
Sunthrayuth and Kumam Journal of Inequalities and Applications 2014, 2014:473
http://www.journalofinequalitiesandapplications.com/content/2014/1/473

RESEARCH Open Access

Fixed point solutions for variational
inequalities in image restoration over
q-uniformly smooth Banach spaces
Pongsakorn Sunthrayuth and Poom Kumam*

*Correspondence:
poom.kum@kmutt.ac.th
Department of Mathematics,
Faculty of Science, King Mongkut’s
University of Technology Thonburi
(KMUTT), 126 Pracha Uthit Rd., Bang
Mod, Thung Khru, Bangkok, 10140,
Thailand

Abstract
In this paper, we introduce new implicit and explicit iterative methods for finding a
common fixed point set of an infinite family of strict pseudo-contractions by the
sunny nonexpansive retractions in a real q-uniformly and uniformly convex Banach
space which admits a weakly sequentially continuous generalized duality mapping.
Then we prove the strong convergence under mild conditions of the purposed
iterative scheme to a common fixed point of an infinite family of strict
pseudo-contractions which is a solution of some variational inequalities. Furthermore,
we apply our results to study some strong convergence theorems in Lp and �p spaces
with 1 < p <∞. Our results mainly improve and extend the results announced by
Ceng et al. (Comput. Math. Appl. 61:2447-2455, 2011) and many authors from Hilbert
spaces to Banach spaces. Finally, we give some numerical examples for support our
main theorem in the end of the paper.
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1 Introduction
Let C,C, . . . ,Cn be nonempty, closed, and convex subsets of a real Hilbert space H such
that

⋂n
i=Ci �= ∅. The problem of image recovery in a Hilbert space setting by using con-

vex of metric projections PCi , may be stated as follows: the original unknown image z is
known a priori to belong to the intersection of {Ci}ni=; given only the metric projections
PCi ofH onto Ci for i = , , . . . ,n recover z by an iterative scheme. Youla andWebb [] first
used iterative methods for applied in image restoration. The problems of image recovery
have been studied in a Banach space setting by Kitahara and Takahashi [] (see also [,
]) by using convex combinations of sunny nonexpansive retractions in uniformly convex
Banach spaces. On the other hand, Alber [] studied the problem of image recovery by the
products of generalized projections in a uniformly convex and uniformly smooth Banach
space whose duality mapping is weakly sequentially continuous (see also [, ]). Nakajo et
al. [] and Kimura et al. [] considered this problem by the sunny nonexpansive retrac-
tions and proved convergence of the iterative sequence to a common point of countable
nonempty, closed, and convex subsets in a uniformly convex and smooth Banach space,
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and in a strictly convex, smooth and reflexive Banach space having the Kadec-Klee prop-
erty, respectively. Some iterativemethods have been studied in problem of image recovery
by numerous authors (see [–, –]).
The problems of image recovery are connectedwith the convex feasibility problem, con-

vex minimization problems, multiple-set split feasibility problems, common fixed point
problems, and variational inequalities. In particular, variational inequality theory has been
studied widely in several branches of pure and applied sciences. This field is dynamics
and is experiencing an explosive growth in both theory and applications. Indeed, appli-
cations of the variational inequalities span as diverse disciplines as differential equations,
time-optimal control, optimization, mathematical programming, mechanics, finance, and
so on. Note that most of the variational problems, including minimization or maximiza-
tion of functions, variational inequality problems, quasivariational inequality problems,
decision and management sciences, and engineering sciences problems. Recently, some
iterative methods have been developed for solving the fixed point problems and varia-
tional inequality problems in q-uniformly smooth Banach spaces by numerous authors
(see [–]).
LetA be a strongly positive bounded linear operator onH , that is, there exists a constant

γ̄ >  such that

〈Ax,x〉 ≥ γ̄ ‖x‖ for all x ∈H . (.)

Remark . From the definition of operator A, we note that a strongly positive bounded
linear operator A is a ‖A‖-Lipschitzian and η-strongly monotone operator.

A typical problem is to minimize a quadratic function over the set of the fixed points of
a nonexpansive mapping on a real Hilbert space H :

min
x∈C



〈Ax,x〉 – 〈x,u〉, (.)

where C is the fixed point set of a nonexpansive mapping T on H and u is a given point
in H .
In ,Marino andXu [] introduced and considered the following a general iterative

method:

xn+ = αnγ f (xn) + (I – αnA)Txn, ∀n≥ , (.)

where A is a strongly positive bounded linear operator on a real Hilbert space H . They
proved that if the sequence {αn} satisfies appropriate conditions, then the sequence {xn}
generated by (.) converges strongly to the unique solution of the variational inequality

〈
(γ f –A)x∗,x – x∗〉 ≤ , ∀x ∈ Fix(T), (.)

which is the optimality condition for the minimization problem

min
x∈C



〈Ax,x〉 – h(x), (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/473
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where C is the fixed point set of a nonexpansive mapping T and h is a potential function
for γ f (i.e., h′(x) = γ f (x) for all x ∈H).
On the other hand, Yamada [] introduced a hybrid steepest descent method for a

nonexpansive mapping T as follows:

xn+ = Txn –μλnF(Txn), ∀n≥ , (.)

where F is a κ-Lipschitzian and η-strongly monotone operator on a real Hilbert space
H with constants κ ,η >  and  < μ < η

κ
. He proved that if {λn} satisfy the appropriate

conditions, then the sequence {xn} generated by (.) converges strongly to the unique
solution of the variational inequality

〈
Fx∗,x – x∗〉 ≥ , ∀x ∈ Fix(T). (.)

Tian [] combined the iterative method (.) with the Yamada method (.) and consid-
ered a general iterative method for a nonexpansive mapping T on a real Hilbert space H
as follows:

xn+ = αnγ f (xn) + (I – αnμF)Txn, ∀n≥ . (.)

Then he proved that the sequence {xn} generated by (.) converges strongly to the unique
solution of variational inequality

〈
(γ f –μF)x∗,x – x∗〉 ≤ , ∀x ∈ Fix(T). (.)

In , Ceng et al. [] combined the iterative method (.) with Tian’s method (.) and
consider the following a general composite iterative method:

xn+ = (I – αnA)Txn + αn
[
Txn – βn

(
μFTxn – γ f (xn)

)]
, ∀n≥ , (.)

where A is a strongly positive bounded linear operator on H with coefficient γ̄ ∈ (, ),
and {αn} ⊂ (, ) and {βn} ⊂ (, ] satisfy appropriate conditions. Then they proved that
the sequence {xn} generated by (.) converges strongly to the unique solution x∗ ∈ C of
the variational inequality

〈
(I –A)x∗,x – x∗〉 ≤ , ∀x ∈ C, (.)

where C = Fix(T).
In this paper, motivated by the above facts, we introduce new implicit and explicit iter-

ative methods for finding a common fixed point set of an infinite family of strict pseudo-
contractions by the sunny nonexpansive retractions in a real q-uniformly and uniformly
convex Banach space X which admits a weakly sequentially continuous generalized dual-
ity mapping. Consequently, we prove the strong convergence undermild conditions of the
purposed iterative scheme to a common fixed point of an infinite family of strict pseudo-
contractions of nonempty, closed, and convex subsets of X which is a solution of some
variational inequalities. Furthermore, we apply our results to the study of some strong
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convergence theorems in Lp and �p spaces with  < p < ∞. Our results extend the main
result of Ceng et al. [] in several aspects and the work of many authors from Hilbert
spaces to Banach spaces. Finally, we give some numerical examples to support our main
theorem in the end of the paper.

