
219

 

Chapter 7
HTTP Networking

HTTP networking is ubiquitous on mobile devices. This book would certainly not be complete if it did 
not include a chapter explaining how to use the BlackBerry 10 networking services. In this chapter, 
I am going to exclusively concentrate on HTTP networking, which covers about 90 percent of the 
cases you will face during application development. Also, BlackBerry 10 leverages the underlying 
QtNetwork module, which makes HTTP programming amazingly simple. The goal of this chapter 
is to show you how the different networking classes work together to access HTTP servers from a 
BlackBerry 10 mobile device.

An immediate application of networking is obviously to build a “rich thin client” where you use Cascades 
to build your application’s native user interface and remotely access business logic implemented as 
rest services. By now you must have realized that Cascades and QML make user interface design a 
snap. Adding networking to the mix just opens a completely new dimension of connected applications. 
For example, exposing enterprise services securely to your workforce—something that BlackBerry has 
always been at the forefront with—is an obvious practical application.

After having read this chapter, you will have a good understanding of

The Qt networking classes.	

How to use the networking classes to build connected Cascades applications.	

How to design responsive UIs by handling network requests and replies 	
asynchronously.

Another important goal of this chapter is to illustrate all the concepts introduced so far by writing a 
slightly more complex app than the ones demonstrated so far. The application will take the form of a 
Cascades client app for a remote weather REST service and will emphasize the separation of UI logic 
from the core business logic written in C++. The application will also show you how to breakdown 
your C++ code in classes with delimited responsibilities.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81634882?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 
220 CHAPTER 7: HTTP Networking

Qt Networking Classes
HTTP networking using Qt mostly involves the following classes:

	QNetworkAccessManager: This class allows you to send network requests and 
receive replies. The QNetworkAccessManager’s API is entirely asynchronous, 
thus guaranteeing that the user interface thread is not blocked during an HTTP 
request.

	QNetworkRequest: This class encapsulates all the required information for an HTTP 
request. Typically, you will be using QNetworkRequest’s url property to access an 
HTTP URL.

	QNetworkReply: This is QNetworkRequest’s counterpart; it encapsulates the data 
received from the server.

QNetworkAccessManager
QNetworkAccessManager is the grand dispatcher of all the network interactions in your application. 
You will generally use a single instance of this class to handle all the networking logic of your app. 
The QNetworkAccessManager object holds the common configuration and settings for the requests it 
sends. It should be noted that all functions in this class are reentrant. This means that you can call 
the class methods multiple times, even if a given network request has not yet completed (this is also 
possible because the class methods are asynchronous, or in other words, nonblocking). If necessary, 
the QtNetworkAccessManager internally queues the requests it receives, but has the capability to 
process multiple requests concurrently. The following is a review of QNetworkAccessManager’s most 
important methods:

	QNetworkReply* QNetworkAccessManager::get(const QNetworkRequest& 
request): Posts a request to obtain the contents of the target specified by 
request. For the HTTP protocol, the request corresponds to the HTTP GET request. 
Returns a pointer to a QNetworkReply object, opened for reading, which can be 
used to retrieve data as soon as it is available.

	QNetworkReply* QNetworkAccessManager::post(const QNetworkRequest& 
request, const QByteArray& data): Sends an HTTP POST request to the 
destination specified by request and returns a pointer to a QNetworkReply object 
opened for reading. QNetworkReply contains the server’s response.  
The QByteArray instance contains the data to be uploaded to the server.

	QNetworkReply* QNetworkAccessManager::post(const QNetworkRequest& 
request, QIODevice* data): Similar to the previous method, but this time the 
posted data is passed as a pointer to a QIODevice object. In other words, you 
can use this method to post the contents of a file by passing a QFile object 
as the second method parameter (this is possible because QFile inherits from 
QIODevice).

	QNetworkReply* QNetworkAccessManager::post(const QNetworkRequest& 
request, QHttpMultipart* multipart): Posts the content of a multipart 
message to the destination identified by request.



 
221CHAPTER 7: HTTP Networking

	QNetworkReply* QNetworkAccessManager::put(const QNetworkRequest& 
request, const QByteArray& data): Sends an HTTP PUT request to the 
destination specified by request and returns a pointer to a QNetworkReply object 
opened for reading. This method makes sense in the context of a REST service, 
where PUT is used for creating a resource and POST for updating or modifying 
one. The QNetworkReply object contains the optional server response. The 
QByteArray instance contains the data to be uploaded to the server. Just as with 
an HTTP POST request, the method is overloaded and can also take a QIODevice* 
and QHttpMultipart* as a second parameter.

	QNetworkConfiguration QNetworkAccessManager::configuration(): Returns the 
network configuration that will be used to create the network session.

	void QNetworkAccessManager::setConfiguration(const 
QNetworkConfiguration& config): Sets the network configuration that will be 
used to create the network session.

	QNetworkCookieJar QNetworkAccessManager::cookieJar(): Returns an instance 
of QNetworkCookieJar used to store cookies obtained from the network, as well 
as cookies about to be sent.

	void QNetworkAccessManager::setCookieJar(QNetworkCookieJar* cookieJar): 
Sets the manager’s cookie jar. The cookie jar will be used by all requests 
dispatched by the network manager.

	void QNetworkAccessManager::setCache(QAbstractNetworkCache* cache): 
Sets the network manager’s cache. The cache is used for all requests 
dispatched by the manager. You can use this function to specify an object 
that implements additional features, such as saving cookies to permanent 
storage or caching JavaScript and CSS files. Note that, by default, the network 
manager does not cache data. QAbstractNetworkCache provides the interface 
for cache implementation. As implied by its name, QAbstractNetworkCache 
is an abstract base class that cannot be instantiated. Instead, you can use a 
QNetworkDiskCache, which provides a concrete implementation. You can also 
control cache configuration with the QNetworkRequest request object (this will be 
explained in the next section).

Note As mentioned previously, you should always reuse the same QNetworkAccessManager instance.  
Note that you can conveniently access the default declarative engine’s QNetworkAccessManager instance by 
using the QMLDocument::defaultDeclarativeEngine()->networkAccessManager() method call 
(because QMLDocument::defaultDeclarativeEngine() is a static method, you can always access the 
associated default declarative engine from anywhere in your code).



 
222 CHAPTER 7: HTTP Networking

QNetworkRequest
A QNetworkRequest object holds a URL to be requested by a QNetworkAccessManager. You can specify 
the target URL using one of the following methods: 

	QNetworkRequest::QNetworkRequest(const QUrl& url = QUrl()): Constructs a 
new network request with url as the URL to be requested.

	QNetworkRequest::setURL(const QUrl& url): Sets the URL this network request 
is referring to.

You can also provide additional information to further customize the request (for example, by setting 
header values, request priorities, and cache configurations). In the specific case of caching, you can 
specify the cache behavior by setting a QNetworkRequest’s CacheLoadControlAttribute attribute,  
as follows:

	QNetworkRequest::setAttribute(QNetworkRequest::CacheLoadControlAttribute, 
const QVariant& value): Sets the cache behavior. The following are the possible 
values:

	QNetworkRequest::AlwaysNetwork: Always load from the network and do not check  
if the cache has a valid entry.

