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Abstract: We consider a light-like Wilson loop in N = 4 SYM evaluated on a regular

n-polygon contour. Sending the number of edges to infinity the polygon approximates a

circle and the expectation value of the light-like WL is expected to tend to the localization

result for the circular one. We show this explicitly at one loop, providing a prescription

to deal with the divergences of the light-like WL and the large n limit. Taking this limit

entails evaluating certain sums of dilogarithms which, for a regular polygon, evaluate to

the same constant independently of n. We show that this occurs thanks to underlying

dilogarithm identities, related to the so-called “polylogarithm ladders”, which appear in

rather different contexts of physics and mathematics and enable us to perform the large n

limit analytically.
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1 Introduction

In this note we consider a limit on light-like Wilson loops on a regular polygonal contour

in planar N = 4 SYM. By regular we mean that all the light-like sides of the polygon

have equal euclidean norm. Then, sending the number of edges to infinity, we expect the

contour to approximate a smooth circle. Consequently, the expectation value of the light-

like Wilson loop is supposed to reproduce that of the 1
2 -BPS circular one, whose exact

expression is known from a matrix model computation [1] as a result of localization [2].

Light-like Wilson loops in planar N = 4 SYM are dual to MHV scattering ampli-

tudes [3–6]. The fact that the limit we are taking on the light-like Wilson loop is known,

implies in turn that the same limit should also hold for MHV scattering amplitudes, with

special kinematics. This could be in principle used as a check on potential expressions for

MHV scattering amplitudes of planar N = 4 SYM for any number of external particles,

though the limit could be hard to perform analytically in practice. Nevertheless, a similar

argument was used in [7] (approximating a rectangular Wilson loop by a sequence of light-

like segments) to find an inconsistency of the BDS proposal [8] for multileg amplitudes at

strong coupling [9]. Also, approximating a circular Wilson loops by a regular null polygon

at strong coupling has been shown to correctly reproduce its expectation value at lead-

ing order [10] and general smooth contours have been recently studied using integrability

techniques [11].

Light-like Wilson loop are conformally invariant. When properly supersym-

metrized [12, 13] they are dual to superamplitudes which have been proven to be invariant

under Yangian symmetry [14], hinting at their integrability. Their continuous limit should

yield the appropriately supersymmetrized 1
2 -BPS Wilson loops [15], also possessing a Yan-

gian symmetry which is the continuous counterpart of that of superamplitudes.

Despite the simplicity of the idea of approximating smooth contours by light-like ones

and several results at strong coupling, we are not aware of any direct computation in the

literature where such kind of limit has been explicitly checked perturbatively. Here we
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provide an explicit computation of the expectation value of a N = 4 SYM light-like Wilson

loop approximating the circular one, at one loop in perturbation theory.

Light-like Wilson loops suffer from ultraviolet divergences, which are dual to infrared

singularities of scattering amplitudes. At one loop, these arise from gluon exchanges be-

tween adjacent edges. Therefore one has to introduce a regularization to deal with them.

In particular we use dimensional regularization. On the other hand the 1
2 -BPS Wilson loop

evaluated on a smooth contour, such as a circle, is finite [1]. In interpolating between the

two the limit of infinite number of edges is taken. We give a prescription to deal with

this limit in such a way that the result is finite, as expected. This effectively removes any

contribution from divergent diagrams, leaving a sum over finite ones, where we can set the

regularization parameter to zero. Remarkably, once this is done, and for the particular

regular contour we have chosen, the result of the sum over these one-loop contributions

turns out to be constant, i.e. independent of n. Since the integrals involved in the compu-

tation are expressible in terms of dilogarithms, this implies in turn identities for the sum of

dilogarithms evaluated at particular values of their arguments. When these are powers of

the same algebraic number, such identities are called dilogarithm ladders and there exists

a vast literature on these (see [16, 17] for a review, or [18] and [19] for more recent devel-

opments). This is not precisely the kind of identities we encounter, though they should

be related by use of the Abel identity. Nevertheless, other identities relating combinations

of dilogarithms were studied in the past, emerging from various problems of mathematical

physics, such as in the context of Heisenberg spin chains [20], two-dimensional integrable

and lattice models [21–23] and CFT’s [24, 25] whose central charge can be expressed as a

sum of dilogarithms evaluated at particular algebraic numbers.1 We find that these diloga-

rithm identities, which have been proved [27, 28], include those we face in our computation

as particular subcases. Thanks to these results we can analytically prove that the limit on

the regular polygon Wilson loops converges to the one-loop expansion of the localization

expression for the circular one.

