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Abstract We present two-flavor lattice QCD estimates of
the hadronic couplings gB∗

0 Bπ and gB∗
1 B

∗
0 π that parametrize

the non-leptonic decays B∗
0 → Bπ and B∗

1 → B∗
0 π . We

use CLS two-flavor gauge ensembles. Our framework is the
Heavy Quark Effective Theory (HQET) in the static limit and
solving a Generalized Eigenvalue Problem (GEVP) reveals
crucial to disentangle the B∗

0 (B∗
1 ) state from the Bπ (B∗π )

state. This work brings us some experience on how to treat the
possible contribution from multihadronic states to correlation
functions calculated on the lattice, especially when S-wave
states are involved.

1 Introduction

Heavy Meson Chiral Perturbation Theory (HMχPT) [1,2]
is commonly used to extrapolate lattice data in the heavy-
light sector to the physical point. Relying on Heavy Quark
Symmetry and the (spontaneously broken) chiral symmetry,
an effective Lagrangian is derived where heavy-light mesons
fields [3] couple to a Goldstone field via derivative opera-
tors. In the static limit, the total angular momentum of the
light degrees of freedom, �jl = �sl + �L , is conserved indepen-
dently of the total angular momentum J = jl ± 1/2. The
pseudoscalar (B) and the vector (B∗) mesons belong to the
doublet j Pl = (1/2)− corresponding to L = 0 whereas the
scalar (B∗

0 ) and the axial (B∗
1 ) mesons belong to the posi-

tive parity doublet j Pl = (1/2)+ corresponding to L = 1
(see Table 1). Equivalently to the low energy constants that
parametrize the well-known chiral Lagrangian, hadronic cou-
plings enter the effective theory under discussion, that is,
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particularly suitable to describe processes with emission of
soft pions, i.e. H1(J1) → H2(J2)π where Hi is a heavy-
light meson, and pπ � �χ ∼ 1 GeV. The associated pionic
couplings are gH1(J1)H2(J2)π and they cannot be computed
in perturbation theory. When the negative j P = (1/2)− and
positive j P = (1/2)+ parity states are taken into account,
the effective Lagrangian is parametrized by three couplings
ĝ, g̃ and h. The first coupling, ĝ, relates transitions between
mesons belonging to the same doublet J P = (1/2)− and
has been precisely measured on the lattice [4–8]. On the
contrary, the last two couplings are less precisely known.
The residue at the poles of form factors in heavy to light
semileptonic decays [9] is also expressed in terms of those
couplings. In that respect, the channel B∗

0 → Bπ is very
interesting:

�(B∗0
0 → B+π−) = 1

8π
g2
B∗

0 Bπ

|�qπ |
m2

B∗
0

,

|�qπ | =
√

[m2
B∗

0
− (mB + mπ )2][m2

B∗
0

− (mB − mπ )2]
2mB∗

0

.

The HMχPT Lagrangian tells us that the transition reads also
[10]

�(B∗
0 → B+π−) = h2

8π f 2
π

mB

m3
B∗

0

(

m2
B∗

0
− m2

B

)2 |�qπ |,

by the identification

gB∗
0 Bπ =

√

mB

mB∗
0

(

m2
B∗

0
− m2

B

) h

fπ
,

which is appropriate in the heavy quark limit. In the static
limit, the coupling g̃ is similar to ĝ, but for a hadronic
transition between positive parity states. Those transitions
are energetically not allowed for the B system but are use-
ful for chiral extrapolations in Lattice QCD. So far there
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Table 1 Quantum numbers of the ground state B meson and its first
orbital excitations

L j Pl J P State

0 (1/2)− 0− B

1− B∗

1 (1/2)+ 0+ B∗
0

1+ B∗
1

Fig. 1 Three-point correlation function used by [11] to compute
A+(�2 = q2)

is only one computation of h and g̃ [11], using ratio of
three-point correlation functions and the techniques of mea-
suring the Fourier transform of the radial distribution to
obtain the form factor A+(q2

π ) in the limit q2
π → 0, to

extract h:

A+(δ2 − q2
π ) = 4π

∫ ∞

0
r2 dr

sin(qπr)

qπr
fP AS(r),

where δ = mB∗
0

− mB , fP AS(r) = 〈B|[q̄γ0γ5q](r)|B∗
0 〉 is

the radial distribution depicted in Fig. 1 and �qπ = (0, 0, qz),
choosing qz = δ.