	QNetworkRequest::PreferNetwork: This is the default behavior; load from the network 
if the cache entry is older.

	QNetworkRequest::PreferCache: Load from the cache first; otherwise, load from the 
network. Note that you risk loading stale data in this case.

	QNetworkRequest::AlwaysCache: Always try to load from the cache. In other 
words, this option corresponds to an offline mode. Note that you can use 
QNetworkRequest::PreferCache for specific file types, such as CSS and JavaScript, 
where you are certain that they will not change during the application’s lifetime.

Because you can specify the cache behavior on a per request basis, this can be very convenient if 
you have multiple requests of different kinds. However, for the biggest majority of network requests, 
you can simply set the target URL and pass the request to the QNetworkAccessManager.

QNetworkReply
QNetworkReply encapsulates the server’s response and provides all the necessary functionality for 
retrieving the received data. The class inherits from QIODevice, which is the abstract base class 
for devices supporting reading and writing blocks of data. You will generally use the QByteArray 
QIODevice::read(qint64 maxSize) and QByteArray QIODevice::readAll() methods to retrieve the 
data. The former method reads, at most, maxSize bytes from the device. The latter reads all available 
data from the device. Both methods return the data as a QByteArray.

The following summarizes QNetworkReply’s most important methods:

	bool QNetworkReply::isRunning() const: Returns true if the corresponding 
request is still being processed.

	QByteArray QNetworkReply::read(qint64 maxSize): Inherited from QIODevice; 
see description given at the start of this section.



 
223CHAPTER 7: HTTP Networking

	QByteArray QNetworkReply::readAll(): Inherited from QIODevice; see 
description given at the start of this section.

	QNetworkRequest QNetworkReply::request(): Returns the request that was 
posted for this reply.

	QUrl QNetworkReply::url(): Returns the URL of the content downloaded or 
uploaded. Note that the URL may be different from the one specified in the 
original request.

	NetworkError QNetworkReply::error(): Returns the error that was found during 
the processing of this request. Returns QNetworkReply::NoError if the request 
was processed successfully. Check the API documentation for all the possible 
values taken by the QNetworkReply::NetworkError enumeration.

	QVariant QNetworkReply::attribute(Attribute code, const QVariant& 
defaultValue = QVariant()): Returns the attribute associated with code.  
If code has not been set, returns defaultValue. Attributes are metadata that are 
used to pass additional information from the reply back to the application.  
As you will see in the examples section, you will use this property to detect  
HTTP redirects.

	QNetworkReply::abort(): Aborts the operation immediately and closes any 
network connections still open.

QNetworkReply can also emit the following signals:

	QNetworkReply::finished(): This signal is emitted when the reply has finished 
processing. The data can be retrieved by calls to QNetworkReply::read() or 
QNetworkReply::readAll().

	QNetworkReply::downloadProgress(qint64 bytesReceived, qint64 
bytesTotal): This signal is emitted to indicate the data download’s progress for 
a given network request. The download is finished when bytesReceived is equal 
to bytesTotal. Note that you should handle this signal when large amounts of 
data are being downloaded to convey some feedback to the user (for example, 
by displaying a Cascades ProgressIndicator). (You can also opt to process the 
data in chunks, as it becomes available.) The bytesReceived parameter indicates 
the number of bytes received, whereas bytesTotal indicates the total number 
of bytes expected to be downloaded. Note that if the total number of bytes to 
be downloaded is unknown, bytesTotal will be –1, but when the download has 
completed bytesReceived will always be equal to bytesTotal.

	QNetworkReply::uploadProgress(qint64 bytesSent, qint64 bytesTotal):  
This signal is emitted to indicate the upload progress of a network request.  
The upload is finished when bytesSent is equal to bytesTotal.

	QNetworkReply::sslErrors(const QList<QSslError>& errors): This signal is 
emitted if the SSL/TLS session encountered errors during the setup, including 
certificate verification errors. The list of errors is provided by the errors 
parameter.



 
224 CHAPTER 7: HTTP Networking

Note You should always warn the user if ssl errors occur and give him the option to cancel the request.

HTTP Networking Examples
The examples provided in this section illustrate typical usage scenarios of the networking classes.

HTTP GET
Let’s start with a simple GET request to access a REST service. The data in the response will be 
returned in JSON format. To parse the object, you will have to use an instance of the Cascades 
JsonDataAccess class and handle the JSON structure in-memory. The Qt object constructed from JSON 
by the JsonDataAccess instance will always be a QVariant that either contains a QVariantList (if an 
array of JSON objects is returned by the service) or a QVariantMap (if a single object is returned).  
The mapping between JSON types and Qt types is summarized as follows:

	int: Mapped to a QVariant(Int64). To access the contained int use 
QVariant::toInt().

	uint: Mapped to a QVariant(Uint64). To access the contained uint use 
QVariant::toUInt().

	real: Mapped to a QVariant(double). To access the contained real use 
QVariant::toReal().

	string: Mapped to a QVariant(const char*). To access the contained string 
use QVariant::toString().

	boolean: Mapped to a QVariant(bool). To access the contained boolean use 
QVariant::toBool().

	array: Mapped to a QVariant(QVariantList). To access the contained array use 
Qvariant::toList().

	object: mapped to a QVariant(QVariantMap). To access the contained object, 
use QVariant::toMap().

The requested URL corresponds to the list of categories defined in my WordPress blog and is given 
at http://aludin.com?json=get_category_index. Listing 7-1 shows you an example of the returned 
JSON object.

Listing 7-1. JSON Response

{
    "status": "ok",
    "count": 2,
    "categories": [
        {
            "id": 2,
            "slug": "lifeinit",

http://aludin.com/?json=get_category_index


 
225CHAPTER 7: HTTP Networking

            "title": "Life in IT, Anti-Patterns of Efficiency",
            "description": "",
            "parent": 0,
            "post_count": 2
        },
        {
            "id": 3,
            "slug": "mobile-computing",
            "title": "Mobile Computing",
            "description": "",
            "parent": 0,
            "post_count": 1
        }
    ]
}
 
Listing 7-2 shows you how to perform the HTTP GET request to retrieve the JSON document 
displayed in Listing 7-1.

Listing 7-2. ApplicationUI::getCategories( )

ApplicationUI::getCategories(){
    QString url("http://aludin.com?json=get_category_index");
    QNetworkRequest request(url);
 
    QNetworkReply* reply = this->m_networkManager->get(request);
    bool result = connect(reply, SIGNAL(finished()), this,
                        SLOT(onCategoriesFinished()));
    Q_ASSERT(result);
}
 
It is not shown in the previous code, but you can safely assume that ApplicationUI::my_networkManager 
has been initialized with the default declarative engine’s QNetworkAccessManager.

And Listing 7-3 illustrates how to perform the actual JSON response parsing once it has been 
returned by the service.

