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Abstract We consider the Curie-Weiss model at initial temperature 0 < β−1 ≤ ∞ in
vanishing external field evolving under a Glauber spin-flip dynamics with temperature
0 < β ′−1 ≤ ∞. We study the limiting conditional probabilities and their continuity prop-
erties and discuss their set of points of discontinuity (bad points). We provide a complete
analysis of the transition between Gibbsian and non-Gibbsian behavior as a function of time,
extending earlier work for the case of independent spin-flip dynamics.

For initial temperature β−1 > 1 we prove that the time-evolved measure stays Gibbs
forever, for any (possibly low) temperature of the dynamics.

In the regime of heating to low-temperatures from even lower temperatures, 0 < β−1 <

min{β ′−1
,1} we prove that the time-evolved measure is Gibbs initially and becomes non-

Gibbs after a sharp transition time. We find this regime is further divided into a region where
only symmetric bad configurations exist, and a region where this symmetry is broken.

In the regime of further cooling from low-temperatures, β ′−1
< β−1 < 1 there is always

symmetry-breaking in the set of bad configurations. These bad configurations are created
by a new mechanism which is related to the occurrence of periodic orbits for the vector
field which describes the dynamics of Euler-Lagrange equations for the path large deviation
functional for the order parameter.

To our knowledge this is the first example of the rigorous study of non-Gibbsian phe-
nomena related to cooling, albeit in a mean-field setup.
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1 Introduction

Non-Gibbsian measures are known to appear in many circumstances. Historically they were
observed first in the context of position-space renormalization group transformation and
termed as so-called RG pathologies [12]. Later more and more examples were discovered
[2, 4, 7, 9, 20] which showed that the application of many maps applied to an infinite-volume
Gibbs measure may result in similar “pathologies”, meaning that the image measure is not
a Gibbs measure anymore. When such a phenomenon appears it means that conditional
probabilities of the image system will acquire long-range dependencies, at least for some
non-removable configurations. Particularly interesting examples of infinite-volume trans-
formations are coming from the study of dynamics [2, 15–17, 24]. The first prototypical
result in that direction is due to van Enter, Fernandez, den Hollander, Redig who consid-
ered an infinite-temperature (or high temperature) Glauber dynamics starting from an initial
low-temperature Ising model on the two- or more-dimensional integer lattice. In particular
they proved that a low-temperature initial measure in vanishing external magnetic field be-
comes non-Gibbs after sufficiently large times and stays non-Gibbs forever. This has to be
contrasted with the simple fact that for independent dynamics, viewed on local observables,
the time-evolved measure converges exponentially fast in time to the symmetric product
measure. In fact such a phenomenon is possible since the Gibbs property (continuity prop-
erty of conditional probabilities of the system) is to be tested in arbitrarily large volumes.
Later more investigations for time-evolutions were performed. The general picture is that
for very general dynamics and very general initial measures the time-evolved measures are
again Gibbsian, for a sufficiently small time-interval [2, 8, 18, 20, 21]. Long times however,
even for simple dynamics offer the possibility for the emergence of non-Gibbsian measures.
The discontinuities in the conditional probabilities which are responsible are produced by
hidden phase transitions which pop up as a result of the conditioning procedure. Depending
on the specific nature of the system there may be many mechanisms of such singularities [2,
15]. In this context continuous spin models are particularly interesting [6, 8, 19].

While it is surprising that even the physically simple transformation of heating produces
non-Gibbsian behavior it would even be more interesting to say something about cooling
dynamics. More generally one would like to study a Gibbs measure μ0 for an initial Hamil-
tonian H which is subjected to a Glauber dynamics for another Hamiltonian H̄ , which gives
rise to a trajectory μt where t denotes time. Glauber dynamics at low temperatures describes
fast cooling or “quenching”. The question is to understand the behavior of μt , and in par-
ticular for which times it will be Gibbs. Since this is as yet too difficult on the lattice, we
develop our results in mean-field. A mean-field system of Ising-type is called non-Gibbs if
the single-site conditional probabilities depend in a discontinuous way on the magnetization
of the conditioning spins [5, 13, 14, 18]. Investigations for mean-field models tend to repro-
duce the lattice results in many situations [18, 23] but often lead to an explicit knowledge
of the parameter regions where Gibbsianness and non-Gibbsianness occur. Such an analysis
has been performed for the Curie-Weiss model subjected to an independent spin-flip dynam-
ics in [15]. It was proved there that for initial high temperatures β−1 ≥ 1 the time-evolved
measure is Gibbs forever, while for β−1 < 1 there exists a sharp transition-time separating
a Gibbsian from a non-Gibbsian regime. In the course of the analysis of that paper, also
the phenomenon of symmetry-breaking in the set of bad configurations was observed which
happens for the smaller range of initial temperatures below 2

3 . In the present paper we build
on that analysis but are able to extend the results to dependent spin-flips according to a
Glauber dynamics with an arbitrary other temperature β ′−1.

To understand discontinuous behavior of conditional probabilities for the time-evolved
model at fixed time t one needs to look at the model resulting from the initial measure at time
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s = 0 under application of the dynamics in the space-time region for times s between 0 and t .
The hidden phase transitions responsible for the non-Gibbsian behavior occur if there is a
sensitive dependence of the model at time s = 0 obtained from constraining the space-time
measure to certain configurations at time s = t . If a small variation of such a constraining
configuration leads to a jump in the constrained initial measure it will (generically) be a
bad configuration for the conditional probabilities of the system at time t . Small variation
means in the lattice case a perturbation in an annulus far away from the origin. Small vari-
ation means in the mean-field case a small variation of the magnetization as a real number.
In the independent spin-flip lattice example of [4] the chessboard configuration was a bad
one, correspondingly in the independent spin-flip mean-field case of [15] the configurations
with neutral magnetization equal to zero were bad ones for large enough times. Moreover,
configurations with non-zero magnetization also appeared as points of discontinuity for the
limiting conditional probabilities, in a particular bounded region of the parameter space of
initial temperature and time. This phenomenon was called biased non-Gibbsianness in [15].
The complete analysis for the mean-field independent spin-flip situation was possible since
the constrained system on the first layer could be understood on the level of the magnetiza-
tion. The relevant quantities could be computed in terms of the rate-function for a standard
quenched disordered model, namely the Curie-Weiss random-field Ising model with possi-
bly non-symmetric random-field distribution of the quenched disorder.

To deal with dependent-dynamics case a different route has to be taken since the depen-
dence of the initial system on the conditioning is more intricate. As we will see, we will need
to invoke the path large deviation principle for the dynamics with temperature β ′−1 on the
level of magnetizations. We will then have to minimize a cost functional of paths of magne-
tizations which is composed of the rate function along the path and an initial “punishment”
term, which depends both on the initial Hamiltonian H and the dynamical Hamiltonian H̄ ,
evaluated at the unknown initial point of the trajectory. The solution of the problem gives a
surprising connection between path properties of the corresponding (integrable) dynamical
system and Gibbs properties of a model of statistical mechanics. As a result we are provid-
ing a full description of the regions of Gibbsian and non-Gibbsian behavior as a function of
time, initial temperature, and dynamical temperature. As a special case the previous results
for infinite-temperature dynamics are reproduced (adding some geometrical insight about
the behavior of typical paths). Furthermore the solution reveals a new mechanism for the
appearance of bad configurations in the region of cooling from low temperatures with even
lower temperatures. These are related to periodic motion in the dynamical system.

The present paper is to our knowledge the first one where Gibbs properties of a model
subjected to a low-temperature dynamics are investigated and it will be challenging to see
which parts of the behavior are occurring on the lattice. After the completion of our work
we learnt about the preprint [3] where a large-deviation approach was proposed to under-
stand dynamical transitions in the Gibbs properties for lattice systems, too. While there is
a beautiful formalism available for path large deviations of empirical measures of lattice
systems on an abstract level, explicit results are very hard, which underlines also the use of
our present paper, and the necessity of future research.

Moreover the questions and methods used should have interest also in models of pop-
ulation dynamics. In such models a population of N individuals, each individual carrying
genes from a finite alphabet of possible types, performs a stochastic dynamics which can be
described on the level of empirical distributions. Starting the dynamics from a known initial
measure corresponds to an a-priori belief (prior distribution) over the distribution of types.
Conditioning to a final configuration m′ at time t corresponds to measuring the distribution
of types. The occurrence of multiple histories leading to the same m′ (which is responsible
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for non-Gibbsianness in the spin-model) has the interesting interpretation of a non-unique
best estimator for the path explaining the present mix of genes.

1.1 The Model at Time t = 0

We start at time s = 0 with the Curie-Weiss Ising model in zero magnetic field at in-
verse temperature β whose finite-volume Gibbs measures on spin-configurations σ[1,N] =
(σi)i=1,...,N ∈ {−1,1}N are given by

μβ,N(σ[1,N]) = exp
(

β

2N

(∑N

i=1 σi

)2)

Zβ,N

(1)

where the normalization factor Zβ,N is the standard partition function. This model shows a
phase transition at the critical temperature β−1 = 1 in the limit where N → ∞.