In Ref. [12] the transition B∗
0 → Bπ was directly studied

on the lattice, computing two-point correlation functions: the
authors claimed that, close to the threshold mBπ ∼ mB∗

0
, the

ratio

C (2)

B∗
0 Bπ

(t)/

√

C (2)

B∗
0 B∗

0
(t)C (2)

Bπ Bπ (t),

is related to �(B∗
0 → B+π−). We follow here this last

approach and perform the computation on a set of Nf = 2
configurations made available by the Lattice Coordinated
Simulations effort. It gives a further check that the extraction
of the scalar B meson decay constant on those ensembles,
which we report in a forthcoming paper, is under control
at ∼10 % of precision we hope. The plan of the letter is
the following: in Sects. 2 and 3 we describe the approach
we have employed, in Sect. 4 we present our lattice set-up
and our results are given in Sect. 5, which we discuss in
Sect. 6.

2 Extraction of 〈Bπ |B∗
0 〉

The transition amplitude under interest is parametrized by

〈π+(qπ )B−(p)|B∗0
0 (p′)〉 = gB∗

0 Bπ

= √

mBmB∗
0

m2
B∗

0
− m2

B

m2
B∗

0

h

fπ
,

with qπ = p′ − p and fπ = 130 MeV, the pion decay
constant. When the transition amplitude is small, the Fermi
golden rule teaches us that

�(B∗
0 → B−π+) = 2π |〈π+(qπ )B−(p)|B∗0

0 (p′)〉|2 ρ,

where the density of states ρ reads, for a given energy Eπ of
the pion living on the lattice of spatial volume L3,

ρ(Eπ ) = L3

(2π)3 4π �q 2
π

dqπ

dEπ

= L3

2π2 |�qπ |Eπ .

In lattice units (a being the lattice spacing), we obtain

�(B∗
0 → B−π+)

qπ

= 1

π

(

L

a

)3

×(aEπ ) |a〈π+(qπ )B−(p)|B∗0
0 (p′)〉|2.

Considering the two-point correlation function C (2)

B∗
0 Bπ

(t) =
〈OBπ (t)OB∗

0 †(0)〉, where OB∗
0 and OBπ are interpolating

fields with vanishing momentum of the B∗
0 and the Bπ states,

respectively, we have

C (2)

B∗
0 Bπ

(t) =
∑

t1

〈0|OB∗
0 |B∗

0 〉x〈Bπ |OBπ |0〉

×e
−mB∗

0
t1e−mBπ (t−t1) + O(x3) + excited states,

with x = |a〈π+(qπ )B−(p)|B∗0
0 (p′)〉|. We have assumed

small overlaps 〈0|OB∗
0 |Bπ〉 and 〈0|OBπ |B∗

0 〉 and the nor-
malization of states is 〈n|m〉 = δmn . Finally, close to the
threshold mB∗

0
≈ mBπ , we get

C (2)

B∗
0 Bπ

(t) = 〈0|OB∗
0 |B∗

0 〉x〈Bπ |OBπ |0〉 × te
−mB∗

0
t

+O(x3) + excited states.

Therefore, one can extract x from the ratio [13–15]

R(t) =
C (2)

B∗
0 Bπ

(t)
(

C (2)

B∗
0 B∗

0
(t)C (2)

Bπ Bπ (t)
)1/2 ≈ A + xt, (1)

where C (2)

B∗
0 B∗

0
and C (2)

Bπ Bπ are, respectively, two-point corre-

lation functions of a scalar B meson and a Bπ multihadronic
state:

C (2)

B∗
0 B∗

0
(t) = 〈OB∗

0 (t)OB∗
0 †(0)〉,

C (2)
Bπ Bπ (t) = 〈OBπ (t)OBπ†(0)〉.
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Further away from the threshold, Eq. (1) has to be modified.
The most interesting correction for our analysis is the one to
the linear term in x . The time dependence of the ratio R is
then in

t −→ 2

�
sinh

(

�

2
t

)

