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Abstract

Staphylococcus aureus is one of the main etiological agents of mastitis in ruminants. In the present retrospective
study, we evaluated the potential interest of a previously described automated multiple loci Variable Number of
Tandem Repeats (VNTR) Assay (MLVA) comprising 16 loci as a first line tool to investigate the population structure
of S. aureus from mastitis. We determined the genetic diversity of S. aureus strains from cases of clinical and subclinical
mastitis in dairy cattle (n = 118, of which 16 were methicillin-resistant), sheep (n = 18) and goats (n = 16). The 152 strains
could be subdivided into 115 MLVA genotypes (including 14 genotypes for the ovine strains and 15 genotypes for the
caprine strains). This corresponds to a discriminatory index (D) value of 0.9936. Comparison with published MLVA data
obtained using the same protocol applied to strains from diverse human and animal origins revealed a low number
(8.5%) of human-related MLVA genotypes among the present collection. Eighteen percent of the S. aureus mastitis
collection belonged to clonal complexes apparently not associated with other pathological conditions. Some of them
displayed a relatively low level of diversity in agreement with a restricted ecological niche. These findings provide
arguments suggesting that specific S. aureus lineages particularly adapted to ruminant mammary glands have
emerged and that MLVA is a convenient tool to provide a broad overview of the population, owing to the availability
via internet of databases compiling published MLVA genotypes.
Introduction
Although several bacterial pathogens can cause mastitis,
Staphylococcus aureus is one of the most prevalent etio-
logic agents of this disease in dairy cattle [1], and the
most important in terms of frequency and clinical sever-
ity in goats and sheep [2,3]. As an agent of intra-mammary
infections, this pathogen can contaminate the bulk milk
tank and thus may constitute a bacteriological hazard for
raw milk dairy products consumed. In this context,
molecular subtyping tools are of great interest for the
comparison of genotypes in order to identify sources
and transmission routes for control improvement.
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During the past decade, the epidemiology of S. aureus
mastitis in dairy cattle has been studied using various mo-
lecular typing methods. Techniques that rely on the com-
parison of electrophoretic patterns, such as Pulsed-Field
Gel Electrophoresis (PFGE) [4-6], Random Amplification
of Polymorphic DNA (RAPD) analysis [7], ribotyping [5,8]
and Multi-Locus Enzyme Electrophoresis (MLEE) [9]
proved to be highly discriminatory. Nevertheless the com-
parison between laboratories of pattern-producing assays
is difficult from the data quantification and sharing points
of view since they require the implementation of very
strict protocols. Sequence-based typing systems such as
Multiple Locus Sequence Typing (MLST) or spa typing
overcome these problems by producing sharable and easily
storable numeric-format results [10-13]. MLST is based on
partial sequencing of seven housekeeping genes. spa typing
is based on sequencing of a highly polymorphic tandem
ral Ltd. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly credited. The Creative Commons Public Domain
g/publicdomain/zero/1.0/) applies to the data made available in this article,

https://core.ac.uk/display/81634537?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:d.bergonier@envt.fr
mailto:gilles.vergnaud@u-psud.fr
http://creativecommons.org/licenses/by/2.0
http://creativecommons.org/publicdomain/zero/1.0/


Bergonier et al. Veterinary Research 2014, 45:97 Page 2 of 8
http://www.veterinaryresearch.org/content/45/1/97
repeat locus showing internal variations of repeat units.
When applied to S. aureus, MLST has a low discrimin-
atory power for a relatively high cost, so that some investi-
gators are evaluating the practical feasibility of replacing
MLST by whole genome sequence analysis [14,15]. spa
locus typing alone is not always a robust indicator of gen-
etic background, as illustrated for instance in an ST398
investigation [16] and is often used in combination with
MLST [17]. During the last few years, different Multiple
Loci VNTR (Variable Number of Tandem Repeats) Ana-
lysis (MLVA) schemes were developed for S. aureus sub-
typing [18-20] and represent a promising alternative or
complement to MLST and spa. In addition to its much
higher discriminatory power as compared to previous tech-
niques, MLVA was able to correctly predict clonal complex
(CC) assignment and consequently benefit from the strong
phylogenetic content provided by MLST analysis [19]. Au-
tomated capillary-based MLVA assays for S. aureus geno-
typing using 8 or 16 VNTR loci have been published
[21,22]. The second assay, called MLVA16Orsay was demon-
strated as being highly suitable for genotyping S. aureus
isolates from human, animal and food sources [22].
In recent years several MLST-based studies investigating

