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Abstract Several classical constructions illustrate the fact that the chromatic number
of a graph may be arbitrarily large compared to its clique number. However, until very
recently no such construction was known for intersection graphs of geometric objects
in the plane. We provide a general construction that for any arc-connected compact set
X in R

2 that is not an axis-aligned rectangle and for any positive integer k produces a
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family F of sets, each obtained by an independent horizontal and vertical scaling and
translation of X , such that no three sets in F pairwise intersect and χ(F) > k. This
provides a negative answer to a question of Gyárfás and Lehel for L-shapes. With extra
conditions we also show how to construct a triangle-free family of homothetic (uni-
formly scaled) copies of a set with arbitrarily large chromatic number. This applies to
many common shapes, like circles, square boundaries or equilateral L-shapes. Addi-
tionally, we reveal a surprising connection between coloring geometric objects in the
plane and on-line coloring of intervals on the line.

Keywords Intersection graph · Triangle-free · Chromatic number · On-line

2010 Mathematics Subject Classification 05C62 · 05C15

1 Introduction

A proper coloring of a graph is an assignment of colors to the vertices of the graph
such that no two adjacent ones are assigned the same color. The minimum number
of colors sufficient to color a graph G properly is called the chromatic number of G
and denoted by χ(G). The clique number of G, denoted by ω(G), is the maximum
size of a set of pairwise adjacent vertices (a clique) in G. A graph is triangle-free if it
contains no clique of size 3.

It is clear that χ(G) � ω(G). On the one hand, the chromatic and clique numbers
of a graph can be arbitrarily far apart. There are various constructions of graphs that are
triangle-free and still have arbitrarily large chromatic number. The first one was given
in 1949 by Zykov [14], and the one perhaps best known is due to Mycielski [11]. On the
other hand, in many important classes of graphs the chromatic number is bounded in
terms of the clique number. Graphs G for which this bound is as tight as possible, that
is, χ(H) = ω(H) holds for every induced subgraph H of G, are called perfect. They
include bipartite graphs, split graphs, chordal graphs, interval graphs, comparability
graphs, etc. A class of graphs is χ -bounded if there is a function f : N → N such
that χ(G) � f (ω(G)) holds for any graph G from the class.1 In particular, the class
of perfect graphs is χ -bounded by the identity function.

In this paper, we focus on the relation between the chromatic number and the clique
number for classes of graphs arising from geometry. The intersection graph of a family
of sets F is the graph with vertex set F and edge set consisting of pairs of intersecting
elements of F . We consider families F consisting of arc-connected compact subsets of
R

d (mostly R
2) of a common kind (segments, curves, polygons, etc.). For simplicity,

we identify the family F with its intersection graph.
In the simple one-dimensional case of subsets of R, the only connected sets are

intervals. They define the class of interval graphs, which are well known to be perfect.
The situation becomes much more complex in higher dimensions.

1 This notion has been introduced by Gyárfás [6], who called the class χ -bound and the function χ -binding.
However, the term χ -bounded seems to be better established in the modern terminology.
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The study of the chromatic number of intersection graphs of geometric objects in
R

2 was initiated in the seminal paper of Asplund and Grünbaum [1], where they proved
that the families of axis-aligned rectangles are χ -bounded. Specifically, they proved
that every family F of axis-aligned rectangles in the plane satisfies χ(F) � 4ω(F)2 −
3ω(F). This was later improved by Hendler [8] to χ(F) � 3ω(F)2 −2ω(F)−1. No
construction of families of rectangles with χ superlinear in terms of ω is known. On the
other hand, Burling [3] showed that triangle-free intersection graphs of axis-aligned
boxes in R

3 can have arbitrarily large chromatic number.
Gyárfás [4,5] proved χ -boundedness of overlap graphs, that is, graphs admitting a

representation by closed intervals on the line such that the edges correspond to the pairs
of intervals that intersect but are not nested. Alternatively, the same class of graphs
can be defined as the intersection graphs of families of chords of a circle. Gyárfás’s
proof yields the bound χ(F) � 2ω(F)(2ω(F) − 2)ω(F)2 for any such family F . This
was improved and generalized by Kostochka and Kratochvíl [10], who showed that
every family F of convex polygons inscribed in a circle satisfies χ(F) < 2ω(F)+6.