1.2 The Dynamics

Given a configuration σ[1,N] = (σi)i=1,...,N ∈ {−1,1}N of spins, we set Glauber dynamics
on the level of the spins in such a way that it has the Curie-Weiss distribution with a (pos-
sibly) different temperature β ′−1 as a reversible measure. We will call β ′−1 the dynamical
temperature. The generator of the system with N spins is given by

LN�(σ[1,N]) =
N∑

i=1

c

(

σi,
1

N

∑

j :j �=i

σj

)
(
�(σ i

[1,N]) − �(σ[1,N])
)

(2)

where σ i
[1,N] denotes the configuration that is flipped at the site i

(
σ i

[1,N]
)
j
=

{−(σ i
[1,N])i , j = i

(σ i
[1,N])j , j �= i

(3)

where we choose the rates to be

c(∓,m) = e±β ′m

cosh(β ′m) − m sinh(β ′m)
(4)

For fixed finite N , we denote the corresponding time-evolved measure on {−1,1}N at
time t , started from the equilibrium measure μβ,N , by the symbol μβ,β ′,t;N . It is clear that,
for fixed N , the time-evolved measure μβ,β ′,t;N tends to the invariant measure under the
dynamics, when t ↑ ∞.

1.3 The Notion of Gibbsianness for Mean-Field Models

For a single-site spin σ1 ∈ {−1,+1} and a magnetization value for a system of size N − 1,
that is m̂ ∈ {−1,−1 + 2

N−1 , . . . ,1 − 2
N−1 ,1} we consider the single-site conditional proba-

bilities of the time-evolved measure in the volume N given by

γβ,β ′,t,N (σ1|m̂) := μβ,β ′,t,N (σ1|σ[2,N]) (5)

where σ[2,N] is any spin-configuration such that m̂ = 1
N−1

∑N

j=2 σj . By permutation invari-
ance the right-hand side of (5) does not depend on the choice of σ[2,N].
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Definition 1.1 Let β,β ′, t be given. A point m̂ ∈ (−1,1) is said to be good for the time-
evolved mean-field model if and only if

1. There exists a neighborhood of m̂ such that, for all α in this neighborhood the follow-
ing holds. For all sequences αN ∈ {−1,−1 + 2

N−1 , . . . ,1 − 2
N−1 ,1} with the property

limN↑∞ αN = α the limit

γβ,β ′,t (σ1|α) = lim
N↑∞

γβ,β ′,t,N (σ1|αN) (6)

exists and is independent of the choice of the sequence.
2. The function α �→ γβ,β ′,t (σ1|α) is continuous at α = m̂.

Definition 1.2 The time-evolved mean-field model with parameters β,β ′, t is called Gibbs
iff it has no bad points.

This definition has extensions to arbitrary local state spaces beyond finite types (see
[13, 18]) where empirical magnetizations have to be replaced by empirical distributions in
the definition.

1.4 Main Theorem

We are now in the position to give our main result.

Theorem 1.3 Consider the time-evolved Curie-Weiss model with initial and dynamical tem-
peratures β−1, β ′−1.

Then the following holds.

1. Initial high temperature, any temperature of the dynamics.
If β−1 ≥ 1 then the time-evolved model is Gibbs for all t ≥ 0.

2. Heating from an initial low-temperature, with a either high-temperature or a low-
temperature dynamics.
For any β ′ there exists a value β−1

SB (β ′) < β ′−1 (which is explicitly computable, see below)
such that the following is true.

Assume that 0 < β−1 < min{β ′−1
,1}.

(a) If β−1
SB (β ′) ≤ β−1 then

• for all 0 ≤ t ≤ tnGS(β,β ′) := ln β′−β
1−β

4(1−β ′) the time-evolved model is Gibbs,
• for all t > tnGS(β,β ′) the model is not Gibbs and the time-evolved conditional

probabilities are discontinuous at m̂ = 0 and continuous at any m̂ �= 0.

(b) If 0 < β−1 < β−1
SB (β ′) there exist sharp values 0 < t0(β,β ′) < t1(β,β ′) < ∞ such

that

• for all 0 ≤ t ≤ t0(β,β ′) the time-evolved model is Gibbs,
• for all t0(β,β ′) < t < t1(β,β ′) there exists m̂c = m̂c(β,β ′; t) ∈ (0,1) such that

the limiting conditional probabilities are discontinuous at the points ±m̂c , and
continuous otherwise,

• for all t > t1(β,β ′) the limiting conditional probabilities are discontinuous at m̂ =
0 and continuous at any m̂ �= 0.

3. Cooling from initial low temperature. For β ′−1
< β−1 < 1 there exists a time-threshold

tper(β,β ′) such that,
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• for all 0 ≤ t ≤ tper(β,β ′) the time-evolved model is Gibbs,
• for all t > tper(β,β ′) the model is not Gibbs and the time-evolved conditional proba-

bilities are discontinuous at non-zero configurations m̂c (and continuous at m̂ = 0).

Note that for high-temperature dynamics β ′−1
> 1 the region 3 of initial temperatures

in Fig. 1 is empty. Part 2 of the theorem generalizes the structure which we already know
from the independent spin-flip dynamics β ′ = 0 (see [15]) which is contained as a special
case. This means that a symmetric (w.r.t. starting measure) bad point m0 = 0 will appear
after a sharp transition time if the initial temperature is not too low (see Subregion 2a). For
lower temperatures (in Subregion 2b) symmetry-breaking in the set of bad configurations
for the time-evolved measure appears in an intermediate time-interval: At the beginning of
this interval a symmetric pair of bad configuration appears which merges at the end of the
time interval.

It is remarkable that the picture we observe in Region 2 is similar to the independent
spin-flip case. This is even true for low temperatures β ′−1

< 1 of the dynamics. As we will
see, we can moreover compute the symmetry-breaking inverse temperature βSB in terms of
β ′ as the largest solution of the following cubic equation

4β3
SB + 12βSBβ ′ − 6β2

SB(1 + β ′) − β ′(3 + 3β ′ − β ′2) = 0 (7)

In the independent spin-flip case β ′ = 0 we get exactly β−1 = 2
3 , which was already found

in [15]. We will also give an explicit expression of the critical time in region 2a, for all β ′.
In region 3 of cooling from an already low initial temperature we observe an entirely new

mechanism for the production of non-Gibbsian points. These are related to periodic orbits of
the flow of the β ′-dependent vector field which is created by the Euler-Lagrange equations
obtained from the path-large-deviation principle for the given dynamics.

1.5 Strategy of Proof and Phase-Space Picture

To derive an expression for the time-evolved kernel γβ,β ′,t it turns out that we need to look
at path large deviations of the evolving empirical magnetization, on a fixed time-interval
[0, t] with N as a large parameter, conditioned to end in a fixed magnetization m′ ∈ (−1,1).
The path large deviation functional consists of two parts and can be viewed as a Lagrangian

Fig. 1 Division between Gibbs
and non-Gibbs area for
low-temperature dynamics, the
thick curve is obtained by
computation, the dots are given
by numerics
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on the space of paths of magnetization on [0, t]. The first one is an integral over the time
interval of a Lagrangian density depending on β ′ as a parameter, and also on the magnetiza-
tion variable and its time-derivative. Since the dynamics is started from an initial measure,
the rate-functional in the LDP will contain also a second β-dependent term “punishing”
the choice of the (unknown) initial-condition. The solution of the corresponding path mini-
mization problem will therefore depend on a balance between both terms. Such solution (or
solutions, in case of multiple minima) will correspond to a most probable history path(s).
Non-uniqueness of the solution makes possible a jump of the most probable history curve
which ends at a prescribed final condition m′ when one varies around particular values of
m′. These particular values will become discontinuity points of γβ,β ′,t (m′). The problem of
finding the most probable conditioned history path carries over analytically to the study of
the evolution of a curve describing the allowed initial conditions for the magnetization and
its velocity (depending on β,β ′) under the flow of the Euler-Lagrange equations (depending
on β ′). Multiple histories show in this framework as multiple projections of the time-evolved
curve in phase-space to the m-axis, and this will allow us to derive geometric insight as well
as analytical and numerical results. As a warning we point out that the notion of “Hamil-
tonian” will always refer to a spin-Hamiltonian, not the Legendre transform of the discussed
Lagrangian.

The outline of the paper is as follows. Section 2 will be devoted to the derivation of the
path large deviation principle, as well as the constrained large deviation principle involv-
ing the initial Hamiltonian and its relation to the time-evolved conditional probabilities. In
Sect. 3 we discuss the solution of the variational problem in terms of the Euler-Lagrange
equations giving rise to a time-evolved curve of allowed initial configurations. Section 4
provides more visual intuition for the system’s behavior based on numerics.

1.6 Acknowledgements

We thank Aernout van Enter, Roberto Fernandez, Frank den Hollander, Frank Redig, and
Evgeny Verbitskiy for stimulating discussions during the Groningen Nature-Nurture meet-
ings. C.K. thanks Anton Bovier and Amir Dembo for enlightening comments on path large
deviations.