2 Preliminaries
Throughout this paper, we denote by X and X∗ a real Banach space and the dual space of
X, respectively. Let q >  be a real number. The generalized duality mapping Jq : X → X∗

is defined by

Jq(x) =
{
f ∈ X∗ : 〈x, f 〉 = ‖x‖q,‖f ‖ = ‖x‖q–},

where 〈·, ·〉 denotes the duality pairing between X and X∗. In particular, Jq = J is called the
normalized duality mapping and Jq(x) = ‖x‖q–J(x) for x �= . If X := H is a real Hilbert
space, then J = I , where I is the identity mapping. It is well known that if X is smooth, then
Jq is single-valued, which is denoted by jq (see []).
A Banach spaceX is said to be strictly convex if ‖x+y‖

 <  for all x, y ∈ X with ‖x‖ = ‖y‖ = 
and x �= y. A Banach space X is said to be uniformly convex if, for each ε > , there exists
δ >  such that for x, y ∈ X with ‖x‖,‖y‖ ≤  and ‖x – y‖ ≥ ε, ‖x+y‖

 ≤  – δ holds. Let
S(X) = {x ∈ X : ‖x‖ = }. The norm of X is said to be Gâteaux differentiable (or X is said to
be smooth) if the limit

lim
t→

‖x + ty‖ – ‖x‖
t

exists for each x, y ∈ S(X). The norm of X is said to be uniformly Gâteaux differentiable,
if, for each y ∈ S(X), the limit is attained uniformly for x ∈ S(X).
Let ρX : [,∞) → [,∞) be the modulus of smoothness of X defined by

ρX(τ ) = sup

{


(‖x + y‖ + ‖x – y‖) –  : x ∈ S(X),‖y‖ ≤ τ

}
.

A Banach space X is said to be uniformly smooth if ρX (t)
t →  as t → . Suppose that q > ,

thenX is said to be q-uniformly smooth if there exists c >  such that ρX(t) ≤ ctq for all t > .
It is shown in [] (see also []) that there is noBanach spacewhich is q-uniformly smooth
with q > . If X is q-uniformly smooth, then X is uniformly smooth. It is well known that
each uniformly convex Banach spaceX is reflexive and strictly convex and every uniformly
smooth Banach space X is a reflexive Banach space with uniformly Gâteaux differentiable
norm (see []). Typical examples of both uniformly convex and uniformly smoothBanach
spaces are Lp, where p > .More precisely, Lp ismin{p, }-uniformly smooth for every p > .
Let C be a nonempty, closed, and convex subset of X and T be a self-mapping on C. We

denote the fixed points set of the mapping T by Fix(T) = {x ∈ C : Tx = x}.

Definition . A mapping T : C → C is said to be:
(i) λ-strictly pseudo-contractive [] if, for all x, y ∈ C, there exist λ >  and

jq(x – y) ∈ Jq(x – y) such that

〈
Tx – Ty, jq(x – y)

〉 ≤ ‖x – y‖q – λ
∥∥(I – T)x – (I – T)y

∥∥q, (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/473
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or equivalently

〈
(I – T)x – (I – T)y, jq(x – y)

〉 ≥ λ
∥∥(I – T)x – (I – T)y

∥∥q. (.)

(ii) L-Lipschitzian if, for all x, y ∈ C, there exists a constant L >  such that

‖Tx – Ty‖ ≤ L‖x – y‖.

If  < L < , thenT is a contraction and if L = , thenT is a nonexpansivemapping. By the
definition, we know that every λ-strictly pseudo-contractivemapping is ( +λ

λ
)-Lipschitzian

(see []).

Remark . Let C be a nonempty subset of a real Hilbert space H and T : C → C be a
mapping. Then T is said to be k-strictly pseudo-contractive [] if, for all x, y ∈ C, there
exists k ∈ [, ) such that

‖Tx – Ty‖ ≤ ‖x – y‖ + k
∥∥(I – T)x – (I – T)y

∥∥. (.)

It is well known that (.) is equivalent to the following inequality:

〈Tx – Ty,x – y〉 ≤ ‖x – y‖ –  – k


∥∥(I – T)x – (I – T)y
∥∥.

A mapping F : C → X is said to be accretive if, for all x, y ∈ C, there exists jq(x – y) ∈
Jq(x – y) such that

〈
Fx – Fy, jq(x – y)

〉 ≥ .

For some η > , F : C → X is said to be strongly accretive if, for all x, y ∈ C, there exists
jq(x – y) ∈ Jq(x – y) such that

〈
Fx – Fy, jq(x – y)

〉 ≥ η‖x – y‖q.

Remark . If X := H is a real Hilbert space, accretive and strongly accretive mappings
coincide with monotone and strongly monotone mappings, respectively.

Let D be a nonempty subset of C. A mapping Q : C →D is said to be sunny [] if

Q
(
Qx + t(x –Qx)

)
=Qx,

whenever Qx + t(x – Qx) ∈ C for x ∈ C and t ≥ . A mapping Q : C → D is said to be
retraction if Qx = x for all x ∈ D. Furthermore, Q is a sunny nonexpansive retraction from
C ontoD ifQ is a retraction fromC ontoDwhich is also sunny and nonexpansive. A subset
D of C is called a sunny nonexpansive retraction of C if there exists a sunny nonexpansive
retraction from C onto D. It is well known that if X := H is a real Hilbert space, then a
sunny nonexpansive retraction Q is coincident with the metric projection from X onto C.

Lemma . ([]) Let C be a closed and convex subset of a smooth Banach space X. Let
D be a nonempty subset of C. Let Q : C → D be a retraction and let j, jq be the normalized

http://www.journalofinequalitiesandapplications.com/content/2014/1/473
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duality mapping and generalized duality mapping on X, respectively. Then the following
are equivalent:
(a) Q is sunny and nonexpansive.
(b) ‖Qx –Qy‖ ≤ 〈x – y, j(Qx –Qy)〉 for all x, y ∈ C.
(c) 〈x –Qx, j(y –Qx)〉 ≤  for all x ∈ C and y ∈D.
(d) 〈x –Qx, jq(y –Qx)〉 ≤  for all x ∈ C and y ∈ D.

Lemma . ([]) Suppose that q > . Then the following inequality holds:

ab ≤ 
q
aq +

(
q – 
q

)
b

q
q–

for arbitrary positive real numbers a, b.

In a real q-uniformly smooth Banach space, Xu [] proved the following important
inequality:

Lemma . ([]) Let X be a real q-uniformly smooth Banach space. Then the following
inequality holds:

‖x + y‖q ≤ ‖x‖q + q
〈
y, Jq(x)

〉
+Cq‖y‖q (.)

for all x, y ∈ X and for some Cq > .

Remark . The constant Cq satisfying (.) is called the best q-uniform smoothness con-
stant.

Lemma . ([]) Let C be a nonempty and convex subset of a real q-uniformly smooth
Banach space X and T : C → C be a λ-strict pseudo-contraction. For γ ∈ (, ), define
Sx = (– γ )x+ γTx. Then, as γ ∈ (,ν), ν =min{, ( qλCq

)


q– }, S : C → C is nonexpansive and
Fix(S) = Fix(T), where Cq is the best q-uniform smoothness constant.

Definition. ([]) LetC be a nonempty, closed, and convex subset of a real q-uniformly
smooth Banach spaceX. LetTn,k = θn,kSk +(–θn,k)I , where Sk : C → C is λk-strict pseudo-
contraction and {tn} be a nonnegative real sequence with  ≤ tn ≤ , ∀n ∈ N. For n ≥ ,
define a mappingWn : C → C as follows:

Un,n+ = I,

Un,n = tnTn,nUn,n+ + ( – tn)I,

...

