, j}). The
displacements from each agent to the common target T , that is,
lkT (k ∈ {i, j}), as well as the displacement from Mi to Mj , that is,
liMj

, are shown.

2.3. Embodiment Details. Since the agent is coupled to
the world by sensors that convey information from the
environment and actuators that enable it to effect change to
the environment, we first specify the details of the agent’s
sensori-motor embodiment.

2.3.1. Tracking Sensors. Consider an agent, Mi, in a planar
world, to which a local frame of reference is attached, and let
li1 and li2 denote the axes of a rectangular coordinate system
in this frame with the agent at the origin. The local sensing
faculties of the agent provide measurements of displacements
between the agent and a target of interest with respect to
this local coordinate system (with the agent at the origin).
Figure 2 illustrates the case of an agent, Mi, sensing another
agent, Mj , and where both agents sense a common target, T .
Since practical sensors are nonideal measuring devices, these
displacement measurements will be subject to various forms
of distortion. We first set a minimum standard on the fidelity
we expect from our sensors.

Definition 2.1 (measurement functions). Let:

sgn(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−1 for x < 0,

0 for x = 0,

+1 for x > 0,

sgn+(x) =
⎧
⎨

⎩

−1 for x < 0,

+1 for x ≥ 0,

(1)

–1

1                   

x
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Figure 3: The signum definitions used in this work.
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Figure 4: Specification of the obstacle sensor, where Ω denotes an
obstacle.

as illustrated in Figure 3. The map σ : R → R is
a measurement function if it is a bounded, continuous,
bijection such that for all x ∈R, sgn(σ(x)) = sgn(x).

Let η =
[
η1

η2

]

denote the displacement between the

agent and an object of interest. A sensor, S, is a memoryless
system that returns its measurement of the position of this

object, s =
[ s1

s2

]

=
[
σ1(η1)

σ2(η2)

]

, where σ1 and σ2 are arbitrary

measurement functions.

2.3.2. Obstacle Sensors. We specify minimal sensory appa-
ratus to provide the agent with information regarding the
presence of obstacles in the agent’s local environment.
Consider the situation shown in Figure 4. The agent, M, has
short range sensors (with range rmax

Ω ) at the front and rear
of it that point along the l1 axis of the agent’s local frame

of reference. Let the set Θ
f
Ω be a sector emanating from the

agent’s position that contains the positive l1 axis. Similarly,
the setΘr

Ω is a sector emanating from the agent’s position that
contains the negative l1 axis. Let r f and rr denote the distance

to the closest obstacle that is within the sectors Θ
f
Ω and Θr

Ω,
respectively. Further, let σ : R → [0, 1] be a continuous,
bounded, monotonic decreasing function such that σ(0) = 1
and σ(x) = 0 ⇔ x ≥ rmax

Ω . We define the forward obstacle
sensor as a memoryless device that returns σ(r f ), and the
reverse obstacle sensor as a memoryless device that returns
σ(rr).

2.3.3. Actuators. In this work we deal with behaviors for
navigation, and so subsume the competence provided by a
lower-level motor controller. We assume that the underlying
vehicle kinematics are those of the simple unicycle model
[26], where the motion of the vehicle is described by its
signed translational speed, v, and its signed rotational speed,
ω. The controllers we will synthesize actuate change by
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specifying two independent motion commands—av and
aω for translation and rotation, respectively—which are,
effectively, instantaneously realized by the low-level motor
controller (hence, we will model the effect of the low-level
motor controller—which operates on a faster time scale than
the navigation controller—by an identity operator taking av
to v, and aω to ω). We note that positive av translates the
agent’s local frame of reference in the direction of the li1 > 0
ray, and positive aω rotates the frame in a counter-clockwise
sense.

3. Synthesis of Behaviors

In this work, we address the problem of realizing robotic
behaviors via agent-level signal processing schemes amenable
to analog implementation. Our perspective is to make an
association between behavior and sensor output regulation,
that is, we view behaviors as actions taken by an agent to cause
its sensory perception of the environment to evolve in a desired
manner.