2 Path Large Deviation Principle and Limiting Conditional Probabilities

Before we start discussing a number of large-deviantions results it is appropriate to rewrite
the finite-volume Gibbs measure (1) on spin-configurations σ[1,N] as follows

μβ,N(σ[1,N]) = exp(−NH(mN))

Zβ,N

(8)

where mN : σ[1,N] �→ 1
N

∑N

i=1 σi is the function which sends a spin configuration to its em-

pirical mean and H(x) := − βx2

2 is the spin-Hamiltonian of the system.
In this section we will provide an expression for the limiting conditional probabilities.

This involves the large-N asymptotics for the paths of the empirical magnetization. Note
first that, by permutation invariance, the continuous time process that is induced on the
empirical magnetization is again a Markov chain.
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Namely, suppose that F : {−1,−1 + 2
N

, . . . ,1 − 2
N

,1} → R is a function on the possible
magnetization values at size N and mN is an empirical mean, then we have Lβ ′,N (F ◦mN) =
(L̂β ′,NF ) ◦ mN with

L̂β ′,NF (m) =
(N

2
+ N

2
m

)
c

(
+,m − 1

N

)(

F
(
m − 2

N

)
− F(m)

)

+
(N

2
− N

2
m

)
c

(
−,m + 1

N

)(

F
(
m + 2

N

)
− F(m)

)

(9)

How do typical paths for the unconstrained dynamics look for large N? Evaluating
d
dt

E
m0(F (mt)) = E

m0((L̂β ′,NF )(mt)) for the observable F(m) = m for the expected value
of the process started at m0 we have the identity

d

dt
E

m0
N mt = E

m0
N

[
(1 − mt)c

(
−,mt + 1

N

)
− (1 + mt)c

(
+,mt − 1

N

)]
(10)

Taking the limit N → ∞ the magnetization concentrates on a deterministic path t �→ m(t)

which solves the ODE ṁ = (1 − m)c(−,m) − (1 + m)c(+,m) or

ṁ = 2
sinh(β ′m) − m cosh(β ′m)

cosh(β ′m) − m sinh(β ′m)
(11)

which has the largest solution of the mean-field equation m = tanh(β ′m) as a stable so-
lution. In the case β ′ = 0 the equation reduces to the linear equation ṁ(t) = −2m(t)

which describes the relaxation of the magnetization to zero under the unconstrained infinite-
temperature dynamics.

Next we need to discuss a number of large deviation results which are needed to compute
the limiting conditional probabilities. We begin as the first ingredient with the statement of
the path large deviation principle for the dynamics with inverse temperature β ′.

Theorem 2.1 Denote by Pβ ′,N the law of the paths (zN(s))s∈[0,t] of the magnetization for
the continuous-time Markov-chain with generator Lβ ′,N .

Then the measures Pβ ′,N satisfy a large deviation principle with rate N and rate function
given by the Lagrange functional

ϕ �→ Jβ ′(ϕ) =
∫ t

0
jβ ′(ϕ(s), ϕ̇(s))ds

with Lagrange density jβ ′(m,v) given by

jβ ′(m,v)

= 1

2

{

2 −
√

e4β ′m(−1 + m)2v2 + (1 + m)2v2 − 2e2β ′m(−1 + m2)(8 + v2)

(1 − e2β ′m(−1 + m) + m)2

+ v log

[
e−2β ′m(−1 + e2β ′m(−1 + m) − m)

4(−1 + m)

]
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+ v log

[

v +
√

e4β ′m(−1 + m)2v2 + (1 + m)2v2 − 2e2β ′m(−1 + m2)(8 + v2)

(1 − e2β ′m(−1 + m) + m)2

]}

(12)

For the special important case of non-interacting dynamics β ′ = 0 we write

j (m,v) := j0(m,v) = 1

2

(

2 −
√

4 − 4m2 + v2 + v log

[
v + √

4 − 4m2 + v2

2 − 2m

])

(13)

The proof of Theorem 2.1 will be sketched in the Appendix. This large deviation principle
allows us to compute the large deviation asymptotics of finding the path of the magnetization
jump process at finite N close to a given path ϕ(t).

It allows us to compute the large deviation asymptotics of the probability to go from an
initial configuration m to a final condition m′ in time t by computing the value of the rate
function in the minimizing path from m to m′. The minimizing path is found by solving the
Euler-Lagrage equations with initial condition m and final condition m′.

The second and more elementary ingredient we need is the static large deviation prin-
ciple for the magnetization in the initial measure, the Curie-Weiss measure with inverse
temperature β . It reads as follows.

Proposition 2.2 The distribution of magnetization m = 1
N

∑N

i=1 σi w.r.t. the Curie-Weiss
measure at inverse temperature β obeys a large deviation principle with rate N and rate
function given by H(m) + I (m) where

I (m) = 1 + m

2
log(1 + m) + 1 − m

2
log(1 − m) (14)

is the rate function for the symmetric Bernoulli distribution.

The proposition is well known in the theory of mean-field systems. It follows from Varad-
han’s Lemma which states the following: Suppose a probability distribution satisfies a LDP
principle with a known rate function and rate N and suppose we consider the probability
distribution with density Ce−NH(m) relative to the first density. Then this probability distri-
bution will satisfy a LDP with the same rate N and rate function obtained by adding H(m)

to the first rate function and subtracting a constant.
Combining these two ingredients we obtain the third statement governing the large de-

viation properties of the non-equilibrium system started in the inverse temperature β and
driven with inverse temperature β ′.

Theorem 2.3 Denote by Pβ ′,β,N the law of the paths (zN(s))s∈[0,t] of the magnetization for
the Markov-chain with inverse temperature β ′ with initial condition distributed according
to the Curie-Weiss measure μβ ′,N .

Then the measures Pβ,β ′,N satisfy a large deviation principle with rate N and rate func-
tion given by the Lagrange functional

ϕ �→ H(ϕ(0)) + I (ϕ(0)) + Jβ ′(ϕ) (15)

The knowledge of this compound rate function allows us to compute the large N as-
ymptotics of the probability to find the system in a final magnetization m′ at time t by
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computing the value in the rate function in the minimizing path to m′. Note that this time
the optimization is also over the initial point m. This minimizing path ϕ is found by solving
the Euler-Lagrange equations with final condition m′ and an initial condition which is de-
termined by another equation at the left-end point, which relates ϕ(0) and ϕ̇(0) in an β- and
β ′-dependent way, as we will see. We also call the corresponding curve in (ϕ(0), ϕ̇(0)) the
curve of allowed initial configurations.

Corollary 2.4 The conditional distribution of the initial magnetization m taken according
to the law of the paths Pβ ′,β,N , conditioned to end in the final condition m′ at time t , satisfies
a large deviation principle with rate N and rate function given by

Em′(m,β,β ′) = H(m) + I (m) + inf
ϕ:ϕ(0)=m,

ϕ(t)=m′
Jβ ′(ϕ) − Const (m′) (16)

We are now ready to give our formula for the limiting conditional distributions of our
model started at β and evolved with β ′.

Theorem 2.5 Fix β,β ′, t,m′. Suppose the constrained variational problem (15) for paths
ϕ taken over the paths with fixed right endpoint ϕ(t) = m′ has a unique minimizing path
s �→ m∗(s;m′, t).

Then the limiting probability kernels of the time-evolved measure μβ,β ′,t;N have a well-
defined infinite-volume limit γβ,β ′,t (·|m′) in the sense of (1.1) of the following form

γβ,β ′,t (η1|m′) =
∑

σ1=±1 eσ1βm∗(0;m′,t)pt (σ1, η1;m′, t)
∑

σ1,η̃1=±1 eσ1βm∗(0;m′,t)pt (σ1, η̃1;m′, t)
(17)

Here ps(σ1, η1;m′, t) is the probability to go from σ1 ∈ {−1,1} at time s = 0 to η1 ∈
{−1,1} at time s ≤ t according to the Markov jump process on {−1,1} which is defined by
the time-dependent generator

L(s;m′, t)f (σ1) = c(σ1,m(s;m′, t))(f (−σ1) − f (σ1)) (18)

with rates which are obtained by substitution of the optimal path for the constrained problem
for the empirical magnetization into the single-site flip rates.

Proof Take a sequence αN ∈ {−1,−1 + 2
N−1 , . . . ,1 − 2

N−1 ,1} with the property limαN = α

as N ↑ ∞. We denote by mN−1(s) = 1
N−1

∑M

i=2 σ(s) the empirical magnetization of the
spins of site 2 to N . To prove that the promised form for the limiting conditional probabilities
is correct we must show that

lim
N↑∞

Pβ,β ′,N (σ1(t) = η1|mN−1(t) = αN)

Pβ,β ′,N (σ1(t) = η′
1|mN−1(t) = αN)

= γβ,β ′,t (η1|α)

γβ,β ′,t (η′
1|α)

(19)

where the r.h.s. is given by (17).



