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Filtering of Interferometric SAR Phase Images
as a Fuzzy Matching-Pursuit Blind Estimation
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We present an original application of fuzzy logic to restoration of phase images from interferometric synthetic aperture radar (In-
SAR), which are affected by zero-mean uncorrelated noise, whose variance depends on the underlying coherence, thereby yielding
a nonstationary random noise process. Spatial filtering of the phase noise is reccommended, either before phase unwrapping is
accomplished, or simultaneously with it. In fact, phase unwrapping basically relies on a smoothness constraint of the phase field,
which is severely hampered by the noise. Space-varying linear MMSE estimation is stated as a problem of matching pursuit, in
which the estimator is obtained as an expansion in series of a finite number of prototype estimators, fitting the spatial features of
the different statistical classes encountered, for example, fringes and steep slope areas. Such estimators are calculated in a fuzzy
fashion through an automatic training procedure. The space-varying coefficients of the expansion are stated as degrees of fuzzy
membership of a pixel to each of the estimators. Neither a priori knowledge on the noise variance is required nor particular signal
and noise models are assumed. Filtering performances on simulated phase images show a steady SNR improvement over conven-
tional box filtering. Applications of the proposed filter to interferometric phase images demonstrate a superior ability of restoring
fringes yet preserving their discontinuities, together with an effective noise smoothing performance, irrespective of locally varying
coherence characteristics.

Keywords and phrases: adaptive filtering, blind estimation, coherence, fuzzy logic, interferometric synthetic aperture radar, phase
noise filtering.

are multiplied by the coregistered complex conjugate pixels
of the other, then the phase of the resulting product image

Synthetic aperture radar (SAR) enables imaging of the Earth
by processing microwave backscattering data collected along
the flight path of an airborne or spaceborne platform. This
results in high-resolution images of the local complex ground
reflectivity. Given two SAR images obtained from slightly dif-
ferent flight paths, if the complex-valued pixels of one image

constitutes a SAR interferogram [1, 2]. The significance of
this phase image is that it contains information on terrain
height. Proper processing yields the so-called digital eleva-
tion model (DEM), which represents the topography of the
terrain.
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The key problem in obtaining the DEM lies in the fact
that measured phase differences are given as a wrapped phase
field of principal values with range —7 to 7, thereby being
undetermined within multiples of 27. It is necessary to per-
form a 2D phase unwrapping operation [3, 4] to remove
phase jumps between neighboring pixels larger than 7 by
adding or subtracting multiples of 27, so that the resulting
distribution can be considered as samples of an underlying
smooth function [5]. A major challenge of 2D phase unwrap-
ping stems from the fact that the noise corrupting the phase
field, due to, for example, temporal and/or baseline decor-
relation [6], introduces local inconsistencies of the data re-
ferred to as residues [7]. Any phase unwrapping algorithm
is sensitive to the presence of residues which make contour
integrations of phase gradient path-dependent [7]. Residues
are the visible effect of discontinuities of the underlying (ab-
solute, unknown) phase field on the wrapped phase, and
derive from localized inconsistencies in the vector field ob-
tained by wrapping the gradient of the wrapped phase field,
that is, the instantaneous frequency [8]. Such inconsistencies
make the latter field locally rotational, so that it cannot be
considered as the gradient of a scalar field, that is, the ab-
solute phase. To restore the previously mentioned “wrapped
gradient” field, making it irrotational, and thus integrable to
yield the absolute phase, residues have to be “corrected.” This
is achieved by introducing integer cycle additions to the esti-
mated gradient [9]. What causes residues to occur on InSAR
data is both noise, intended as local random errors in the
phase estimation, which can be due, for example, to decor-
relation or thermal sensor noise, as well as actual disconti-
nuities in the underlying phase field [10]. These can be gen-
erated, for example, by strong topographic variations, or lo-
cally unfavorable geometric acquisition parameters (shadow-
ing, layover, etc.).

Once the noise sensitivity of 2D phase unwrapping al-
gorithms has been recognized, it would be useful to remove
noise from the measured interferogram before processing it
further. The main concern must be spatial resolution preser-
vation and accuracy of the subsequent phase unwrapping
step. Other requirements are, obviously, affordable compu-
tational complexity, robustness, and ease of use. Advantage
of a preprocessing scheme is that existing phase unwrapping
algorithms can be used without any modification.