Paul Erdős asked in the 1970s2 whether the class of intersection graphs of line
segments in the plane is χ -bounded, or more specifically, whether the chromatic num-
ber of triangle-free intersection graphs of line segments is bounded by an absolute
constant. Recently [12], we showed that the answer is negative. Namely, for every
positive integer k we construct a family F of line segments in the plane with no three
pairwise intersecting segments and such that χ(F) > k.

In this paper, we generalize that construction to a wide class of families of sets
in the Euclidean plane. Let X be an arc-connected compact set in R

2 that is not an
axis-aligned rectangle. For every positive integer k we present a triangle-free family
F of sets, each obtained by translation and independent horizontal and vertical scaling
of X , such that χ(F) > k.

This applies to a wide range of geometric shapes like axis-aligned ellipses, rhom-
buses, rectangular frames, cross-shapes, L-shapes, etc. For some shapes (e.g. circles
or square boundaries), it is even possible to restrict the allowed transformations to
uniform scaling and translation. This contrasts with the result of Kim et al. [9] that
every family F of homothetic (uniformly scaled) copies of a fixed convex compact
set in the plane satisfies χ(F) � 6ω(F) − 6.

Our result also gives a negative answer to the question of Gyárfás and Lehel [7]
whether the families of axis-aligned L-shapes, that is, shapes consisting of a horizontal
and a vertical segments of arbitrary lengths forming the letter ‘L’, are χ -bounded. We
prove that this is not the case even for equilateral L-shapes. However, we are unable to
classify all arc-connected compact sets whose families of homothets are χ -bounded.
This is discussed in Sect. 3.

There is some evidence that unrestricted scaling is the key property necessary to
make the chromatic number large while keeping the clique number small. For instance,
Suk [13] proved that families of unit-length segments are χ -bounded. This result easily
generalizes to the case that the ratio between the maximum and minimum lengths of
segments in the family is bounded.

2 An approximate date confirmed in personal communication with András Gyárfás and János Pach; see
also [6] and Problem 2 at p. 402 of [2].
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Fig. 1 Empty rectangle, left and
right stabbers

In Sect. 4, we discuss how bounding the chromatic number of families of geometric
objects in the plane is related to a specific on-line coloring problem for overlap graphs.
In particular, we give an alternative presentation of the construction of triangle-free
families of rectangular frames (that is, boundaries of axis-aligned rectangles) with
arbitrarily large chromatic number.

2 Translation and Independent Horizontal and Vertical Scaling

Theorem 1 For every arc-connected compact set X ⊂ R
2 that is not an axis-aligned

rectangle and every integer k � 1, there is a triangle-free family F of sets in the plane,
each obtained by translation and independent horizontal and vertical scaling of X,
such that χ(F) > k.

Define the bounding box of a non-empty bounded set (family of sets) in the plane to
be the smallest axis-aligned rectangle that contains it (all the sets in the family). We say
that a curve stabs an axis-aligned rectangle horizontally (vertically) if it is contained in
that rectangle and connects its left and right (top and bottom, respectively) boundaries.
We need the following simple properties of stabbing curves.

Fact 2 Let R and S be two axis-aligned rectangles such that R ⊂ S and R touches the
left and right (top and bottom) sides of S. If a curve c stabs S vertically (horizontally),
then there is a curve c′ ⊂ c that stabs R vertically (horizontally).

Fact 3 Let R be an axis-aligned rectangle, cV be a curve that stabs R vertically, and
cH be a curve that stabs R horizontally. Then cV ∩ cH �= ∅.

To prove Theorem 1, we use the following properties of the set X or its horizontal
reflection (see Fig. 1):

(i) X is bounded. Let U be the bounding box of X .
(ii) There is an axis-aligned rectangle E contained in the interior of U and disjoint

from X . We fix any such E and call it the empty rectangle of X .
(iii) Let VL be the rectangle, situated to the left of E , defined by the top, bottom, and

left edges of U and the line through the left edge of E . There is a curve in X that
stabs VL horizontally. We fix any such curve and call it the left stabber of X .
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(iv) Let VR be the rectangle, situated to the right of E , defined by lines through the
top, bottom, and right edges of E and the right edge of U . There is a curve in X
that stabs VR vertically. We fix any such curve and call it the right stabber of X .