Low-Temperature Dynamics of the Curie-Weiss Model: Periodic Orbits 737

Let us abbreviate the whole path (mN−1(s))0≤s≤t by the symbol x. Then, at finite N , a
double conditioning gives us the identity of the form

P
β,β′,N (σ1(t) = η1|mN−1(t) = αN)

P
β,β′,N (σ1(t) = η′

1|mN−1(t) = αN)

=

∫
P

β,β′,N (dx|m
N−1(t) = αN)

∑

σ̃1=±1

P
β,β′,N (σ1(0) = σ̃1|x)P

β,β′,N (σ1(t) = η1|σ1(0) = σ̃1, x)

the same with η′
1 replacing η1

(20)

We note that under our assumption on the solution of the constrained path large deviation
principle the distribution Pβ,β ′,N (dx|mN−1(t) = αN) concentrates exponentially fast on the
trajectory x∗ : s �→ m∗(s;m′, t) as N tends to infinity. This collapses the outer expected
value and simplifies the formula a lot. Next we have that whenever xN → x∗ we get

lim
N↑∞

Pβ,β ′,N (σ1(0) = σ̃1|xN) = eσ̃1βm∗(0;m′,t)

2 cosh(βm∗(0;m′, t))

Finally we have that the single-site Markov chain describing the time-evolution of the spin
at site 1, conditional on the path of the empirical mean of the other N −1 spins and its initial
value at time 0, converges to the Markov chain with deterministic but time-dependent gen-
erator (18). The corresponding transition probabilities converge to the limiting expression
from the theorem and we have

lim
N↑∞

Pβ,β ′,N (σ1(t) = η1|σ1(0) = σ̃1, xN) = pt(σ̃1, η1;m′, t) (21)

This finishes the proof of (19). �

3 Phase-Space Geometry and Multiple Histories

3.1 Euler-Lagrange Equations and Curve of Allowed Initial Configurations

Fix β,β ′, t,m′. We look at the constrained variational problem (15) taken over the paths ϕ

with ϕ(t) = m′ with the aim to find (the) minimizing path(s) s �→ m∗(s;m′, t). It is known in
the calculus of variations [11] (Chap. 3, Sect. 14) that a necessary condition for an extremum
is given by the corresponding Euler-Lagrange equation and an additional free left-end con-
dition of the form

d

ds
jϕ̇(ϕ(s), ϕ̇(s)) − jϕ(ϕ(s), ϕ̇(s)) = 0 for all s ∈ [0, t]

jϕ̇(ϕ(s), ϕ̇(s)) − Hϕ(ϕ(s)) − Iϕ(ϕ(s))|s=0 = 0 (22)

ϕ(t) = m′

where H denotes the initial Hamiltonian. Here we have dropped the subscript β ′ for the
function j (ϕ(s), ϕ̇(s)) and written subscripts to denote partial derivatives. It is straightfor-
ward to derive this set of equations by linear perturbation around the presumed minimizing
function ϕ(s) using a partial integration in the s integral. For more details, see the Appendix.
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The first equation is a second order ODE which has two unknown parameters which have
to be determined by the second and third equation. We call the curve described by the second
equation which gives a condition between initial point and initial slope of the solution curve
the curve of the “allowed” initial configurations (ACC). We note that it is independent from
the final value m′.

Substituting the form of j (ϕ(s), ϕ̇(s)), we get after a small computation the equations

m̈ = 16e2β ′m ((1 + m) − e2β ′m(1 − m))(1 + (m2 − 1)β ′)
((1 + m) + e2β ′m(1 − m))3

ṁ|s=0 = g(m)|s=0 (23)

m(t) = m′

with the function

g(m) = 2e2β ′m (1 + m) − e2m(β−β ′)(1 − m)

(1 + m) + e2mβ ′
(1 − m)

(24)

describing the curve of allowed initial configurations.
Here we have written m instead of ϕ(s), and the dot denotes time derivative w.r.t. s.

3.2 Typical Paths for Independent Time-Evolution

Let us start with a discussion of the independent time-evolution.

(i) For β ′ = 0, β = 0, the system becomes

m̈(s) = 4m(s)

ṁ(s)|s=0 = 2m(s)|s=0 (25)

m(t) = m′

and the solution becomes m(s) = m′e2(s−t). This describes how a curve which is con-
ditioned to end in m′ away from zero is built up from the initial condition m′e−2t close
to zero.

(ii) For independent dynamics β ′ = 0 and initial inverse temperature β �= 0 the simplified
system is

m̈(s) = 4m(s)

ṁ(s)|s=0 = e−2βm(s)(1 + m(s)) − e2βm(s)(1 − m(s))|s=0 (26)

m(t) = m′

In this case the general solution is a linear combination of the e±2s . Looking at the
right-end condition one gets

m(s) = (m′ − C2e
2t )e2(t−s) + C2e

2s

where C2 is a constant and must be determined by the left-end condition. This can be
done numerically.
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Fig. 2 Cost functional Em′ (m,β,0) and known function 	β,t,m′ (m) for β ′ = 0, and β−1 ≈ 1.744,
t ≈ 0.251

It is possible to match the current approach with the one of [15] by plugging the
solution curves with an initial condition m(0) = m∗ which are given by

m(s) = m∗e2t − m′

e2t − e−2t
e−2s + m′ − m∗e−2t

e2t − e−2t
e2s , s ∈ [0, t] (27)

into the rate function and carrying out the time integral explicitly. This gives

Em′(m,β,0) = H(m) + I (m)

+ 1

4

(

4t + ln

[
1 − m′2

1 − m2

]

+ 2

(
m′ ln

[
R − C1e

−2t + C2e
2t

1 − m′

]

− m ln

[
R − C1 + C2

1 − m

])

+ ln

[
1 − R − 2C1m

′e−2t

1 + R − 2C1m′e−2t
· 1 + R − 2C1m

1 − R − 2C1m

])

where

R = √
1 − 4C1C2, C1 = me2t − m′

e2t − e−2t
, C2 = m′ − me−2t

e2t − e−2t
(28)

In the approach of [15] a related function called 	β,t,m′(m) was obtained by
Hubbard-Stratonovitch transformation, whose minimizers with a given conditioning
(t,m′) correspond to the most probable initial conditions. This provides an opportunity
to check if the results of the present analysis done via path large deviations coincide
with the approach employing the function 	β,t,m′(m).

It is known that the functions 	β,t,m′(m) (3.2) and Em′(m,β,0) have the same set of
extrema (see [22] in a more general context). In Fig. 2 is the plot of these functions (af-



740 V. Ermolaev, C. Külske

Fig. 3 Phase portrait with level curves and ACC, β ′ = 3
2

ter normalization to have zero as a minimum) for the same set of parameters (β,m′, t)
which shows that the minima appear in fact at the same value.

(iii) Let us next turn to the case of interacting dynamics β ′ �= 0. In this case trajectories
can only be obtained numerically. Before we go on, let us discuss in more detail the
geometrical properties of the vector field and the allowed-configurations curve.

3.3 Geometric Interpretation of Euler-Lagrange Vector-Field and Curve of Allowed Initial
Configurations

Since the Euler-Lagrange density j (ϕ(s), ϕ̇(s)) (12) does not contain an explicit dependence
on the time s, the generalized energy given by the Legendre transfrom of (12) is the system’s
first integral of motion

j (ϕ(s), ϕ̇(s)) − ϕ̇(s)jϕ̇(ϕ(s), ϕ̇(s)) = C (29)

This can be rewritten as

e4β ′m(1 − m)2ṁ2 + (1 + m)2ṁ2 + 2e2β ′m(1 − m2)(8 + ṁ2)

(1 + e2β ′m(1 − m) + m)2
= C (30)

and explicitly solved for the velocity

ṁ = ±
√

C + 16e2β ′m(m2 − 1)

(1 − e2β ′m(m − 1) + m)2
(31)

Looking at the integral curves in phase space we get some geometric intuition. Let us go
back to the notion of the ACC (24) on which all possible “allowed” starting conditions
lie. In Fig. 3 there are several ACCs drawn which correspond to different values of β , but
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the same value of the dynamical inverse temperature β ′ = 3
2 , which is relatively low. The

production of discontinuities of the limiting conditional probabilities will be related to the
time-evolution of the curve of allowed initial configurations under the Euler-Lagrange vector
field, as we will describe now.

Let us first give a definition of a bad quadruple of initial temperature, dynamical temper-
ature, time, and final magnetization in terms of dynamical-systems quantities. We start by
defining candidate quadruples making use of the Euler-Lagrange flow in the following way.

Definition 3.1 The quadruple (β,β ′, t,mpb) is called pre-bad iff there exists a pair m0,1 �=
m0,2 of initial magnetizations s.t. the solution of the initial value problem of the Euler-
Lagrange equations started in the corresponding points (m0,1, g(m0,1)) and (m0,2, g(m0,2))

on the allowed-configurations curve for β,β ′ has the same magnetization value mpb at time t ,
that is

m(t;m0,1, g(m0,1)) = m(t;m0,2, g(m0,2)) = mpb

While this first definition refers only to the existence of overhangs of the time-evolved
allowed-configurations curve, the next definition involves also the value of the cost (the
large deviation functional together with the punishment term), which makes it much more
restrictive.

Definition 3.2 The pre-bad quadruple (β,β ′, t,mbad) is called bad iff the two different paths
started at the corresponding m0,1 �= m0,2 are both minimizers for the cost, i.e.