Casting the problem of behavioral design in control
theoretic terms then, we need a model that describes how
the agent’s sensory perception of the world evolves with
its actuation. Let η denote the actual displacement of an
agent to a target of interest (e.g., a general target or another
agent). Given the details of embodiment in Section 2.3, we
can derive the plant model, P:

P :

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

η̇ = p
(
η, a
)

:= Υ
(
η
)

a

s =
⎡

⎣
σ1
(
η1
)

σ2
(
η2
)

⎤

⎦,
(2)

where

Υ
(
η
) =

⎡

⎣
−1 η2

0 −η1

⎤

⎦ (3)

and σ1 and σ2 are arbitrary measurement functions.
Now our task is to design a feedback control law, a(η),

such that the resulting closed loop system:

η̇ = p
(
η, a
(
η
))

:= p̂
(
η
)

(4)

has the qualitative properties we desire, namely, we want
η = 0 (corresponding to zero displacement to the target of
interest) to be a globally asymptotically stable equilibrium.

There are a variety of techniques that can be used to
derive control laws for (2); we focus on the use of a visual
tool, vector field design that appeals to the intuition in a
manner we describe below. Recall that an n-dimensional
vector field is a map f : Rn → Rn. When used as the
right hand side of an ordinary differential equation (e.g., ẋ =
f(x), x ∈ Rn) the vector field specifies how the states, x(t),
evolve in time (i.e., how the trajectory x(t) “flows” through
the state space Rn with respect to time). Hence the vector
field describes the qualitative behavior of the system. Vector
field design has proved to be a useful tool in diverse contexts
where a dynamical systems formulation of the problem is
natural, including computer graphics [20] and the design of
chaotic oscillators [27].

η2

η1

(a)(c)

(d) (b)

Figure 5: Structure of a candidate vector field for unconstrained
taxis.

Our application of this toolset is similar to that of [27]
where vector field design is only used at compile time as
an aid to synthesize the run time control laws. Specifically,
in the following we present the construction of reference
vector fields, p̂(η), that describe desirable sensor output
dynamics that correspond to the robotic behaviors we are
designing. Using these reference vector fields, we derive a(η)
so that p(η, a(η)) = p̂(η)—bringing the actual sensor output
dynamics in compliance with the reference dynamics.

Before proceeding, we note that the vector fields we
will be presenting are defined in terms of η, which is in
a coordinate system local to the agent and represents the
relative displacement of the target with respect to the agent.
The state η = 0 corresponds to the condition where the
agent’s displacement to the target of interest is zero. For
example, if we design a vector field where all states eventually
flow to the goal state η = 0, we will obtain an actuation law
that corresponds to the robotic behavior of taxis.

3.1. Unconstrained Taxis. Here we present the construction
of a reference vector field for taxis (target tracking behavior)
where the agent’s actuation is unconstrained. We first
identify the qualitative properties that are required of p̂ =
[

p̂1:R2 →R

p̂2:R2 →R

]

. To globally asymptotically stabilize η = 0 we

must ensure η = 0 is an equilibrium point (i.e., p̂(η) =
0 ⇔ η = 0) and that the trajectories induced by p̂ flow to
η = 0. Additionally, to facilitate the derivation of a control
law we require the structure of p̂ be compatible with the plant

model, that is, for all η =
[
η1

η2

]

such that η1 = 0 we have

p̂2(η) = 0 (if this is not the case, then singularities in the
control law will arise when η1 = 0).

Figure 5 illustrates the qualitative structure of a vector
field that satisfies these requirements. The behavior it implies
(of which some representative cases are shown in Figure 6)
is intuitively appealing. Trajectories flow to the η1 axis,
indicating that the agent acts to bring the target in front of
(Figure 6(a)) or behind (Figure 6(c)) the agent; once this is
achieved, the agent then closes in on the target (Figures 6(b)
and 6(d), resp.).
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Figure 6: Behavior specified by the reference vector field of Figure 5.
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Figure 7: Behaviors specified by a reference vector field that biases
forward motion (a), and uses only forward motion (b).

The flow of Figure 5 can be realized by:

p̂ :

⎡

⎣
η1

η2

⎤

⎦ �−→
⎡

⎣
−sgn

(
η1
)

+ sgn+
(
η1
)∣
∣η2
∣
∣

−sgn
(
η2
)∣
∣η1
∣
∣

⎤

⎦. (5)

Setting (2) and (5) equal, we obtain:

a =
⎡

⎣
sgn
(
η1
)

sgn+
(
η1
)
sgn
(
η2
)

⎤

⎦ =
⎡

⎣
sgn(s1)

sgn+(s1)sgn(s2)

⎤

⎦ (6)

(recall σ1, σ2 are measurement functions that preserve the
signum of their arguments).

