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Abstract

Background: Systems Biology develops computational models in order to understand biological phenomena. The
increasing number and complexity of such “bio-models” necessitate computer support for the overall modelling task.
Computer-aided modelling has to be based on a formal semantic description of bio-models. But, even if
computational bio-models themselves are represented precisely in terms of mathematical expressions their full
meaning is not yet formally specified and only described in natural language.

Results: We present a conceptual framework – the meaning facets – which can be used to rigorously specify the
semantics of bio-models. A bio-model has a dual interpretation: On the one hand it is a mathematical expression
which can be used in computational simulations (intrinsic meaning). On the other hand the model is related to the
biological reality (extrinsic meaning). We show that in both cases this interpretation should be performed from three
perspectives: the meaning of the model’s components (structure), the meaning of the model’s intended use
(function), and the meaning of the model’s dynamics (behaviour). In order to demonstrate the strengths of the
meaning facets framework we apply it to two semantically related models of the cell cycle. Thereby, we make use of
existing approaches for computer representation of bio-models as much as possible and sketch the missing pieces.

Conclusions: The meaning facets framework provides a systematic in-depth approach to the semantics of bio-
models. It can serve two important purposes: First, it specifies and structures the information which biologists have to
take into account if they build, use and exchange models. Secondly, because it can be formalised, the framework is a
solid foundation for any sort of computer support in bio-modelling. The proposed conceptual framework establishes a
newmethodology for modelling in Systems Biology and constitutes a basis for computer-aided collaborative research.

Keywords: System biology, Modelling and simulation, Knowledge representation, Semantics, Meaning facets,
Philosophy of science

Background
In order to understand the living nature Systems Biol-
ogy develops computational models of biological systems.
These models are computational in the sense, that the
models are expressed in an appropriate formal language,
like the Systems Biology Markup Language (SBML, [1])
and CellML [2], and can be used by computer programs
in order to infer statements about its dynamical behaviour
(either quantitative or qualitative). In contrast to [3] we
also call differential equation models “computational”.
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We call a computational model of a biological sys-
tem a bio-model if it allows for an explanation of the
mechanism behind the observed behaviour of the biolog-
ical system. Therefore the model not only has to imitate
the behaviour of the system. In addition, the compo-
nents of the model must possess a biological meaning
with respect to the modelled system. Only if the model
has both the same performance (the behaviour) and the
same competence (the mechanism) as the biological sys-
tem, we can understand the living system by means of the
model [4].
Today’s high-quality and high-throughput experimen-

tation techniques in molecular biology are the basis for
an increasing number of bio-models with growing size
and complexity. Understanding biological systems on the
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system-level requires the integration of bio-models from
different abstraction levels and with different paradigms
[5]. Obviously, modelling on a system-level will require
the very assistance of computers. Although computa-
tional bio-models themselves are represented in some
formal language their meaning often is only described
in natural language. Computer-aided modelling in Sys-
tems Biology will be impossible until the meaning of
the models is formally described. In this paper we intro-
duce the meaning facets of bio-models which are views
of a bio-model from different perspectives. The meaning
facets provide a conceptual framework for a systematic
specification of the meaning of a bio-model and con-
sequently are the basis for rigorous semantics of the
bio-model.
Formal semantics of bio-models which go beyond the

usual formal specification of the model structure and
comprehends all meaning facets would be desirable to
provide computer support in the following tasks:

Semantics based search
Given certain desired model properties find models that
exhibit these properties. For example, both example mod-
els discussed below should be retrievable by search
queries of the types: “Find models describing the cell
cycle!”, “Find models related to p34 protein kinase!”, or
“Find models that exhibit both steady state and oscillating
behaviour!”.

Model comparison
Given two models, do they semantically overlap? Is
one model a sub-model of the other? Or is one of
them an abstraction of the other? In general, a method
for model comparison is needed for many higher level
tasks like model matching or model integration. The
comparison should apply to all perspectives of the
model’s meaning (see below). A comparison of two
models can have different kinds of results: e.g. iden-
tical, similar, competing, contradictory, or subsuming
models.

Annotating models
The annotation of a model can be done in an interac-
tive mode: Starting with some elementary facts about a
model an interactive system (see below) infers more facts
and asks for missing information. Thereby it suggests pos-
sible answers. Furthermore, the system complains about
inconsistencies. The result is a complete and consistent
annotation of the model.
Beside these tasks related to the storage, retrieval and

exchange of models in a collaborative setting formal
semantics could be the basis for computer-aided mod-
elling. By means of automatic reasoning it would allow for
higher-level tasks like:

Model integration
Given two models that semantically overlap, what would
an integrated model look like? Again, the formal seman-
tics of the model’s components is needed in order to
automate this task.