Embad (m0,1, β,β ′) = Embad (m0,2, β,β ′) = inf
m

Embad (m,β,β ′)

We will exploit both definitions both to gain geometric insight as well as numerical results.
The important connection to non-Gibbsian behavior of the time-evolved measure lies in the
fact that mbad of a bad quadruple will (generically) be a bad configuration for γβ,β ′,t (·|m).
Indeed, to see this, let us go back to the explicit expression of the limiting conditional prob-
abilities, given by

γβ,β ′,t (η1|m′) =
∑

σ1=±1 eσ1βm∗(0;m′,t)pt (σ1, η1;m′, t)
∑

σ1,η̃1=±1 eσ1βm∗(0;m′,t)pt (σ1, η̃1;m′, t)
(32)

Note that the function m∗(0;m′, t) is not well defined for m′ = mbad itself since at time
t there are two minimizing paths available, one from m0,1 to mbad and one from m0,2 to
mbad . Varying however around mbad the paths will become unique and we might select the
minimizing paths (and hence their initial points) by approaching the bad configuration from
the right or left, obtaining (say) limm′↓mbad m∗(0;m′, t) = m0,1 and limm′↑mbad m∗(0;m′, t) =
m0,2. Note that we also expect that (generically) limm′↓mbad pt(σ1, η̃1;m′, t) �=
limm′↑mbad pt(σ1, η̃1;m′, t). This follows since the pt are probabilities for two different
single-particle Markov chains, one depending on the path starting from (m0,1, g(m0,1)),
the other one on the path starting from (m0,2, g(m0,2)). We note that, knowing the paths
entering the pt ’s, an explicit formula for pt in terms of time-integrals can be written, and
so, given (numerical) knowledge of the minimizing path, the γβ,β ′,t (η1|m′) can be obtained
by simple integrations. Unless these two discontinuities compensate each other (which is
generically not happening and which can be quickly checked by numerics) we will have that
limm′↓mbad γβ,β ′,t (η1|m′) �= limm′↑mbad γβ,β ′,t (η1|m′). Consequently the model will be non-
Gibbs at the time t .
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Fig. 4 Non-symmetry-breaking mechanism, β ′ = 0, β−1 = 0.8

Conversely, if (β,β ′, t,mpb) is not bad, then m′ �→ γβ,β ′,t (η1|m′) is a continuity point.
This follows since in that case all m′-dependent terms in (32) deform in a continuous way. So
the absence of bad points (and a fortiori the absence of pre-bad points) implies Gibbsianness
at (β,β ′, t).

3.4 Time-Evolved Allowed Initial Configurations

We just saw that non-Gibbsianness is produced by multiple histories which means in other
words the production of overhangs in the time-evolved curve of allowed initial configura-
tions. To get an intuition for this let us discuss the regions (2) and (3) of the main Theorem
in more detail. Let us begin with the phase-space picture for the non-interacting dynamics
β ′ = 0. We are starting with the region (2a) of non-symmetry-breaking non-Gibbsianness
i.e. 2

3 = β−1
SB (β ′ = 0) ≤ β−1 < min{β ′−1

,1} = 1.
The time-evolved allowed-configurations curve for t = tnGS(β,β ′ = 0) is shown at the

left plot of Fig. 4 where it acquires a vertical slope at zero. The right plot shows the time-
evolved allowed-configurations curve for t > tnGS(β,β ′ = 0) where it has two symmetric
overhangs. In particular (β,β ′ = 0, t,m′ = 0) is pre-bad. It is also bad, since the preim-
ages of the upper and lower time-evolved allowed-configurations curve which intersect
the vertical axis have paths with the same cost, by the symmetry of the model. Note that
(β,β ′ = 0, t,m′) is pre-bad for a whole interval of values of m′, but (as the study of the cost
shows and as it was proved in [15]) there are no other bad points. We note that m′ = 0 is
easily checked to be indeed a bad configuration (discontinuity point) of γβ,β ′=0,t (·|m′) since
there are no cancellations of discontinuities in this case, as we will explain now: Indeed,
pt(σ1, η̃1;m′, t) does not depend on the trajectory of the empirical magnetization and is
given by the independent spin-flip at the site 1 between plus and minus with rate 1,

γβ,β ′=0,t (η1|m′) =
∑

σ1=±1 eσ1βm∗(0;m′,t)pt (σ1, η1)
∑

σ1,η̃1=±1 eσ1βm∗(0;m′,t)pt (σ1, η̃1)
(33)

where pt(+,+) = 1
2 (1 + e−2t ), and pt(+,+) = pt(−,−) = 1 − pt(+,−) = 1 − pt(−,+).

So, a discontinuity under variation of m′ is entering the formula only through m∗(0;m′, t),
and hence m′ �→ γβ,β ′=0,t (η1|m′) is discontinuous iff m �→ m∗(0;m′, t) is discontinuous.

Let us now look at region (2b) of symmetry-breaking non-Gibbsianness i.e. β−1 <

β−1
SB (β ′ = 0).

The left plot of Fig. 5 shows the time-evolved allowed-configurations curve at t =
t0(β,β ′ = 0) where it acquires a vertical slope away from zero. The right plot shows the
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Fig. 5 Symmetry-breaking mechanism, β ′ = 0, β−1 = 0.4

Fig. 6 Non-Gibbsianness by periodicity, β ′−1 = 2
3 , β−1 = 0.85

time-evolved allowed-configurations curve for t0(β,β ′) < t < t1(β,β ′) where it has two
symmetric overhangs away from zero. This means that (β,β ′ = 0, t,m′) is pre-bad for a
whole range of values of final magnetizations m′. Due to the lack of symmetry it is not clear
to identify in the picture which of the (β,β ′ = 0, t,m′)’s will be bad. It turns out that it is
precisely one such value (β,β ′ = 0, t,mc), and this can be found looking numerically at the
cost.

Perturbations of these pictures stay true for β ′−1
> 1, where they describe the only mech-

anism of non-Gibbsianness. Perturbations of these pictures also stay true for β ′−1
< 1, but

then there is also the Region 3 of the main theorem which describes the cooling from an
initial low temperature. We choose 2

3 = β ′−1
< β−1 = 0.85 < 1. Then the vector field has

periodic orbits which are intersected by the allowed-configurations curve, and the time-
evolution will create overhangs and smear out the allowed-configurations curve over time.

The left plot of Fig. 6 shows the time-evolved allowed-configurations curve at t =
tper(β,β ′) where it acquires a vertical slope away from zero inside the area of periodic
motion.

The right plot shows the time-evolved allowed-configurations curve for a time t >

t0(β,β ′) where it has overhangs. Again, from the interval of pre-bad points, the bad point
has to be selected by looking at the cost. When time gets larger more overhangs are created
and the trajectory is smeared out. The corresponding potential function m �→ Em′(m,β,β ′)
will acquire more and more local extrema as t increases. Then, by finetuning of the m′ while
keeping the β,β ′, t fixed, equality of the depths of the two lowest minima can be achieved.
Since the number of available minima is increasing with t we conjecture that there will be
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also an increasing number of bad m′s which becomes dense as t increases. To prove this
conjecture however, more investigation is needed.

3.5 Emergence of Bad Points as a Function of Time

The notion of a bad point can be viewed from two different standpoints. A pre-bad point in
the time-space diagram is a point where two (or more) histories collide. If the costs com-
puted along these paths are equal, then a pre-bad point is a bad point. In the phase space this
means that the phase flow transported two (or more) points originally lying on the curve of
allowed initial configurations to the same space-position within equal time but with different
speeds. Two (or more) points have the same space-position if their projections to the m-axis
are equal, as seen in Figs. 4, 5, and 6. How can we identify analytically the first time t where
time-evolved initial points from the curve of allowed initial configurations will obtain the
same projection to the m-axis? As intuition suggests one has to look when the transported
curve of allowed configurations acquires a vertical slope for the first time. This discussion
brings us to the following computation.

Writing v = ṁ for the velocity, let us consider the flow m(t;m0, v0), v(t;m0, v0) of our
system under the Euler-Lagrange equations,

ṁ = v

v̇ = fβ ′(m)
(34)

We take the curve of allowed initial configurations to be transported by the flow v0 =
gβ,β ′(m0) where we write in short f = fβ ′ and g = gβ,β ′ . We are then interested in the
projections to the m-axis of the time-evolved curves in phase space, that is the curves
m0 �→ m(t;m0, g(m0)), as they evolve with t . Restricted to suitable neighboorhoods this
curve becomes a function, and we view it as a potential function with state variable m0 and
parameter t (keeping also β,β ′ as fixed parameters.)

Doing so we see that the derivatives of the flow w.r.t. the initial conditions obey at the
threshold time t that

0 = Fβ ′,β(t,m0) := dm(t;m0, g(m0))

dm0
= ∂m(t;m0, v0)

∂m0
+ ∂m(t;m0, v0)

∂v0
g′(m0)

0 = d2m(t;m0, g(m0))

(dm0)2

(35)

The first equation means that in the (m,v) plane the time-evolved curve will obtain a vertical
slope which is clear by the interpretation of the variable m0 as a parametrization of the curve
of allowed initial configurations.