Listing 7-3. ApplicationUI::onCategoriesFinished( )

void ApplicationUI::onCategoriesFinished() {
    QNetworkReply* reply = static_cast<QNetworkReply*>(QObject::sender());
    if (!reply->error()) {
        JsonDataAccess jda;
        QVariant response = jda.load(reply);
        QVariantMap map = response.toMap(); // get root JSON object
        QString statusValue = map["status"].toString();
        QVariantList categories = map["categories"].toList(); // get categories array.
        for(int i=0; i<categories.size(); i++){
           QString title = categories[i].toMap()["title"].toString();
        }
    }
    reply->deleteLater();
}
 

http://aludin.com/?json=get_category_index


 
226 CHAPTER 7: HTTP Networking

You will see later that you can conveniently chain the QVariant method calls to navigate the JSON 
object structure. Note that as a convenience and for clarity, I am using strings literals directly in the 
code, but ideally you should use string constants to avoid sprinkling your code with literals.

Finally, if your request takes additional parameters, you should use URL encoding to make sure that 
the parameters do not contain reserved HTTP characters (see Listing 7-4).

Listing 7-4. URL Percent-Encoding

QString date("50-2010/05/11 22:45:19 +0000");
QString encodedDate = QString(QUrl::toPercentEncoding(date));
QString getUrl = QString("http://www.aservice.com");
getUrl.append("?date=");
getUrl.append(encodedDate);
 

HTTP POST
Posting data is just as simple as performing HTTP GET requests. You will have to specify the data 
parameters by adding them to a QByteArray. You also need to make sure that you separate each 
parameter-value pair with an ampersand, as shown in Listing 7-5.

Listing 7-5. Post Example

void ApplicationUI::doPost(){
     // Setup the webservice url
     QUrl postUrl = QUrl("http://www.aservice.com");
     QByteArray postData;
 
     postData.append("param1=value1&").append("param2=value2&").append("param3=value3");
 
    // Call the webservice
    QNetworkReply* reply = this->m_networkManager->post(QNetworkRequest(postUrl), postData);
    bool result = connect(reply, SIGNAL(finished()), this,
                          SLOT(onPostFinished()));
    Q_ASSERT(result);
}
 
Once again, in practice you should use percent-encoding for the parameters you pass to the POST 
request. Also, in the onPostFinished() slot, don’t forget to release the QNetworkReply instance using 
QNetworkReply::deleteLater().

Handling an HTTP Redirect
At certain times, you will have to process an HTTP redirect. A redirect is not an error and simply 
indicates that a resource has moved. Listing 7-6 shows you how to handle the situation.



 
227CHAPTER 7: HTTP Networking

Listing 7-6. Redirect Check Example

void ApplicationUI::onRequestFinished(QNetworkReply* reply){
    if(reply->error() == QNetworkReply::NoError){
        QVariant redirect =
        reply->attribute(QNetworkRequest::RedirectionTargetAttribute);
        if(!redirect.isNull()){
            QUrl originalUrl = reply->request().url();
            QUrl newUrl = originalUrl.resolved(redirect.toUrl());
            // send new network request using newUrl
        }else{
            // process data
        }
    }else{
        // handle error in response
    }
    reply->deleteLater();
}
 
In practice, you should always be ready to handle HTTP redirects.

Handling Authentication
Certain HTTP services will require authentication before providing you access to their resources. In 
those cases, you can use the QNetworkAccessManager::authenticationRequired(QNetworkReply* 
reply, QAuthenticator* authenticator) signal to handle the authentication request. Listings 7-7 
and 7-8 illustrate how to implement authentication in your own code.

Listing 7-7. ApplicationUI.hpp

ApplicationUI::ApplicationUI(bb::cascades::Application *app) :
    QObject(app),
    m_networkManager(QMLDocument::defaultDeclarativeEngine->networkAccessManager())
{
    bool result = connect(m_networkManager,
                     SIGNAL(authenticationRequired(QNetworkReply*, QAuthenticator*)), this,
                     SLOT(onAuthenticationRequired(QNetworkReply*, QAuthenticator*)));
    Q_ASSERT(result);
}
 

Listing 7-8. ApplicationUI.cpp Authentication Handler

void ApplicationUI::onAuthenticationRequired(QNetworkReply* reply,
                                             QAuthenticator* authenticator)
{
    SystemCredentialsPrompt prompt = new SystemCredentialsPrompt;
    prompt->exec();
    authenticator->setUser(prompt->usernameEntry());
    authenticator->setPassword(prompt->passwordEntry());
    prompt->deleteLater();
}
 



 
228 CHAPTER 7: HTTP Networking

The QNetworkAccessManager::authenticationRequired(QNetworkReply*, QAuthenticator*) signal is 
connected to the corresponding slot in the application delegate’s constructor. Therefore, whenever a 
server request needs to be authenticated, the slot will be called. As shown in Listing 7-8, you can use 
a SystemCredentialsPrompt object to display a modal dialog requesting the user’s credentials (see 
Figure 7-1). Note that the majority of Cascades controls methods are nonblocking (in other words, 
they return immediately and processing continues). However, in this specific case, we want to be 
able to call a blocking method until the user has provided his credentials. To achieve this behavior, 
you should call SystemCredentialsPrompt::exec() instead of SystemCredentialPrompt::show(), 
which is the nonblocking version. (Internally, SystemCredentialsPrompt::exec() creates a nested 
event loop to provide the blocking functionality. When the nested event loop is exited, control is 
returned to the main event loop). Note that once you have finished with the prompt object, you must 
call QObject::deleteLater() instead of deleting the object immediately.

Figure 7-1. Credentials prompt

Finally, the authenticator should be updated with the user’s credentials, which are sent back to the 
server.

Weather2
I promised you in Chapter 2 that we would build a weather app relying on the REST service 
introduced at the time. In essence, I want to illustrate how you can design an enticing Cascades 
UI on top of raw data (which would be the JSON document returned by the weather service). You 
will also learn how to combine multiple services together (such as Google Maps) to further enrich 
your application. Finally, you will see how the networking classes are used in practice to perform 
asynchronous requests. The application we are about to design is called, quite appropriately, 
Weather2 (the default Weather app is bundled with BlackBerry 10). The finished application’s UI is 
shown in Figures 7-2, 7-3, and 7-4. The application has two tabs. On the first tab, you can perform a 
query by country, state, or city using a text field. If your query returns multiple results, the application 
will ask you to select a city from a list of values displayed in a SystemListDialog (see Figure 7-2).



 
229CHAPTER 7: HTTP Networking

As soon as you have selected a city, the weather conditions are displayed, including the city’s 
latitude and longitude (see Figure 7-3). 

Figure 7-2. City selection



 
230 CHAPTER 7: HTTP Networking

If you select the second tab, a map will be displayed, with the city location highlighted by a small 
icon representing the weather conditions (see Figure 7-4).

Figure 7-3. City view



 
231CHAPTER 7: HTTP Networking

Application Design
Before actually looking at the app implementation, let’s summarize once again the most important 
BlackBerry 10 design principles and recommendations (you can refer to Chapter 3 for a more 
detailed discussion of these points):

Separate UI logic from business logic. Although it is possible to directly access 	
Cascades controls from C++, the preferable way to build BlackBerry 10 apps is 
by clearly decoupling the UI logic from the rest of the application’s logic written 
in C++. As stated in Chapter 3, one of the major strengths of QML and C++ 
integration is the ability to implement the QML UI separately from C++. The C++ 
business logic can therefore be blissfully unaware of the QML layer (in other 
words, using QObject::findChildren()to access Cascades controls by object 
name from C++ is considered a bad practice because it adds tight coupling 
between UI and business logic).