The condition (i) follows from the assumption that X is compact; (ii) is the result
of the fact that (int U ) \ X is non-empty and open; (iii) can be proved quickly as
follows. There must be a curve c ⊂ X that stabs U horizontally, because U is compact
and arc-connected. Thus there is a curve that stabs VL horizontally, by Fact 2. The
condition (iv) must be true either for X or the horizontal reflection of X . This can be
proved as follows. There must be a curve c ⊂ X that stabs U vertically. By Fact 2,
there is a curve c′ ⊂ c that stabs vertically the rectangle defined by the horizontal sides
of E and vertical sides of U . Because c′ does not touch the empty rectangle and is
arc-connected, it is a valid right stabber of X or its horizontal reflection is a valid right
stabber of the horizontal reflection of X . We can assume without loss of generality that
condition (iv) is true for X , as otherwise the horizontal reflection of X would satisfy
conditions (i)–(iv).

For convenience, we use the term transformed copy of X to denote any set obtained
from X by independent horizontal and vertical scaling and translation. Note that we
will use only positive scale factors (that is, we will not need reflected copies of X ).

Let F be a family of transformed copies of X and let R be the bounding box of F .
An axis-aligned rectangle P is a probe for F if the following conditions are satisfied:

(i) P is contained in R and touches the right side of R.
(ii) The sets in F that intersect P are pairwise disjoint.

(iii) Every set in F that intersects P contains a curve that stabs P vertically.
(iv) There is a vertical line that cuts P into two rectangles the left of which is disjoint

from all the sets in F . For each probe, we fix any such vertical line and call the
left of the two rectangles the root of P .

We define sequences (si )i∈N and (pi )i∈N by induction, setting s1 = p1 = 1,
si+1 = (pi + 1)si + p2

i , and pi+1 = 2p2
i . Now we are ready to state and prove the

following lemma, which immediately implies Theorem 1.

Lemma 4 For every integer k � 1, there is a triangle-free family F(k) of sk trans-
formed copies of X and a family P(k) of pk pairwise disjoint probes for F(k) such
that every proper coloring of F(k) uses at least k colors on the members of F(k)

intersecting some probe in P(k).

Proof Set F(1) = {X}. Let P be the probe for F(1) obtained by horizontal extension
of the empty rectangle E of X to the right side of the bounding box of X . Note that P is
stabbed vertically by the right stabber of X and E is a valid root of P . Set P(1) = {P}.
It is clear that the statement of the lemma holds.

Now, let k � 2, and assume by induction that F(k − 1) and P(k − 1) exist and
satisfy the conditions of the lemma. We show how to construct F(k) and P(k). For
each probe P ∈ P(k − 1), split it vertically into two parts P↑ and P↓, with a little
vertical margin in-between to make them disjoint.

First, we construct a helper family F ′ containing F(k − 1) and, for each P ∈
P(k − 1), an additional transformed copy DP of X called the diagonal. The diagonal
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Fig. 2 The diagonal of a probe
P (top) and the rectangle P↓
(bottom) pierced by vertical
stabbers of P

DP is placed as follows. Let w1 be the distance between the left side of the empty
rectangle of X and the left side of the bounding box of X , and let w2 be the width of
the bounding box of X . Take a copy of X transformed in such a way that its bounding
rectangle is equal to P↑, and then scale it horizontally by 2w2

w1
keeping the left side of

the bounding rectangle fixed. The resulting set is the diagonal DP . The chosen scale
factor guarantees that the empty rectangle of DP lies completely to the right of the
bounding box of F(k − 1). For an illustration, see Fig. 2.