At one loop one can straightforwardly compute the expectation value of the circular

Wilson loop by a Feynman diagram computation. Insisting on using dimensional regular-

ization we can extend the comparison of the light-like and circular Wilson loops to finite

values of the regularization parameter ε. In this case we still verify that the finite part of

the light-like Wilson loop converges to the circular one in the large n limit, for any value

of ε, although the two results do not coincide at finite n, in contrast with the ε→ 0 limit.

2 Contour parametrization

In this section we derive a parametrization of the polygonal contour with n edges, on which

we want to evaluate the light-like Wilson loop. We restrict our analysis to regular light-like

polygons P =
⋃n
i=1 xi,i+1 with an even number of edges n. We parametrize their vertices

1For a more comprehensive list of references and applications of dilogarithms in physics and mathematics

we refer the reader to [26] and the references therein.

– 2 –



J
H
E
P
0
2
(
2
0
1
5
)
1
8
0

(a) n = 16 (b) n = 32 (c) n = 64

Figure 1. Examples of the contour for n = 16, 32 and 64. The polygon is formed by connecting

with light-like lines two sets of points lying on a circle at t = 0 and at t = 2 sin π
n respectively (t

is the vertical axis in the figures). In the limit n → ∞ the contour becomes a space-like circle of

radius 1.

as follows

x2k+1 =

(
2 sin

π

n
, sin

2π(2k + 1)

n
, cos

2π(2k + 1)

n

)
x2k =

(
0, sin

4πk

n
, cos

4πk

n

)
, k = 0, 1, . . . n/2− 1 (2.1)

This means that points with odd and even labels lie on two circles of equal radii and on

two parallel space-like planes separated by a distance t = 2 sin π
n in the time direction. The

overall radii of the circles do not play any role thanks to conformal invariance and are set

to unity (see figure 1).

Given this parametrization, the relevant invariants on which the Wilson loop can de-

pend on can be separated into two categories: odd-to-odd and odd-to-even distances (even-

to-even are equal to odd-to-odd by symmetry). They are evaluated from (2.1)

x2
2k,2l = 4 sin2 2π(k − l)

n

x2
2k,2l+1 = 4 sin2 π(2k − 2l − 1)

n
− 4 sin2 π

n
(2.2)

For a polygon with n edges there are n/4 odd-to-odd and (n/4−1) odd-to-even independent

distances if n = 0 mod 4 and (n− 2)/4 odd-to-odd and odd-to-even independent distances

if n = 2 mod 4, as reviewed in table 1.

3 One-loop integrals

In this section we evaluate the expectation value of the light-like Wilson loop on the

polygon P at one loop in perturbation theory. We use the position space gluon propagator

in dimensional regularization in Feynman gauge

〈Aµ(x)Aν(y)〉 = −Γ(1− ε)
4π2−ε

ηµν

[−(x− y)2]1−ε
(3.1)

where ηµν is the Minkowski metric. An overall factor (ig)2N = λ will be understood in the

following. There is only one kind of integral to be considered at one loop [6]

I
(1)
i,j ≡

Γ(1− ε)
8π2−ε

∫ 1

0
dτi dτj

P 2 +Q2 − s− t
[− (P 2 + τi(s− P 2) + τj(t− P 2) + (P 2 +Q2 − s− t)τiτj)]1−ε

(3.2)
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n x2k,2l x2k,2l+1 ↑↑ + ↓↓ ↑↓ + ↓↑
4 1 0 2 4

6 1 1 6 9

8 2 1 12 16

. . . . . . . . . . . . . . .

4m m m− 1 2m(2m− 1) 4m2

4m+ 2 m m 2m(2m+ 1) (2m+ 1)2

Table 1. For different number of edges we report the number of independent invariants (central

columns) and the number of diagrams with gluon exchanges between edges separated by an odd

(segments pointing both to the future or to the past) or even (segments pointing in opposite

directions in time) number of sides.