Unless knowledge of the nonplanar scene topography
is exploited for mitigating geometrical decorrelation effects
[11], the most straightforward approach to interferogram
noise filtering is to consider it as an image processing prob-
lem. That is, a noise-suppressing transformation is sought
that maps real-valued images onto real-valued images. Such
a transformation will be in general adaptive, that is, depen-
dent on the data it operates on. From the nature of the dif-
ferential phase data, it is clear that finding a transformation
that can preserve resolution of the data and accuracy of the
phase unwrapping is a hard task. The fringes (lines of dis-
continuity) in the data should not be affected with respect to
their location, sharpness, and jump height, ruling out linear
lowpass filtering techniques that may lead to severe distor-
tion. Lee’s refined filter [12], widely used for despeckling SAR

reflectivity images with improved geometrical adaptivity and
texture preservation, has been adjusted to filter out InSAR
phase noise [13]. The latter exploits a 9 X 9 split window fea-
turing 16 directional subwindows, to capture locally homo-
geneous neighborhoods in which a local-statistics filtering is
performed. Following more recent approaches, it has been
demonstrated that modeling of the second-order statistics of
the phase image by using complex-valued Markov random
fields (CMRFs) may help the subsequent unwrapping step
[14]. MRFs have also been used for restoration of the phase
field [15]. Furthermore, an interferogram typically exhibits
structures on different scales due to varying fringe density.
This suggests that multiresolution techniques might be prof-
itably employed, for both phase denoising [16] and unwrap-
ping [17].

The first-order statistics of the interferometric phase im-
ages have been characterized by a probability density func-
tion (PDF) based on the circular Gaussian assumption [18].
For noise reduction, multilook processing is frequently im-
plemented by coherently averaging neighboring pixels [1]. It
has been proven [19] that the multilook phase noise has a
hypergeometric PDF and that the phase noise standard de-
viation depends on coherence [20, 21] and number of looks.
More exactly, it is either a decreasing function of the coher-
ence for a given number of looks, or a decreasing function
of the number of looks for a given nonzero coherence. Fur-
thermore, the actual number of independent looks is usually
smaller than the number of samples averaged [22], for exam-
ple, due to preprocessing of raw data before focusing. When
coherence is null, the noise level is theoretically indepen-
dent of the number of looks [19]. Thus, the noise level varies
across the image in an inhomogeneous form, according to
coherence values, thereby making model-based denoising a
nontrivial problem.

Estimation of a noise-free image from its corrupted ob-
servation is usually achieved as a weighted combination of
the output of two or more pixel estimators, for example,
spatial average and pixel level itself, with weights summing
to one and adaptively calculated from the noise model pa-
rameters and from the local statistics of the noisy image, in
such a way to yield, for example, a minimum MSE (MMSE)
estimate [23, 24]. MMSE estimate, however, is achieved to
the extent by which the parametric noise model is known,
and space-varying statistics are approximated by local sam-
ple statistics. Such an ergodicity assumption may not hold on
edges, thereby leading to poor filtering.

In this work, the problem of phase noise reduction is
approached as a blind estimation. According to this term,
the underlying signal and noise models may be contextually
learned and used to drive a model-based filtering. Alterna-
tively, the denoising algorithm may not be based on a partic-
ular model, thereby overcoming the limitations of a model
that is either unknown or crucial to estimate. Fuzzy logic
provides useful tools to design a blind estimator. The pro-
posed fuzzy matching-pursuit (FMP) filtering does not re-
quire “a priori” knowledge on the noise variance and model,
either signal-dependent or not. Only the window sizes and
number of prototype estimators must be specified. Besides its
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FiGURE 1: Flowchart of fuzzy matching-pursuit (FMP) adaptive filtering procedure.

outstanding performances—both visual and SNR—for filter-
ing of simulated noise [25], preliminary results of interfero-
metric SAR (InSAR) phase noise filtering seem to be promis-
ing as well [26].

The paper is organized as follows. Section 2 describes the
various steps of the procedure. Section 3 reports experimen-
tal results on simulated interferograms, varying with coher-
ence level, and on a true InSAR phase image; advantages over
conventional box filtering are demonstrated. Concluding re-
marks are drawn in Section 4.