Figure 7-4. Map view



 
232 CHAPTER 7: HTTP Networking

Prefer signals for communicating between QML and C++.	

Prefer properties and QML bindings to synch data between QML and C++ 	
(you will also notice that at times I pass data as signal parameters). A QML 
component can have its properties bound to a C++ class’ properties. If a C++ 
property is updated, a signal has to be emitted from C++ in order notify the QML 
declarative engine, which then updates the corresponding QML bound property. 
Note that bindings can be defined both ways: the declarative engine will also 
automatically update the C++ bound property when the corresponding QML 
property changes.

Break down your UI in multiple QML components instead of designing it as a 	
single monolithic bloc. This will save you major headaches when you need to 
selectively update UI parts. Indeed, the ability to extend QML with your own 
custom components is a major advantage that you should leverage as much as 
possible.

Having emphasized these points, let’s start with the UI design.

Note The source code for the Weather2 application can be found in this book’s repository on GitHub at 
https://github.com/aludin/BB10Apress.

Creating the UI
Weather2’s UI is split between four QML components:

	main.qml: The QML document initially loaded by the application delegate.  
It defines a tabbed pane containing two tabs (see Listing 7-9).

	WeatherDetails.qml: The control responsible for handling user input for weather 
requests. The control also manages various system prompts for notifying or 
requesting additional information from the user, when necessary (you will see 
that the prompts are defined as attached objects).

	City.qml: The control responsible for displaying the weather data for a given 
city. Note that this control is referenced in WeatherDetails.qml (see Listing 7-10).

	WeatherMap.qml: The control responsible for displaying a map with the weather 
conditions for the selected city (see Listing 7-11). 

Listing 7-9. main.qml

import bb.cascades 1.2
TabbedPane {
    id: tabbedPane
    showTabsOnActionBar: true

https://github.com/aludin/BB10Apress


 
233CHAPTER 7: HTTP Networking

    Tab {
        title: "City weather"
        Page {
            WeatherDetails {
                // control loaded from WeatherDetails.qml
            }
        }
    }
    Tab {
        title: "Map"
        Page {
            WeatherMap {
                // control loaded from WeatherMap.qml
            }
        }
    }
}
 
As you can see in Listing 7-9, the WeatherDetails and WeatherMap controls are used as content 
properties for page controls. The QML engine will therefore automatically load the controls 
from the corresponding files located in the assets folder of your application project (note that 
WeatherDetails.qml and WeatherMap.qml are located in the same folder as main.qml).

Let us now have a look at the WeatherDetails control implementation (see Listing 7-10).

Listing 7-10. WeatherDetails.qml

import bb.cascades 1.2
import bb.system 1.2
Container {
    id: main
    background: back.imagePaint
    function onError(message) {
        errorPrompt.title = message;
        errorPrompt.show();
    }
 
    function onMultipleCitiesFound(cities) {
        citiesDialog.clearList();
        for (var i = 0; i < cities.length; i ++) {
            citiesDialog.appendItem(cities[i]);
        }
        citiesDialog.show();
    }
 
    function onFinished() {
        progress.cancel();
    }
 



 
234 CHAPTER 7: HTTP Networking

    onCreationCompleted: {
        _app.weather.multipleCitiesFound.connect(main.onMultipleCitiesFound);
        _app.weather.error.connect(main.onError);
        _app.weather.finished.connect(main.onFinished);
        progress.cancelButton.label = "Cancel";
        progress.confirmButton.label = "";
    }
 
    attachedObjects: [
        ImagePaintDefinition {
            id: back
            repeatPattern: RepeatPattern.XY
            imageSource: "asset:///images/background.jpg"
        },
        SystemListDialog {
            id: citiesDialog
            onFinished: {
                if (value == SystemUiResult.ConfirmButtonSelection) {
                    _app.weather.cityWeather(citiesDialog.selectedIndices[0]);
                    progress.show();
                }
            }
        },
        SystemPrompt {
            id: errorPrompt
            onFinished: {
                _app.weather.cityWeather(errorPrompt.inputFieldTextEntry());
                progress.show();
            }
        },
        SystemProgressDialog {
            id: progress
            title: "Retrieving city"
            onFinished: {
                if (value == SystemUiResult.CancelButtonSelection) {
                    _app.weather.cancel();
                }
            }
        }
    ]
    layout: StackLayout {
        orientation: LayoutOrientation.BottomToTop
    }
    TextField {
        id: location
        inputMode: TextFieldInputMode.Default
        textStyle.textAlign: TextAlign.Center
        input {
            submitKey: SubmitKey.Go
            submitKeyFocusBehavior: SubmitKeyFocusBehavior.Lose



 
235CHAPTER 7: HTTP Networking

            onSubmitted: {
                _app.weather.cityWeather(location.text);
                progress.show();
            }
        }
        hintText: "Enter city or country name"
    }
    City{
        // control loaded from City.qml
    }
}
 
As you can see, WeatherDetails.qml mostly contains some JavaScript code responsible for 
signal handling. Also, an important point to consider is the way the emitted signals from C++ are 
connected to the JavaScript functions in the main container’s onCreationCompleted slot (in other 
words, the onError(), onMultipleCitiesFound(), and onFinished() JavaScript functions or slots for 
signals emitted by the _app.weather C++ object). Also note how the location text field’s onSubmitted 
slot is used for calling the _app.weather.cityWeather() slot, which is defined in C++. If the user’s 
initial query returns multiple cities, a SystemListDialog is displayed, asking him to further refine the 
query. In the same manner, if an error occurs because the user’s query is incorrect, a SystemPrompt is 
displayed, asking him to correct the query. In both cases, _app.weather.cityWeather() is called with 
the user’s updated query.

The City control is mostly a visual control for displaying the results of a weather request: the control 
uses labels and an image view for displaying the weather conditions for a given city. All QML properties 
defined in the control are bound to corresponding C++ properties (for example, Listing 7-11 gives you 
the binding for the current temperature). 

Listing 7-11. City Control, Binding Example

Label {
    id: temperature
    text: _app.weather.cityinfo.temperature
    horizontalAlignment: HorizontalAlignment.Center
    textStyle {
        fontWeight: FontWeight.W100
        color: Color.Black
        fontSize: FontSize.PercentageValue
        fontSizeValue: 250
    }
}
 
In the example provided in Listing 7-11, the label’s text property is bound to the  
_app.weather.cityinfo.temperature property, which is defined in C++ (as you will see in a moment). 
Therefore, when the _app.weather.cityinfo.temperature property is updated in C++, the QML 
declarative engine automatically updates the label’s text property.

The final QML component to consider is the WeatherMap component, which appears on the second 
tab. Listing 7-12 gives you component definition.