Q2

s P 2

t

i i + 1

j

j + 1

Figure 2. One-loop contribution to the Wilson loop.

which is conveniently expressed in terms of the distances s ≡ x2
i,j , t ≡ x2

i+1,j+1, P 2 ≡ x2
i+1,j

and Q2 ≡ x2
i,j+1, as in figure 2. Its limit where s, t, P 2 → 0, namely whenever the gluon

is exchanged between two adjacent edges, yields divergent contributions which can be

evaluated in dimensional regularization

I
(1)
i,i+1 = −1

2

Γ(1− ε)
4π2−ε

(−Q2)ε

ε2
(3.3)

Whenever a gluon is exchanged between two edges separated by only one light-like side, we

have, e.g., P 2 = 0. The corresponding contribution can be smoothly obtained as a limit of

the integral (3.2). For nonvanishing invariants this integral is finite and can be evaluated

at ε = 0

I
(1)
i,j =

1

8π2

[
−Li2(1− as)− Li2(1− at) + Li2(1− aP 2) + Li2(1− aQ2)

]
(3.4)

where

a ≡ P 2 +Q2 − s− t
P 2Q2 − st

(3.5)

– 4 –



J
H
E
P
0
2
(
2
0
1
5
)
1
8
0

Using regular polygons yields further simplifications. First, thanks their symmetries we

have that s = t in each exchange. Second, the integral only depends on the integer number

∆i, which is the difference between the labels of the two edges, between which the gluon

is exchanged. We will call it ∆i, hereafter. At one loop, there is a distinction between

gluon exchanges connecting edges pointing in the same time direction or pointing in the

opposite. Let us analyze the latter case first: we have that P 2Q2 = st, meaning that a

diverges. The limit a → ∞ cannot be taken from the result (3.4). Rather, it is more

convenient to implement this condition on (3.2) directly. When this is done the integrand

factorizes and can be integrated straightforwardly

I
(1)
2k,2l+1 = I

(1)
2k+1,2l = −1

2

Γ(1− ε)
4π2−ε

(−P 2)−ε
[(

P 2

s

)ε
− 1
]2

ε2
(3.6)

Even though the result is finite, we evaluate it in dimensional regularization for future

convenience.

Finally, the case where the gluon is exchanged between two edges pointing in the same

direction is completely regular and we can use (3.4) directly.

As a whole we have

I(1)(∆i) =



−1

2

Γ(1− ε)
4π2−ε ε2

(
4 sin2 2π

n

)ε
∆i = 1

−1

2

Γ(1− ε)
4π2−ε ε2

(
4 sin2 π(∆i− 1)

n

)−ε
[(

sin2 π(∆i−1)
n

sin2 π∆i
n − sin2 π

n

)ε
− 1

]2

∆i odd

1

8π2

[
Li2

(
cos2 π(∆i+1)

n

cos2 π
n

)
+ Li2

(
cos2 π(∆i−1)

n

cos2 π
n

)
− 2Li2

(
1−

sin2 π∆i
n

cos2 π
n

)]
∆i even

(3.7)

4 Dilogarithm identities and circular limit

With a little combinatorics on the polygons, we can simplify the final expression for the one-

loop correction of the Wilson loop expectation value. Gluons can be exchanged between

edges separated by ∆i = 1, 2, . . . n/2. Even and odd separations correspond to different

cases and are treated separately. For each separation there are n different gluon exchanges,

apart from the extremal case ∆i = n/2, where there are only n/2. Thanks to the symmetry

of the polygons, all contributions within edges at the same separation ∆i are equal to each

other. This can be used to reduce the double sums over the indices of the edges of gluon

exchanges, implicit in the total contribution, to single sums over the separations. Then the

combinatorics vary according to whether the total number of edges n = 0 mod 4 or n = 2

mod 4, as reviewed in the table 1.
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The expression for the one-loop Wilson loop expectation value reads in all cases

〈W 〉(1) = − n1

2

Γ(1− ε)
4π2−ε ε2

(
4 sin2 2π

n

)ε
− n

2

n/2−2∑
k=1

1

2

Γ(1− ε)
4π2−ε ε2

(
4 sin2 2πk

n

)−ε
[(

sin2 2πk
n

sin2 π(2k+1)
n − sin2 π

n

)ε
− 1

]2

+
n

2

n/2−1∑
k=1

1

8π2

[
Li2

(
cos2 π(2k+1)

n

cos2 π
n

)
+ Li2

(
cos2 π(2k−1)

n

cos2 π
n

)
− 2Li2

(
1−

sin2 2πk
n

cos2 π
n

)]
(4.1)

In the first line the n divergent contributions from exchanges between adjacent edges ap-

pear. The second line represents the remaining n/2(n/2 − 2) terms from even-to-odd

exchanges. They sum up for a total of (n/2)2 terms, as in the last column of table 1.

Finally the third line is given by the n/2(n/2 − 1) contributions from odd-to-odd and

even-to-even contributions, as in the fourth column of table 1.