2. MATCHING-PURSUIT FILTERING SCHEME

Matching pursuit (MP) is an iterative method to expand a
signal by using an overcomplete dictionary of nonorthog-
onal functions [27]. Although MP has been recently em-
ployed mostly for video coding [28], its original formulation
is quite general. Under this perspective, we assume that the
unknown MMSE adaptive estimator at the current pixel po-
sition may be expressed as a series expansion of a “dictio-
nary” made of a number of estimators fitting the different
classes of spatial features occurring throughout the image.
Given the ambiguous or “fuzzy” nature of the problem, the
coefficients of the expansion are taken not as scalar products,
as for the conventional formulation of MP [27], but as de-
grees of membership of that pixel to the estimators of the dic-
tionary.

According to the flowchart shown in Figure 1, the filter-
ing procedure can be summarized as follows. Images are first
partitioned into square blocks, for example, 16 X 16, and an
MMSE linear estimator is calculated for each block. From the
large number of estimators obtained, a fuzzy clustering al-
gorithm produces an initial guess of a user-specified num-
ber of prototype estimators that are delivered to an itera-
tive procedure, in which firstly to each estimator pixels are
given degrees of membership measuring the fitness of es-
timation. Then, estimators are recalculated from pixels de-
pending on their degree of membership. The overall estima-
tion will be fuzzy, being given by the sum of the output of
each estimator weighted by the memberships of the current
pixel to that estimator. The linearity of estimation makes it
possible to state the above problem as an approximation of
the unknown space-varying MMSE estimator at each pixel,
achieved through its projection onto a set of nonorthogonal
prototype estimators capable to embody the statistical prop-
erties of the data.

Let g(n) = f(n) + v(n) denote a noisy observation of the
noise-free image f(n). The v(n) is a noise term assumed to
be zero-mean and spatially uncorrelated, yet possibly signal-
dependent and nonstationary. If f is nonstationary, signal
dependence of v usually implies its nonstationarity. The vari-
ance of v may be unknown and not straightforwardly mea-
surable. The MMSE estimate of f is the conditional expecta-
tion of the noise-free signal to the noisy observed signal [24],
thatis, E[ f | g]. To derive a solution of the problem, assump-
tions are usually made on the noise model, as well as on the
signal, for example, for a maximum a posteriori (MAP) esti-
mation of speckle-free SAR reflectivity [29, 30].

In this work, a spatial estimation for the pixel # is based
on a linear combination of surrounding pixels lying within
a noncausal square neighborhood of radius R of the cur-
rent pixel n, N&(n), which does not comprise the pixel n.
The subscript o indicates a neighborhood of radius R ac-
cording to L., metrics. Thus, the estimation support has size
S=(Q2R+1?2-1.

Let y(n) = {yi(n),y2(n),...,ys(m)}7, yi(n) = g(k),
k € NR(n) | II(k) — (n)ll, = & < Oks1. The term & in-
dicates the distance of the kth pixel to the center. Thus, 1/7(71)
denotes the vector containing the levels of the S samples ly-
ing within N2(n), sorted for increasing Buclidean distance
from the current pixel 7. On image edges, y(n) is padded
with replicas of the nearest samples.

Letalso ¢ = {¢r € R, k = 1,...,87 (5., ¢ = 1)
denote the vector comprising the S coefficients of a linear es-
timator operating on the support NR(n). Thus, a linear esti-
mation for f(n) is defined as

S
fn)=> ¢ w(n) = ($,y(n)) (1)
k=1

in which (-, -) indicates scalar (inner) product.

Since a unique linear estimator may be inadequate to
the space-varying nature of the image data, a set of linear
estimators is initialized, trained, and used to achieve a pixel-
adaptive estimation.

2.1. Initialization

The determination of the dictionary of estimators for the
matching pursuit is the key to the success of the restoration
process. It starts from observing that patterns of pixel val-
ues occurring within NR(n) reflect local spatial features of
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the image, for example, edges, textures, and shadings. An ef-
ficient estimation should be capable to embody and reflect
such features as much as possible.