3.1.1. Biased Taxis. Suppose we wish to design a taxis
behavior which, although unconstrained, is biased towards
moving forwards towards the target (e.g., for agents which
have the capability to reverse, but prefer—as most car
drivers—forward motion where possible). Observe that in
the second vector field of Table 1, all trajectories (except the
ones where the target is directly behind the agent, i.e., η1 < 0
and η2 = 0) tend to flow towards the η1 > 0 axis (i.e., where
the target is ahead of the agent) and from there flow to the
desired η = 0 state. Figure 7(a) illustrates the actions of an
agent that is regulating its sensor output according to these
behavioral specifications. The agent reverses until it senses
the target at an angle of π/2 (corresponding to a vector field
trajectory hitting the η2 axis from the left), moves to bring
the target in front of the agent (corresponding to trajectories
flowing towards the η1 axis), and then closes in on the target.

3.2. Constrained Taxis. Constraints on the actions of an
agent can be due to inherent limitations of the agent (e.g.,
the inability to move backwards) or imposed by external
phenomena (e.g., obstacles in the agent’s path). Consider
the vector field illustrated in the third row of Table 1. The
structure of this field indicates that all trajectories flow away
from the region where η1 < 0, towards the region where

Table 1: Summary of reference vector fields, p̂(η).

Unconstrained
taxis

Unconstrained
taxis

(forward bias)

Forward-only
taxis

Reverse-only
taxis

Desired vector field Analytic formBehavior

⎡

⎢
⎢
⎣

⎤

⎥
⎥
⎦

−η1 + sgn+(η1)|η2|
−sgn(η2)|η1|

⎡

⎢
⎢
⎣

⎤

⎥
⎥
⎦

−sgn(η1) + |η2|
−η1sgn(η2)

⎡

⎢
⎢
⎣

⎤

⎥
⎥
⎦

−|η1| + |η2|
−η1sgn(η2)

⎡

⎢
⎢
⎣

⎤

⎥
⎥
⎦

|η1| − |η2|
η1sgn(η2)

η1

η1

η1

η1

η2

η2

η2

η2

p̂(η) p̂(η)

η1 > 0, and from there flow to η = 0. That is, the agent acts to
bring the target in front of it, and then closes in, as illustrated
in Figure 7(b). Hence, this field specifies target tracking by
forward motion only. Reversing the direction of the vectors
of this field, we obtain the fourth vector field of Table 1,
which, by similar observations, specifies target tracking by
purely reverse motion.

3.3. Antitaxis. To realize anti-taxis, that is, motion away from
a target of interest, we note that this corresponds to driving
η away from 0, to infinity. We can derive an anti-taxis vector
field, p̂(η), by taking a base vector field like that of the second
row of Table 1 and reversing the direction of flow: p̂(η) :=
−p̂(η).

3.4. Comments. Table 1 summarizes the reference vector
fields for taxis discussed in this section. Each vector field, in
turn, gives rise to a robotic behavior when the corresponding
control law is derived and used to specify velocity commands
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for the agent. It is important to stress that these vector fields
are used at design time to generate control laws that are
employed by the robot at run time. Hence, the agent, when
in action in the field, selects from a set of control laws,
and not vector fields. Due to space restrictions, we do not
present every control law (the actuation laws can be derived
by setting p(η, a(η)) = p̂(η) and solving for a); however,
we note that these behavioral specifications give rise to
purely reactive laws, which are amenable to very economical
implementation. The economy of implementation of this
compile time approach is seen more readily when we
consider the computational load on the agent due to two
scenarios: (1) computing vector fields at run time, or (2)
computing control laws at run time. With the former, the
agent would need to evaluate a two dimensional function
over several points that adequately sample the state space;
with the latter, it need only evaluate the control law at a single
point—an operation requiring no memory or state, and, for
the signum nonlinearities we employ, only requiring simple
feedforward functions, for example, (6).

We also note that Table 1 presents more behaviors
than are strictly needed for general taxis with the robotic
kinematic model we employ in this work (i.e., one in which
the robot can translate in the forward and reverse directions,
and steer). For the embodiment we consider, there are four
basic cases.

(1) The robot’s translational motion is not impeded.

(2) Only the robot’s forward translational motion is
impeded.

(3) Only the robot’s reverse translational motion is
impeded.