Model use
In order to simulate and predict the behaviour of a bio-
logical system the bio-model has to be implemented in
a computer code. This causes further problems: With-
out formal semantics a biologist must directly modify the
code in order to change the model. If the extrinsic mean-
ing of model components and their inter-dependencies
with the intrinsic model structure were formalised, it
would be possible to modify the model on a more
abstract semantic level without the need to refer to the
implementation.

Model revision
Given desired behaviours, is the actual dynamics of a
model in accordance with them? The diagnostics of a
potential discrepancy will suggest possible changes of the
model. The corresponding improvement could be used
iteratively to “evolve” models.
A formal semantic description of bio-models would not

only be useful in corresponding computer-assisted appli-
cation scenarios, but also would support biologists to
access models, their use and their behaviour as well as the
underlying assumptions and decisions. A formal descrip-
tion of the involved knowledge would allow to present
relevant information about a model to biologists in a
familiar way.
The biological scientist does not have to cope with this

rather complicated formalisation of the semantics. We
envision an interactive system for computer-aided anno-
tation of bio-models. Based on a knowledge representa-
tion system working in the background this system can
guide the user in entering all the necessary information
while constantly checking the consistency of the result-
ing information. Furthermore, the system will be able to
ask for specific kinds of information depending on the
information already entered and can provide candidate
answers to the user.

Results
The semantics of bio-models is a formal account of
their meaning. In order to specify the semantics for the
intended application scenarios we therefore have to know
what a bio-model means and which aspects of its mean-
ing are relevant. From a closer investigation of the human
understanding of bio-models and the way how bio-models
describe biological phenomena we derived a concep-
tional scheme of the meaning of bio-models [4]. This
scheme resembles results from knowledge representation
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of complex systems (see below). The conceptional scheme
consists of six meaning facets (Figure 1). The meaning
facets are views at the meaning of a bio-model from differ-
ent perspectives. The starting point for the interpretation
of a bio-model with respect to the different facets is a
model specification, i.e. an expression in some formal
language. We claim that the formal semantics of a bio-
model has to incorporate all of these meaning facets and
the relations between them in order to enable full com-
puter support for modelling. The proposed conceptual
framework is a systematic account of the semantics of
bio-models. It can guide the development of formal rep-
resentations for bio-modelling and provides a coverage
criterion for such efforts.

Dual interpretation
A Bio-model has a dual interpretation: The mathemati-
cal expression bears meaning by itself without referring
to the biological reality. It can be interpreted, analysed,
and used in computational simulations without knowing
what it represents. We call this interpretation the intrinsic
meaning of the bio-model. However, a bio-model is more
than a pure syntactical formal expression: it describes a
piece of biological reality and thereby also exhibits an
extrinsic meaning. Often, the extrinsic interpretation is
referred to by the word “represents”: for example, we
say that a variable x represents the concentration of a
specific substance and that the oscillation shown in simu-
lations represents variations in concentrations during the
cell cycle. An explanatory bio-model establishes a map-
ping between the two conceptual sides, i.e. between the
intrinsic and extrinsic meaning. Note that the biological

Figure 1 The six meaning facets of a bio-model. Three pairs of
intrinsic/extrinsic meaning facets from left to right: structure (system,
entities, relation), function (intention, instantiation, setup), and
behaviour (dynamics, data, outcome). The terms in parentheses are
sub-facets explained in the text.

interpretation has to be consistent with the usual concep-
tualisation made in biology. This ensures that modelling
results represent biological phenomena in such a way that
the (intrinsic interpreted) model can explain biological
reality (cf. Figure 2).
In the SBML community (see, e.g., [6]) the two sides

of the meaning are often called “model meaning” (all
information necessary to simulate a SBML model) and
“biological meaning” (annotations of what is meant by a
particular SBML component). The term “model meaning”,
however, is too general and therefore misleading. Further-
more, “biological meaning” is very specific to bio-models.
We therefore use the terms “intrinsic” and “extrinsic” in
order to (1) avoid the ambiguity of “model meaning” and
(2) allow our framework to be applicable to other kinds of
models.

Three perspectives of meaning
Following research from teleological modelling in engi-
neering (see, e.g., [7] for recent work on this topic) three
pragmatic meaning perspectives can be identified: (1) The
meaning regarding the components of the model and
the relations between them accounts for its structure. (2)
The meaning regarding the model in connection to its
context and its intended use accounts for its function.
(3) The meaning regarding the dynamics of the model
accounts for its behaviour. The extrinsic/intrinsic sides
of the three perspectives together form the six meaning
facets illustrated in the “meaning diamond” (Figure 1). In
order to represent the complete meaning of a bio-model
one has to specify the intrinsic and extrinsic side of each of
the three perspectives and the connections between them.