mastitis [6,13,23] have shown the existence of an important
host-specificity of S. aureus strains. These studies described
CC including S. aureus mainly isolated from humans (CC7,
CC8, CC22, CC25, CC30, CC45 and CC51) or animals
(CC9, CC20, CC97, CC126, CC133 and CC705) [11,24-27].
Regarding mastitis, bovine strains are usually associated
with a few CC (including CC97, CC126, CC130, CC133
and CC705) whose specificity for the mammary gland was
either low or undefined [22].
The aim of the present study was to use MLVA for the

first time to infer a population structure of S. aureus strains
from mastitis in dairy cows, goats and sheep from different
countries and regions. Through the additional information
provided by the analysis of VNTR allele distribution, the
objective was also to better identify the evolution and
emergence of host-adapted or udder-adapted clones.

Materials and methods
Bacterial strains
The 152 strains investigated in this retrospective study
were obtained from cases of bovine (n = 118), ovine (n =
18) and caprine (n = 16) clinical or subclinical mastitis.
An additional table file shows this in more detail (see
Additional file 1). Forty-eight among the bovine strains
were collected all over Germany between 2006 and 2009.
Nineteen were collected in southern Brazil in 1992 and
1993, and 51 in western France in 2008 and 2009. Sixteen
German strains collected in 2009 from different locations
were previously described as MRSA ST398 [28]. Charac-
teristics of the 19 Brazilian strains were described by
Lange et al. [5]. The ovine and caprine strains were
collected from clinical or subclinical mastitis between
1978 and 2010 in France in the main dairy production
areas: 16 strains from center-west or south-east for goats
and 18 strains from the Pyrenees, the Massif Central or
Corsica for ewes. The strains were selected as pure cul-
tures obtained after mastitic milk cultivation on agar
plates. Only one strain per herd or flock was considered
for this study (see Additional file 1).

DNA extraction
Strains were cultured overnight at 37 °C in Luria Bertani
broth. Genomic DNA was extracted by phenol-chloroform
extraction or by using the DNeasy tissue kit (Qiagen,
Courtaboeuf, France) with lysostaphin (100 mg/L, Ambi
products LLC, USA). Nucleic acid quality and concentra-
tion were analysed using an ND-1000 spectrophotometer
(NanoDrop, Labtech, Palaiseau, France). Diluted samples
of 5 ng/μL in distilled water (Braun, Melsungen, Germany)
were used as DNA template for PCR amplification.

Genotyping data production and analysis
The 16 VNTR loci included in MLVA16Orsay were amp-
lified in two multiplex PCR using the CeeramTools®
Staphylococcus typing kit (Ceeram, La Chapelle sur Erdre,
France) as previously described [22]. The typing data file
was imported into BioNumerics version 6.6 (Applied-
Maths, Sint-Martens-Latem, Belgium). A cut-off value of
45% similarity was applied to define clusters according
to [19]. Simpson’s diversity index was used [29]. The
MLVA16Orsay data derived from the 152 strains of this
study were compared to published data obtained with
the same method [22] in order to tentatively assign the
new strains to MLST CC [19,22,30]. In a previous study,
251 S. aureus strains isolated from human (n = 106), swine
(n = 32), poultry (n = 30), companion animals (n = 17),
horse (n = 5), small ruminant (n = 11), rodent (n = 2), cattle
(n = 1), food (n = 34) and food poisoning events (n = 13)
were characterized by MLVA16Orsay complemented by
MLST and spa typing. This reference dataset is now used
to link new strains. All unclustered strains from the
present investigation were characterized by MLST and spa
typing.
The primers and condition used for the spa tandem re-

peat amplification and MLST analysis were as previously
described [10,31,32]. The amplicons were purified using
the QIAquick PCR purification kit (Qiagen, Courtabœuf,
France) and sequenced (Eurofins MWG Operon, Ebersberg,
Germany or Beckman-Coulter Genomics, Hertfordshire,
UK). The spa repeat nomenclature was that of Shopsin et al.
[12] and spa types were retrieved from [33]. MLST alleles
and sequence types (ST) were identified using the MLST
database [34].
Data were analysed by chi-square or Student’s t-tests.