= t + �2t3

24
+ O(�4), (2)

where � = mB∗
0

− mBπ . To suppress the contamination by
excited states, it is suitable to solve a Generalized Eigenvalue
Problem (GEVP) [16–20]:

RGEVP(t) =
(

vB∗
0
(t, t0),C

(2)

B∗
0 Bπ

(t)vBπ (t, t0)
)

√

(

vB∗
0
(t, t0),C

(2)

B∗
0 B∗

0
(t)vB∗

0
(t, t0)

)

×
(

vBπ (t, t0),C
(2)
Bπ Bπ (t)vBπ (t, t0)

)

, (3)

where C (2)

B∗
0 Bπ

, C (2)

B∗
0 B∗

0
and C (2)

Bπ Bπ are from now matrices of
two-point correlators and vX are the generalized eigenvectors
associated to the ground state in the corresponding channel

C (2)

B∗
0 B∗

0
(t)vB∗

0
(t, t0) = λB∗

0
(t, t0)C

(2)

B∗
0 B∗

0
(t0)vB∗

0
(t, t0), (4)

C (2)
Bπ Bπ (t)vBπ (t, t0) = λBπ (t, t0)C

(2)
Bπ Bπ (t0)vBπ (t, t0),

(5)

and (a,Cb) = ∑

i aiCi j b j is the scalar product.

3 Extraction of g̃

Similarly to the coupling ĝ which sets the magnitude of
the transition between the pseudoscalar and the vector B
mesons by exchanging a single soft pion [10], the coupling
g̃ parametrizes the amplitude

〈B∗
0 | ψ lγkγ5ψl | B∗

1 (εk)〉 = g̃ εk, (6)

where B∗
0 and B∗

1 are, respectively, the scalar and the axial
B mesons at rest and εk is the polarization vector of the axial
B meson. This matrix element can be extracted using the
same technique as discussed in [19] but applied to the first
excited heavy-light mesons doublet. Therefore following the
method of [19,20], we consider the ratio of three- to two-
point correlation functions

MsGEVP(t, t0) = −∂t

⎛

⎜

⎝

(

vB∗
0
(t, t0),

[

K (t)/λB∗
0
(t, t0) − K (t0)

]

vB∗
1
(t, t0)

)

(

vB∗
0
(t, t0),C

(2)

B∗
0 B∗

0
(t0)vB∗

0
(t, t0)

)1/2 (

vB∗
1
(t, t0),C

(2)

B∗
1 B∗

1
(t0)vB∗

1
(t, t0)

)1/2

⎞

⎟

⎠
, (7)

where Ki j (t) is the summed three-point correlation function

Ki j (t) =
∑

t1

C (3)
i j (t, t1), (8)

C (3)
i j (t, t1) = 1

V 3

∑

�x,�y,�z

∑

tx

〈OB∗
0

i (�z, t + tx )

×Ak(�y, t1 + tx )OB∗
1 †

j (�x, tx )〉, (9)

and Ak = ZAψ l(x)�
A
k ψl(x) is the renormalized axial

current. The renormalization constant ZA was determined
non-perturbatively by the ALPHA Collaboration [21]. Here,
C (3)(t, t1) is again a matrix of correlators and the eigenvec-
tors vB∗

1
(t, t0) are defined similarly to Eq. (4). Thanks to

heavy quark symmetry, the two-point correlation functions
C (2)

B∗
0 B∗

0
andC (2)

B∗
1 B∗

1
are proportional and only one GEVP needs

to be solved. Finally, one can show that, in the static limit of
HQET [19],

MsGEVP(t, t0)
t�1−−−−→

t0=t−1
g̃ + O (

te−�N+1,n t
)

,

where �mn = Em − En is the energy difference between the
mth and nth excited states of the GEVP and N × N is the
size of the matrix of correlators defining the GEVP.

4 Lattice setup

In our study we have performed measurements on a sub-
set of four N f = 2 CLS lattice simulations, which have
been generated using either the DD-HMC algorithm [22–25]
or the MP-HMC algorithm [26], defined with the plaquette
gauge action and non-perturbativelyO(a) improved Wilson–
Clover fermions; we collect the main parameters in Table 2
and we remind the reader that the criterion of our choice is
to be very close to the threshold mB∗

0
≈ mBπ (see Table 3).