Moreover we have that the second derivative will also vanish, since a minimum and a
maximum of m0 �→ m(s;m0, g(m0)) collide for s ↓ t , in a fold bifurcation.

3.6 The Threshold Time for Non-symmetry-breaking Non-Gibbsianness for Dependent
Dynamics

We can use these equations to obtain quantitative information about the threshold time for
non-symmetry-breaking non-Gibbsianness also for dependent dynamics. For this it suffices
to look at the dynamics locally around the origin (m, ṁ) = (0,0) in phase space which is a
stationary point for the dynamics independently of β ′.
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Linearizing fβ ′ we get

(
ṁ

v̇

)
=

(
0 1

4(1 − β ′)2 0

)(
m

v

)
(36)

Corrections are only of third order. The eigenvalues of the matrix are λ1,2 = ±2(1 − β ′),
these eigenvalues are real and have different signs, so (m, ṁ) = (0, fβ ′(0)) = (0,0) is a
saddle point. This ensures that the nature of solutions close to (0;0) stays the same whatever
β ′ is taken.

Let us now discuss the phase flow around the origin (0,0). At this point non-Gibbsianness
without symmetry-breaking occurs, by the following argument. Suppose a symmetric pair
of initial conditions (m0, v(m0)) and (−m0, v(−m0)) = (−m0,−v(m0)) is given which has
the same time-evolved magnetization 0 at time t . This corresponds to the fact that the trans-
ported curve will have overhangs at the points (0, v1(m)) and (0,−v1(m)). If we look at the
phase portraits of the dynamics as a function of time we see that for times larger than but
very close to the first time where this occurres the speed v1(m) will be very close to 0. It
converges to 0 when t approaches the transition time for Gibbsianness. Indeed the whole
path was evolving in an arbitrarily small neighborhood of the origin and hence it suffices
to look at the linearized dynamics. We also note that there is no need to look at the cost
functional in this case, due to the symmetry of the paths. As time becomes larger than the
transition-time (as in the right picture of Fig. 4) the intersection points of the time-evolved
curve with the vertical axis will move away from zero and so it would not be sufficient to use
the linearization of the dynamics to compute the relation between bad magnetization values
and time.

Clearly the general solution of the linearized system is

x(s) = C1e
−2(1−β ′)s + C2e

2(1−β ′)s (37)

Putting the initial condition to be (m0, v0) the phase flow becomes

m(s;m0, v0) = 2(1 − β ′)m0 − v0

4(1 − β ′)
e−2(1−β ′)s + 2(1 − β ′)m0 + v0

4(1 − β ′)
e2(1−β ′)s

v(s;m0, v0) = v0 − 2(1 − β ′)m0

2
e−2(1−β ′)s + v0 + 2(1 − β ′)m0

2
e2(1−β ′)s

(38)

Computing the function Fβ ′,β(t,m0) (35) for this phase flow and setting it to zero, we solve
it w.r.t. time t and get

t = 1

4(1 − β ′)
ln

g′(m0) − 2(1 − β ′)
g′(m0) + 2(1 − β ′)

(39)

Putting m0 = 0 we obtain from this for the transition time

t = 1

4(1 − β ′)
ln

β ′ − β

1 − β
(40)

By setting β ′ = 0 for the independent evolution in the last expression, the result t = 1
4 ln(1−

β−1) given in [15] is reproduced. We note that the transition time given by formula (40) is
positive only in the case when β > 1.
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Fig. 7 The upper branch shows
the symmetry-breaking inverse
temperature βSB as a function
of β ′

To identify for which temperature-values the phenomenon of non-Gibbsianness without
symmetry-breaking ends, let us look when the function (40) starts having several minima.
In order to do this we compute the second derivative of (40) and put it equal to zero. This
results in the equation

4β3 + 12ββ ′ − 6β2(1 + β ′) − β ′(3 + 3β ′ − β ′2) = 0 (41)

In the independent-dynamics case β ′ = 0 we get exactly β = 3
2 , which was already found in

the paper [15]. The algebraic curve (41) is plotted in Fig. 7.

3.7 Cooling and Non-Gibbsianness by Periodic Orbits

Let us specialize to the case of a low-temperature dynamics β ′ > 1. In that case the phase
space decomposes into the areas of periodic and non-periodic dynamics. The separatrix is
given by (31) with C = 4.

f±(m) = ±2
(1 + m) − e2β ′m(1 − m)

(1 + m) + e2β ′m(1 − m)
(42)

Note that the curve f+(m) coincides with the curve of the “allowed” configurations (24)
when β ′ = β . This means that it will be stable under the phase flow in that case. In particular
the time-evolved curve will not acquire overhangs which corresponds to the fact that the
time-evolved measure will be invariant under the dynamics and the model Gibbs.

Note also that the negative branch of the separatrix coincides with the right-hand side of
the ODE describing the unconstrained typical evolution (11) and so the intersection point
with the m-axis is given by the biggest solution of the ordinary mean-field equation m =
tanh(β ′m). Let us first concentrate of the existence of pre-bad points, that is different initial
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points of the allowed-configurations curve leading to the same projection to the m-axis after
time t .

Now multiple overhangs are created if the allowed curve of initial configurations inter-
sects the periodic motion area, as seen in Fig. 6. Indeed this part of the curve will perform
periodic motion and while doing so it will acquire more and more overhangs, filling out the
part of the periodic motion area which is bounded by its extremal value of the integral of
motion over time. It is now interesting to note for which temperatures this phenomenon can
happen and this is the content of the following theorem.

Theorem 3.3 (Non-Gibbsianness by periodicity) Suppose β ′ > 1 and let m∗
1(m

∗
2) be the

biggest solution of the mean-field equation for β ′(β). Then the following is true.

1. if 1 < β < β ′ (or equivalently 0 < m∗
2 < m∗

1) holds then

• The curve of allowed initial configurations for β,β ′ has non-zero intersection with the
(open) periodic motion area in phase for β ′.

• Consequently there exists a threshold time tper(β,β ′) such that for all t > tper(β,β ′)
there exists pre-bad (β,β ′, t,m′)s.

2. if 1 < β < β ′ fails, there is either no periodic motion areas, or the curve of allowed-
configurations has no intersection with them.

Proof Denote f = f− (here we take the branch which bounds the periodic motion area from
above), and the curve of the “allowed” configurations by g(x) (here x is used instead of m)
so that we have

f (x) = −2
(1 + x) − e2xβ ′

(1 − x)

(1 + x) + e2xβ ′
(1 − x)

,

g(x) = 2e2β ′x (1 + x) − e2x(β−β ′)(1 − x)

(1 + x) + e2xβ ′
(1 − x)

(43)

Previously it was mentioned that periodic motion arises only in the case β ′ > 1, and so
we will consider this along the proof, also w.l.g. we say that x > 0. Let us show what the
condition 1 < β < β ′ means and its equivalence to 0 < m∗

2 < m∗
1. First, we put f (x) = 0

to determine the right border of the periodic motion area, and we get that it’s given by the
equation

(1 + x) − e2β ′x(1 − x) = 0,

which is equivalent to the mean-field equation for β ′. Second, consider f (x) = g(x) to
determine their intersection point. This is simply

(1 + x) − e2βx(1 − x) = 0,

which is again the same mean-field equation, but for β , where m∗
2 has the same meaning as

before.
The allowed-configurations curve comes into the region of periodic motion and stays

there when the following condition is satisfied

−f ′(x)|x=0 < g′(x)|x=0 < f ′(x)|x=0,
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Fig. 8 Allowed-configurations curve for different β keeping β ′ constant

which turns out to be just equivalent to

−(2β ′ − 2) < 2 − 4β + 2β ′ < 2β ′ − 2 (44)

or 1 < β < β ′. One can get an intuitive understanding of this mechanism from Fig. 8. �

4 Numerical Results: Typical Paths, Bad Configurations, Multiple Histories,
Forbidden Regions

Since the variational problem with fixed endpoint (23) can not be solved in closed form
unless the dynamics is independent, let us now describe some of the key features which are
seen in numerical study.

For given conditioning (β ′, β, t,m′) a solution of (23) with this set of parameters is called
a history curve. Let us first discuss such curves for the example of the independent dynamics.
Figure 9 shows on the right such history curves conditioned to end at time t at m′, for
different values of m′. There is a jump in the optimal trajectory when we change m′ = 0+ to
m′ = 0−. The associated cost functional at m′ = 0, depicted on the left, has two symmetric
minima, and their minimizers are the two possible initial magnetization values. This is an
example of a multiple history scenario. We call the regions showing on the right plot which
cannot be visited by any integral curve forbidden regions.

Figure 10 shows on the right history curves for the independent dynamics with a low
initial temperature smaller than 2

3 where symmetry-breaking in the set of bad configura-
tions takes place. We see on the right two discontinuity points m′ and correspondingly two
components of forbidden regions for the trajectory. The cost functional corresponding to the
positive one of them is depicted on the right. Deformations of these pictures describe the
phenomena for all temperatures of the dynamics, as long as the initial temperature is lower.