Differences were considered significant when p < 0.05.
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Results
MLVA genotypes and epidemiology
The 152 ruminant strains were resolved into 115 MLVA
genotypes with an overall diversity index of 0.9936. The
118 bovine, 18 ovine and 16 caprine strains belonged to
86, 14 and 15 MLVA genotypes, respectively. One hundred
and forty strains fell into twelve clusters, nine of which
comprising more than three strains (Figure 1). The clusters
were assigned to known MLST-defined CC by comparison
with previous MLVA data, spa typing and MLST analysis
of selected strains. A dendrogram deduced from the clus-
tering of the 152 S. aureus mastitis-associated strains is
presented in Figure 2. CC97 and CC133 accounted for 22%
(34 strains) and 21% (32 strains) of the studied collection,
respectively. CC1, CC9, CC20, CC130, CC151, CC398 and
CC479 together represented another 45% of the strains.
The 16 ST398 MRSA strains were distributed into eight
MLVA genotypes and three spa types. CC8 and CC30, fre-
quently associated with human S. aureus infections, and
CC425 a common ovine genotype (Figure 1), were repre-
sented by two strains each.
Among the singletons, seven could be assigned to CC5,

CC7, CC22, CC25, CC50, CC59 or CC78 by comparison
with previously typed isolates (Figure 3). Five singletons
remained unclustered.
Figure 1 Minimum spanning tree of the 152 S. aureus strains using M
are coloured according to their host. Major CC are indicated.
Figure 1 shows the distribution of the strains accord-
ing to the host. CC130 comprised exclusively small ru-
minant S. aureus strains. Sheep strains (collected from
four flocks between 1997 and 2010) and goat strains
(collected from six herds in 2004) were segregated by
MLVA typing. These ten strains came from three dif-
ferent French husbandry regions without any contact
with each other. CC1, CC8, CC9, CC20, CC97, CC151,
CC398 and CC479 included only bovine strains. CC133
was the sole cluster showing complete host diversity: 13
bovine strains originating from different collection sites
(11% of the bovine isolates), eleven sheep strains (61% of
the ovine isolates) and eight goat strains (50% of the cap-
rine strains) belonged to this CC. The remaining small
ruminant strains were clustered in CC30, CC425 or were
singletons. Only one MLVA genotype comprised strains of
two different host species: the cow and goat (MLVA geno-
type 43, MLST CC133). No MLVA genotype was common
to goat and sheep.
Bovine isolates from the three countries fell into 6 up to

10 different CC; small ruminant isolates fell into 3 or 4
CC. The CC distribution was different between Germany,
France and Brazil (p < 0.001).
Figure 3 shows the comparison of the population

structure of S. aureus strains from mastitis with the
LVA16Orsay. Each circle represents an MLVA genotype. The genotypes
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Figure 2 Dendrogram deduced from the clustering of the
152 S. aureus mastitis-associated strains using MLVA16Orsay.
The colour code reflects MLVA clusters when using the 45% cut
off. ID: strain identification. spa: spa type. MT: MLVA types. MetR:
methicillin-resistance. MRSA: methicillin-resistant Staphylococcus
aureus. MSSA: methicillin-susceptible Staphylococcus aureus. C-R:
Country-Region. F: France, A: Aveyron, Co: Corse, PA: Pyrénées-
Atlantiques, AHP: Alpes de Haute-Provence, V: Vienne, CR:
Charentes-Maritimes, DS: Deux-Sèvres, IL: Indre-et-Loire, M: Manche,
C: Calvados, Ma: Mayenne. B: Brazil, RGS: Rio Grande do Sul. G: Germany,
Mu: Mutzenich, Lichtenfels: L, Waldeck: W, Marksuhl: Mark.
Reinhardshagen: R, Haag: H, Neustadt: N, Langen: La, Sulza: S,
Burstadt: B. Bad Soden-Salmunster: BS, Silberfeld: Sb, Lehrte: Le,
Babenhausen: Ba, Huttenberg: H, Wiesenthal: Wi, Raesfeld: Ra,
Eurasburg: E, Meinhard: Me, Pfronten: P, Kirchhain: K, Wunstorf:
Wu, Ehrenberg: EH, Willingen: Wi, Bodelwitz: Bo, Ebersberg:
Eb, Hademar: Ha, Schlitz: Sc, Hofbieber: Ho, Ringgau: Ri,
Satteldorf: Sa, Baden-Wurttenberg: BW, Bunde: Bu, Osterberg:
O, Farven: F, Melle: Me, Bayern: Ba, Petershagen: PH, Westerstede: We,
Lorup: Lo.
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more global population of S. aureus strains for which
MLVA data was available [22]. Some clusters such as
CC8, CC22 and CC45 were highly human specific.
CC30 is in an intermediate situation, in agreement
with some previous observations [35]. In contrast,
CC133 was mainly represented by animal strains, and
CC130 by small ruminant mastitis strains. CC97 com-
prised the largest number of bovine mastitis strains.