After preliminarily partitioning the image into blocks of
size L X L, typically 8 X 8 or 16 X 16, a noncausal estimation
support of size S is set, and the S coefficients of an MMSE
linear estimator are calculated for each block by means of a
standard least-squares (LS) algorithm [24]. Specifically, if B
denotes one block of the partition, the LS algorithm is given
the pairs {(1/7(n),g(n)) | n € B} to yield the related estima-

tor ¢p. The rationale is that since g(n) = f(n) + v(n) and
the uncorrelated noise v(n) cannot be predicted, the MMSE
estimation of g(n) will in principle coincide with f(n).

The above process produces a large number of estima-
tors, each optimized for a single block. The S coefficients
of each estimator are arranged into an S-dimensional space.
More exactly, since the coefficients of any estimator sum to
one, all estimators lie on the hyperplane passing through
the unity-norm vectors of the coordinate axes. It can be no-
ticed that statistically similar blocks exhibit similar estima-
tors. Thus, the estimators found previously tend to cluster
on the hyperplane, instead of being uniformly spread.

A user-provided number M of representative estimators
is identified by a fuzzy clustering procedure. Such “domi-
nant” estimators are calculated as centroids of as many clus-
ters in the estimators space, according to a vector Euclidean
metric. BezdeK’s fuzzy C means (FCM) algorithm [31, 32] was
used (with exponent m = 1.1) because it yields centroids that
speed up convergence of the subsequent training.

Thus, an S X M matrix ®© = {¢%, m = 1,..., M} con-
taining the coefficients of the M estimators is produced. The
superscript (0) highlights that such estimators are startup
values of the iterative refinement procedure which will yield
the “dictionary” of estimators for matching pursuit.

2.2. Training of estimators

The M estimators found out through fuzzy clustering are
used to initialize an iterative training procedure in which
firstly pixels are given degrees of membership to the estima-
tors. Then, each estimator is recalculated based only on those
pixels whose membership to it exceeds a specified threshold
u. The above procedure is analogous to a relaxation labeling
[33], in which the labeling is not crisp but fuzzy.

2.2.1.

The choice of the membership function is extremely cru-
cial for the performance. Such a function should reflect the

ability of an estimator to yield an estimate f(n) as close as
possible, apart from the unpredictable white noise term v(n),
to g(n) that is as close as possible to f(n), v(n) having zero
mean. A suitable fuzzy membership function of the nth pixel
to the mth estimator was devised as the reciprocal of the
weighted squared estimation error, produced by the mth esti-
mator on a noncausal neighborhood of #, raised to an empir-
ical exponent y, and incremented by one to avoid divisions
by zero. The noncausal neighborhood adopted is still square
and, thus, uniquely defined by its radius R’ in L, metrics.

Membership function

My = NX will be referred to as membership support in the
following. The weighted squared estimation error produced
by the mth estimator on the nth pixel is defined as

_ Skenten & - [8K) = ($m yi(K)) |
zkEMRr 6};1 .

The weight of each squared estimation error is taken to be in-
versely proportional to the distance §; from the current pixel
n. Thus, closer neighbors will contribute more than farther
ones. The weighted squared error (2) is normalized to the
sum of its weights. Thus, its magnitude is roughly indepen-
dent of the neighborhood size.

The membership of the nth pixel to the mth estimator
will be

dy,(n) (2)

1

Ol = T

(3)

As a matter of fact, (3) measures the capability of (/;m to esti-
mate the gray levels of the closest neighbors of the current

pixel n. It can be inferred as the ability of qgm to estimate
f(n), that is, to yield E[f(n) | g(k)], k € NE.If the out-
puts of the mth estimator exactly fit the gray levels within the
membership support of , then dZ () will be zero, and hence
Un(n) = 1. The membership exponent y rules the degree of
fuzziness of the membership function; it is adjusted empiri-
cally and the value y = 2 will be used throughout.

Since the fuzzy membership will be used to measure a
projection, same as a scalar product, the absolute membership
given by (3) is normalized to yield a relative membership

Un(n)
er\n/I:1 Up(n)

suitable for a probabilistic clustering.

Un(n) = (4)

2.2.2. [terative refinement of estimators

Step 0. For each pixel n, calculate initial membership array,
Uy(y?)(n), m = 1,..., M, from initial set of estimators ®© =
{ Tnﬁ)), m = 1,...,M} by using (2), (3), and (4); set iteration

step i = 0 and membership threshold y.