Un,k = tkTn,kUn,k+ + ( – tk)I,

Un,k– = tk–Tn,k–Un,k + ( – tk–)I,

...

Un, = tTn,Un, + ( – t)I,

Wn =Un, = tTn,Un, + ( – t)I.

(.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/473
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Such a mappingWn is called theW -mapping generated by Tn,n,Tn,n–, . . . ,Tn, and tn, tn–,
. . . , t.

Throughout this paper, we will assume that {θn,k} satisfies the following conditions:
(H) θn,k ∈ (,ν], ν =min{, ( qλ̄Cq

)


q– } with λ̄ = infλk > , ∀n,k ∈N;
(H) |θn+,k – θn,k| ≤ an, ∀n ∈ N and ≤ k ≤ n with

∑∞
n= an <∞;

The hypothesis (H) secures the existence of limn→∞ θn,k , ∀k ∈N. Set θ,k := limn→∞ θn,k ,
∀n ∈N. Furthermore, we assume
(H) θ,k > , ∀k ∈N.

It is obvious that θ,k satisfies (H). Using condition (H), from Tn,k = θn,kSk + ( – θn,k)I ,
we define mappings T,kx := limn→∞ Tn,kx = θ,kSkx + ( – θ,k)x, ∀x ∈ C.

Lemma . ([]) Let C be a nonempty, closed, and convex subset of a real q-uniformly
smooth and strictly convex Banach space X. Let Tn,i = θn,iSi + ( – θn,i)I , where Si : C → C
(i = , , . . .) is λi-strict pseudo-contraction with

⋂∞
n= Fix(Sn) �= ∅ and infλi > . Let t, t, . . .

be nonnegative real numbers such that  < tn ≤ b < , ∀n ≥ . Assume the sequence {θn,k}
satisfies (H)-(H). Then
() Wn is nonexpansive and Fix(Wn) =

⋂∞
n= Fix(Sn) for each n≥ ;

() for each x ∈ C and for each positive integer k, the limit limn→∞ Un,k exists;
() the mappingW : C → C defined by

Wx := lim
n→∞Wnx = lim

n→∞Un,x, ∀x ∈ C,

is a nonexpansive mapping satisfying Fix(W ) =
⋂∞

n= Fix(Sn) and it is called the
W -mapping generated by S,S, . . . and t, t, . . . and θn,k , ∀n ∈N and ≤ k ≤ n.

Lemma . ([]) Let C be a nonempty, closed, and convex subset of a real q-uniformly
smooth and strictly convex Banach space X. Let Tn,i = θn,iSi + ( – θn,i)I , where Si : C → C
(i = , , . . .) is λi-strict pseudo-contraction with

⋂∞
n= Fix(Sn) �= ∅ and infλi > . Let t, t, . . .

be nonnegative real numbers such that  < tn ≤ b < , ∀n ≥ . Assume the sequence {θn,k}
satisfies (H)-(H). If {ωn} is a bounded sequence in C, then

lim
n→∞‖Wωn –Wnωn‖ = .

In the following, the notation ⇀ and → denote the weak and strong convergence, re-
spectively. The duality mapping Jq from a smooth Banach space X into X∗ is said to be
weakly sequentially continuous generalized duality mapping if, for all {xn} ⊂ X, xn ⇀ x
implies Jq(xn) ⇀∗ Jq(x).
A Banach space X is said to be satisfy Opial’s condition [], that is, for any sequence

{xn} in X, xn ⇀ x implies that

lim inf
n→∞ ‖xn – x‖ < lim inf

n→∞ ‖xn – y‖, ∀y ∈ X with x �= y.

ByTheorem.. in [], it is well known that ifX admits aweakly sequentially continuous
generalized duality mapping, then X satisfies Opial’s condition.

Lemma . ([]) Let C be a nonempty, closed, and convex subset of a real q-uniformly
smooth Banach space X which admits weakly sequentially continuous generalized duality

http://www.journalofinequalitiesandapplications.com/content/2014/1/473
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mapping jq from X into X∗. Let T : C → C be a nonexpansive mapping. Then, for all {xn} ⊂
C, if xn ⇀ x and xn – Txn → , then x = Tx.

Lemma . ([]) Let {an}, {μn}, and {δn} be real sequences of nonnegative numbers such
that

an+ ≤ ( – σn)an +μn + δn, ∀n≥ ,

where σn ∈ (, ),
∑∞

n= σn =∞, μn = ◦(σn) and
∑∞

n= δn < ∞. Then limn→∞ an = .

3 Main results
In order to prove our main result, the following lemma is needed.

Lemma . Let C be a nonempty, closed, and convex subset of a real q-uniformly smooth
Banach space X with the best q-uniform smoothness constant Cq > . Let F : C → X be a
κ-Lipschitzian and η-strongly accretive operator with constants κ ,η > . Let  < μ <
( qη
Cqκq

)


q– and τ = μ(η – Cqμq–κq

q ). Then for t ∈ (,min{, 
qτ }), the mapping S : C → X de-

fined by S := I – tμF is a contraction with constant  – tτ .

Proof Since  < μ < ( qη
Cqκq

)


q– and t ∈ (,min{, 
qτ }). This implies that  – tτ ∈ (, ). From

Lemma ., for all x, y ∈ C, we have

‖Sx – Sy‖q =
∥∥(I – tμF)x – (I – tμF)y

∥∥q

=
∥∥(x – y) – tμ(Fx – Fy)

∥∥q

≤ ‖x – y‖q – qtμ
〈
Fx – Fy, jq(x – y)

〉
+Cqtqμq‖Fx – Fy‖q

≤ ‖x – y‖q – qtμη‖x – y‖q +Cqtqμqκq‖x – y‖q

≤ [
 – tμ

(
qη –Cqμ

q–κq)]‖x – y‖q

=
[
 – tμq

(
η –

Cqμ
q–κq

q

)]
‖x – y‖q

≤
[
 – tμ

(
η –

Cqμ
q–κq

q

)]q

‖x – y‖q

= ( – tτ )q‖x – y‖q.

It follows that

‖Sx – Sy‖ ≤ ( – tτ )‖x – y‖.

Hence, we have S := I – tμF is a contraction with constant  – tτ . �

Lemma . Let C be a nonempty, closed, and convex subset of a real q-uniformly smooth
Banach space X and G : C → X be a mapping.

(i) If G is a δ-strongly accretive and λ-strictly pseudo-contractive mapping wit δ + λ > ,
then I –G is a contraction with constant Lδ,λ := ( –δ

λ
)

q .

(ii) If G is a δ-strongly accretive and λ-strictly pseudo-contractive mapping with δ + λ > .
For a fixed number t ∈ (, ), then I – tG is a contraction with constant  – ( – Lδ,λ)t.

http://www.journalofinequalitiesandapplications.com/content/2014/1/473
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Proof (i) For all x, y ∈ C, from (.), we have

λ
∥∥(I –G)x – (I –G)y

∥∥q ≤ ‖x – y‖q – 〈
Gx –Gy, jq(x – y)

〉
≤ ( – δ)‖x – y‖q.

Observe that

δ + λ >  ⇐⇒
(
 – δ

λ

) 
q

∈ (, ).

It follows that

∥∥(I –G)x – (I –G)y
∥∥ ≤

(
 – δ

λ

) 
q
‖x – y‖ := Lδ,λ‖x – y‖.