Figure 2 Dual interpretation of bio-models. A model can be
mathematically interpreted as a text in a formal language resulting in
“formal semantics”. This intrinsic meaning is necessary for using the
model in computations. In order to exploit the results of such
computations for the explanation of biological phenomena the
model needs also a biological interpretation: the model possesses an
extrinsic meaning relating its structure, its functionality, and its
behaviour to biological reality. Ultimately, modelling is about making
appropriate computational representation of biological reality.
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The following sections describe the three meaning per-
spectives in more detail. In order to illustrate the meaning
facets the meaning of two semantically related models
of the cell cycle from Tyson [8] is sketched with refer-
ence to existing formal approaches. The contribution of
all mentioned formal approaches to the meaning facets
is summarised in Table 1. Obviously, the extrinsic side
is considerably less covered than the intrinsic side. This
is due to the very complexity of biological reality and
our restricted knowledge about it (see also the discus-
sion of “Biological Meaning” below). The equations of the
models are shown in subsection Example models, SBML
encoded versions of the models can be found in BioMod-
els Database [9]. In [10] we published a complete recon-
struction of the meaning of this models which was based
on a preliminary version of themeaning facets framework.

Example models
In this section we introduce two models of the cell cycle
by Tyson [8] which are used as an example in the following
description of the meaning facets. Both models describe
the formation and activation of the maturation promot-
ing factor (MPF), a hetero dimer made of the two proteins
cyclin and cdc2.
Model 1 consists of six ordinary differential equations

(ODEs) where each equation models the temporal evo-
lution of the concentrations of one of the involved sub-
stances with respect to the concentrations of the other
substances:

d[C2] /dt = k6[M]−k8[∼ P] [C2]+k9[CP] (1)
d[CP] /dt = −k3[CP] [Y]+k8[∼ P] [C2]−k9[CP] (2)
d[pM] /dt = k3[CP] [Y]−[pM] F([M] ) + k5[∼ P] [M] (3)
d[M] /dt = [pM] F([M] ) − k5[∼ P] [M]−k6[M] (4)
d[Y] /dt = k1[aa]−k2[Y]−k3[CP] [Y] (5)

d[YP] /dt = k6[M]−k7[YP] (6)
F([M] ) = k′

4 + k4([M] /[CT] )2 (7)

Involved substances are: cdc2 (C2), phosphorylated
cdc2 (CP), inactive MPF (pM), active MPF (M), cyclin
(Y), phosphorylated cyclin (YP), adenosine triphosphate
(∼P), and amino acids (aa). CT means total cdc2, i.e.
[CT]=[C2]+[CP]+[pM]+[M]. The ki are kinetic rate
coefficients.
Model 2 is a mathematical abstraction ofModel 1 under

certain additional biological assumptions:

du/dt = k4(v − u)(α + u2) − k6u (8)
dv/dt = (k1[ aa] /[CT] ) − k6u (9)

u = [M] /[CT ] (10)
v = ([Y]+[pM]+[M] )/[CT] (11)
α = k′

4/k4 (12)

u and v are relative concentrations following the given
equations.

Structural facets
A bio-model describes state changes of a formal system.
The notion of structure refers to the aspects of the sys-
tem which do not change. In most general terms structure
can be described by entities having attributes and rela-
tions between the entities: the attributes of the entities
constitute the state of the system, the relations describe
inter-dependencies between the attributes of related enti-
ties. The structural entities and relations have to be rather
classes than individuals. Whereas a individual molecule
can be formed, changed and destroyed, a molecule sort
(a class of molecules) remains the same all over the time.
Based on the relations a programme determines how the
system state is changing. The intrinsic structural meaning
is obtained by interpreting the given model specification
with respect to the formalism used. An explanation of the
behaviour of the modelled biological system requires to
map this intrinsic structure to relevant biological objects
characterised by quantities and interactions establishing
mechanisms. Usually, what is called a “biological systems”
in fact denotes a class of concrete systems in reality. The
concrete systems are considered on a specific conceptual
level, e.g. as gene regulatory networks, protein interac-
tion networks, signal transduction pathways, or metabolic
networks. In turn, this common view onto the concrete
systems establishes itself an abstract system, the “biologi-
cal system”. The conceptual level must be reflected by the
formalism used. In detail the structural meaning can be
characterised as follows:

(S1) System
intrinsic Which formal system is specified by the
encoded model (the model itself )? Which formalism is
employed by the model (modelling framework, spatiality,
stochasticity)?

extrinsic Which biological system corresponds to the
formal system (species, cell type, biochemical system)?
Which conceptual level is reflected by the used for-
malism (system type, granularity, spatial and temporal
resolution)?