It is easy to see that DP intersects exactly the same sets in F(k − 1) as P↑ does.
Every such set actually contains a curve that stabs P (and thus P↑, by Fact 2) vertically,
by the probe condition 2. Furthermore, we know that the left stabber of DP stabs P↑
horizontally, thanks to the chosen scale factor. By Fact 3, the left stabber of DP

intersects every set in F(k − 1) that intersects P↑.
The size of F ′ is sk−1 + pk−1.
We now construct the family F(k) in two steps. First draw a copy Fouter of F(k−1),

called the outer family, associated with a set of probes Pouter, a copy of P(k − 1).
Then, for each P ∈ Pouter, place a scaled copy F ′

P of F ′, called an inner family, inside
the root of P . Note that F(k) is of size sk−1 + pk−1 · (sk−1 + pk−1) = sk .

Now we show how the set of probes P(k) is constructed. For each probe P ∈ Pouter,
let FP be the family obtained from F ′

P by removing the diagonals. Note that FP is a
transformed copy of F(k −1), so let PP be the associated set of (transformed) probes.
For each probe P ∈ Pouter and each probe Q ∈ PP introduce two probes to P(k): the
upper probe UP,Q and the lower probe L P,Q . The upper probe UP,Q is the horizontal
extension of the empty rectangle of the diagonal DQ to the right side of the bounding
box of F(k). The lower probe L P,Q is Q↓ extended horizontally to the right side of
the bounding box of F(k).

To see that UP,Q is a probe for F(k), notice that UP,Q intersects DQ , all the sets in
Fouter pierced by P , and nothing else. First, the empty rectangle of DP is completely
to the right of all sets in FP , so the only set in F ′

P intersecting the upper probe is DP

(and the right stabber of DP stabs UP,Q vertically). Second, since UP,Q is contained
in P and starts in its root, by Fact 2, all the sets in Fouter pierced by P contain curves
that stab UP,Q vertically. The inner family was built inside the root of a probe P of
the outer family, thus all the sets piercing UP,Q are disjoint. The empty rectangle of
DP is a valid root of UP,Q .

The proof that L P,Q is a probe is analogous. L P,Q intersects all the sets in Fouter
pierced by P , all the sets in FP pierced by Q, and nothing else. In particular, L P,Q

is disjoint from DQ . Since the sets in the inner family are disjoint from the sets in
the outer family, all the sets intersecting L P,Q are disjoint. Furthermore, they contain
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curves that stab L P,Q vertically as a consequence of Fact 2. The intersection of the
root of Q with L P,Q is a valid root of L P,Q .

The size of P(k) is 2p2
k−1 = pk .

The family F(k) is triangle-free, because we constructed it by taking disjoint copies
of triangle-free families and adding disjoint diagonals intersecting independent sets.
Let φ be a proper coloring of F(k). We show that there is a probe in P(k) for which φ

uses at least k colors on the sets in F(k) intersecting that probe. Consider the restriction
of φ to the outer family Fouter. There is a probe P ∈ Pouter such that φ uses at least
k − 1 colors on the sets in Fouter intersecting P . Now, consider FP , the inner copy
of F(k − 1) put inside the root of P . Again, there is a probe Q ∈ PP such that φ

uses at least k − 1 colors on the sets in FP intersecting Q. If φ uses different sets of
colors on the sets in Fouter intersecting P and the sets in FP intersecting Q, then at
least k colors are used on the sets pierced by the lower probe L P,Q . Otherwise, if φ

uses the same set of colors on these two families, then another color must be used on
the diagonal DQ , and thus φ uses at least k colors on the sets intersecting the upper
probe UP,Q . ��

The lemma provides only the weak inequality χ(F) � k instead of the strong one
required by Theorem 1. This is on purpose: we can add diagonals to the family F(k)

from the statement of the lemma (the same way as F ′ is constructed in the proof of the
lemma) and increase the chromatic number by one. This way we obtain the smallest
family F satisfying Theorem 1 that we know of. Its size is sk + pk . The inductive
definition of pk and sk yields

22k−1−1 = pk � sk � 22k−1 − 1

and thus sk + pk = �(22k−1
).

3 Uniform Scaling and Translation

We adapt our construction from the previous section to work with uniform scaling
for a base shape that meets additional conditions. The reader is advised to read the
previous section first, as we do not repeat all the details here.

We start with technical conditions capturing the full generality of the sets that
admit our construction for uniform scaling. Let X be a subset of R

2. We say that X is
anchored if it can be affinely transformed to a set X ′ with the following properties:

(i) X ′ is contained in the square U = [0, 1] × (0, 1), called the bounding square of
X ′. Note that U is open at the top and bottom.