Hence, I –G is a contraction with constant Lδ,λ.
(ii) Since I –G is a contraction with constant Lδ,λ. For all t ∈ (, ), we have

∥∥(I – tG)x – (I – tG)y
∥∥ =

∥∥(x – y) – t(Gx –Gy)
∥∥

=
∥∥( – t)(x – y) + t

[
(I –G)x – (I –G)y

]∥∥
≤ ( – t)‖x – y‖ + t

∥∥(I –G)x – (I –G)y
∥∥

≤ (
 – ( – Lδ,λ)t

)‖x – y‖.

Hence, I – tG is a contraction with constant  – ( – Lδ,λ)t. This completes the proof. �

3.1 Implicit iteration scheme
LetC be a nonempty, closed, and convex subset of a real reflexive and q-uniformly smooth
Banach space X which admits a weakly sequentially continuous generalized duality map-
ping jq. Let QC be a sunny nonexpansive retraction from X onto C. Let F : C → X be a
κ-Lipschitzian and η-strongly accretive operator with constants κ ,η > , G : C → X be a
δ-strongly accretive and λ-strictly pseudo-contractive mapping with δ + λ > , V : C → X
be an L-Lipschitzianmappingwith constant L ≥  andT : C → C be a nonexpansivemap-
ping such that Fix(T) �= ∅. Let  < μ < ( qη

Cqκq
)


q– and  ≤ γL < τ , where τ = μ(η – Cqμq–κq

q ).

For each σ ∈ ( Lδ,λ
τ–γL ,min{, 

qτ ,
+Lδ,λ
τ–γL }) and t ∈ (, ), we define amapping St : C → C defined

by

Sx :=QC
[
(I – tG)Tx + t

(
Tx – σ (μFTx – γVx)

)]
, ∀x ∈ C.

It is easy to see immediately that St is a contraction. Indeed, for all x, y ∈ C, from Lem-
mas . and .(ii), we have

‖Stx – Sty‖ =
∥∥QC

[
(I – tG)Tx + t

(
Tx – σ (μFTx – γVx)

)]
–QC

[
(I – tG)Ty + t

(
Ty – σ (μFTy – γVy)

)]∥∥
≤ ∥∥(I – tG)(Tx – Ty) + t

[
(I – σμF)(Tx – Ty) + σγ (Vx –Vy)

]∥∥
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≤ (
 – t( – Lδ,λ)

)‖x – y‖ + t
[
σγ ‖Vx –Vy‖ + ∥∥(I – σμF)(Tx – Ty)

∥∥]
≤ (

 – t( – Lδ,λ)
)‖x – y‖ + t

(
 – σ (τ – γL)

)‖x – y‖
=

[
 – t

(
σ (τ – γL) – Lδ,λ

)]‖x – y‖
= ( – tθ )‖x – y‖, (.)

where θ := σ (τ – γL) – Lδ,λ. Since τ – γL >  and Lδ,λ ∈ (, ), observe that

Lδ,λ

τ – γL
< σ <min

{
,


qτ

,
 + Lδ,λ

τ – γL

}
≤  + Lδ,λ

τ – γL
.

It follows that

σ <
 + Lδ,λ

τ – γL
⇐⇒ θ = σ (τ – γL) – Lδ,λ < 

and

Lδ,λ

τ – γL
< σ ⇐⇒ θ = σ (τ – γL) – Lδ,λ > .

This implies that θ = σ (τ – γL) – Lδ,λ ∈ (, ), which together with t ∈ (, ) gives

 – t
(
σ (τ – γL) – Lδ,λ

) ∈ (, ).

Hence St is a contraction. By the Banach contraction principle, St has a unique fixed point,
denote by xt , which uniquely solves the fixed point equation

xt =QC
[
(I – tG)Txt + t

(
Txt – σ (μFTxt – γVxt)

)]
. (.)

The following proposition summarizes the properties of the net {xt}.

Proposition . Let {xt} be defined by (.). Then the following hold:
(i) {xt} is bounded for each t ∈ (, );
(ii) limt→ ‖xt – Txt‖ = ;
(iii) {xt} defines a continuous curve from (, ) into C.

Proof (i) Take p ∈ Fix(T), and denote a mapping St : C → C by

Stx :=QC
[
(I – tG)Tx + t

(
Tx – σ (μFTx – γVx)

)]
, ∀x ∈ C.

From (.), we have

‖xt – p‖ ≤ ‖Stxt – Stp‖ + ‖Stp – p‖
≤ ( – tθ )‖xt – p‖ + ∥∥QC

[
(I – tG)Tp + t

(
Tp – σ (μFTp – γVp)

)]
–QCp

∥∥
≤ ( – tθ )‖xt – p‖ + t

∥∥–Gp + p – σ (μFp – γVp)
∥∥

≤ ( – tθ )‖xt – p‖ + t
[‖I –G‖‖p‖ + σμ‖Fp‖ + σγ ‖Vp‖],
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where θ := σ (τ – γL) – Lδ,λ. It follows that

‖xt – p‖ ≤ ‖I –G‖‖p‖ + σμ‖Fp‖ + σγ ‖Vp‖
θ

.

Hence {xt} is bounded, so are {Vxt}, {FTxt}, and {GTxt}.
(ii) By definition of {xt}, we have

‖xt – Txt‖ =
∥∥QC

[
(I – tG)Txt + t

(
Txt – σ (μFTxt – γVxt)

)]
–QCTxt

∥∥
≤ t

∥∥(I –G)Txt – σ (μFTxt – γVxt)
∥∥ →  as t → .

(iii) Take t, t ∈ (, ) and calculate

‖xt – xt‖ =
∥∥QC

[
(I – tG)Txt + t

(
Txt – σ (μFTxt – γVxt)

)]
–QC

[
(I – tG)Txt + t

(
Txt – σ (μFTxt – γVxt )

)]∥∥
≤ ∥∥(t – t)GTxt + (I – tG)(Txt – Txt ) + (t – t)

[
Txt – σ (μFTxt – γVxt)

]
+ t

[
Txt – σ (μFTxt – γVxt ) –

[
Txt – σ (μFTxt – γVxt )

]]∥∥
=

∥∥(t – t)GTxt + (I – tG)(Txt – Txt ) + (t – t)
[
Txt – σ (μFTxt – γVxt)

]
+ t

[
σγ (Vxt –Vxt ) + (I – σμF)(Txt – Txt )

]∥∥
≤ |t – t|‖GTxt‖ +

(
 – ( – Lδ,λ)

)‖xt – xt‖
+ |t – t|

∥∥Txt – σ (μFTxt – γVxt)
∥∥

+ t
(
 – σ (τ – γL)

)‖xt – xt‖.

It follows that

‖xt – xt‖ ≤ ‖GTxt‖ + ‖Txt – σ (μFTxt – γVxt)‖
t(σ (τ – γL) – Lδ,λ)

|t – t|.

Since {Vxt}, {FTxt}, and {GTxt} are bounded. Hence {xt} defines a continuous curve from
(, ) into C. �

Theorem . Assume that {xt} is defined by (.), then {xt} converges strongly to x∗ ∈
Fix(T) as t → , where x∗ is the unique solution of the variational inequality

〈(
G – I + σ (μF – γV )

)
x∗, jq

(
x∗ – v

)〉 ≤ , ∀v ∈ Fix(T). (.)

Proof We observe that

Cqμ
q–κq

q
>  ⇐⇒ η –

Cqμ
q–κq

q
< η

⇐⇒ μ

(
η –

Cqμ
q–κq

q

)
< μη

⇐⇒ τ < μη. (.)
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It follows that

 ≤ γL < τ < μη. (.)