We have computed static-light correlators with HYP2 static
quarks [27,28] and stochastic all-to-all propagators with full
time dilution for the light quarks [29]. A single stochastic
source has been used to compute the propagator. Interpolat-
ing fields of a static-light meson are defined as [30]

OB
�,n = ψ

(n)

l �ψh, ψ
(n)
l ≡ (1 + κGa

2�)Rnψl , (10)

where ψh is the static heavy quark field and ψl is the relativis-
tic quark field (l = u/d). The Gaussian smearing parameters
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Table 2 Simulations parameters: the bare coupling constant β = 6/g2
0 ,

spatial extent in lattice units L (with T = 2L), hopping parameter κ ,
lattice spacing a in physical units, pion mass mπ and number of con-

figurations used for the computation of the two-point and three-point
correlation functions respectively

CLS label β L3 × T κ a [fm] mπ [MeV] #h #g̃

B6 5.2 483 × 96 0.13597 0.075 280 250 200

E5 5.3 323 × 64 0.13625 0.065 440 450 400

F6 483 × 96 0.13635 310 300 250

N6 5.5 483 × 96 0.13667 0.048 340 250 200

Table 3 Numerical values of ax , �/|�qπ |, gB∗
0 Bπ , δ = mB∗

0
− mB , � = mB∗

0
− mBπ , h and g̃ obtained on the four CLS ensembles that we have

analyzed, with mB∗
0

≈ mB + mπ

CLS ax �/|�qπ | gB∗
0 Bπ [GeV] aδ a� h g̃

B6 −0.0156(4) 0.92(4) 27.4(0.1)(0.6) 0.141(4) 0.034(4) 0.85(3)(2) −0.122(7)

E5 −0.0238(9) 0.86(7) 26.4(0.1)(1.0) 0.133(6) −0.012(6) 0.82(3)(3) −0.117(6)

F6 −0.0161(3) 0.95(3) 27.7(0.1)(0.5) 0.129(3) 0.025(3) 0.86(3)(2) −0.119(4)

N6 −0.0172(6) 0.88(6) 26.6(0.1)(0.9) 0.092(3) 0.008(3) 0.82(3)(3) −0.122(5)

are κG = 0.1, rn ≡ 2a
√

κG Rn ≤ 0.6 fm and � is a covari-
ant Laplacian made of three times APE-blocked links [31].
Moreover, O�,n can be “local” (� = γ0, γ5) or contain a
derivative operator (� = γ0

∑3
i=1 γi∇i , � = γ5

∑3
i=1 γi∇i )

where ∇i is the symmetrized covariant derivative acting
on the light quark field: ∇iψl(x) = (Ui (x)ψl(x + ı̂) −
U †
i (x)ψi (x − ı̂))/2. We have also implemented the isosym-

metric interpolating fields of the form

OBπ
n = 1

V 2

∑

�x1,�x2

√

2

3

[

ψd(x1)γ5ψu(x1)
]

[

ψ
(n)

u (x2)γ5ψh(x2)
]

−
√

1

6

[

ψu(x1)γ5ψu(x1) − ψd(x1)γ5ψd(x1)
]

×
[

ψ
(n)

d (x2)γ5ψh(x2)
]

,

which couple to the multihadronic state
√

2

3
π+(0)B−(0) −

√

1

3
π0(0)B

0
(0).

Using the notation ψ
(m)
l (x)ψ

(n)

l (y) = Gmn
l (x, y), ψh(x)ψh

(y) = Gh(x, y) for the smeared light quark propagator and
the static quark propagator, respectively, the two-point cor-
relation functions constructed from these interpolating fields
are

Cnm
B∗

0 B∗
0
(t) = − 1

V 2

∑

�x,�y
Tr

[

Gmn
l (y, x)�1Gh(x, y)�2

]

,

(11)

� = γ0�
†γ0, whose the diagram is sketched in Fig. 2,

y, Γ2 x, Γ1

Fig. 2 Diagram representing the correlator Cnm
B∗

0 B∗
0
. The simple and

double lines represent the light and static quark propagators respectively

Cnm
Bπ Bπ (t) = 1

V 4

∑

�xi ,�yi
Tr

[

Gl(y1, x1)γ5Gl(x1, y1)γ5
]