(ii) For every ε ∈ (0, 1) there is a closed square E(ε) ⊂ U such that E(ε) is disjoint
from X ′, the width ξ(ε) of E(ε) satisfies (1 + ε)ξ(ε) < ε, and the distance
between the right side of E(ε) and the right side of U is equal to εξ(ε). We fix
E(ε) and call it the ε-empty square of X ′.

(iii) Let VL(ε) be the rectangle formed by the top, bottom, and left sides of U and
the line through the left side of E(ε). There is a curve in X ′ that stabs VL(ε)

horizontally. We fix any such curve and call it the left ε-stabber of X ′.
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(a) (b) (c) (d)

Fig. 3 a, b Anchored sets; c, d non-anchored sets

(iv) Let VR(ε) be the rectangle formed by lines through the top, bottom, and right
sides of E(ε) and the right side of U . There is a curve in X ′ that stabs VR(ε)

vertically. We fix any such curve and call it the right ε-stabber of X ′.
Note that the intersection graphs of homothetic copies of X ′ are exactly the intersection
graphs of homothetic copies of X . Therefore, for simplicity, we assume that X itself
satisfies (i)–(iv).

Examples of anchored sets include squares, circles, half-circles, boundaries of con-
vex sets, and L-shapes. Figure 3c, d shows two sets that are not anchored and in fact
are χ -bounded.3 We do not know of any non-anchored arc-connected compact set the
families of homothetic copies of which are not χ -bounded.

Theorem 5 For every anchored subset X of R
2 and every integer k � 1, there is a

triangle-free family F of homothetic copies of X in the plane such that χ(F) > k.

Let F be a family of homothetic copies of X and B be the bounding box of F . An
axis-aligned rectangle P is an ε-probe for F if the following conditions are satisfied:

(i) P is contained in B and touches the right side of B.
(ii) The elements of F that intersect P are pairwise disjoint.

(iii) Every set in F that intersects P contains a curve that stabs P vertically.
(iv) There is a vertical line cutting P into two rectangles the left of which, called the

root of P , is a square disjoint from all the members of F .
(v) The ratio between the width and height of P is equal to 1 + ε.

Lemma 6 For every integer k � 1 and every ε ∈ (0, 1), there is a triangle-free family
F(k, ε) of sk homothetic copies of X and a family P(k, ε) of pk pairwise disjoint
ε-probes for F(k, ε) such that every proper coloring of F(k, ε) uses at least k colors
on the members of F(k, ε) intersecting some probe in P(k, ε).

Proof For every ε ∈ (0, 1), set F(1, ε) = {X}. Extend the ε-empty square of X to
the right side of the bounding box of X to form a probe for F(1, ε), and let this probe
be the only member of P(1, ε). The families F(1, ε) and P(1, ε) clearly satisfy the
conditions of the lemma.

Now, let k � 2, and assume by induction that for every ε ∈ (0, 1) the families
F(k − 1, ε) and P(k − 1, ε) exist and satisfy the conditions of the lemma. Fix any

3 We leave this statement without a proof, as we are unable to prove it for all non-anchored sets.
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ε ∈ (0, 1). Let F0 = F(k − 1, ε
8 ) and P0 = P(k − 1, ε

8 ). Let smin and smax be
respectively the minimum and maximum width of the root of a probe in P0. Let
m = ε

8 · smin and ε1 = 2m
smax

. Note that ε1 � ε
2 . For each probe P ∈ P0, define a

homothetic copy DP of X , called the diagonal of P , as follows. Let s be the width of
the root of P . Thus smin � s � smax. Split the root of P into four equal-size quadrants
(see Fig. 4). Within the top right quadrant, put a homothetic copy of X so that its
bounding square fills the quadrant, and then shift it to the right by ε

8 ·s+m. The resulting
set is DP . This way, each diagonal sticks out of the bounding box of F0 by exactly m.
The ε1-empty square of DP has width ξ(ε1) · s

2 . Since (1 + ε1)ξ(ε1) · s
2 < ε1 · s

2 � m,
the ε1-empty square of DP lies entirely to the right of the bounding box of F0. Since
ε
8 · s + m � ε

2 · s
2 , the root of P and the diagonal DP have non-empty intersection.