Step 1. Recalculate estimators { »(y:'l*»l), m = 1,...,M} from
those pixels whose membership U (n) exceeds u; weight by
Ur(rf)(n) the contribution of the pair of values (1/7(n),g(n)) to
g[;,giﬂ) in the LS algorithm.

Step 2. For all pixel n, calculate memberships to estimators,
U,Siﬂ)(n), m=1,...,M.

Step 3. Convergence check; if OK, stop; else, increment i by
1 and go to Step 1.

Convergence is checked by thresholding the MSE be-
tween the current estimated image and the estimated im-
age at the previous iteration. The standard LS algorithm has
been modified to account for the memberships of pixels to
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(c)

(d)

FIGURE 2: Filtering tests on simulated noisy interferograms: (a) original wrapped phase map (512 x 512); (b) one-look noisy interferogram,
with coherence values 0.3, 0.5, 0.7, 0.9, counter-clockwise from top left quadrant; (c) 7 x 7 FMP filtering; and (d) 7 X 7 box filtering.

estimators at the previous iteration. Pixels having larger de-
grees of memberships to an estimator will contribute to that
estimator more than pixels having smaller degrees. Further-
more, depending on the threshold g, a pixel may contribute,
though to different extents, to more estimators, in the fuzzy-
logic spirit. The membership threshold y is noncrucial for
performances. The value ¢ = 0.1 will be used throughout.

2.3. Fuzzy matching-pursuit estimation

By the linearity of estimation, a weighted sum of the outputs
of estimators is equal to the output of a linear combination
of the same estimators with the same weights, that is, to cal-
culate an adaptive estimator at every pixel,

M
p(n) 2 > Un(n) - ¢ (5)
m=1

in which the weights are still provided by U,,(n), that is, (4),
with (2) calculated from the estimators {(/;m, m=1,...,M}
after the last iteration stage. The estimator (5) yields the
adaptive linear estimation as f(n) = (([;(n), v(n)). Equiva-
lently, each pixel value f(n) can be estimated as a soft switch-
ing, that is, a blending of the outputs of all the estimators,

which are defined as
(1) = (> /() (6)

with the fuzzy estimation, f(n), given by
~ M ~ ~
f(n) =2 Un(n) - fu(n). (7)
m=1

3. EXPERIMENTAL RESULTS
3.1. Simulated InSAR phase images

One-look interferograms have been generated starting from
two phase maps, having different slopes, and white Gaussian
variables cross-correlated by the desired amount of coher-
ence, following the procedure described in [7]. Such inter-
ferograms exhibit either broad fringes (10 phase jumps) or
tight fringes (20 jumps). The latter are obviously more crit-
ical for what concerns phase restoration. The original phase
map with tight fringes and a mosaic of the related noisy phase
maps, with coherence varying in [0.3,0.9] at steps of 0.2, are
portrayed in Figures 2a and 2b, respectively. Noise level is in-
versely related to coherence values, as expected.
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TaBLE 1: MSE between original noise-free wrapped phase map (with broad fringes) and filtered one-look interferograms, varying with

processing window size and coherence |p,|.

Broad fringes lpcl = 0.9 lpc| = 0.7 lpcl = 0.5 lpc| = 0.3 Average
FMP (3 x 3) 0.0064 0.0202 0.0599 0.2103 0.0742
FMP (5 x 5) 0.0058 0.0184 0.0541 0.1861 0.0661
FMP (7 x 7) 0.0043 0.0121 0.0328 0.1017 0.0377
Box (3 x 3) 0.0374 0.1417 0.4710 1.1774 0.4565
Box (5% 5) 0.0129 0.0431 0.1353 0.5104 0.1754
Box (7 X 7) 0.0066 0.0218 0.0642 0.2361 0.0822
Unfiltered 0.4859 1.1735 1.7809 2.3602 1.4481

TaBLE 2: MSE between original noise-free wrapped phase map (with tight fringes) and filtered one-look interferograms, varying with pro-

cessing window size and coherence |p.|.