×Tr
[

Gh(y2, x2)γ5G
nm
l (x2, y2)γ5

]

(12)

− 3

2V 4

∑

�xi ,�yi
Tr

[

Gl(y1, x1)γ5G
0n
l (x1, x2)γ5

× Gh(x2, y2)γ5G
m0
l (y2, y1)γ5

]

(13)

+ 1

2V 4

∑

�xi ,�yi
Tr

[

G0n
l (y1, x2)γ5Gh(x2, y2)

× γ5G
m0
l (y2, x1)γ5Gl(x1, y1)γ5

]

, (14)

whose direct (12), box (13) and cross (14) diagrams are
sketched in Fig. 3,

Cnm
Bπ B∗

0
(t) = − 1

V 3

√

3

2

∑

�xi ,�y
Tr

×
[

Gm0
l (y, x1)γ5G

0n
l (x1, x2)γ5Gh(x2, y)�

]

, (15)
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Fig. 3 Direct, box and cross
diagrams contributing to the
correlator Cnm

Bπ Bπ

y2 x2

y1 x1

y2 x2

x1y1

y2 x2

x1y1

y, Γ x2, γ5

x1, γ5

y2, γ5

y1, γ5

x, Γ

Fig. 4 Triangle diagrams contributing to the correlators Cnm
Bπ B∗

0
and

Cnm
B∗

0 Bπ

Cnm
B∗

0 Bπ
(t) = − 1

V 3

√

3

2

∑

�yi ,�x
Tr

×
[

Gm0
l (y2, y1)γ5G

0n
l (y1, x)�Gh(x, y2)γ5

]

, (16)

whose the diagrams are sketched in Fig. 4. We have com-
puted the triangle correlators CB∗

0 Bπ and CBπ B∗
0

by two
methods, either using the one-end-trick and a single inver-
sion to obtain the two light propagators [32,33], or get-
ting the second light propagator by solving the Dirac equa-
tion with the first light propagator taken as a generalized
source. The second approach is more noisy, as shown on
Fig. 5.

The box (13) and cross (14) diagrams depicted in Fig. 3
require at least one more inversion of the Dirac operator
for each time slice and are therefore expensive to com-
pute. They have been computed only in the case of the
ensemble E5. Their contributions are small compared to the
direct one given by (12), 0.1 and 1 %, respectively. Neglect-
ing them, we obtain ax = 0.0241(10) whereas we obtain
ax = 0.0228(10) when they are taken into account. The two
results are compatible within our errors and the computa-
tion of these diagrams does not seem necessary at our level
of precision. Since we do not expect the light quark mass
dependence to play a major role on that specific point, we
neglect these diagrams in our calculation on other ensem-
bles.

Finally, we have also computed the three-point correlation
functions (9) needed for the extraction of the coupling g̃ using
the same basis of interpolating operators:

C (3)(t, t1) = − ZA

V 3

∑

�x,�y,�z

∑

tx

1

3

×
3

∑

k=1

Tr
[

Gh(x, z)�
A
k G

n0
l (z, y)γkγ5G

0m
l (y, x)�

S
]

,

where �S = γ0, γi
←−∇i and �A

i = γ5γi , γ5
←−∇i .

1

5

10

100

0 5 10 15 20

t/a

Γ = γ0

Rn = 0
Rn = 90
Rn = 0
Rn = 90

1

5

10

100

0 5 10 15 20

t/a

Γ = γi∇i

Rn = 0
Rn = 90
Rn = 0
Rn = 90

Fig. 5 Statistical error (in percent) for the correlation functions
CB∗

0 Bπ (t) for the two different methods explained in the text. The black
points correspond to the correlators CB∗

0 Bπ (t) computed using the one-
end-trick and the red points correspond to the correlators CB∗

0 Bπ (t)

computed by inverting twice the Dirac operator. On the left, for � = γ0
and on the right, for � = γi∇i . The results correspond to the lattice
ensemble E5
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5 Results

We show in Fig. 6 the ratio RGEVP(t) and its derivative
with respect to time xeff(t) = dRGEVP(t)/dt , which cor-
responds to the quantity ax we are measuring. We observe
a nice plateau for every ensemble under study. The very flat
behavior of xeff(t) in the plateau region lets us conclude that
quadratic and higher terms in t in the formula Eq. (2), com-

ing from � �= 0 (see Table 3), are almost absent. This was
expected, since in our range of fitting,

3t2�2

24
� 1 for t/a ∈ [0 − 20].