Finally, Fig. 11 displays history curves and cost functional at the critical conditioning for
an example of cooling dynamics.
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Fig. 9 Symmetric forbidden regions

Fig. 10 Non-symmetric forbidden region

Fig. 11 Forbidden region for β ′ = 3
2

Next, let us fix β,β ′ and describe the possible change of the set of bad configurations as
a function of the time. Again we look at the independent dynamics first.

The top line of Fig. 12 has an initial temperature in which non-Gibbsian behavior without
symmetry-breaking takes place. In Fig. 12b we see the bad configurations m′ as a function
of the time s which were found numerically depicted by dots. Since m′ = 0 appears at a
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Fig. 12 Bad configurations as function of time (right) and initial points of trajectories (left) β ′ = 0

threshold time and stays to be the only bad configuration from that on, the graph of bad
configurations is just a straight line starting at the threshold time. In Fig. 12a we see the
corresponding initial points of the history curves which are conditioned to end at m′.

The lower line of 12 has an initial temperature for which non-Gibbsian behavior with
symmetry-breaking takes place, in an intermediate time-interval. The right plot shows the
corresponding non-negative branch of bad configurations m′. (By the symmetry of the
model, taking the negative of these one obtains the full set of bad configurations.) The left
plot shows the corresponding initial points of the history curves which are conditioned to
end at the non-negative bad configurations m′ on the right.

Finally, Fig. 13 displays the time-evolution of bad configurations and their initial points
for a low-temperature dynamics. The lowest line corresponds to heating from very low initial
temperature and shows non-Gibbsianness with symmetry-breaking at an intermediate time-
interval. The middle line corresponds to heating from an intermediate lower temperature and
shows non-Gibbsianness without symmetry-breaking. These two mechanisms are known
from high-temperature dynamics. Figures 13a and 13b correspond to cooling and shows
data from the region of periodic orbits.

Applying numerical integration of the Euler-Lagrange equations from initial conditions
chosen on the allowed-configurations curve, check for intersecting trajectories and numeri-
cal computation of the cost function we can get (numerical approximations to) the array of
bad quadruples (β,β ′, t,mpb), augmented by the possible initial points. With this procedure
we rederived the Gibbs-non-Gibbs phase diagram for β ′ = 0 (which was obtained earlier
in [15]). Based on it we can draw the Gibbs-non-Gibbs phase-diagram at any dynamical
temperature β ′. An example for this was presented in the Introduction of the present paper
in Fig. 1 for a fixed low dynamical temperature.
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Fig. 13 Bad configurations as function of time (right) and initial points of trajectories
(left)—low-temperature dynamics β ′ = 3

2
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Appendix

A.1 Sketch of Proof of Unconstrained Path Large Deviation Principle

Let us first consider first a simpler Markov jump process for the magnetization with transi-
tion rates which to not depend on the state m of the process. The corresponding path large
deviation principle can be built up as follows. The first ingredient is the large deviation
principle for the Compound Poisson process.
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Proposition 5.1 Denote by Rt a Poisson process with rate 1. Denote by ξi , i = 1,2, . . . a
sequence of i.i.d. random variables with exponential moment generating function h(λ) =
Eeλξ1 .

Denote by Z(t) = ∑Rt

i=1 ξi the associated Compound Poisson process. Define the rescaled
paths by ZN(t) = 1

N
Z(Nt).

Define

J (v) = sup
λ

(vλ − h(λ)) + 1 (45)

Then, at fixed t , as N ↑ ∞, the distribution of the variable ZN(t) satisfies a LDP in R with
rate function tJ

(
v
t

)
and rate N .

This is a known theorem [1] but it is instructive to see the proof for the sake of completeness.

Proof Let us look at the logarithmic moment generating function N(λ), defined by

eN (λ) := E
(
eZN (t)λ

) =
∞∑

k=0

E
(
e

λ
N

∑k
i=1 ξi

)
e−Nt (Nt)k

k!

= e

(
−Nt+Nth

(
λ
N

))

(46)

Recall the Gärtner-Ellis theorem (Theorem 2.3.6. in [1], p. 44) which states the following.
Assume that limN

1
N

N(Nλ) =: (λ) exists. Then the distribution of the variable ZN(t)

satisfies a LDP on R with rate function ∗(v), which is the Fenchel-Legendre transform
of (λ). In our case we have equality even at finite N of the form (λ) = 1

N
N(Nλ) =

t (h(λ) − 1) and the Legendre transform gives

∗(v) = sup
λ

(vλ − t (h(λ) − 1)) = tJ

(
v

t

)
(47)

So the theorem follows. �

In the next step we go from one-dimensional large deviations to large deviations of finite-
dimensional marginals in the path space of the Compound Poisson process. This way of
arguing corresponds to [1] Lemma 5.1.8, p. 178, which is a step to prove Mogulskii’s theo-
rem. Recall that Mogulskii’s theorem states that the paths of empirical averages of the form
1
N

∑�Nt�
i=1 ξi satisfy a LDP.

Proposition 5.2 For any decomposition B = {0 < t1 < t2 < · · · < tk ≤ t} of the time-interval
[0, t] and path f : [0, t] → R denote by πBf the projection

πBf = (f (t1), f (t2), . . . , f (tk)) (48)

Then the corresponding image measures πB(PN) = PN ◦ π−1
B of the rescaled Compound

Poisson process satisfy a large deviation principle in R
k with rate N and rate function

JB(z1, . . . , zk) = t1J
(z1

t1

)
+ (t2 − t1)J

(z2 − z1

t2 − t1

)
+ · · · + (tk − tk−1)J

(zk − zk−1

tk − tk−1

)
(49)

where J is defined in (45).
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The proof follows from putting together the result for the one-dimensional distributions as
above. From here one gets the analogue of Mogulskii’s theorem (see [1] Theorem 5.1.2,
p. 176).

Theorem 5.3 Denote by PN the law of the rescaled paths by ZN(s) = 1
N

Z(Ns) of the
Compound Poisson process as above, for 0 ≤ s ≤ t .

Then the measures PN satisfy a large deviation principle with rate N and rate function
given by the Lagrange functional L(ϕ) = ∫ t

0 J (ϕ̇(s))ds where J is defined in (45).

We do not give a full proof here, but note that it follows by taking a supremum over the
finite decompositions, and invoking the Dawson-Gärtner theorem, as explained in [1].

Up to this moment we have only treated the Compound Poisson process with constant
rates, which is not the case here, since we consider state-dependent spin-flip dynamics,
meaning state-dependent rates. We need to justify rigorously that we can replace the con-
tribution to the integral over the Lagrangian density for the infinitesimal time-interval ds of
the form j (ϕ̇(s))ds by a term jβ ′(ϕ(s), ϕ̇(s))ds if the transition rates of the Markov chain
depend on the state ϕ(s). In order to do that a comparison result is needed which compares a
Markov chain with constant rates with the original Markov chain with state-dependent (but
bounded) rates on the level of the logarithm of the exponential moment generating function,
on small time-intervals. We are grateful to Frank Redig for communicating the following
result to us which is an essential ingredient. Informally, the following lemma states that a
jump process zN(t) on the discrete space with constant jump-up, jump-down rates c± does
not differ much from a process mN(t) with state-dependent rates c±(mN(t)) when the time
interval [0,�t], where both processes are considered, is sufficiently small and N is suffi-
ciently large. This is due to the fact that the state of mN(�t) cannot change a lot if �t is
small and N is large. At small times mN(t) can make not much more jumps than N�t jumps
of a small height, therefore the state-dependent rates c±(mN(0)) and c±(mN(�t)) will not
vary much.

Lemma 5.4 (F. Redig’s useful lemma) Denote by zN(t) the Markov process on the discrete
space {−1,−1 + 2

N
, . . . ,1 − 2

N
,1} started at m0 with constant non-zero rates c±(m0) to go

up of down by one step, and by mN(t) the true process started at the same point m0 with
state-dependent rates c±(m) given by (9). Then

lim
t↓0

1

t
sup
m

lim sup
N↑∞

1

N
log

E expNλzN(t)

Em expNλmN(t)
= 0 (50)

The full proof will appear elsewhere, along with generalizations to more general local
state spaces. Employing the lemma and going through suprema over finite partitions again,
the proof of Theorem 2.1 is obtained where we still need to identify the form of the La-
grangian density. Let us start again with a Compound Poisson process with jumps of size 2
with the distribution P (ξ1 = 2) = p,P (ξ1 = −2) = 1 −p where p is fixed in the beginning.
If we denote again h(λ) = Eeλξ1 and J (v) = supλ(vλ − h(λ)) + 1 we have that

Jp(v) = v

2
ln

(
v + √

16p − 16p2 + v2

4p

)
− 1

2

√
16p − 16p2 + v2 + 1 (51)

as a solution of a quadratic equation shows. Choosing the rates in the rescaled Compound
Poisson process to go up by 2

N
(or down by − 2

N
) to match the rates in the generator L̂β ′,N
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we are led to choose

pβ ′(m) = e2β ′m(1 − m)

e2β ′m(1 − m) + (1 + m)
(52)

and this explains the form of the Lagrangian density Jβ ′(m,v) ≡ Jpβ′ (m)(v), after a small
computation. This concludes our treatment of the proof. �

A.2 Free End-Condition

To obtain the necessary condition (22) for an extremum of the variational problem

ϕ �→ H(ϕ(0)) + I (ϕ(0)) + Jβ ′(ϕ) (53)

with ϕ(t) = m′, use the standard procedure in calculus of variations adapted to the problem
with a free left end: Consider a perturbation ϕ(s) + ε�ϕ(s) around the extremum ϕ(s),
with a function �ϕ(s) obeying the constaint �ϕ(t) = 0 at the end-point but no constraint
on �ϕ(0) at the initial point. Plug ϕ(s) + ε�ϕ(s) into (53), expand to linear order in ε,
and demand that the terms proportional to ε vanish. Using partial integration under the s-
integral one arrives at the Euler-Lagrange equation for s in the interval between 0 and t , and
the additional free end condition at the initial point, the latter one following by demanding
that the terms proportional to �ϕ(0) have to vanish.