Tight fringes lpcl = 0.9 lpcl = 0.7 lpcl = 0.5 lpc| = 0.3 Average
FMP (3 x 3) 0.0147 0.0488 0.1582 0.5807 0.2004
FMP (5 x 5) 0.0080 0.0254 0.0726 0.2676 0.0932
FMP (7 x 7) 0.0083 0.0238 0.0608 0.2015 0.0735
Box (3 x 3) 0.0390 0.1500 0.4742 1.2218 0.4713
Box (5 X 5) 0.0140 0.0470 0.1478 0.5712 0.1948
Box (7 X 7) 0.0078 0.0259 0.0784 0.3029 0.1036
Unfiltered 0.4861 1.1736 1.7780 2.3790 1.4526

FiGure 3: Topographic fringes of Mount Etna, Italy, from ERS-1/2
Tandem Mission: original (1024 x 1024, 4-look coherent average
along azimuth of complex interferogram).

Spatial filtering was applied to denoise the phase map.
Following an established practice, the phase was filtered in
its complex form, that is, e/¢ instead of ¢, to avoid 27 phase
jumps. FMP runs on windows of size 3 X 3 to 7 X 7, that is,
R = 1,2,3, with membership radius R" = max{(R — 1),1}
and either 8 or 16 prototype estimators. The initial block size
L x L was set equal to 16 X 16. One iteration of estimators
refinement was performed. An nxn box filtering (nxn spatial
average) of the complex interferogram, being blind same as
FMP, was chosen as benchmark algorithm for quantitative
comparisons. Window sizes 3 X 3 to 7 X 7 were used.

Tables 1 and 2 report errors between original wrapped
phase map and filtered mosaic interferograms, for the cases

of broad and tight fringes, respectively. MSEs are separately
calculated on the four quadrants to highlight trends varying
with coherence. Unlike FMP, the window size of box filter is
crucial: 3 X 3 is not adequate to effectively denoise the phase
maps; 7 X 7 box filtering represents the best tradeoff and is
displayed in Figure 2d. Results with window sizes larger than
7 X 7 are not reported: a 9 X 9 window leads to oversmooth-
ing, which is accompanied by large geometric distortions in
locations of phase jumps, particularly visible in the map with
tightly packed fringes. Conversely, the restoration capability
of FMP filter is less sensitive to the window size than that
of box filtering, especially for the simulated map with broad
fringes. A 7 x 7 window trades off smoothness and geomet-
ric distortion for FMP as well. The filtered phase map is dis-
played in Figure 2c. The average gain of 7 X 7 FMP filtering
over 7 % 7 box filtering, whose results are shown in Figure 2d,
is 1.5dB for the case of tight fringes, more than 3 dB for the
less crucial case of broad fringes.

Also residues have been calculated on the interferograms
shown in Figures 2c and 2d. The majority of residues are
concentrated in the noisiest quadrant, in which, however,
their percentage is 0.14% for FMP and 0.55% for box filter-
ing (both 7 X 7). Such low percentages are not surprising for
interferograms simulating a highly regular topography, since
they are due to the noise only.

3.2. TruelInSAR phase images

A topographic interferogram of Mount Etna, in Sicily, Italy,
was produced from two ERS-1/2 SLC tandem images ac-
quired on consecutive days. The baseline length is 140 m.
Four consecutive samples along azimuth of the interfer-
ogram have been coherently averaged to yield the multi-
look topographic phase map, shown in Figure 3. The highly
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FIGURE 4: Tandem observations of Mount Etna: 1024 X 1024, 4-look
coherence map.

x 104
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FiGURE 5: Tandem observations of Mount Etna: 4-look coherence
histogram.

space-varying noisiness of the phase data stands out: on the
upper side of the volcano, near the craters, the SNR is so low
that fringes almost vanish, up to completely disappear.

The coherence map estimated on a 3 X 3 sliding window
of the 4-look complex interferogram is shown in Figure 4.
Coherence varies from 0.001 to 0.922, with average 0.385;
its histogram, shown in Figure 5, highlights the presence of
two dominant high- and low-coherence classes, whose dis-
tributions are partially overlapped. Low-coherence pixels are
mostly concentrated on the upper side of the crater and are
due to low echo power and shadowing effects.

The 5 x 5 filtered image is shown in Figure 6 as best
visual result of FMP. The noise is carefully removed and
fringes appear sharp and clean in high SNR areas. How-
ever, in the low-coherence area above the craters, low SNR
fringes are carefully restored, regardless of their rate. The

FIGURE 6: 1024 X 1024 map of 4-look topographic phase processed
by FMP (5 x 5 neighborhood and 8 prototype estimators) in com-
plex exponential form.