Concerning the three-point correlation functions, we have
checked using either local interpolating operators or interpo-
lating operators built from the insertion of a covariant deriva-

-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0 2 4 6 8 10 12 14 16 18

R
G
E
V
P
(t

)

t/a

E5g

-0.04

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

2 4 6 8 10 12 14 16
x

eff
(t

)

t/a

E5g

-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0 5 10 15 20

R
G
E
V
P
(t

)

t/a

N6

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

2 4 6 8 10 12 14 16 18 20

x
eff

(t
)

t/a

N6

Fig. 6 On the left: evolution of RGEVP(t) with t/a for the CLS ensembles E5 and N6. The red line corresponds to a linear fit where the excited
states contribution is negligible. On the right: the corresponding plateaus for xeff (t). We used t0/a = 5 for t > t0 and t0 = t − a elsewhere

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0 2 4 6 8 10

M
sG

E
V
P

t/a

derivative
local
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-0.25
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-0.15
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tive give compatible results. However, in the last case the
signal is less noisy as shown in Fig. 7. Therefore only these
fields are used in the following and some typical plateaus are
depicted in Fig. 8.

With ax and mB∗
0

− mB = 385(17)stat(28)syst MeV [34],
we can finally extract �/|�qπ |, h and gB∗

0 Bπ ; we collect the
values in Table 3. In the table, the first error on h comes from
the uncertainty onmB∗

0
in the continuum limit and the second

error comes from the error on ax . The light-quark mass and
lattice spacing dependence is so small on our data that it is
legitimate to try a fit with a constant: we obtain h = 0.84(3)

and g̃ = −0.120(3). Performing a linear fit in m2
π , we get

compatible results h = 0.86(4) and g̃ = −0.122(8). A third
possibility is to use the NLO formulas of HMχPT [35]

h = h0

[

1 − 3

4

3ĝ2
0 + 3g̃2

0 + 2ĝ0 g̃0

(4π fπ )2 m2
π logm2

π

]

+ Chm
2
π ,

(17)

g̃ = g̃0

[

1 − 2 + 4g̃2
0

(4π fπ )2 m
2
π log(m2

π )

]

+ Cg̃m
2
π , (18)

where ĝ0 = 0.5(1) [4,8] is the pionic couplings associated
to H∗ → Hπ . We get h = 0.84(3) and g̃ = −0.116(7). The
previous formulas for g̃ take into account corrections from
tadpole diagrams to the axial coupling between J = 0 and
J = 1 heavy-light mesons while Eq. (17) for h is obtained
by considering directly the strong vertex HJ1 → HJ2π [36].
The quark mass dependence is very small and the influence of
the chiral logarithms does not change our result significantly.
We quote finally

h = 0.84(3)(2), g̃ = −0.122(8)(6), (19)

where the first error is statistical and the second error cor-
responds to the uncertainty that we evaluate from the dis-
crepancy between the constant and linear fits. We show in
Fig. 9 the chiral extrapolations of h and g̃. Rigorously, in the
NLO chiral fits, we have neglected the contribution from the
heavy-light states of opposite parity, as computed in [36];
they have been studied in [11]. Neglecting them is equiva-
lent to assume mπ � δ = mB∗

0
− mB . Since, for our lattice

ensembles, the pion mass lies in the range [280–440] MeV
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Fig. 10 Quadratic fit of ˜R(t) for the CLS ensemble E5

and the mass difference between the scalar B meson and the
ground state B meson is of the order of δ ∼ 400 MeV, the
contribution is not negligible. Therefore, we also tried the
other fit formulas:

h = h0

[

1 − 3

4

3ĝ2
0 + 3g̃2

0 + 2ĝ0 g̃0

(4π fπ )2 m2
π log(m2

π )

− h2
0

(4π fπ )2

m2
π

2δ2 m
2
π log(m2

π )

]

+ C ′
hm

2
π , (20)

g̃ = g̃0

[

1 − 2 + 4g̃2
0

(4π fπ )2 m
2
π log(m2

π )

+ h2
0

(4π fπ )2

m2
π

8δ2

(

3 + ĝ0

g̃0

)

m2
π log(m2

π )

]

+ C ′̃
gm

2
π ,

(21)

where the coupling ĝ0 is the same as before and the mass
difference δ is given in Table 3. The results are h = 0.85(3)

and g̃ = −0.116(7) and is also perfectly compatible with
our previous findings.