Next we take the n → ∞ limit of such an expression. In this regime, we expect the

light-like polygonal contour to approximate a circle. The supersymmetric Wilson loop on

a circle has been given an exact result through localization on a four-sphere, yielding a

Gaussian matrix model. Such a Wilson loop operator features a coupling to the scalar

fields of N = 4 SYM. On the other hand, for a light-like contour such terms are dropped

and one recovers the standard Wilson loop. Even with this difference in the couplings, we

expect the expectation value of the light-like polygonal Wilson loop to tend to that of the

circular one in the large n limit.

Since the circular Wilson loop is finite, we expect the ultraviolet divergences from

the cusps of the light-like Wilson loop to drop out in such a regime. In order to ensure

this, we take this limit on the dimensionally regularized result (3.3). In the n → ∞ limit

the invariants vanish and the relevant integral becomes scaleless and is thus discarded in

dimensional regularization. This result is still to be summed on order n terms with n

tending to infinity, meaning that choosing a correct prescription amounts to an order of

limits problem. We take the n → ∞ first, then in the spirit of dimensional regularization

we analytically continue the result from the region in ε space where the sum converges.

Eventually we take the ε→ 0 limit, which vanishes.

Considering the even-to-odd contribution (3.6) we can perform the same reasoning,

namely taking the limit on the invariants before sending ε → 0, which ensures that these

terms also go to 0 in the large n limit.

Finally the most interesting contribution comes from the even-to-even terms. Indeed

this piece evaluates to a constant for any value of n, namely

n

2

n/2−1∑
k=1

[
Li2

(
cos2 π(2k+1)

n

cos2 π
n

)
+ Li2

(
cos2 π(2k−1)

n

cos2 π
n

)
− 2Li2

(
1−

sin2 2πk
n

cos2 π
n

)]
= π2 (4.2)

Surprisingly, even if one would have expected an n-dependent expression which should

evaluate to π2 in the limit of large n, a numerical inspection shows that the left hand side
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of (4.2) evaluates to π2 for any value of n. For the moment this is just a case by case

empirical observation that we extrapolate to be valid for n → ∞ (we shall later prove

this is actually correct by recasting the result in terms of know identities). In conclusion,

performing the large n limit is trivial and, taking into account the 1/(8π2) factor in (4.1),

the expectation value of the Wilson loop gives 1/8. This coincides with the first order

contribution to the circular Wilson loop at weak coupling

〈W©〉 = 1 +
λ

8
+ . . . (4.3)

Besides triggering the limit of the light-like Wilson loop to the circular one, the iden-

tity (4.2) is very interesting by itself, since it relates combinations of dilogarithms at partic-

ular values of their arguments. Such relations are of mathematical interest and there exists

a vast literature on them. When they relate polylogarithms of the same weight evaluated

at powers of some algebraic number φ, they are known as polylogarithm ladders. Such

identities are usually written more compactly in terms of the Rogers function L which is

defined to be

L(x) ≡ Li2(x) +
1

2
log x log(1− x) (4.4)

for 0 ≤ x ≤ 1 and analytically continued to the other regimes of x through the reflection

and inversion identities

L(x) =
π2

3
− L

(
1

x

)
x > 1

L(x) = L

(
1

1− x

)
− π2

6
x < 0 (4.5)

It satisfies the Abel identity

L(x) + L(y) = L(xy) + L

(
x(1− y)

1− xy

)
+ L

(
y(1− x)

1− xy

)
(4.6)

for 0 < x, y < 1. As an example of an early dilogarithm ladder we quote one of Watson’s

identities [29]

2L(β) + L(β2) =
10

7
L(1) (4.7)

where β = 1
2 sec π

7 is one of the roots of the equation

x3 − 2x2 − x+ 1 = 0 (4.8)

We can now inspect formula (4.2) in order to see if it can be related to known identities

in such a way to analytically prove the agreement with the circular Wilson loop. It is

convenient to analyze the n = 2 (mod 4) and n = 0 (mod 4) cases separately.2 From the

former case we can manipulate (4.2) (rearranging the sum) to obtain the equivalent identity

n/2−1/2∑
k=1

L

(
sin2 k

nπ

cos2 π
2n

)
− π2

24n

(
n2 + 3

)
= 0 n = 1 (mod 2) (4.9)

2In the following steps we also find convenient to send n→ 2n.
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In this form we can compare it to the result by Kirillov [28] (eq. (1.16) of [26], properly

rewritten)

n/2−1/2∑
k=1

L

(
sin2 (j+1)π

n

sin2 k(j+1)π
n

)
− π2

6n

(
(3j + 1)(n− 2)− 3j2 − 1 + n

)
= 0 (4.10)

n = 1 (mod 2) 0 ≤ j ≤ n− 3

2
g.c.d.(n, j + 1) = 1

We specialize to the case j = n−3
2 and, using the inversion functional equation of the

Rogers function, and after some further rearrangements of the sum, it can be brought to

the form (4.9), thus proving their equivalence.