(4) The robot’s forward and reverse translational motion
are both impeded.

For case (1), any of the four vector fields are sufficient,
while for cases (2) and (3), the reverse-only and forward-
only behaviors, respectively, are necessary. Case (4) is out
of the scope of taxis behavior, since the agent is unable to
immediately engage in any translational motion to get to the
target: it must first free itself of the forward and/or reverse
motion impediments. This requires it to engage in, for
example, searching, as discussed in the next section. Hence,
for the pure taxis behavior of cases (1)–(3), only two basic
behaviors need be instantiated in the agent: forward-only
and reverse-only taxis (the other behaviors are not useless;
indeed, unconstrained taxis with forward bias is a simple
model of how a human car driver operates under normal
circumstances).

4. Action Selection and Simulation Results

4.1. Single Agents. We wish to “stitch” together the schemes
presented in the preceding section to realize useful composite
behaviors. Since the focus of this paper is on analog
behavioral synthesis, for brevity we provide an overview of
a technique for action selection and refer the reader to [17]
where the synthesis of such a controller is presented in greater

f r

f r

f r

f r

f r

f r

f r

f r f r

f r
f r

f r
f r

f r

f r

f r

T f T Tr

Σ

Figure 8: A finite state acceptor that describes the action selection
scheme; T , T f , and Tr represents unconstrained, forward-only and
reverse-only taxis, respectively, while Σ is a searching behavior for
the fall through case when neither Tf nor Tr can be used. The
virtual senses f and r indicate that the forward and reverse obstacle
sensors, respectively, are overstimulated, while f and r indicate the
absence of overstimulation; the virtual senses are ANDed together
to specify FSA transitions.

detail. We first construct a “virtual sense” that represents the
level of urgency (analogous to the activation level of [25])
of situations that the agent is facing. Consider the case of
deciding whether to employ forward taxis, reverse taxis, or
unconstrained taxis. We can perform a “leaky integration”
on the obstacle sensor outputs (e.g., using the system ξ̇ =
−κξ + u, y = ξ, where ξ is the state of the filter, and u and
y are the corresponding inputs and outputs) and then pass it
through a hysteresis function. The output of this processing
gives an indication of whether an obstacle sensor is being
over-stimulated or not, which provides the required feedback
for a controller to select an appropriate mitigating behavior.

Figure 8 shows a finite state acceptor that describes the
operation of our action selection controller (we stress that
this FSA is used for descriptive purposes—the actual action
selection mechanism is a feedback controller). Figure 9(a)
presents simulation results of the agent avoiding an obstacle
while tracking a target (the appendix provides details of
the simulation methodology); unconstrained taxis (T) is
first engaged, but the agent switches to the taxis-by-reversal
controller (Tr) when confronted by the obstacle. After getting
far enough away from the obstacle for the over-stimulation
virtual sensors to relax, it re-engages unconstrained taxis
behavior (T) to the target. Figure 9(b) illustrates the agent
in a more complex obstacle ridden environment in which
the target is initially out of sensor range (out of the shaded
region about the target). It starts to search (using a reference
oscillator [18] to cause it to execute a spiral traversal of
space) until it senses the target, at which point it engages
in various forms of constrained taxis (when near obstacles
that impede its path) and unconstrained taxis (when free of
obstacles) to get to the target. Searching behavior guarantees
that the robot will eventually escape trapping regions or
regions wherein it cannot sense the target, since the space-
filling spiral search pattern will cause the agent to eventually
traverse all space. For a lightweight agent with limited sensing
faculties—whether a living organism or a robot—this is, of
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Figure 9: Single agent simulation results.
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Figure 10: Two action selection schemes for multi-agent behavior; RA and RA are taxis and anti-taxis controllers, respectively, where
the sensory feedback comes from other agents, RT is a controller for tracking the common target, T , and RΩ is a system that attenuates
translational motion towards obstacles.

course, not without its cost: the inability to guarantee an
upper bound on search time.

4.2. Multi-Agent Systems. We present some preliminary
action selection schemes that result in useful emergent group
behavior.

4.2.1. Superposition. Figure 10(a) illustrates a scheme where
the outputs of the target and agent tracking controllers are
superposed; this is akin to the approach taken in [28]. This
scheme works well for unconstrained flocking, as illustrated
in Figure 11. As can be seen, the six agents form two separate
flocks as they navigate to the target; once at the target,
they organize about the target. However, we note that when
constraints, such as obstacles, are introduced, undesirable
equilibrium points arise and agents are prone to getting
“locked” at various points far from the target.