In Refs. [13,14], an alternative method to evaluate such
a coupling like h was proposed. Indeed, one can show
that the connected contribution to the correlation function
CBπ Bπ (t), which includes box (13) and cross (14) diagrams,
has the following behavior:

˜R(t) = (vBπ (t),Cconnected(t)vBπ (t))

(vBπ (t),CBπ Bπ (t)vBπ (t))

= A′ + 1

2
x2t2 + O(t), (22)

whereCconnected(t) = − 3
2Cbox(t)+ 1

2Ccross(t). As explained
before, these diagrams have been computed only for the CLS
ensemble E5 and the function ˜R(t) is plotted in Fig. 10. The
results are quite precise and the linear dependence in (22)
cannot be neglected. Taking this into account, the result reads
|ax | = 0.0237(8), in perfect agreement with the one obtained

by the previous method (see Table 3). The fit range has been
varied from t/a ∈ [9−18] to t/a ∈ [13−18] where the result
is stable to estimate the error.

6 Discussion and conclusion

The couplings h and g̃ were explicitly computed on the lat-
tice in Ref. [11]. For h, two results are reported for the
two different actions used there: h = 0.69(2)(+11

−7 ) and

h = 0.58(2)(+6
−2). They are lower than what we get but this

difference might be explained by the larger quark masses
simulated at that time: indeed the chiral extrapolation tends
to lower the extrapolated value. Our result is also a bit larger
than the QCD sum rules estimates: in Ref. [37] the computa-
tion of gB∗

0 Bπ gives h = 0.56(28), while in Ref. [38] it gives
h = 0.74(23).

We can compare our finding with experimental data in
the D sector, although the static approximation of HQET is
expected to give only a rough estimate due to quite large
1/mc corrections. For example, in the case of the D meson
decay constant, a heavy quark spin breaking effects larger
than 20 % between fD and fD∗ has been measured [39].
With mD∗

0
= 2318(29) MeV and �D∗

0
= 267(40) MeV [40],

we obtain �(D∗
0 → Dπ)/|�qπ | = 0.68(11) and h = 0.74(8),

assuming that the branching ratio B(D∗
0 → Dπ) is ∼100 %.

This result is smaller than the one obtained in this work but
it is compatible within error bars. In [41] the phase shift of
the Dπ scattering state was computed on the lattice: relating
the coupling gD∗

0 Dπ quoted in that paper to h, one finds that
h is around 1.

Referring to the Adler–Weissberger sum rule [42–44] in
the Bπ system, in the mQ → ∞ and soft pion limits,
∑

δ |XBδ|2 = 1, where�(I → Fπ) = 1
2π f 2

π

|�q|3
2 jI+1 |XI→F |2

[45], we have the bound ĝ2+h2 < 1. With the lattice average
ĝ = 0.5(1) made with the results [4,8], we obtain the result
that the sum rule would be saturated at 95 % by the B∗ pole
and the first orbital excitation.

We also confirm the finding of Ref. [11] where a small
value of g̃ was obtained. In particular this coupling for posi-
tive parity states is smaller than in the case of negative parity
states g̃ � g.

In conclusion, we have extracted from lattice simulations
with N f = 2 dynamical quarks the couplings h and g̃ that
parametrize the emission of a soft pion by a scalar B meson.
We have observed a very mild quark mass and cut-off depen-
dence of our numbers and we quote h = 0.84(3)(2), g̃ =
−0.122(8)(6) as our estimate. If g̃ is small, the large value
of h compared to ĝ ∼ 0.5 outlines the fact that some care is
necessary to apply HMχPT for pion masses close to the mass
splitting mB∗

0
−mB ∼ 400 MeV: B meson orbital excitation

degrees of freedom cannot be neglected in chiral loops.
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