First, we show the uniqueness of solution of the variational inequality. Suppose that x̃,x∗ ∈
Fix(T) are solutions of (.), then

〈(
G – I + σ (μF – γV )

)
x∗, jq

(
x∗ – x̃

)〉 ≤  (.)

and

〈(
G – I + σ (μF – γV )

)
x̃, jq

(
x̃ – x∗)〉 ≤ . (.)

Adding up (.) and (.), and from Lemma .(i), we obtain

 ≥ 〈(
G – I + σ (μF – γV )

)
x∗ –

(
G – I + σ (μF – γV )

)
x̃, jq

(
x∗ – x̃

)〉
=

〈
(G – I)x∗ – (G – I)x̃, jq

(
x∗ – x̃

)〉
+ σ

〈
(μF – γV )x∗ – (μF – γV )x̃, jq

(
x∗ – x̃

)〉
= –

〈
(I –G)x∗ – (I –G)x̃, jq

(
x∗ – x̃

)〉
+ σμ

〈
Fx∗ – Fx̃, jq

(
x∗ – x̃

)〉
– σγ

〈
Vx∗ –Vx̃, jq

(
x∗ – x̃

)〉
≥ –Lδ,λ

∥∥x∗ – x̃
∥∥q + σμη

∥∥x∗ – x̃
∥∥q – σγ

∥∥Vx∗ –Vx̃
∥∥∥∥x∗ – x̃

∥∥q–

≥ (
σ (μη – γL) – Lδ,λ

)∥∥x∗ – x̃
∥∥q.

On the other hand, we observe from (.) that

Lδ,λ

τ – γL
< σ ⇐⇒ Lδ,λ < σ (τ – γL)

⇐⇒ Lδ,λ < σ (μη – γL)

⇐⇒  < σ (μη – γL) – Lδ,λ. (.)

Note that (.) implies that x∗ = x̃ and the uniqueness is proved. Below, we use x̃ to denote
the unique solution of the variational inequality (.).
Next, we show that xt → x∗ as t → . Set xt = QCyt , where yt = (I – tG)Txt + t(Txt –

σ (μFTxt – γVxt)). Assume that {tn} ⊂ (, ) is a sequence such that tn →  as n→ ∞. Put
xn := xtn and yn := ytn . For z ∈ Fix(T), we note that

xn – z = QCyn – yn + yn – z

= QCyn – yn + (I – tnG)(Txn – z) + tn
(
Txn – σ (μFTxn – γVxn) –Gz

)
= QCyn – yn + (I – tnG)(Txn – z) + tn

[
(I – σμF)Txn + σγVxn –Gz

]
= QCyn – yn + (I – tnG)(Txn – z) + tn

[
(I – σμF)(Txn – z) + σγ (Vxn –Vz)

]
+ tn

[
(I – σμF)z + σγVz –Gz

]
. (.)

By Lemma ., we have

〈
QCyn – yn, jq(QCyn – z)

〉 ≤ . (.)
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It follows from (.) and (.) that

‖xn – z‖q =
〈
QCyn – yn, jq(QCyn – z)

〉
+

〈
yn – z, jq(xn – z)

〉
≤ 〈

(I – tnG)(Txn – z), jq(xn – z)
〉
+ tn

〈
(I – σμF)(Txn – z), jq(xn – z)

〉
+ tnσγ

〈
Vxn –Vz, jq(xn – z)

〉
+ tn

〈
(I – σμF)z + σγVz –Gz, jq(xn – z)

〉
≤ [

 – tn
(
σ (τ – γL) – Lδ,λ

)]‖xn – z‖q

+ tn
〈
(I – σμF)z + σγVz –Gz, jq(xn – z)

〉
,

which implies that

‖xn – z‖q ≤ 
σ (τ – γL) – Lδ,λ

〈
(I – σμF)z + σγVz –Gz, jq(xn – z)

〉
.

In particular, we have

‖xni – z‖q ≤ 
σ (τ – γL) – Lδ,λ

〈
(I – σμF)z + σγVz –Gz, jq(xni – z)

〉
. (.)

By reflexivity of a Banach space X and boundedness of {xn}, there exists a subsequence
{xni} of {xn} such that xni ⇀ x̃ as i→ ∞. Since a Banach space X has a weakly sequentially
continuous generalized duality mapping and by (.), we obtain xni → x̃. By Proposi-
tion .(ii), we have xni – Txni →  as i → ∞. Hence, it follows from Lemma . that
x̃ ∈ Fix(T).
Next, we show that x̃ solves the variational inequality (.). We note that

xt =QCyt =QCyt – yt + (I – tG)Tx + t
(
Txt – σ (μFTxt – γVxt)

)
,

we derive

(
G–I+σ (μF–γV )

)
xt =


t
(QCyt–yt)–


t
(
(I–tG)(I–T)xt+t(I–σμF)(I–T)xt

)
. (.)

Since I –T is accretive (i.e., 〈(I –T)x–(I –T)y, jq(x–y)〉 ≥  for x, y ∈ C). For all v ∈ Fix(T),
it follows from (.) and (.) that

〈(
G – I + σ (μF – γV )

)
xt , jq(xt – v)

〉
=

t
〈
QCyt – yt , jq(QCyt – v)

〉
–

t
〈
(I – tG)(I – T)xt , jq(xt – v)

〉
–

〈
(I – σμF)(I – T)xt , jq(xt – v)

〉
≤ –


t
〈
(I – T)xt – (I – T)v, jq(xt – v)

〉
+

〈
G(I – T)xt , jq(xt – v)

〉
–

〈
(I – T)xt – (I – T)v, jq(xt – v)

〉
+ σμ

〈
F(I – T)xt , jq(xt – v)

〉
≤ 〈

G(I – T)xt , jq(xt – v)
〉
+ σμ

〈
F(I – T)xt , jq(xt – v)

〉
≤ ‖G‖‖xt – Txt‖‖xt – v‖q– + σμ‖F‖‖xt – Txt‖‖xt – v‖q–

≤ ‖xt – Txt‖M, (.)
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whereM >  is an appropriate constant such thatM = supt∈(,){‖G‖‖xt –v‖q–,σμ‖F‖×
‖xt – v‖q–}. Now, replacing t in (.) with tn and taking the limit as n → ∞, we notice
that xtn – Txtn → x̃ – Tx̃ = , we obtain

〈(
G – I + σ (μF – γV )

)
x̃, jq(x̃ – v)

〉 ≤ .

That is, x̃ ∈ Fix(T) is the solution of the variational inequality (.). Consequently, x̃ = x∗

by uniqueness. In a summary, we have shown that each cluster point of {xt} is equal to x∗.
Therefore xt → x∗ as t → . This completes the proof. �

3.2 Explicit iteration scheme
Theorem. Let C be a nonempty, closed, and convex subset of a real q-uniformly smooth
and uniformly convex Banach space X which admits a weakly sequentially continuous
generalized duality mapping jq. Let QC be a sunny nonexpansive retraction such that X
onto C. Let F : C → X be a κ-Lipschitzian and η-strongly accretive operator with constants
κ ,η > , G : C → X be a δ-strongly accretive and λ-strictly pseudo-contractive mapping
with δ + λ > , V : C → X be an L-Lipschitzian mapping with constant L ≥ . Let {Si}∞i=
be an infinite family of λi-strictly pseudo-contractive mapping from C into itself such that
F :=

⋂∞
i= Fix(Si) �= ∅. For given x ∈ C, define the sequence {xn} by

xn+ =QC
[
(I – αnG)Wnxn + αn

(
Wnxn – σ (μFWnxn – γVxn)

)]
, ∀n≥ , (.)

where {αn} is a sequence in (, ) which satisfies the following conditions:
(C) limn→∞ αn =  and

∑∞
n= αn =∞;

(C) |αn+ – αn| ≤ ◦(αn) + σn with
∑∞

n= σn < ∞.
Suppose in addition that {θn,k} satisfies (H)-(H). Then the sequence {xn} defined by (.)
converges strongly to x∗ ∈ F as n → ∞, where x∗ is the unique solution of the variational
inequality

〈(
G – I + σ (μF – γV )

)
x∗, jq

(
x∗ – v

)〉 ≤ , ∀v ∈F . (.)