 
236 CHAPTER 7: HTTP Networking

Listing 7-12. WeatherMap Control

import bb.cascades 1.2
import ludin.utils 1.0
Container {
    layout: DockLayout {
    }
    onCreationCompleted: {
        _app.weather.cityinfo.coordinatesChanged.connect(mapclient.setCoordinates);
        scrollview.zoomToPoint(320, 220, 2, ScrollAnimation.Smooth);
    }
    attachedObjects: [
        GoogleMapClient {
            id: mapclient
        }
    ]
    ScrollView {
        id: scrollview
        horizontalAlignment: HorizontalAlignment.Fill
        verticalAlignment: VerticalAlignment.Fill
        scrollViewProperties {
            scrollMode: ScrollMode.Both
            pinchToZoomEnabled: true
        }
        ImageView {
            id: citymap
            image: mapclient.image
        }
    }
}
 
Here again, the control is relatively simple. It mainly consists of an image view responsible for 
displaying a map of the current weather conditions for a given location. The GoogleMapClient 
attached object provides the actual weather image. Once again, QML bindings are used to synch  
the image view and the image map generated by the GoogleMapClient attached object. Finally,  
the current map coordinates are provided to the GoogleMapClient attached object by the  
_app.weather.cityinfo.coordinatesChanged() signal (the signal to the slot connection is done  
in the main container’s onCreationCompleted slot).

Adding the C++ Implementation
Let us now turn our attention to the C++ implementation. The most important factor to consider is 
how to organize your code so that you can define classes with specific responsibilities:

	WeatherClient: Responsible for performing the REST requests to the Weather 
Underground service (www.wunderground.com/weather/api). The class also 
handles the parsing of the JSON response.

	CityInfo: Encapsulates the weather data once it has been returned by the 
Weather Underground service. Note that the QML City control has its properties 
bound to CityInfo’s properties.

http://www.wunderground.com/weather/api


 
237CHAPTER 7: HTTP Networking

	GoogleMapClient: A client for generating static maps using the Google Maps 
service. An instance of this class is defined as an attached object property of the 
WeatherMap control.

	ApplicationUI: The standard application delegate reachable from the QML layer 
of your application through the QML document context.

The class relationships are also quite simple: the ApplicationUI object has a WeatherClient weather 
property, which in turn has a CityInfo property. The properties are accessible from QML as  
_app.weather and _app.weather.cityinfo, respectively.

WeatherClient
The WeatherClient class definition is given in Listing 7-13.

Listing 7-13. WeatherClient Class Definition

#ifndef WEATHERCLIENT_H_
#define WEATHERCLIENT_H_
 
#include <QObject>
 
#include <QNetworkAccessManager>
#include <QNetworkReply>
 
#include  "CityInfo.h"
#include "GoogleMapClient.h"
  
class WeatherClient : public QObject {
    Q_OBJECT
    Q_PROPERTY(CityInfo* cityinfo READ city CONSTANT)
public:
    WeatherClient(QObject* parent=0);
    virtual ~WeatherClient();
 
signals:
    void multipleCitiesFound(QStringList cities);
    void keyError(const QString& message
    void error(const QString& message);
    void finished();
 
public slots:
    void cityWeather(QString city);
    void cityWeather(int selectedIndex);
    void cancel();
 
private slots:
    void onCityRequestFinished();
    void onCategoriesFinished();
private:
    CityInfo* city() const;
 



 
238 CHAPTER 7: HTTP Networking

    void updateCityInfo(const QVariantMap& map);
 
    QString m_apiKey;
    QNetworkAccessManager* m_networkManager;
    QList<QNetworkReply*> m_networkReplies;
    CityInfo* m_cityInfo;
    QStringList m_cities;
 
   // static char* constant tags omitted
};
 
#endif /* WEATHERCLIENT_H_ */
 
The class definition declares multiple slots and signals. To perform an initial weather request, the  
WeatherClient::cityWeather(QString city) slot has to be called from QML (you might recall from 
Chapter 3 that C++ slots and functions marked as Q_INVOKABLE can be called from QML). Also  
note that the signals are the same as those handled in JavaScript by the WeatherDetails control  
(see Listing 7-10). The multipleCitiesFound signal is emitted when a user query corresponds to 
multiple cities. (The cities are stored in a QStringList and passed as a parameter to the signal.  
As soon as the user selects a specific city, the WeatherClient::cityWeather(int selectedIndex) 
slot is called from QML and a new request is sent to the weather service.) The error signal is emitted 
when the Weather Underground service returns an error (the error is passed as a QString parameter 
to the signal), and, finally, the finished signal is emitted when a network request has completed.

Let us now turn our attention to the WeatherClient member function definitions.

Constructor
Listing 7-14 gives you the WeatherClient constructor.

Listing 7-14. WeatherClient Constructor

 WeatherClient::WeatherClient(QObject* parent) :
    QObject(parent),
    m_networkManager(QmlDocument::defaultDeclarativeEngine()->networkAccessManager()),
    m_cityInfo(new CityInfo(this))
{
    JsonDataAccess jda;
    QVariant keyMap = jda.load(
    QDir::currentPath() + WeatherClient::m_apiKeyPath);
 
    if (jda.hasError()) {
        emit keyError("Error, could not read api key");
    } else {
        m_apiKey = keyMap.toMap()[WeatherClient::m_keyTag].toString();
    }
}
 



 
239CHAPTER 7: HTTP Networking

The constructor proceeds by initializing the class members using a member initialization list. The 
constructor body then tries to load the Weather Underground API key, which is required for each 
service request. The API key is stored in a JSON file located in a subfolder of your application’s assets 
folder. If the constructor fails to load the key, a signal is emitted so that the UI layer can display 
an error message to the user. WeatherClient::m_apiKeyPath and Weather::m_keyTag are string 
constants that respectively identify the full path to the key file and the corresponding JSON tag.

Note You will need an API key for the Weather Underground service. You will therefore have to create a 
developer account at www.wunderground.com/weather/api. You will then be able to generate a new key 
that you can set in the wunderground.json file located in your project’s assets/apikey folder.

REST Service Request
A service request is handled by the WeatherClient::cityWeather(QString city) member function 
(see Listing 7-15).

Listing 7-15. WeatherClient::cityWeather(QString city)

void WeatherClient::cityWeather(QString city) {
        QString urlString("http://api.wunderground.com/api/");
        urlString.append(WeatherClient::m_apiKey);
        urlString.append("/conditions/q/");
 
        urlString.append(city);
        urlString.append(".json");
 
        QNetworkRequest request;
        request.setUrl(QUrl(urlString));
 
        QNetworkReply* reply = this->m_networkManager->get(request);
        bool result = connect(reply, SIGNAL(finished()), this,
                        SLOT(onCityRequestFinished()));
        Q_ASSERT(result);
        this->m_networkReplies.append(reply);
}
 
The WeatherClient::cityWeather(QString city) function dynamically creates a GET request URL 
by concatenating the city parameter and the API key previously loaded in the class constructor (the 
constructed URL will have the following structure: http://api.wunderground.com/api/ 
<api key>/conditions/q/<city>.json). As soon as the GET request has been submitted, 
you will have to connect the QNetworkReply’s finished() signal to the WeatherClient’s 
onCityRequestFinished() slot. Finally, when the request has completed, WeatherClient::onCityRequ
estFinished() will be called (see Listing 7-16).

http://www.wunderground.com/weather/api
http://api.wunderground.com/api/%3capi


 
240 CHAPTER 7: HTTP Networking

Working with the Returned JSON
Before actually looking at how the returned JSON document is parsed by the  
WeatherClient::onCityRequestFinished() slot, let us quickly study the structure of the document 
returned by the Weather Underground service. As a matter of fact, you can conveniently use your 
browser to perform HTTP requests and study the responses returned by the service. For example, 
you can use the following URL to retrieve the weather conditions for Los Angeles:  
http://api.wunderground.com/api/<key_value>/conditions/q/Los Angeles, CA.json.