VNTR allele distribution analysis
We calculated the allelic diversity of each VNTR within
three groups: human, animal and mammary gland-related
strains. The number of alleles per locus was not signifi-
cantly different between human-related and animal-related
clusters, but was significantly reduced in the population
of the mammary gland-predominant clusters (p < 0.005).
The diversity indexes were lower in the latter than in the
human-related (p < 0.05) or animal-specific (NS) clusters.
An additional table file shows this in more detail (see
Additional file 2). We also measured the mean number
of repetitions per locus and per group. No significant
difference was observed between human-predominant
and animal-predominant clusters. Differences were no-
ticed when focusing on mammary gland-adapted clus-
ters. This population had a smaller number of repeat
units for two VNTR, Sa0122 (p < 0.001) and Sa0387 (p <
0.0001). An additional file shows this in more detail (see
Additional file 3).

Discussion
CC130, CC151 and CC479 are strongly associated to
mastitis
In the present collection of strains, only 13 (8.6%) from
six different lineages (six CC1, two CC8, two CC30 and
single CC5, CC22 and CC25) might be of human origin.



Figure 3 Mastitis strains superimposed on a background of previously published data from human, animal or food isolates [22]. Main
CC are indicated. MRSA: methicillin-resistant Staphylococcus aureus. MSSA: methicillin-susceptible Staphylococcus aureus. MRSA and MSSA isolates
are highlighted with two different hatch patterns.
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Among these lineages, CC30 has also been shown to be
established in swine [35]. Devriese observed specific
phenotypic characteristics associated with animal S. aureus
strains and subsequently emphasized the existence of
ecovars adapted to particular host species [36]. Several
studies have identified the existence of S. aureus CC that
are associated with cows, sheep and goats, and rarely iso-
lated from humans, suggesting that ruminants are the pre-
ferred hosts [6,7,9,37]. Conversely, a number of CC shows
limited host specificity. Representatives of some animal-
predominant CC have spread recently with apparently nei-
ther strong host nor geographical barriers. In this study,
we reported 35 strains belonging to these well-known CC
(16 strains from CC398, eleven strains from CC9 and eight
strains from CC20). ST398, a cause of human MRSA in-
fections most often associated with livestock exposure, is
hypothesized to have emerged from swine but presumably
originates from humans. The jump from humans to live-
stock was probably accompanied by the acquisition of
methicillin and tetracycline resistances [38]. CC20 strains
represent approximately 1% of human carriage [39,40] and
infections [41] but are also often sampled from cow mas-
titic milk [26,42,43].
Almost half of the collection studied belonged to

two major animal-predominant CC (CC97 and CC133).
Twenty-nine and 26 MLVA16 genotypes were observed
for a total of 34 CC97 strains and 32 CC133 strains re-
spectively. CC97 is a widespread bovine lineage largely re-
sponsible for bovine mastitis cases in Chile, Brazil, Japan
and the United States [13,44], and also recently isolated
from human [45] and porcine hosts [46]. CC133 is com-
monly sampled from milk produced by small ruminants
[6,47] and by cows (15 among the 33 CC133 strains are
from bovines) [37,48] suffering from mastitis.
In the present study, we identified three additional

clusters putatively showing strong association with the
mammary gland tissue: the “bovine” CC151 (eleven strains)
and CC479 (six strains), and the “small ruminants” CC130
(ten strains). All together, they represent 18% of the present
collection. These lineages have almost never been isolated
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from humans and, moreover, were almost exclusively
sampled from intramammary infections [25,37,49-51],
with one published exception (nasal cavity) [52]. The
rare CC479 was not mentioned as mastitis-associated
[22]. Interestingly, whole genome analysis demonstrated
that CC130 and CC151 are closely related [49] in agree-
ment with MLVA clustering. Several studies revealed that
a few CC are responsible for most mastitis cases [6,7,9].
Van Leeuwen et al. hypothesized that traits shared by
bovine and small ruminant mastitis strains were related to
tissue specificity. This would explain that mastitis-associated
strains from these farm animal species formed a distinct
genetic cluster [53]. These CC have a broad geographical
distribution: in the present study, the CC151-MLVA geno-
type 2-5-3-1-2-2-2-1-9-3-7-0.5-1-0.5-3-1 was shown to be
shared by strains sampled in Germany and France.
From the population structure point of view, one must