(S2) Entities
intrinsic What are the entities of the formal system
(individuals, collections, agents)? Which attributes of the
entities describe the state of the system (variables, terms)?

extrinsic What biological objects correspond to the
model entities (molecules, substances, cells)? Which
quantities (amounts, concentrations, units) correspond to
the model attributes?
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Table 1 Formal approaches to themeaning facets of bio-models

Formal Language element/ Intrinsic meaning facet

approach Ontology branch Structure Function Behaviour

(S1) (S2) (S3) (F1) (F2) (F3) (B1) (B2) (B3)

SBML species x

reaction x

kineticLaw x

initialAmount x

parameter x

SBO “modelling framework” x

SED-ML Simulation x

Change x

KiSAO “modeling and simulation x

algorithm”

DYML feature x

constraints x

TEDDY “temporal behaviour” x

“behaviour diversification” x

Temporal logics x

SBRML Result x x

Fielded Text x x

Formal Language element/ Extrinsic meaning facet

approach Ontology branch Structure Function Behaviour

(S1) (S2) (S3) (F1) (F2) (F3) (B1) (B2) (B3)

UniProt x

NCBI Taxonomy x

Database

Gene ontology “Biological Process” x x

SBO “physical entity representation” x

“systems description parameter” x

“occurring entity representation” x

“systems biology representation” x

Reactome x

Cell type x

Ontology

SABIO-RK x

FuGE Material x

Investigation x

Data x x

SBRML Result x x

Fielded Text x x

Formal approaches (languages, ontologies and biological resources) for computer representations of bio-models and their contribution to the formalisation of the
meaning facets as shown for the example models by Tyson. An “x” means that the respective formal approach or some given aspect (language element or ontology
branch) of it is able to represent the specific meaning facet or at least parts of it. The table is divided into intrinsic (top) and extrinsic (bottom) meaning facets.
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(S3) Relations
intrinsic What are the relations between the entities
(inter-dependencies, correlation, neighbourhood)? What
is the programme describing changes of the attributes of
related entities (operations, equations, update rules)?

extrinsic What biological interactions correspond to the
model relations (reactions, transformations, diffusion)?
What biological mechanisms realising the interactions
between objects correspond to the model programme
(reaction steps, bonding, activity)?

Notes
The specification of the formalism (S1) will restrict the
ways one can use the model. This information is essen-
tial for the interpretation of a model specification as a
formal system. If, for example, a model specification does
not provide information about the intended modelling
framework (like discrete and continuous) the specification
of the formal system is incomplete (see [11]). However,
with this information it will also be possible to automat-
ically convert models from one modelling frameworks in
another [11]. Fages and Soliman [12] investigate the dif-
ferent interpretations of SBML models depending on the
chosen modelling framework and relate the resulting dif-
ferent semantics by the theory of abstract interpretations.
Biological systems are hierarchically organised. Often,

this is reflected by a partonomy of entities in a model. This
partonomy is described as relations between the entities
(S3). Furthermore, it has to be described how attribute
changes in a part influence attribute changes in the corre-
sponding whole and vice versa. Thereby the whole system
can be seen as the top-level entity in the partonomic
hierarchy.
In general, the programme has formal parameters. The

actual parameters (i.e. the parameter values) must be
appropriately instantiated, see facet (F2) below.
For understanding a model it is useful to capture the

relationships between biological objects, e.g. between a
protein and its phosphorylated versions or between a
dimer and its part (maybe modelled as partonomic rela-
tions, see above).
Biological processes often happen in separated com-

partments. There are two ways to account for this
compartmentalisation: In which compartment an object
resides can be represented by an attribute of the cor-
responding entity. In contrast, objects of the same type
residing in different compartments can be modelled by
different classes of entities. A relation has to describe the
exchange between the compartments.

Example
Intrinsically, both Tyson models are encoded in SBML.
The respective formal systems (S1) are given by the

equations in subsection Example models. The used for-
malism (S1) can be characterised as a set of coupled ordi-
nary differential equations of continuous state variables
in the common independent variable t, which describes a
deterministic non-spatial state evolution. The modelling
framework can be specified by a term from the Sys-
tems Biology Ontology (SBO, [13]): “non-spatial contin-
uous framework” (SBO:0000293). The intrinsic structural
meaning of SBML models is formalised by the SBML
specification (we use typewriter font for SBML key-
words): The entities (S2) are given as species in the
listOfSpecies. Each species has an unique id and a
name, e.g. the species C2 is called “cdc2k”. Each id is also
used as dependent variable within the kineticLaws (see
below), representing the amount as an attribute (S2) of the
according species. The relations (S3) are reactions
in the listOfReactions. Each reaction has a
kineticLaw describing the corresponding changes of
the species amounts. There can be (formal) parameters
in the kineticLaw. For instance there is the follow-
ing reaction (Reaction1 in the SBML encoding) in the
Tyson model:

M k6−→ C2 + YP

with the kinetic law k6[M], where k6 is a parameter deter-
mining the reaction rate. The programme (S3) of an SBML
model is just the set of ODEs (cf. the equations in sub-
section Example models) reflecting the kinetic laws of the
single reactions. For better legibility, we use the common
style for kinetic equations with square brackets denoting
the amount of a species. However, SBML has a specific
syntax for kineticLaw based on MathML [14].
Extrinsically, both Tyson models describe a biological

system (S1) of MPF (maturation promoting factor) for-
mation and activation which controls major events of
the cell cycle in different organism: frog, sea urchin,
and fission yeast. The extrinsic meaning of each SBML
tag can be given by annotations pointing to an
appropriate description of biological knowledge. E.g. C2
represents the biological object (S2) “Cyclin-dependent
kinase 1” for which the UniProt [15] entry P04551 can
be given. MIRIAM Registry [16] can be used for a
unified way of referring to all external resources used
in describing the meaning of bio-models. For example,
the UniProt entry for the extrinsic meaning of C2 will
become urn:miriam:uniprot:P04551. By means of identi-
fier.org [16] one can also provide a persistent URL for
this information: http://identifiers.org/uniprot/P04551z.
The addressed organism could be assigned by the NCBI
Taxonomy Database [17], e.g. sea-urchins have the Tax-
onomy ID: 7625. But one could also use more general
entries, like the common parent term of sea urchins and
frogs Deuterostomia (Taxonomy ID: 33511), or even more

http://identifiers.org/uniprot/P04551
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general Eumetazoa (Taxonomy ID: 6072). It would not
be suitable to go further up in the taxonomy, because
the facts about embryonic development in [8] do not
apply in general for higher taxa. An annotation can spec-
ify the addressed biochemical system. The addressed
system of the example models can be specified by a
link to the “mitotic cell cycle” (GO:0000278) entry of
the Gene Ontology (GO, [18]). The biological systems
are regarded on the conceptual level (S1) of pools of
molecular entities without consideration of spatial effects.
The justification for this are high enough numbers of
molecules and fast diffusion. Model 1 is a network of
protein-protein interactions, where catalytic reactions
between proteins changes their concentrations in time
(extrinsic interpretation of the independent variable t).
Model 2 is an abstraction of the actual protein-protein
interactions. In addition to the SBML annotations,
it is possible to refer to SBO directly within a SBML
tag. SBO terms can be used for a top-level classifica-
tion of molecules and reactions. For example, C2 can
be classified as “polypeptide chain” (SBO:0000252), and
Reaction1 as “dissociation” (SBO:0000180). Each involved
substance has as a quantity (S2) its molar concentra-
tion (SBO:0000472) in mol/1. Reaction1 represents the
interaction (S3) “cyclin cdc2k dissociation” for which
the Reactome entry REACT_6308 can be given. Further-
more, the role which a molecule plays in a reaction can
also be described by SBO (e.g. reactant, product, modi-
fier). The mechanism (S3) underlying most of the reac-
tions is mass-action kinetics, which could be annotated
by “mass action rate law” (SBO:0000012). Only Reac-
tion9 represents a special mechanism for a autocatalytic
feedback [8].
The structural meaning of Model 2 can be expressed in

a similar way. However, the extrinsic meaning of u and v is
not straightforward. It can only be derived using the defin-
ing equations u =[M] /[CT], v = ([Y]+[pM]+[M] )/[CT]
and assigning meanings to the contained entities like M
(see above). The extrinsic interpretation of the reactions
of Model 2 is even harder. As interpreted in BioModels
Database the reactions do not contain a feedback loop
anymore but still showing oscillating behaviour!

Functional facets
A bio-model is simulated in order to get data for
answering biological questions. The function of a model
describes how the model structure is intended to be used
in simulations to generate dynamic behaviour. Before a
model can be used in simulations it has to be fully instan-
tiated, i.e. all parameters should be given actual values and
the initial state of the model has to be set. The simula-
tion setup describes the exact procedure applied to the
model instance. In addition, the post-processing describes
how to produce the final outcome. The instantiation and

the setup of the simulations performed with the model
have to reflect the specific boundary conditions and the
experimental settings under which the biological system
is observed. The functional meaning can be characterised
by the following questions:

(F1) Intention
intrinsic What is the intended use of the model (sim-
ulation type, combination of simulations, desired out-
come)? Which constraints are imposed on the model
(value restrictions, ratios, conservation rules)?

extrinsic Which biological questions are addressed to
the model (explanation, hypothesis testing, exploration,
dependency analysis)? Which assumptions provide
the basis for the constraints (likelihoods, justification,
evidence)?

(F2) Instantiation
intrinsic Which instantiation of themodel is used for the
simulation (parameter values, parameter ranges)? Which
initial values are chosen for the entities attributes (value
assignment to variables)?

extrinsic Which boundary conditions correspond to the
model instantiation (environment, kinetic data, plausible
ranges)? Which initial state of the biological system cor-
responds to the initial values set for the model (initial
concentrations)?

(F3) Setup
intrinsic Which setup is used for simulation experiments
(simulation algorithm, algorithm settings, perturbations)?
Which post-processing of the raw simulation data gener-
ates the desired outcome (normalisation, conversations of
units, calculations)?

extrinsic Which biological experimental settings corre-
spond to the setup for simulations of the model (experi-
mental protocol)? Which result calculation produces the
requested results of the experiment (normalisation, con-
versations of units, calculations)?