Proof From the condition (C), we may assume, without loss of generality, that αn ≤
min{, 

qτ } for all n ∈ N. First, we show that {xn} is bounded. Take p ∈ F , and denote a
mapping Sαn

n : C → C by

Sαn
n x :=QC

[
(I – αnG)Wnx + αn

(
Wnx – σ (μFWnx – γVx)

)]
, ∀x ∈ C.

Then we have

Sαn
n p =QC

[
(I – αnG)Wnp + αn

(
Wnp – σ (μFWnp – γVp)

)]
.

From (.), we have

‖xn+ – p‖ ≤ ∥∥Sαn
n xn – Sαn

n p
∥∥ +

∥∥Sαn
n p – p

∥∥
≤ ( – αnθ )‖xn – p‖ + ∥∥QC

[
(I – αnG)p + αn

(
p – σ (μFp – γVp)

)]
–QCp

∥∥
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≤ ( – αnθ )‖xn – p‖ + αn
∥∥–Gp + p – σ (μFp – γVp)

∥∥
≤ ( – αnθ )‖xn – p‖ + αn

(‖I –G‖‖p‖ + σ‖μFp – γVp‖)
≤ ( – αnθ )‖xn – p‖ + αnθ

‖I –G‖‖p‖ + σμ‖Fp‖ + γ ‖Vp‖
θ

≤ max

{
‖xn – p‖, ‖I –G‖‖p‖ + σμ‖Fp‖ + γ ‖Vp‖

θ

}
,

where θ := σ (τ – γL) – Lδ,λ. By induction, we obtain

‖xn – p‖ ≤max

{
‖x – p‖, ‖I –G‖‖p‖ + σμ‖Fp‖ + γ ‖Vp‖

θ

}
, ∀n≥ .

Hence, {xn} is bounded, so are {Vxn}, {FWnxn}, and {GWnxn}.
Next, we show that ‖xn+ – xn‖ →  as n → ∞. Set Sαn

n xn = QCyn, where yn = (I –
αnG)Wnxn + αn(Wnxn – σ (μFWnxn – γVxn)). From (.), we have

‖Wn+xn –Wnxn‖
=

∥∥tTn+,Un+,xn + ( – t)xn – tTn,Un, – ( – t)xn
∥∥

= t‖Tn+,Un+,xn – Tn,Un,xn‖
= t

∥∥(
θn+,S + ( – θn+,)

)
Un+,xn – Tn,Un,xn

∥∥
= t

∥∥(
θn,S + ( – θn,)

)
Un+,xn – Tn,Un,xn + (θn+, – θn,)(SUn+,xn –Un+,xn)

∥∥
≤ t‖Tn,Un+,xn – Tn,Un,xn‖ + t|θn+, – θn,|‖SUn+,xn –Un+,xn‖
≤ t‖Tn,Un+,xn – Tn,Un,xn‖ + t|θn+, – θn,|M∗

≤ t‖Tn,Un+,xn – Tn,Un,xn‖ + tanM

...

≤
n∏
i=

ti‖Un+,n+xn –Un,n+xn‖ +
(
an

n∑
j=

j∑
i=

ti

)
M

≤
n∏
i=

ti
∥∥tn+Tn+,n+xn + ( – tn+)xn – xn

∥∥ +
b

 – b
anM

≤
n+∏
i=

ti‖Tn+,n+xn – xn‖ + b
 – b

anM

≤
(
bn+ +

b
 – b

an
)
M, (.)

whereM = infi=,,...(
+λq–i

λ
q–
i

) supn≥{‖xn – p‖} with p ∈F .

On the other hand, we note that

yn+ – yn = (I – αn+G)Wn+xn + αn+
[
Wn+xn – σ (μFWn+xn – γVxn)

]
– (I – αnG)Wnxn – αn

[
Wnxn – σ (μFWnxn – γVxn)

]
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= (I – αn+G)(Wn+xn –Wnxn) + (αn – αn+)GWnxn + (αn+ – αn)Wn+xn

+ αn(Wn+xn –Wnxn) + σ (αn – αn+)(μFWn+xn – γVxn)

– σαn
[
μFWn+xn – γVxn – (μFWnxn – γVxn)

]
=

[
( + αn)I – αn+G

]
(Wn+xn –Wnxn) + (αn+ – αn)[Wn+xn –GWnxn]

+ σ (αn – αn+)[μFWn+xn – γVxn] – σαnμF[Wn+xn –Wnxn]

=
[
( + αn)I – αn+G – σαnμF

]
(Wn+xn –Wnxn)

+ (αn+ – αn)[Wn+xn –GWnxn] + σ (αn – αn+)[μFWn+xn – γVxn].

Hence, we have

∥∥Sαn+
n+ xn – Sαn

n xn
∥∥ = ‖QCyn+ –QCyn‖

≤ ‖yn+ – yn‖
≤ ∥∥( + αn)I – αn+G – σαnμF

∥∥‖Wn+xn –Wnxn‖
+ |αn+ – αn|‖Wn+xn –GWnxn‖
+ σ |αn+ – αn|‖μFWn+xn – γVxn‖

≤ (‖Wn+xn –Wnxn‖ + |αn+ – αn|
)
M,

where M = supn≥{‖( + αn)I – αn+G – σαnμF‖,‖Wn+xn – GWnxn‖,σ‖μFWn+xn –
γVxn‖}. It follows from (.) and (.) that

‖xn+ – xn+‖ ≤ ∥∥Sαn+
n+ xn+ – Sαn+

n+ xn
∥∥ +

∥∥Sαn+
n+ xn – Sαn

n xn
∥∥

≤ ( – αn+θ )‖xn+ – xn‖ +
(|αn+ – αn| + ‖Wn+xn –Wnxn‖

)
M

≤ ( – αn+θ )‖xn+ – xn‖ +
(◦(αn) + σn

)
M + ‖Wn+xn –Wnxn‖M

≤ ( – αn+θ )‖xn+ – xn‖ + ◦(αn)M +
(

σn + bn+ +
b

 – b
an

)
M, (.)

whereM =max{M,M}. Then, by Lemma ., we have

lim
n→∞‖xn+ – xn‖ = . (.)

Next, we show that limn→∞ ‖xn –Wxn‖ = . Since

‖xn –Wnxn‖ ≤ ‖xn – xn+‖ + ‖xn+ –Wnxn‖
= ‖xn – xn+‖ +

∥∥QC
[
(I – αnG)Wnxn + αn

(
Wnxn – σ (μFWnxn – γVxn)

)]
–QCWnxn

∥∥
≤ ‖xn – xn+‖ + αn

∥∥(I –G)Wnxn – σ (μFWnxn – γVxn)
∥∥.

From (.) and the condition (C), we obtain

lim
n→∞‖xn –Wnxn‖ = . (.)
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At the same time, observe that

‖xn –Wxn‖ ≤ ‖xn –Wnxn‖ + ‖Wnxn –Wxn‖.