The corresponding JSON structure is shown in Listing 7-16 (note that in order to save some page 
space, I have removed the JSON elements that we will not need to parse or use in our code).

Listing 7-16. Wunderground JSON Response, Single City

 {
    "response": {
        "version": "0.1",
        "termsofService": "http://www.wunderground.com/weather/api/d/terms.html",
        "features": {
            "conditions": 1
        }
    },
    "current_observation": {
        "display_location": {
            "full":"Los Angeles, CA",
            "city":"Los Angeles",
            "state":"CA",
            "state_name":"California",
            "country":"US",
            "latitude":"33.97457886",
            "longitude":"-118.24745941",
        },
        "observation_time":"Last Updated on October 7, 3:58 AM PDT",
        "weather":"Clear",
        "temperature_string":"63.1 F (17.3 C)",
        "icon_url":"http://icons-ak.wxug.com/i/c/k/nt_clear.gif"
    }
}
 
Remembering what I previously told you about parsing JSON documents with a JsonDataAccess 
object, you can see the following:

From the structure of the document shown in Listing 7-11, the root object is a 	
QVariantMap. Supposing that result is the QVariant variable obtained with the 
call to JsonDataAccess::load(), the root object is therefore obtained with a call 
to result.toMap().

One level down, the 	 current_observation object contained in the root object is 
retrieved using result.toMap()["current_observation"].toMap().

Similarly, the latitude attribute is retrieved by chaining method calls as follows: 	
result.toMap()["current_observation"].toMap()["display_location"].
toMap()["latitude"].toString().

http://api.wunderground.com/api/%3Ckey_value%3E/conditions/q/Los


 
241CHAPTER 7: HTTP Networking

Once you get the hang of chaining the method calls, you will see that you can parse arbitrarily 
complex JSON structures.

There will be cases where the JSON response will return a list of cities instead of a single observation 
(this will happen when the city request matches multiple values). For example, if your request URL is 
http://api.wunderground.com/api/<key_value>/conditions/q/Los Angeles.json (note the missing 
state specification), the returned JSON document will be given in Listing 7-17.

Listing 7-17. Wunderground JSON Response, Multiple Results

{
    "response": {
        "version": "0.1",
        "termsofService": "http://www.wunderground.com/weather/api/d/terms.html",
        "features": {
          "conditions": 1
        },
        "results": [
        {
            "name": "Los Angeles",
            "city": "Los Angeles",
            "state": "CA",
            "country": "US",
            "country_iso3166":"US",
            "country_name":"USA",
            "zmw": "90001.1.99999",
            "l": "/q/zmw:90001.1.99999"
        },
        {
            "name": "Los Angeles",
            "city": "Los Angeles",
            "state": "",
            "country": "CH",
            "country_iso3166":"CL",
            "country_name":"Chile",
            "zmw": "00000.10.85703",
            "l": "/q/zmw:00000.10.85703"
         },
         {
             "name": "Los Angeles",
             "city": "Los Angeles",
             "state": "",
             "cojuntry": "PH",
             "country_iso3166":"PH",
             "country_name":"Philippines",
             "zmw": "00000.31.98752",
                       "l": "/q/zmw:00000.31.98752"
          }
          ]
    }
}
 

http://api.wunderground.com/api/%3Ckey_value%3E/conditions/q/Los


 
242 CHAPTER 7: HTTP Networking

Here again, it is quite easy to retrieve the list of cities using the following call chain:
 
result.toMap()["response"].toMap()["results"].toList()
 
And finally, if the request contains an error, the returned JSON document will be similar to Listing 7-18.

Listing 7-18. JSON Response with Error

{
  "response": {
      "version":"0.1",
      "termsofService":"http://www.wunderground.com/weather/api/d/terms.html",
      "features": {
      },
      "error": {
          "type": "keynotfound",
          "description": "this key does not exist"
      }
  }
}
 
In other words, you can check for the presence of an error object inside the response in order to 
make sure that your request was handled correctly by the service (the presence of the error object 
would be given by the following call chain: result.toMap()["response"].toMap()contains("error")).

Now that you have a basic understanding of the JSON document structure, you can see how the 
service response is parsed in the WeatherClient::OnCityRequestFinished() slot (see Listing 7-19).

Listing 7-19. WeatherClient::onCityRequestFinished( )

void WeatherClient::onCityRequestFinished() {
    QNetworkReply* reply = static_cast<QNetworkReply*>(QObject::sender());
    if (!reply->error()) {
        JsonDataAccess jda;
        QVariant response = jda.load(reply);
        QVariantMap map = response.toMap();
        if (map.contains(WeatherClient::m_currentObservationTag)) {
            this->updateCityInfo(map);
        } else { // else 1
            if (map[WeatherClient::m_responseTag].toMap().contains(
            WeatherClient::m_errorTag)) {
                emit error(map[WeatherClient::m_responseTag]
                           .toMap()[WeatherClient::m_errorTag]
                           .toMap()[WeatherClient::m_descriptionTag].toString());
            } else { // else 2
                m_cities.clear();
                QVariantList results = map[WeatherClient::m_responseTag]
                                       .toMap()[WeatherClient::m_resultsTag].toList();
                for (int i = 0; i < results.length(); i++) {
                    QVariantMap city = results[i].toMap();



 
243CHAPTER 7: HTTP Networking

                    if (city[WeatherClient::m_countryTag].toString()
                        == WeatherClient::m_USATag) {
                            m_cities.append(city[WeatherClient::m_nameTag].toString()
                            + ", "+ city[WeatherClient::m_stateTag].toString());
                    } else { // else 3
                        m_cities.append(city[WeatherClient::m_nameTag].toString() + ", "
                        + city[WeatherClient::m_countryNameTag].toString());
                    } // else 3
                } // for
                    emit multipleCitiesFound(m_cities);
            } // else 2
        } // else 1
    }
    m_networkReplies.removeOne(reply);
    reply->deleteLater();
    emit finished();
}
 
Here is a quick description of the code:

1. You will need to handle three cases in the response: a response can either 
contain the current weather conditions for a city, a list of cities, or an 
error object. Before even handling the response, we first need to check 
that the request was handled correctly and that there are no errors in the 
QNetworkReply object.

2. We then proceed by parsing the JSON response.

3. If the JSON result contains a current_observation object, we handle 
it immediately with a call to WeatherClient::updateCityInfo(const 
QVariantMap& map).

4. Otherwise, we check if a service error has occurred. If this is the case, we 
emit the error signal with the corresponding error message.

5. If there are no errors, then multiples cities have been returned by the request. 
In this case, we populate the m_citiesList QStringList and emit the 
multipleCitiesFound(m_citiesList) signal, which will be handled in QML.