Example
In the following we describe the functional aspects of
usingModel 1 for producing the time series of Figure 3(a)
in [8].
Intrinsically, the functional meaning of the exam-

ple models is equivalent to a complete description of
simulation experiments applied to the model compris-
ing all the details of (F1-3). Most simulation tools
use their own proprietary format to encode this
information which hampers the reuse of functional
information. In order to overcome this situation the
Simulation Experiment Description Markup Language



Knüpfer et al. BMC Systems Biology 2013, 7:43 Page 8 of 14
http://www.biomedcentral.com/1752-0509/7/43

(SED-ML) is developed [19]. In a SED-ML description
algorithm used for the simulation can be specified using
KiSAO (Kinetic Simulation Algorithm Ontology, [13]).
The intended use (F1) is the generation of a time series
through numerical integration of the model. Thereby the
time evolution of the amounts of M and YT are reported.
In SED-ML this intended type of simulation can be set in
the listOfSimulations as uniformTimeCourse.
Tyson gives some constraints (F1), e.g. [CT]= const. and
k2 � k3[CT]. Constraints often are only implicit in the
chosen simulation paradigm and algorithm; making them
explicit will be a future challenge. It is an open issue
how to formalise such constraints and the corresponding
assumptions (see below). A combination of Constraint-
Logic-Programming [20] with languages from Systems
Biology seems to be a promising research direction for
explicitly incorporating constraints and assumptions into
models. For the instantiation (F2) of the model Tyson
gives parameter values. Parameters can be set in SBML
via the corresponding value attribute. There are no
initial values (F2) explicitly given in [8]. However, one
can find appropriate initial values from the time series
in Figure 3(a). The SBML file from BioModels Database
contains such an assignment in the initialAmount
attributes. The parameters and initial values can also be
set or modified in SED-ML. In SED-ML it is possible to
describe the setup (F3) of the experiment and the post-
processing (F3) of the data: For Figure 3(a) of [8] a uniform
time course from time 0min to 100min with a step size
of 0.001min is produced with a fourth-order Adams-
Moulton integration routine (KISAO_0000280). Subse-
quently, the raw amount data of M and the sum of all
“cyclin” entities (called “total cyclin”, [YT]) are normalised
by dividing by the amount of CT.
Tyson explicitly states biological questions (F1)

addressed to the model. The corresponding question
for Figure 3(a) is: “Can the same model also account
[. . . ], for rapid cycles of DNA synthesis and cell division

(without cell growth) during the embryonic cell cycle,
[. . . ]” [8], p.7329. That is, Tyson tries to explain a specific
biological phenomenon. At the moment there is no way
to formalise this question. However, we could imagine a
classification of modelling aims. For each modelling aim
appropriate simulation types could be identified. Tyson
indicates assumptions (F1) as the basis for the param-
eter constraints. For example, he assumes that cdc2 is
constantly synthesised in growing cells which supports
[CT]= const. The concrete boundary conditions (F2)
corresponding to the instantiated model for Figure 3(a)
are the conditions found in early embryonic cells [8].
The Cell Type Ontology [21] can be used to specify the
cell type: “early embryonic cell” has the ID CL:0000007.
Tyson states that there is no experimental kinetic data
available for this situation. Also, there is no initial state
(F2) of the biological system given by Tyson. If such data
would exist the corresponding SBML parameter and
initialAmount could be annotated with kinetic data
entries from appropriate sources (e.g. SABIO-RK, [22]).
As with kinetic data and the initial state of the biological
system, Tyson does not provide any information about
experimental settings (F3) and the following result calcu-
lation (F3). Nevertheless, there are some standards for
describing experimental protocols, like FuGE [23] for
functional genomics experiments.
The functional facets of Model 2 can be described in

a similar way. However, there are specific assumptions
underlying the abstraction of Model 2 from Model 1.
This assumptions are mainly reflected by the structure of
Model 2 (S2,3) and have to be met in a corresponding use
ofModel 2 (F1,2).

Behavioural facets
A bio-model is used in simulation experiments in
order to investigate its behaviour. A simulation experi-
ment produces raw numerical data. Often, this data is
post-processed into the final desired outcome of the

Figure 3 Different meanings of “Cell”. Three different examples of models for which the extrinsic meaning “Cell” can be viewed at from different
perspectives: a proto-cell model [30], a Virtual Cell model [31], and an immune response model [32].
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experiment. The model dynamics is a qualitative descrip-
tion of this experimental outcome. From the behavioural
perspective the model dynamics should correspond to
observed biological phenomena. The observed biologi-
cal phenomena are supported by experimental results
which are obtained from measurements of the biologi-
cal system in question. The behavioural meaning can be
characterised by the following questions:

(B1) Dynamics
intrinsic Which types of dynamics does the model show
in simulations (fixed points, periodic behaviours, chaotic
behaviour)? Which diversification in the dynamics does
the model possess (stability, bifurcations)?

extrinsic Which biological phenomena correspond to the
model dynamics (cyclic behaviour, steady state)? Which
variability of the biological phenomena correspond to the
diversification in the dynamics of the model (switching
behaviour, excitability)?