It follows from (.) and Lemma ., we have

lim
n→∞‖xn –Wxn‖ = . (.)

Next, we show that

lim sup
n→∞

〈[
I –G + σ (γV –μF)

]
x∗, jq

(
xn – x∗)〉 ≤ ,

where x∗ is the same as in Theorem .. Since {xn} is bounded, there exists a subsequence
{xni} of {xn} such that

lim sup
n→∞

〈[
I –G + σ (γV –μF)

]
x∗, jq

(
xn – x∗)〉

= lim
i→∞

〈[
I –G + σ (γV –μF)

]
x∗, jq

(
xni – x∗)〉.

By reflexivity of a Banach space X and boundedness of {xn}, without loss of generality,
we may assume that xni ⇀ v as i→ ∞. It follows from (.) and Lemma . that v ∈F .
Since a Banach spaceX has a weakly sequentially continuous generalized dualitymapping,
we obtain

lim sup
n→∞

〈[
I –G + σ (γV –μF)

]
x∗, jq

(
xn – x∗)〉

= lim
i→∞

〈[
I –G + σ (γV –μF)

]
x∗, jq

(
xni – x∗)〉

=
〈[
I –G + σ (γV –μF)

]
x∗jq

(
v – x∗)〉 ≤ . (.)

Finally, we show that xn → x∗ as n → ∞. Set xn+ = QCyn, where yn = (I – αnG)Wnxn +
αn(Wnxn – σ (μWnxn – γVxn)). From Lemmas . and ., we have

∥∥xn+ – x∗∥∥q

=
〈
yn – x∗, jq

(
xn+ – x∗)〉 + 〈

QCyn – yn, jq
(
xn+ – x∗)〉

≤ 〈
yn – x∗, jq

(
xn+ – x∗)〉

=
〈
(I – αnG)

(
Wnxn – x∗), jq(xn+ – x∗)〉 + αn

〈
(I – σμF)

(
Wnxn – x∗), jq(xn+ – x∗)〉

+ αnσγ
〈
Vxn –Vx∗, jq

(
xn+ – x∗)〉 + αn

〈
(I – σμF)x∗ + σγVx∗ –Gx∗, jq

(
xn+ – x∗)〉

≤ (
 – αn( – Lδ,λ)

)∥∥xn – x∗∥∥∥∥xn+ – x∗∥∥q– + αn( – στ )
∥∥xn – x∗∥∥∥∥xn+ – x∗∥∥q–

+ αnσγL
∥∥xn – x∗∥∥∥∥xn+ – x∗∥∥q– + αn

〈
x∗ –Gx∗ + σ

(
γVx∗ –μFx∗), jq(xn+ – x∗)〉

=
(
 – αn

(
σ (τ – γL) – Lδ,λ

))∥∥xn – x∗∥∥∥∥xn+ – x∗∥∥q–

+ αn
〈
x∗ –Gx∗ + σ

(
γVx∗ –μFx∗), jq(xn+ – x∗)〉
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≤ (
 – αn

(
σ (τ – γL) – Lδ,λ

))[ 
q
∥∥xn – x∗∥∥q +

(
q – 
q

)∥∥xn+ – x∗∥∥q
]

+ αn
〈
x∗ –Gx∗ + σ

(
γVx∗ –μFx∗), jq(xn+ – x∗)〉,

which implies that

∥∥xn+ – x∗∥∥q ≤ (
 – αn

(
σ (τ – γL) – Lδ,λ

))∥∥xn – x∗∥∥q

+
qαn

 + (q – )(σ (τ – γL) – Lδ,λ)

× 〈
x∗ –Gx∗ + σ

(
γVx∗ –μFx∗), jq(xn+ – x∗)〉. (.)

We can write (.) to the formula

∥∥xn+ – x∗∥∥q ≤ ( – τn)‖xn – x‖q + ξn, (.)

where τn := (σ (τ – γL) – Lδ,λ)αn and ξn := qαn
+(q–)(σ (τ–γL)–Lδ,λ)

〈x∗ – Gx∗ + σ (γVx∗ – μFx∗),
jq(xn+ – x∗)〉. Put cn = max{, ξn}, from (.), we have cn →  as n → ∞. Then we can
rewrite (.) as

∥∥xn+ – x∗∥∥q ≤ ( – τn)
∥∥xn – x∗∥∥q + cn

≤ ( – τn)
∥∥xn – x∗∥∥q + ◦(αn).

Therefore, by Lemma ., we conclude that xn → x∗ as n → ∞. This completes the
proof. �

4 Some applications
In this section, we will utilize Theorems . and . to study some strong convergence
theorems in Lp (or �p) spaces with  < p <∞. It well known that Hilbert spaces, Lp (or �p)
spaces with  < p <∞ and the Sobolev spacesWp

m with  < p < ∞ are q-uniformly smooth,
i.e.,

Lp (or �p) orWp
m is

⎧⎨
⎩-uniformly smooth, if  ≤ p < ∞,

p-uniformly smooth, if  < p≤ .

Furthermore, we have the following properties of Lp (or �p) spaces with  < p < ∞ (see [,
]):
() For  ≤ p < ∞, the spaces Lp (or �p) are -uniformly smooth with Cq = C = p – .
() For  < p≤ , the spaces Lp (or �p) are p-uniformly smooth with

Cq = Cp = ( + tp–p )( + tp)–p, where tp is the unique solution of the equation

(p – )tp– + (p – )tp– –  = ,  < t < .

() Every Hilbert spaces are -uniformly smooth with Cq = C = .
() Every Lp (or �p) spaces with  < p <∞ are q-uniformly smooth and uniformly

convex.
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() Every �p spaces with  < p <∞ have weakly sequentially continuous generalized
duality mappings, but Lp spaces ( < p <∞, p �= ) do not have weakly sequentially
continuous generalized duality mappings.

Lemma . Let X := Lp (or �p) with  < p ≤ . Let C be a nonempty, closed, and convex
subset of X. Let F : C → X be a κ-Lipschitzian and η-strongly accretive operator with con-
stants κ ,η > . Let  < μ < ( pη

Dpκp )


p– and τ = μ(η – Dpμp–κp

p ). Then for t ∈ (,min{, 
pτ }),

the mapping S : C → X defined by S := I – tμF is a contraction with constant  – tτ .

Lemma . Let X := Lp (or �p) with  ≤ p < ∞. Let C be a nonempty, closed, and convex
subset of X. Let F : C → X be a κ-Lipschitzian and η-strongly accretive operator with con-
stants κ ,η > . Let  < μ < η

(p–)κ and τ = μ(η – (p–)μκ

 ). Then for t ∈ (,min{, 
τ }), the

mapping S : C → X defined by S := I – tμF is a contraction with constant  – tτ .

Lemma . Let X := H be a real Hilbert space. Let C be a nonempty, closed, and convex
subset of X. Let F : C → X be a κ-Lipschitzian and η-strongly accretive operator with con-
stants κ ,η > . Let  < μ < η

κ
and τ = μ(η – μκ

 ). Then for t ∈ (,min{, 
τ }), the mapping

S : C → X defined by S := I – tμF is a contraction with constant  – tτ .

4.1 Implicit iteration schemes
Theorem . Let C be a nonempty, closed, and convex subset of an �p space for  < p ≤ .
Let QC , F , G, V , and T be the same as in Theorem .. Assume that  < μ < ( pη

Dpκp )


p– and
 ≤ γL < τ , where τ = μ(η – Dpμp–κp

p ). For σ ∈ ( Lδ,λ
τ–γL ,min{, 

pτ ,
+Lδ,λ
τ–γL }) and t ∈ (, ), the

sequence {xt} defined by (.) converges strongly to x∗ ∈ Fix(T) as t → , where x∗ is the
unique solution of the variational inequality (.).