6. Finally, we schedule the QNetworkReply object for deletion and emit the 
finished() signal.

The WeatherService::updateCityInfo(const QVariantMap& map) method (used in Listing 7-20) is 
straightforward and is used for updating the m_cityInfo member variable (which is accessible as the 
cityinfo property from QML).



 
244 CHAPTER 7: HTTP Networking

Listing 7-20. WeatherClient::updateCityInfo( )

void WeatherClient::updateCityInfo(const QVariantMap& data) {
    QVariantMap currentObservation =
    data[WeatherClient::m_currentObservationTag].toMap();
    m_cityInfo->setCity(currentObservation[WeatherClient::m_displayLocationTag]
                        .toMap()[WeatherClient::m_cityTag].toString());
    m_cityInfo->setState(currentObservation[WeatherClient::m_displayLocationTag]
                         .toMap()[WeatherClient::m_stateNameTag].toString());
 
    m_cityInfo->setWeather(currentObservation[WeatherClient::m_weatherTag].toString());
 
    m_cityInfo->setTemperature(currentObservation[WeatherClient::m_temperatureTag]
                               .toString());
         
    m_cityInfo->setCoordinates(currentObservation[WeatherClient::m_displayLocationTag]
                               .toMap()[WeatherClient::m_latitudeTag].toString(),
                               currentObservation[WeatherClient::m_displayLocationTag]
                               .toMap()[WeatherClient::m_longitudeTag].toString(),
                               currentObservation[WeatherClient::m_iconUrlTag].toString());
 
    m_cityInfo->setLastObservation(currentObservation[WeatherClient::m_observationTimeTag]
                                   .toString());
}
 

CityInfo
Listing 7-21 gives you the CityInfo class definition.

Listing 7-21. CityInfo Class Definition

#ifndef CITY_H_
#define CITY_H_
#include <QObject>
#include <bb/cascades/Image>
#include <QNetworkAccessManager>
 
class CityInfo : public QObject {
    Q_OBJECT
    Q_PROPERTY(QString city READ city NOTIFY cityChanged)
    Q_PROPERTY(QString state READ state NOTIFY stateChanged)
    Q_PROPERTY(QString latitude READ latitude NOTIFY latitudeChanged)
    Q_PROPERTY(QString longitude READ longitude NOTIFY longitudeChanged)
    Q_PROPERTY(QString weather READ weather NOTIFY weatherChanged)
    Q_PROPERTY(QVariant weatherIcon READ weatherIcon NOTIFY weatherIconChanged)
    Q_PROPERTY(QString temperature READ temperature NOTIFY temperatureChanged)
    Q_PROPERTY(QString lastObservation READ lastObservation NOTIFY lastObservationChanged)
 
public:
    CityInfo(QObject* parent = 0);
    virtual ~CityInfo();
 



 
245CHAPTER 7: HTTP Networking

    void setCoordinates(const QString& latitude, const QString& longitude,
                        const QString& weatherIconUrl);
        
        // accessors.
    void setCity(const QString& city);
    QString city() const;
 
    void setState(const QString& state);
    QString state() const;
 
    void setLatitude(const QString& latitude);
    QString latitude() const;
 
    void setLongitude(const QString& longitude);
    QString longitude() const;
 
    void setWeather(const QString& weather);
    QString weather() const;
 
    void setTemperature(const QString& temperature);
    QString temperature() const;
 
    void setLastObservation(const QString& lastUpdated);
    QString lastObservation() const;
 
signals:
    void cityChanged();
    void stateChanged();
    void latitudeChanged();
    void longitudeChanged();
    void coordinatesChanged(const QString& latitude, const QString& longitude,
                                const  QString& markerUrl);
    void weatherChanged();
    void weatherIconChanged();
    void temperatureChanged();
    void lastObservationChanged();
 
private slots:
        void onWeatherIconRequestFinished();
 
private:
    QVariant weatherIcon()const;
 
    void setWeatherIconUrl(const QString& iconUrl);
    void downloadWeatherIcon(const QString& iconUrl);
         
    QNetworkAccessManager* m_networkManager;
    QString m_city;
    QString m_state;
    QString m_latitude;
    QString m_longitude;
    QString m_temperature;



 
246 CHAPTER 7: HTTP Networking

    QString m_lastObservation;
    QString m_weather;
    QString m_weatherIconUrl;
    bb::cascades::Image m_weatherIcon;
};
 
Note that the properties declared in the class definition are the ones used by the QML City control 
bindings (see Listing 7-11). Also, the Notify signals are required for updating the QML bindings 
when the C++ properties change.

If you look at Figure 7-3, you will notice that a small icon is used for representing the current weather 
conditions. The Weather Underground service provides a URL pointing to a downloadable image 
representing the current conditions (see the icon_url element in the JSON response in Listing 7-16). 
The CityInfo class therefore uses the URL to download the icon and display it in QML as an ImageView. 
Listings 7-22 and 7-23 provide the code for downloading the image.

Listing 7-22. CityInfo::downloadWeatherIcon

void CityInfo::downloadWeatherIcon(const QString& iconUrl) {
    QNetworkRequest request;
    request.setUrl(QUrl(iconUrl));
 
    QNetworkReply* reply = this->m_networkManager->get(request);
    bool result = connect(reply, SIGNAL(finished()), this,
                        SLOT(onWeatherIconRequestFinished()));
    Q_ASSERT(result);
}
 
You should be quite familiar by now with the code shown in Listing 7-22. An HTTP request for 
downloading the image is created and submitted to the network access manager. The interesting 
part of the code is located in Listing 7-23, which handles the HTTP response.

Listing 7-23. CityInfo::onWeatherIconRequestFinished

void CityInfo::onWeatherIconRequestFinished() {
    QNetworkReply* reply = static_cast<QNetworkReply*>(QObject::sender());
    if (reply) {
        if (reply->error() == QNetworkReply::NoError) {
            QByteArray data = reply->readAll();
            m_weatherIcon = bb::cascades::Image(bb::utility::ImageConverter::decode(data));
            emit weatherIconChanged();
        }
        reply->deleteLater();
    }
}
 
The code essentially builds a bb::cascades::Image from the returned data using a 
bb::utility::ImageConverter class, and updates the m_weatherIcon member variable. Note that we 
also need to emit the weatherIconChanged signal, which will in turn notify the declarative engine to 
update the QML binding for the City.weatherImage property.



 
247CHAPTER 7: HTTP Networking

The last piece of the puzzle is to access the Image object as a QVariant from QML using the 
weatherIcon property (see Listing 7-24).

Listing 7-24. CityInfo::onWeatherIcon( )

QVariant CityInfo::weatherIcon() const {
    return QVariant::fromValue(m_weatherIcon);
}
 

GoogleMapClient
The GoogleMapClient class generates a static map using the coordinates returned by the  
Weather Underground service. Here again, the class encapsulates the map generation functionality 
and exclusively uses properties and signals to communicate with the QML layer. When the  
GoogleMapClient::setCoordinates() slot is called, a new request to the Google Maps service 
is sent. If you look at the WeatherMap control’s onCreationCompleted slot, you will notice that the 
CityInfo::coordinatesChanged() signal is connected to the GoogleMapClient::setCoordinates() 
slot (see Listing 7-12) (in other words, the GoogleMapClient()::setCoordinates() slot will be called 
each time the CityInfo object’s coordinates are updated).