(B2) Data
intrinsic Which raw data does the model produce in
simulations (series of values)? Which index is used for the
raw data (modelling time, parameter value, initial value)?

extrinsic: Which experimental measurements corre-
spond to the yielded raw data (series of values)? Which
key is used to identify the single measurements (time,
conditions, initial states)?

(B3) Outcome
intrinsic What is the outcome of the simulation (spe-
cific values, time courses, phase portraits, bifurcation
diagram)? Which characteristics of the model dynamics
can be identified (maximal and minimal values, periods,
Lyapunov exponents)?

extrinsic Which experimental results correspond to the
outcome of the simulation (specific values, time courses,
phase portraits, bifurcation diagram). Which observables
correspond to the characteristics of the models dynam-
ics (maximal and minimal concentrations, cycle length,
stability)?

Example
For both example models Tyson identified three different
types of dynamics (B1) dependent on the parameters
setting: stable steady state, spontaneous limit cycle oscil-
lation and excitable switch [8]. The intrinsic meaning of
this dynamics types can be formalised by terms from the
Terminology for the Description of Dynamics (TEDDY,
[13]), e.g. TEDDY_0000113 “Stable Fixed Point” for
the stable steady state. TEDDY also provides terms for
diversification (B1) of dynamics: In the example

model there is a supercritical Hopf bifurcation
(TEDDY_0000074) between the steady state and the
oscillation if parameters k4 and k6 are varied. TEDDY
only provides the vocabulary for describing the dynamics
of models. We also need a language for relating conditions
and types of dynamics. In an envisioned DynamicMarkup
Language (maybe called DYML) the dynamics ofModel 2
could be formalised as follows (simplified notation):

listOfBifurcations
Bifurcation id="bif1"

type "TEDDY_0000074" (Supercritical
Hopf Bifurcation)

subPhasePortrait ref="portrait1"
superPhasePortrait ref="portrait2"

phasePortrait id="portrait1"
listOfParameterConstraints

ParameterConstraint k1[aa]
k6[CT] >

√
k6
k4

listOfFeatures
Feature id="p1f1"

listOfStateConstraints
StateConstraint u �= k1[aa]

k6[CT]
StateConstraint v �= u + k6u

k4(α+u2)
type "TEDDY_0000063" (Damped

Oscillation)
limitFeature "p1f2"

Feature id="p1f2"
listOfStateConstraints

StateConstraint u = k1[aa]
k6[CT]

StateConstraint v = u + k6u
k4(α+u2)

type "TEDDY_0000126" (Stable
Spiral)

phasePortrait id="portrait2"
listOfParameterConstraints

ParameterConstraint
√

α < k1[aa]
k6[CT] <

√
k6
k4

listOfFeatures
Feature id="p2f1"

listOfStateConstraints
StateConstraint u �= k1[aa]

k6[CT]
StateConstraint v �= u + k6u

k4(α+u2)
type "TEDDY_0000063" (Damped

Oscillation)
limitFeature "p2f2"

Feature id="p2f2"
type "TEDDY_0000114" (Stable

Limit Cycle)
Feature id="p2f3"

listOfStateConstraints
StateConstraint u = k1[aa]

k6[CT]
StateConstraint v = u + k6u

k4(α+u2)
type "TEDDY_0000127" (Unstable

Spiral)
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Note that only the parameters k4 and k6 are allowed
to vary. All other parameters are set as in [8], Table two,
p.7329. The constraints are taken from the phase plane
analysis in [8], p.7332.
There exist other approaches for qualitative descrip-

tions of model behaviour like temporal logics [24]. In
BIOCHAM [25] a temporal logic is used as a query
language for properties of the dynamics of bio-models.
Instead of numerical simulations model checking tech-
niques (see, e.g., [24]) can be used to answer such queries.
In [26] a temporal logic extended by constraints over
real numbers is used to express quantitative properties
of temporal behaviour and to optimise parameters. Such
quantitative temporal logics are worth to be considered
as possible candidates for the needed model dynamics
language.
The identification of the dynamics of the example mod-

els is based on simulation experiments which produce as
raw data (B2) series of amount values for each entity.
The index (B2) for these values is the modelling time (t).
The intrinsic meaning of the values are the values itself.
However, there is an issue to relate – in a formalised
manner – the single values of a result table to the model
attributes and the corresponding condition. There are
some approaches to establish this connection, like SBRML
[27] and Fielded Text [28]. The outcome (B3) of the sim-
ulations are plots of [M] /[CT] and [YT] /[CT] (see (F3) in
the example above) against modelling time under different
settings. Tyson also reports some characteristics (B3) of
the model dynamics, e.g. relative amounts of M in steady
state and period of the oscillation. Beside the time series
there is another outcome in [8]: in the space of the param-
eters k4 and k6 regions of different qualitative behaviour
are identified. Each region represents classes of concrete
times series with common properties. These classes are
the different dynamics of the model mentioned above and
the plot of the regions in parameter space visualises the
diversification in the dynamics.
Concerning experimental measurements (B2) there is