FIGURE 7: 1024 X 1024 map of 4-look topographic phase processed
by 5 x 5 box filtering in complex exponential form.

window size smaller than that used for one-look simulated
data depends on the different number of looks of the true
data.

Compared to FMP filtering with same window size, the
filtered map produced by a 5 x 5 box filter is somewhat nois-
ier, especially on fringe edges and low-coherence areas. The
difference (modulo 27) between raw and filtered phase maps
was calculated and analyzed. The mean squared difference
is reported in Table 3 for the different filters and window
sizes. Although the trend obviously reveals that larger win-
dows yield greater differences, 3 x 3 FMP removes an amount
of what is expected to be noise, greater than 3 x 3 box filter-
ing does, while 7 x 7 FMP removes less “noise” than 7 x 7
box; a 5 X 5 window yields comparable variance reduction.
However, the 5 x 5 box-filtered map is visually noisier than
the 5 x 5 FMP filtered map, see Figures 7 and 6, respectively,
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F1Gure 8: Residues of interferometric phase calculated from original and processed phase maps (1024 x 1024): (a) original, (b) 5 X 5 box
filtering, (c) 5 x 5 EMP filtering, and (d) 7 x 7 EMP filtering. Number of residues, nz, is reported for each map.

TaBLE 3: MSE between raw and filtered phase maps varying with
processing window size.

TABLE 4: Percentages of residues of raw and processed phase data,
varying with window size.

Processing 3x3 5%5 7X7 Processing 3x3 5x5 7X7
FMP 1.3975 1.5153 1.5516 Raw 17.95 17.95 17.95
Box 1.3642 1.5285 1.6083 Box 2.67 1.20 0.80

FMP 0.82 0.42 0.33

though its MSE in Table 3 is slightly greater. Indeed, 5 X 5
box filtering leaves low-coherence areas “noisier” than FMP
filtering of same size does and oversmoothes high-coherence
areas. Conversely, 7 X 7 box filtering is capable of smoothing
low-coherence areas, but largely distorts fringe edges, thereby
resulting in a greater difference variance.

An analysis of residues has been carried out also on
the Mount Etna interferograms. Table 4 highlights that, for

same window size, FMP filtering yields about three times
less residues than box filtering does. This value is congru-
ent with that obtained on simulated data, on which FMP
yields four times less residues than a box filter of same size.
Unlike the simulated case, for true InSAR data, residues are
also originated by topography, which influences the more
powerful FMP algorithm as well. Maps of residues are dis-
played in Figure 8. Their analysis reveals that the density of
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residues is inversely related to coherence. After processing,
high-coherence areas are practically free of residues, while
crucial very low-coherence areas are cleaned from residues
much better by FMP than by box filtering, both 5 x 5; 7 x 7
FMP can further reduce the percentage of residues from
0.42% to 0.33%, at the cost of a slight oversmoothing of the
phase map in high-coherence areas.

Eventually, the blind phase estimation carried out by
both FMP and box filtering has the advantage that processing
is not optimized for a particular signal and/or noise model;
hence, filtering performances steadily follow the local SNR.
However, FMP exhibits a subtler capability to yield consis-
tent phase fields regardless of SNR; its behavior is moderately
dependent on the window size, which is crucial for box filter-
ing.

4. CONCLUDING REMARKS

Blind estimation of noise-free images from noisy observa-
tions was addressed as a problem of matching pursuit. Nei-
ther signal nor noise models are required, thanks to an iter-
ative training of the dictionary of estimators which is driven
by fuzzy rules. The subsequent fuzzy estimation guarantees
a complete insensitiveness to the noise model and intensity.
Application of FMP to InSAR topographic phase noise fil-
tering yields encouraging results. Fringe-preserving smooth-
ing and restoration is achieved even in the presence of a high
fringe rate, regardless the local coherence characteristics rul-
ing the space-varying noisiness of the phase field. Compu-
tational costs are more than affordable (about one minute
for a 1024 x 1024 map on a standard Linux PC with 5 X 5
window and 8 estimators), though linearly increasing with
size and number of estimators. Tests with 16 estimators have
produced maps visually identical to the case of 8 estima-
tors reported above, with only a slightly lower percentages
of residues, thereby revealing that the number of prototype
estimators is noncrucial, because their outputs are blended
based on the fuzzy memberships of each pixel.
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