Theorem. Let C be a nonempty, closed, and convex subset of an �p space for  ≤ p < ∞.
Let QC , F , G, V , and T be the same as in Theorem .. Assume that  < μ < η

(p–)κ and
 ≤ γL < τ , where τ = μ(η – (p–)μκ

 ). For σ ∈ ( Lδ,λ
τ–γL ,min{, 

τ ,
+Lδ,λ
τ–γL }) and t ∈ (, ), the

sequence {xt} defined by (.) converges strongly to x∗ ∈ Fix(T) as t → , where x∗ is the
unique solution of the variational inequality (.).

Remark . If the spaces Lp has a weakly sequentially continuous generalized duality
mappings, then we obtain Theorems . and . hold for Lp spaces with  < p < ∞, p �= .

4.2 Explicit iteration schemes
Theorem . Let C be a nonempty, closed, and convex subset of an �p space for  < p ≤ .
Let QC , F , G, V , and Wn be the same as in Theorem .. Let {αn} and {βn} are sequences
in (, ) which satisfy the conditions (C) and (C) in Theorem . and {θn,k} satisfies (H)-
(H). Then the sequence {xn} defined by (.) converges strongly to x∗ ∈ F as n → ∞,
where x∗ is the unique solution of the variational inequality (.).

Theorem. Let C be a nonempty, closed, and convex subset of an �p space for  ≤ p < ∞.
Let QC , F , G, V , and Wn be the same as in Theorem .. Let {αn} and {βn} are sequences
in (, ) which satisfy the conditions (C) and (C) in Theorem . and {θn,k} satisfies (H)-
(H). Then the sequence {xn} defined by (.) converges strongly to x∗ ∈ F as n → ∞,
where x∗ is the unique solution of the variational inequality (.).
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Remark . If the spaces Lp has a weakly sequentially continuous generalized duality
mappings, then we obtain Theorems . and . hold for Lp spaces with  < p < ∞, p �= .

5 Numerical examples
In this section, we give a simple example and some numerical experiment result to explain
the convergence of the sequence (.) as follows:

Example . Let X = R and C = [,  ]. Let q =  and jq = I . We define a mapping QC as
follows:

QCx =

⎧⎨
⎩

x
|x| , x ∈ (–∞, )∪ (  ,∞),

x, x ∈ [,  ].

In terms of Theorem ., set σ = μ = γ =  and αn = 
n . Then we see that αn = 

n satisfies
(C) and (C) with σn = 

n . Moreover, we define the mappings F , G, and V as follows:

Fx =


(
x + x

)
, Gx = x and Vx = x.

It is easy to observe that F is -Lipschitzian and 
 -strongly accretive, G is -strongly ac-

cretive and λ-strictly pseudo-contraction for λ >  andV is -Lipschitzian. For each n ∈N,
set Sn = I . We show that Wn = I . Since Tn,k = θn,kSk + ( – θn,k)I , where Sk is a λk-strictly
pseudo-contractive mapping and {θn,k} satisfies (H)-(H). It is observe that Tn,k is a non-
expansive mapping. From (.), we have

W =U, = tT,U, + ( – t)I,

W =U, = tT,U, + ( – t)I

= tT,
(
tT,U, + ( – t)I

)
+ ( – t)I

= ttT,T,U, + t( – t)T, + ( – t)I,

W =U, = tT,U, + ( – t)I

= tT,
(
tT,U, + ( – t)I

)
+ ( – t)I

= ttT,T,U, + t( – t)T, + ( – t)I

= ttT,T,
(
tT,U, + ( – t)I

)
+ t( – t)T, + ( – t)I

= tttT,T,T, + tt( – t)T,T, + t( – t)T, + ( – t)I

and we compute (.) in a similar way to above, we obtain

Wn = Un,

= tt · · · tnTn,Tn, · · · Tn,n + tt · · · tn–( – tn)Tn,Tn, · · · Tn,n–

+ tt · · · tn–( – tn–)Tn,Tn, · · · Tn,n– + · · · + t( – t)Tn, + ( – t)I.

Since Sn = I and tn = α, for all n ∈ N, we have

Wn =
[
αn + αn–( – α) + · · · + α( – α) + ( – α)

]
= I.
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Under the above assumptions, (.) is simplified as follows:

⎧⎨
⎩x ∈ C := [,  ],

xn+ = ( – 
n )xn +


nx


n.

(.)

Since the assumptions of Theorem . are satisfied in Example ., the sequence (.) con-
verges to x∗ = , which is the unique fixed point of Sn.
Next, we show the numerical results by usingMATLAB ...We presented numerical

comparisons for two cases of iteration process with different initial values, which show
the convergence of the sequence (.).
When we choose x = . and x = ., we see that the iteration process of sequence

{xn} converges to x∗ =  at n = , and n = ,, respectively, as shown in Table  and
Figures  and .

Table 1 The value of sequence {xn} with iteration values x1 = 0.05 and x1 = 0.1

Iteration step (n) Sequence value (xn) Error Sequence value (xn) Error

1 0.0500 5× 10–2 0.1000 1× 10–1

2 0.0183 1.83× 10–2 0.0400 4× 10–2

3 0.0123 1.23× 10–2 0.0272 2.72× 10–2

4 0.0096 9.6× 10–3 0.0213 2.13× 10–2

5 0.0080 8× 10–3 0.0178 1.78× 10–2
...

...
...

...
...

1,658 0.0002 2× 10–4 0.00321 3.21× 10–3
...

...
...

...
...

5,570 0.0002 2× 10–4 0.00217 2.17× 10–3
...

...
...

...
...

8,614 0.0001 1× 10–4 0.00184 1.84× 10–3

8,615 0.0000 1× 10–4 0.00184 1.84× 10–3
...

...
...

...
...

28,945 0.0000 1× 10–4 0.0001 1× 10–4

28,946 0.0000 1× 10–4 0.0000 0

Figure 1 The iteration process with initial value x1 = 0.05.

http://www.journalofinequalitiesandapplications.com/content/2014/1/473


Sunthrayuth and Kumam Journal of Inequalities and Applications 2014, 2014:473 Page 22 of 24
http://www.journalofinequalitiesandapplications.com/content/2014/1/473

Figure 2 The iteration process with initial value x1 = 0.1.

From the figures, we can see that {xn} is a monotone decreasing sequence and converges
to , but an iterative process with initial value x = . is converges faster than an iterative
process with initial value x = ..

Remark . Note that Lemma . and Lemma . play an important role in the proof of
Theorems . and .. These are proved in the framework of themore general q-uniformly
smooth Banach space.

Remark . Our main result extends the main result of Ceng et al. [] in the following
respects:
() An iterative process (.) is to extend to a general iterative process defined over the

set of fixed points of an infinite family of strict pseudo-contractions in a more
general q-uniformly smooth Banach space.

() The self contraction mapping f :H →H in [, Theorem .] is extended to the
case of a nonself Lipschitzian mapping V : C → X on a nonempty, closed, and
convex subset C of a real q-uniformly smooth Banach space X .

() The control condition (C) in [, Theorem .] is removed by weaker than control
condition |αn+ – αn| ≤ ◦(αn) + σn with

∑∞
n= σn < ∞.

Furthermore, our method is extended to develop a new iterative method and method of
proof is very different from that in Ceng et al. [] because our method involves the sunny
nonexpansive retraction and the infinite family of strict pseudo-contractions.
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