Consequently, the left ε1-stabber of DP (and thus DP itself) intersects all the members
of F0 intersecting P . Define F ′ to be the family F0 together with the diagonals DP

for all probes P ∈ P0.
Now, for each probe P ∈ P0, define two squares: the upper root and the lower root.

The upper root of P is the ε1-empty square of DP . The lower root of P is the lower
right quadrant of the root of P . The upper and lower roots of P are disjoint from all
the sets in F ′. The distance of the lower root to the right side of the bounding box of
F ′ is ε

8 · s + m, which is at most ε
2 · s

2 . Therefore, the distance of each upper or lower
root to the right side of the bounding box of F ′ is at most the ε

2 fraction of its width.
We construct F(k, ε) as follows. Let s be the minimum width of a square containing

F ′, and let t be the minimum size of a lower or upper root. Let Fouter = F(k, εt
2s )

and Pouter = P(k, εt
2s ). Then, for each P ∈ Pouter, with root of width r , define FP to

be a homothetic copy of F ′ scaled by r
s and placed inside the root of P so that the

bounding box of FP touches the right side of the root. Define F(k, ε) to be the union
of Fouter and FP for all P ∈ Pouter.

Now, we show how P(k, ε) is constructed. Consider the upper or lower root R of
any FP with P ∈ Pouter. The ratio between the distance of R to the right side of the
bounding box of F(k, ε) and the width of R is at most ε

2 + εt
2s · s

t = ε. Therefore,
there is an ε-probe for F(k, ε) whose root is contained in R. Choose one such probe
for each upper or lower root R of each FP to form P(k, ε).

That F(k, ε) and P(k, ε) satisfy the requirements of the lemma is proved the same
way as in the Proof of Lemma 4. ��

4 On-line Coloring of Overlap Graphs

Recall that an overlap graph is a graph whose vertices are intervals in R and edges are
the pairs of intervals that intersect but are not nested. To provide a different insight
into our construction from the previous sections, we show how it arises from a strategy
for an on-line coloring game played on triangle-free overlap graphs.

The game is played by two players: Presenter and Painter. Presenter presents inter-
vals one at a time, according to the following two restrictions:

(i) the intervals are presented in the increasing order of their left endpoints;
(ii) the overlap graph represented by all presented intervals is triangle-free.
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Fig. 4 The diagonal of an ε-probe P placed inside the root of an outer probe. The squares marked 1 and
2 are the upper and lower root

Right after an interval is presented, Painter has to label it with a color distinct from the
colors of its neighbors in the presented overlap graph. In other words, Painter produces
a proper coloring of the graph. The color once assigned to a vertex cannot be changed
later on.

Theorem 7 For every integer k � 1, Presenter has a strategy that forces Painter to
use more than k colors in the on-line coloring game on triangle-free overlap graphs.

As before, we derive Theorem 7 from a stronger statement that admits an inductive
proof. For a family I of intervals and a point x ∈ R, let I(x) denote the subfamily of
I consisting of the intervals that have non-empty intersection with [x,∞).

Lemma 8 Let k � 1 and R be an interval of positive length. In the on-line coloring
game on triangle-free overlap graphs, Presenter has a strategy �(k, R) to construct a
family of intervals I together with a point x ∈ R that satisfy the following conditions:

(i) every interval in I is contained in the interior of R,
(ii) the family I(x) is a nested chain of intervals,

(iii) Painter is forced to use at least k colors on the intervals in I(x).

Proof In the strategy �(1, R), Presenter just puts a single interval I in the interior
of R. Clearly, the family I = {I } together with an arbitrary point x ∈ I satisfy the
conditions of the lemma.