In the n = 0 (mod 4) case, using again functional identities of the Rogers function and

manipulations of the sum, we can derive from (4.2) the equivalent identity

n−2
2∑

k=1

L

(
cos2 k

nπ

cos2 π
n

)
− 1

2
L

(
cos2 π

n

)
+

π2

24n

(
n2 − 4n+ 12

)
= 0 n = 0 (mod 2) (4.11)

This can be shown to coincide with a special case of Kirillov’s result [28] (eq. (1.28) of [26])

n−2∑
k=1

L

(
sin2 (j+1)π

n

sin2 (k+1)(j+1)
n π

)
=
π2

6

(
3n− 6

n
− 6j(j + 2)

n
+ 6Z+

)
(4.12)

setting j = n/2 − 2 and with some rewriting. In this case the positive integer number is

found to be j.

From these formulae it is possible to derive some classic ladder identities, by using the

Abel identity and the algebraic equations satisfied by the algebraic numbers appearing in

them. For instance Watson’s identity (4.7) can be obtained from (4.9), taking n = 7 with

some manipulations involving the Abel identity.

In other words, using dilogarithm identities allows us to prove that the limit of the

light-like Wilson loop expectation value coincides with that of the circular one at one loop.

It is amusing that in our setting this limit is driven by nontrivial dilogarithm identities

which appeared in rather disparate contexts in theoretical physics.

One could also think the phenomena we found the other way around. We have chosen a

contour which is parametrized by trigonometric functions evaluated in rational portions of

π which are algebraic numbers. Since the finite pieces of the result for the Wilson loop are

formed by a uniform transcendentality combination of polylogarithmic functions, we have

somehow “generated” a non trivial set of polylogarithm identities of algebraic numbers. It

would be interesting to understand if there is an underlying explanation of such a surprising

result and if it would be possible to generalize it to other contours and higher loops leading

to identities about which much less is known.

5 Higher order in dimensional regularization parameter

The one-loop expectation value of both the circular and light-like Wilson loops can be

derived at finite ε.
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Figure 3. Comparison between the one-loop expectation values of the light-like (blue) and circular

(yellow) Wilson loops, as functions of the number of sides n and the regularization parameter ε.

For the polygonal Wilson loop the surface is an extrapolation between the discrete points. At large

n the two surfaces coincide.

In the former case we have

〈W©〉(1) =
22ε−3πε−

1
2 Γ(1− ε)Γ

(
ε+ 1

2

)
Γ(ε+ 1)

(5.1)

this is the result of a straightforward Feynman diagram computation which consistently

coincides with the localization result at ε = 0.

For the light-like Wilson loop we can take the n = 2 (mod 4) case for simplicity and

compute the relevant integral (3.2) to all order in ε. This yields

−1

2

Γ(1− ε)
4π2−ε

a

ε(ε+ 1)

(
(P 2)ε+1

2F1

(
1, ε+ 1; ε+ 2; aP 2

)
+(Q2)ε+1

2F1

(
1, ε+ 1; ε+ 2; aQ2

)
− 2sε+1

2F1 (1, ε+ 1; ε+ 2; a s)
)

(5.2)

except for the case where s = P 2 (or s = Q2), which appears on the regular polygon for

k = n−2
4 and k = n+2

4 respectively, where the integral becomes

1

2

Γ(1− ε)
4π2−ε (Q2 − s)sε−1

3F2

(
1, 1, 1− ε; 2, 2; 1− Q2

s

)
(5.3)

Performing the relevant sum (4.1) we can compute numerically the one-loop expectation

value as a function of n and ε. At fixed finite ε the sums are not constant any longer,

nevertheless for large values of n one can verify that the light-like Wilson loop approximates

the circular Wilson loop expectation value at any value of ε.

As an example figure 3 shows a plot of the relevant part of the light-like Wilson loop

expectation value (blue) against the circular one (yellow) as a function of n and ε. For

large n the two surfaces coincide.
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