Listing 7-25 shows you the GoogleMapClient::setCoordinates() slot implementation.

Listing 7-25. CityInfo::setCoordinates( )

void GoogleMapClient::setCoordinates(const QString& latitude,
    const QString& longitude, const QString& markerUrl) {
    if((m_latitude == latitude) &&
       (m_longitude == longitude) &&
       (m_markerUrl == markerUrl)) return;
    m_latitude = latitude;
    m_longitude = longitude;
    m_markerUrl = markerUrl;
    this->createMap();
}
 
Finally, the GoogleMapClient::setCoordinates() method internally calls the 
GoogleMapClient::createMap() method, which is responsible for building the network request  
to the Google Maps service (see Listing 7-26).

Listing 7-26. GoogleMapClient::createMap( )

void GoogleMapClient::createMap() {
    QNetworkRequest request;
    request.setUrl(QUrl(this->buildUrlString()));
    QNetworkReply* reply = this->m_networkManager->get(request);
    bool result = connect(reply, SIGNAL(finished()), this, SLOT(onMapReady()));
    Q_ASSERT(result);
}
 



 
248 CHAPTER 7: HTTP Networking

I am going to omit the code for handling the HTTP response, which is done in 
GoogleMapClient::onMapReady(), because it is very similar to WeatherClient::onWeatherIconReque
sFinished() (shown in Listing 7-23). (In retrospect, we could have designed a common base class 
implementing the image download logic. This is something you could try to refactor.)

The request URL is built with a call to GoogleMapClient::buildUrlString() (see Listing 7-27).

Listing 7-27. GoogleMapClient::buildUrlString( )

QString GoogleMapClient::buildUrlString() {
    QString cityMapUrl("http://maps.googleapis.com/maps/api/staticmap?center=");
    cityMapUrl.append(m_latitude);
    cityMapUrl.append(",");
    cityMapUrl.append(m_longitude);
    cityMapUrl.append("&");
    cityMapUrl.append("zoom=7&size=640x640&sensor=false&");
    cityMapUrl.append("maptype=hybrid&");
    cityMapUrl.append("markers=");
    cityMapUrl.append("icon:");
    cityMapUrl.append(m_markerUrl);
    cityMapUrl.append("|");
    cityMapUrl.append(m_latitude);
    cityMapUrl.append(",");
    cityMapUrl.append(m_longitude);
    cityMapUrl.append("|");
    cityMapUrl.append("scale=2");
    return cityMapUrl;
}
 
The code shown in Listing 7-27 essentially creates a new request for a map centered on the 
m_latitude and m_longitude coordinates. The marker parameter for indicating the coordinates is 
defined as the URL of the icon returned by the Weather Underground service. (If you specify an image 
URL as a marker, Google Maps will add it as a marker on your map. By default, when no markers 
are specified, Google will use its own for the coordinates). This illustrates how you can combine, in 
practice, multiple services in your own app (we could say that we have built a mashable app).

If you are interested in finding out more about the Google static maps API, you can refer to the 
following URL: https://developers.google.com/maps/documentation/staticmaps.

ApplicationUI
As usual for Cascades applications, the application delegate ties everything together and provides 
you the access point for the WeatherClient and CityInfo instances (note that the delegate itself is 
set as a QML document context property; see Listings 7-28 and 7-29).

Listing 7-28. ApplicationUI Definition

class ApplicationUI : public QObject
{
    Q_OBJECT
    Q_PROPERTY(WeatherClient* weather READ weatherClient CONSTANT)

https://developers.google.com/maps/documentation/staticmaps


 
249CHAPTER 7: HTTP Networking

public:
    ApplicationUI(bb::cascades::Application *app);
    virtual ~ApplicationUI() { }
 
private:
    WeatherClient* weatherClient();
    WeatherClient* m_weatherClient;
};
 

Listing 7-29. ApplicationUI Constructor

ApplicationUI::ApplicationUI(bb::cascades::Application *app) :
                QObject(app), m_weatherClient(new WeatherClient(this)) {
 
        // Create scene document from main.qml asset, the parent is set
        // to ensure the document gets destroyed properly at shut down.
        QmlDocument *qml = QmlDocument::create("asset:///main.qml").parent(this);
        qml->documentContext()->setContextProperty("_app", this);
 
        // Create root object for the UI
        AbstractPane *root = qml->createRootObject<AbstractPane>();
 
        // Set created root object as the application scene
        app->setScene(root);
}
 
Finally, to make the WeatherClient, CityInfo and GoogleMapClient classes available as new QML 
types, you need to register them with the QML type system. This is done in the application’s main 
function (see Listing 7-30).

Listing 7-30. main.cpp

Q_DECL_EXPORT int main(int argc, char **argv)
{
    qmlRegisterType<CityInfo>("ludin.utils", 1, 0, "CityInfo");
    qmlRegisterType<WeatherClient>("ludin.utils", 1, 0, "WeatherClient");
    qmlRegisterType<GoogleMapClient>("ludin.utils", 1, 0, "GoogleMapClient");
         
    Application app(argc, argv);
 
    // Create the Application UI object, this is where the main.qml file
    // is loaded and the application scene is set.
    new ApplicationUI(&app);
 
    // Enter the application main event loop.
    return Application::exec();
}
 



 
250 CHAPTER 7: HTTP Networking

The first two calls to qmlRegisterType() are required because you are using CityInfo and 
WeatherClient as properties accessible from QML. The last call is required so that you can define 
the GoogleMapClient class as an attached object in the WeatherMap control. (You also need to add 
the import ludin.utils 1.0 statement at the start of your QML document; see the WeatherMap 
control in Listing 7-12.)

Summary
This chapter provided an overview of the BlackBerry 10 networking classes based on the QtNetwork 
module. The networking classes are completely generic, but this chapter showed you how to 
use them for the HTTP protocol. QNetworkManager plays the role of the grand dispatcher to submit 
network requests and handle responses. The class supports the usual HTTP verbs (GET, PUT, and 
POST), which makes it a breeze to use with restful services. An HTTP request is encapsulated by a 
QNetworkRequest instance and the response can be handled using a corresponding QNetworkReply 
instance. Networking is completely asynchronous, thus ensuring that UI thread is not blocked during 
an HTTP request. Finally, it should be emphasized that the networking classes are reentrant, meaning 
that you can call them multiple times from a single thread without corrupting their state.


	Chapter 7: HTTP Networking
	Qt Networking Classes
	QNetworkAccessManager
	QNetworkRequest
	QNetworkReply

	HTTP Networking Examples
	HTTP GET
	HTTP POST
	Handling an HTTP Redirect
	Handling Authentication

	Weather2
	Application Design
	Creating the UI
	Adding the C++ Implementation
	WeatherClient
	Constructor
	REST Service Request
	Working with the Returned JSON

	CityInfo
	GoogleMapClient
	ApplicationUI


	Summary