Now, let k � 2, and assume by induction that the strategy �(k − 1, R) exists and
satisfies the conditions of the lemma for every R. Fix an interval R of positive length.
We describe the strategy �(k, R).
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Fig. 5 The main idea of Presenter’s strategy

First, Presenter plays according to the strategy �(k −1, R) constructing a family I
together with a point x ∈ R such that I(x) is nested and Painter is forced to use at least
k − 1 colors on the intervals in I(x). Let R′ = ⋂ I(x) ∩ [x,∞). Presenter continues
with the strategy �(k − 1, R′). Thus another family I ′ is presented for which there
is a coordinate x ′ ∈ R′ such that I ′(x ′) is nested and Painter is forced to use at least
k −1 colors on the intervals in I ′(x ′). If the sets of colors used by Painter on I(x) and
I ′(x ′) differ, then Painter has used at least k colors on the family I(x)∪I ′(x ′), which
is equal to (I ∪ I ′)(x ′). So suppose otherwise, that Painter has used the same sets
of colors on I(x) and I ′(x ′). Presenter puts an interval J contained in the interior of⋂ I(x)∩[x ′,∞) and overlapping all intervals in I ′(x ′) (see Fig. 5). The overlap graph
remains triangle-free as the family of neighbors of J , which is I ′(x ′), is an independent
set. The family I(x) ∪ {J } is nested, and we have I(x) ∪ {J } = (I ∪ I ′ ∪ {J })(y) for
any point y in the interior of J and to the right of all intervals in I ′(x ′). Painter has to
color J with a color distinct from those of the intervals in I ′(x ′) and thus is forced to
use at least k colors on I(x) ∪ {J }. The presented family I ∪ I ′ ∪ {J } together with
the point y witness that the goal of the strategy �(k, R) has been achieved. ��

To obtain the smallest (shortest) strategy �̃k satisfying Theorem 7 that we know,
we follow the strategy �k constructed above and finally put one additional interval
inside [x,∞) that overlaps all intervals in I(x).

Now we describe how to ‘encode’ a strategy � claimed by Theorem 7 into a triangle-
free family F of axis-aligned rectangular frames with chromatic number greater than
k. This gives an alternative proof of the special case of Theorem 1 for rectangular
frames. The idea is shown in Fig. 6.

For every interval I occurring in any branch of the strategy �, define a rectangular
frame F(I ) and insert it into F as follows. For the very first interval I0 presented
by �, choose any c, d ∈ R so that c < d and define F(I0) to be the boundary of
I0 ×[c, d]. Now, let I be an interval such that F(I ) is already defined as the boundary
of I × [cI , dI ]. Let I1, . . . , Ir be the possible choices of the next interval put by
� after I , depending on the colors that Painter has chosen for I and all preceding
intervals in this branch of the strategy tree. Choose c1, . . . , cr and d1, . . . , dr so that
cI < c1 < d1 < · · · < cr < dr < dI , and define F(Ii ) to be the boundary of
Ii × [ci , di ] for 1 � i � r . Repeat this procedure until every interval from every
branch of � has its rectangular frame defined.

It is not difficult to see that any two rectangular frames F(I ), F(J ) ∈ F intersect
if and only if the intervals I and J overlap and belong to a common branch in �. In
particular, any clique in F corresponds to a clique in the overlap graph presented in
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Fig. 6 A family of rectangular frames with χ = 3 and a branch of Presenter’s strategy corresponding to
the set of rectangles pierced by a horizontal line

some branch of �. Since � always produces a triangle-free graph, the family F is
triangle-free as well. If χ(F) � k, then Painter could fix some k-coloring of F and
color incoming intervals with the colors of the corresponding frames. This way Painter
would use at most k colors of the intervals presented by �, which is a contradiction.
Hence χ(F) > k.

It should be noted that the Proof of Lemma 4 (for X a rectangular frame) and the
Proof of Lemma 8 together with the ‘encoding’ described above provide equivalent
descriptions of the same construction of triangle-free families of rectangular frames
with large chromatic number.

5 Open Problems

We already posed several problems concerning the chromatic number and indepen-
dence number of triangle-free segment intersection graphs in [12]. Here we focus
on classification of shapes with respect to whether triangle-free families of copies
of the shape under particular transformations have bounded or unbounded chromatic
number.
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Problem 1 Provide a full characterization of compact arc-connected subsets X of R
2

such that triangle-free families of homothetic copies of X in the plane have bounded
chromatic number.

Problem 2 Is there a compact arc-connected subset X of R
2 such that triangle-free

families of translated copies of X in the plane have unbounded chromatic number?
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