Alternatively, the problem can be reformulated in terms of a problem with different La-
grange density but without initial punishment term, via incorporation of the initial term into
the integrand. From here, we refer to [11] where free-end problems are discussed.

A.3 Hamiltonian and Lagrangian Formalism

Following a suggestion of a referee, let us remark that, as an alternative to the derivation in
terms of approximations by compound Poisson processes, the form of the Lagrangian can
also be obtained going through the formalism of [10], see Chap. 1.4. Let us briefly sketch
this procedure for the convenience of the reader. The jump process for the magnetization
has a generator

ANg(m) = N

(
pβ ′(m)

(
g

(
m + 2

N

)
− g(m)

)
+ (1 − pβ ′(m))

(
g

(
m − 2

N

)
− g(m)

))

=: N

∫ (
g

(
m + z

N

)
− g(m)

)
η(m,dz) (54)

with pβ ′(m) given by (52). This generator is of the form treated in [10] with the obvious
identification of η(m,dz). From here one defines an operator Ĥ by the corresponding action
on functions f of the magnetization of the form

(Ĥf )(m) =
∫

(ef ′(m)z − 1)η(m,dz)

= pβ ′(m)(e2f ′(m) − 1) + (1 − pβ ′(m))(e−2f ′(m) − 1) (55)
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Following the formalism and replacing f ′(m) by a momentum variable λ one defines the
corresponding governing Hamiltonian function H(m,λ) (or generalized energy) of the dy-
namics (not to be confused with the spin-Hamiltonian)

H(m,λ) = pβ ′(m)(e2λ − 1) + (1 − pβ ′(m))(e−2λ − 1) (56)

Performing a Legendre transform we arrive at the Lagrangian density

jβ ′(m, ṁ) = sup
λ

(
λṁ − H(m,λ)

)

which governs the path large deviations (as stated in [10], p. 12). This procedure was also
employed for explicit computations in the infinite-temperature case in [3]. It is a computa-
tional exercise to verify that this approach reproduces the form of the Lagrangian density
previously given. Note also that the integral of motion we introduced in (29) is identical to
the generalized energy H(ϕ(s), ϕ̇(s)).

Let us remark that the study of the corresponding Hamiltonian-Jacobi equations is equiv-
alent to the study of the Euler-Lagrange equations.

References

1. Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications. Springer, Berlin (2010)
2. van Enter, A.C.D., Fernández, R., Den Hollander, F., Redig, F.: Possible loss and recovery of Gibbsian-

ness during the stochastic evolution of Gibbs measures. Commun. Math. Phys. 226(1), 101–130 (2002)
3. van Enter, A.C.D., Fernández, R., den Hollander, F., Redig, F.: A large-deviation view on dynamical

Gibbs-non-Gibbs transitions. Moscow Math. J. arXiv:1005.0147 (2010, to appear)
4. van Enter, A.C.D., Fernández, R., Sokal, A.D.: Regularity properties and pathologies of position-space

renormalization-group transformations. J. Stat. Phys. 72, 879–1167 (1993)
5. van Enter, A.C.D., Külske, C.: Two connections between random systems and non-Gibbsian measures.

J. Stat. Phys. 126(4), 1007–1024 (2007)
6. van Enter, A.C.D., Külske, C., Opoku, A.A., Ruszel, W.M.: Gibbs-non-Gibbs properties for n-vector

lattice and mean-field models. Braz. J. Probab. Stat. 24, 226–255 (2010)
7. van Enter, A.C.D., Le Ny, A., Redig, F. (eds.): Proceedings of the Conference Gibbs Versus Non-Gibbs in

Statistical Mechanics and Related Fields, December 2003, EURANDOM, Eindhoven, The Netherlands.
Markov Proc. Relat. Fields 10 (2004)

8. van Enter, A.C.D., Ruszel, W.M.: Gibbsianness versus Non-Gibbsianness of time-evolved planar rotor
models. Stoch. Process. Appl. 119(6), 1866–1888 (2009)

9. Fernández, R.: Gibbsianness and non-Gibbsianess in lattice random fields. In: Bovier, A., Dalibard,
J., Dunlop, F., van Enter, A., den Hollander, F. (eds.) Proceedings of Les Houches Summer School
LXXXIII, Mathematical Statistical Physics, pp. 731–798. Elsevier, Amsterdam (2006)

10. Feng, J., Kurtz, T.G.: Large Deviations for Stochastic Processes. Mathematical Surveys and Monographs,
vol. 131. American Mathematical Society, Providence (2006)

11. Gelfand, I.M., Fomin, S.V.: Calculus of Variations, translated by R.A. Silverman. Dover, New York
(2000)

12. Griffiths, R.B., Pearce, P.A.: Mathematical properties of position-space renormalization-group transfor-
mations. J. Stat. Phys. 20(5), 499–545 (1979)

13. Häggström, O., Külske, C.: Gibbs properties of the fuzzy Potts model on trees and in mean field. Markov
Process. Relat. Fields 10(3), 477–506 (2004)

14. Külske, C.: Analogues of non-Gibbsianness in joint measures of disordered mean field models. J. Stat.
Phys. 112(5), 1079–1108 (2003)

15. Külske, C., Le Ny, A.: Spin-flip dynamics of the Curie-Weiss model: Loss of Gibbsianness with possibly
broken symmetry. Commun. Math. Phys. 271(2), 431–454 (2007)

16. Külske, C., Le Ny, A., Redig, F.: Relative entropy and variational properties of generalized Gibbsian
measures. Ann. Probab. 32(2), 1691–1726 (2004)

17. Külske, C., Opoku, A.A.: The posterior metric and the goodness of Gibbsianness for transforms of Gibbs
measures. Elect. J. Probab. 13, 1307–1344 (2008)

http://arxiv.org/abs/arXiv:1005.0147


756 V. Ermolaev, C. Külske

18. Külske, C., Opoku, A.A.: Continuous mean-field models: limiting kernels and Gibbs properties of local
transforms. J. Math. Phys. 49, 125–215 (2008)

19. Külske, C., Redig, F.: Loss without recovery of Gibbsianness during diffusion of continuous spins.
Probab. Theory Relat. Fields 135(3), 428–456 (2006)

20. Le Ny, A.: Introduction to (generalized) Gibbs measures. Ensanios Mat. 15, 1–126 (2008)
21. Le Ny, A., Redig, F.: Short time conservation of Gibbsianness under local stochastic evolutions. J. Stat.

Phys. 109(5), 1073–1090 (2002)
22. Opoku, A.A.: On Gibbs measures of transforms of lattice and mean-field systems. PhD thesis, Rijksuni-

versiteit Groningen (2009)
23. Salinas, S.R., Wreszinski, W.F.: On the mean-field Ising model in a random external field. J. Stat. Phys.

41(1), 299–313 (1985)
24. Redig, F., Roelly, S., Ruszel, W.M.: Short-time Gibbsianness for infinite-dimensional diffusions with

space-time interaction. J. Stat. Phys. 138, 112–1144 (2010)


	Low-Temperature Dynamics of the Curie-Weiss Model: Periodic Orbits, Multiple Histories, and Loss of Gibbsianness
	Abstract
	Introduction
	The Model at Time t=0
	The Dynamics
	The Notion of Gibbsianness for Mean-Field Models
	Main Theorem
	Strategy of Proof and Phase-Space Picture
	Acknowledgements

	Path Large Deviation Principle and Limiting Conditional Probabilities
	Phase-Space Geometry and Multiple Histories
	Euler-Lagrange Equations and Curve of Allowed Initial Configurations
	Typical Paths for Independent Time-Evolution
	Geometric Interpretation of Euler-Lagrange Vector-Field and Curve of Allowed Initial Configurations
	Time-Evolved Allowed Initial Configurations
	Emergence of Bad Points as a Function of Time
	The Threshold Time for Non-symmetry-breaking Non-Gibbsianness for Dependent Dynamics
	Cooling and Non-Gibbsianness by Periodic Orbits

	Numerical Results: Typical Paths, Bad Configurations, Multiple Histories, Forbidden Regions
	Open Access
	Appendix
	Sketch of Proof of Unconstrained Path Large Deviation Principle
	Free End-Condition
	Hamiltonian and Lagrangian Formalism

	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