remain careful when interpreting the observation of a
small number of CC comprising the majority of livestock
and especially mammary isolates. Recently, a single publi-
cation identified 9 CC and 4 ST in ovine and caprine
mastitis [51], whereas the variability of small ruminant
mammary CC was previously thought to be restricted to
two CC (CC130, CC133) according to a review published
earlier in the same year [27]. Thus, for each host species,
the size of the world target population (livestock) and of
the analyzed samples is important to consider, just like its
representativeness and the variability of the husbandry
systems. For instance the literature on small ruminant S.
aureus carriage is very limited as compared to humans.

VNTR as genetic markers to infer lineage emergence
It has been proposed that a low level of VNTR genetic
diversity inside a lineage may reflect recent emergence,
and that there exists a tendency toward the shortening
of tandem repeat array during evolution (such as in
Mycobacterium tuberculosis, [54]). Interestingly, we noticed
that the mammary gland-predominant lineages (CC130,
C151 and CC479) exhibit a smaller repeat unit number per
locus and a lower diversity index as compared to other lin-
eages. These observations are most striking in the case of
CC151 (Additional file 3). Modifications in industrial
livestock husbandry of dairy ruminants could have led
to modified access of microbial flora to mammary glands
leading to the emergence of some CC such as CC151.
Analysis of RF122 strain (ST151) genome sequence pro-
vided evidence that this mammary-gland-adapted strain
had recently diversified from an ancestor with a supposed
human origin through acquisition of mobile genetic ele-
ments and gene decay [55,56]. Because tandem repeat
mutation rates have been suggested to vary within dif-
ferent lineages in some bacterial species [57], whole genome
sequence analysis of well-chosen strains will be necessary to
correlate tandem repeat diversity and more neutral genome
diversity in S. aureus. Indeed in a preliminary study, we
observed that at least some tandem repeats may have
an effect on the transcription level of adjacent genes in-
dicating that they are not neutral. Within the same CC,
the transcription level of the gene located immediately
downstream from Sa0906 was five-fold higher in a strain
with four repeat units as compared to a strain with one
repeat unit (Vergnaud et al. unpublished; [58]).

Interest of MLVA as a subtyping tool for improving the
efficiency of mastitis control
The characterization of mastitis transmission models
(contagious versus environmental herd mastitis) is a critical
point to implement relevant control measures. In the case
of S. aureus, generally classified as a contagious pathogen,
the molecular epidemiology profile is in some herds of the
environmental type [59]. Taking advantage of the possibil-
ity offered by MLVA to efficiently discriminate field
isolates, we suggest comparing, in seriously affected herds,
various isolates originating from intramammary infections,
teat skin, milking machine clusters and the environment.
Fournier et al. [60] demonstrated an association between
genotypes and mastitis clinical outcome. This original re-
sult regarding the accessory genome (presence or absence
of toxins) would benefit from the application of the core-
genome genotyping achieved by MLVA for identification
of particular epidemic or virulent strains. The relatively
low cost of MLVA typing and the availability of freely ac-
cessible databases on the internet may help enlarge our
knowledge on these points [61,62].
Additional files

Additional file 1: List of Staphylococcus aureus strains used in the
study and genotyping data. For each strain, host, isolation year,
geographic origin (region and country), mastitis clinical type, collection
origin, CC and MLVA type are given. The 152 strains were isolated
between 1992 and 2009 in three countries (Germany, France and Brazil)
from mastitic-milk of cows, ewes and goats.

Additional file 2: Allelic richness and diversity per locus for each
group of strains (human-related, animal-specific, mammary gland-
adapted). For the three groups of strains, the number of alleles and the
diversity index are given for each VNTR.

Additional file 3: Mean number of repeat units per locus and for
each group (human-predominant, animal-predominant, mammary
gland-predominant). For each VNTR, the number of repeat units (mean
and standard deviation) are presented for human-, animal- and mammary
gland (mastitis)-predominant strains. CC151, belonging to the latter group, is
also presented alone.
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