4.2.2. Multiplexing. The scheme in Figure 10(b) addresses
the problem of undesirable equilibria by using a multi-
plexing scheme. Controller C2 uses a combination of leaky
integrators and hysteresis functions to realize an action
selector that selects the action whose stimulating input is the
most persistent over time. Figure 12 illustrates eight agents
operating under this scheme. Whereas with a superposition
scheme, some agents would have gotten stuck near the
two obstacles, under this scheme spurious equilibria cannot

emerge and all agents end up at the target. The mess of
trajectories arises because the action selector is never at rest
and so agents meander about the target.

5. Conclusions and FutureWork

This work was concerned with the synthesis of efficient signal
processing schemes for robotic behavior generation using
analog-amenable computational machinery. We demon-
strated the synthesis of several behaviors for taxis using a
novel visual tool, vector field design. To demonstrate the
operation of a control architecture based on these behaviors,
we proposed two action selection mechanisms that realized
the extreme cases of behavior superposition and behavior
multiplexing.

Since this work is targeted to lightweight field robotics,
we have taken an agent-centric approach; however, the
field of multiagent systems design includes more global,
optimal frameworks. Of particular interest is work in the
computer graphics community on achieving realistic real-
time simulations of multiagent phenomena. In [21], Treuille
et al., propose a nonagent based scheme, which considers
more global knowledge, and utilizes optimal path planning
of aggregate quantities (and not per-agent dynamics); this
approach enables real-time simulation of realistic multiagent
behavior at the crowd level. An interesting item of future
work would be to integrate the lightweight agent models of
our work within the framework of [21], which might result
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Figure 11: Six agents flocking to the target using the superposition action selection scheme.
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Figure 12: Eight agents flocking to the target using the multiplexed action selection scheme.
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Figure 13: Overview of the multiagent simulation environment.
The agents, Mi, generate actuation functions, ai, as static functions
of their sensory perception, si, of the environment, E.

in realistic behavior across scales, from the level of the group
to that of the individual agents.

A further extension of our work would consider “second
order” schemes where vector fields are produced at run time,
as functions of the agent’s sensory input. In such a scheme,
as the agent operates in the field, it would compute a vector
field, dynamically, as a function of sensor data. A control law
would then be compiled, at run time, from this generated
vector field and used to direct the agent. Although this would
incur the higher computational cost of computing vector
fields on-line, it might also impart more spatial awareness
to the agent, reducing the need for searching behavior.

Appendix

MATLAB was used to simulate the agent interacting in
an environment; the Runge-Kutta numerical integration
scheme (MATLAB’s ode4 solver) with fixed step size was

used for all simulations. A custom OpenGL application was
developed to animate the simulation results enabling us to
verify behavioral characteristics in real-time. Beyond the
simulation results presented here, we refer the reader to the
accompanying supplementary video which better illustrates
system behavior. Using a 1.33 GHz PowerBook G4, the most
complex (eight agent) simulation presented in this work took
less than ten minutes to simulate.

Figure 13 illustrates the scheme used for the simulations
of this paper; the figure is also instructive from the per-
spective of understanding what computation is done in the
agent, versus the environmental effects that are exploited
by the agent. The environment model was used to track
the evolution of each agent’s orientation and position in
the environment (based on the agent’s velocity actuation
commands), and generate sensory feedback (i.e., target,
agent and obstacle sensor data). Let a global frame of
reference be imposed on the environment, and with respect
to this frame of reference let:

(i) gi(t) =
[

gi1

gi2

]

denote the position of agent Mi in the

environment,

(ii) ψi(t) denote the orientation of agent Mi in the
environment.

Then the state of the environment (with initial conditions,
gi(0) and ψi(0)) evolves according to:

ġ i1 = aiv(t) cos
(

ψi(t)
)

,

ġ i2 = aiv(t) sin
(

ψi(t)
)

,

ψ̇i = aiω(t),

(A.1)

where aiv and aiω are the commanded translational and
rotational speeds, respectively, of agent Mi. Based on the
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absolute positions of each agent and the targets of interest, E
computes si which models the type of relative, local sensory
feedback signals an agent receives from practical sensors. We
note that in this scheme, the computational burden on the
agent is limited merely to computing ai as a static function of
si.
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