the same issue of connecting measurement values and
the corresponding keys (B2) with model attributes and
conditions as for simulation results (see above). Tyson
does not provide concrete experimental measurements
or results (B3). Instead, he refers to conclusions drawn
from such data. For instance, he characterises the phe-
nomenological variability (B1) by the different modes
of operation observed in different developmental stages
and states typical observables (B3) of these modes like the
period of division cycles. The three different phenomena
(B1) are mapped to the types of dynamics of the model:
metaphase arrest in unfertilised eggs is represented by the
steady state, rapid division cycles in early embryos by the
spontaneous oscillation, and the growth-controlled divi-
sion cycles in non-embryonic cells by the excitable switch.

The extrinsic meaning of the dynamics can be grounded
in external resources, e.g. “cell cycle arrest” (GO:0007050)
for the metaphase arrest. The variability can be rep-
resented by linking conditions (e.g. early embryo
stage) with the specific phenomena observed under
this conditions.
The behaviour of Model 2 is the same as for Model 1

except for the number of dimensions of the dynamical sys-
tem. Indeed, the simplifiedModel 2 is used in [8] in order
to also analyse the dynamics ofModel 1.

Global meta-information
Beside themeaning of amodel itself there exists additional
information describing the role of the model in scientific
research. We call meta-information of this type “global
meta-information”. Global meta-information accounts for
the origin of the model, the access to the encoded model
in some formal language, and the relation of the model to
other models. We will not provide a detailed systematics
of global meta-information here. Instead we describe just
the global meta-information for the example models.

Example
Both example models are originally published in [8]. The
corresponding meta-information for the origin of the
models comprises the paper itself (PubMed ID: 1831270),
its author (John J. Tyson) and its date of publication
(August 1991).
Important meta-information for the access of an

encoded model involves the place (file name, URL,
database ID), the used format (e.g. SBML, CellML), and
the date and author of the encoding. If the model is stored
in a database then there also exists meta-information
about the curation process (curators, date, last modifi-
cation). The example models are available in BioModels
Database encoded in different formats:

Model 1 http://identifiers.org/biomodels.db/
BIOMD0000000005
Model 2 http://identifiers.org/biomodels.db/
BIOMD0000000006

BioModels Database also lists the mentioned meta-
information about the encoding and curation process. For
example, one can access the encoded models in SBML,
Level 2, Version 4. The format is determined by the
xmlns attribute in the sbml tag.
A model can have different relations to other mod-

els: It can be evolved from preliminary versions, it can
be abstracted or integrated from other models, and it
can be compared to competing models. The derivation
of Model 2 from Model 1 is the result of an abstraction
relation between the two models. Tyson also mentioned
some existing related model. For example, he states that
Model 2 is a modified version of the famous “Brusselator”.

http://identifiers.org/biomodels.db/BIOMD0000000005
http://identifiers.org/biomodels.db/BIOMD0000000005
http://identifiers.org/biomodels.db/BIOMD0000000006
http://identifiers.org/biomodels.db/BIOMD0000000006
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There are formal approaches to relate models, e.g. based
on graph theory [29].

Discussion
Our analysis showed that formalising the meaning of
bio-models requires a significant effort and is not triv-
ial, since the meaning appears from several perspectives
and in different facets (cf. Figure 1). We have nevertheless
demonstrated how, in principle, it is possible to specify
the meaning in a form that is understandable by both,
computers and humans.
The proposed meaning facets framework allows for

a systematic classification of existing approaches for
computer-readable representations of model meaning.
The framework therefore can be used to evaluate the cov-
erage of representations and to identify missing pieces.
Interesting next steps involve the extension of BioMod-
els Database [9] by introducing the behavioural meaning
perspective and by considering the intrinsic mathematical
structure in order to grasp the semantics of variables like
v inModel 2.
For the envisioned intelligent computer-aided working

environment, which semantically guides model design
and use and fosters the development of sound and well
annotated bio-models, we have to establish appropri-
ate languages for the missing pieces, like a description
language for the behavioural perspective. Furthermore,
existing languages and resources have to be improved
in order to enable the necessary reasoning capabilities.
The proposed meaning facets framework can direct this
developments.

Biological meaning
The following are some explanatory notes regarding
the biological (extrinsic) meaning of bio-models and its
formalisation:

1. In general, the extrinsic meaning will only be partial,
i.e. there may be aspects of the model without
counterparts in the biological world. But at least
there has to be some aspect of a model which has an
extrinsic interpretation. Without representing a
concrete biological system a model would be
(biological) meaningless!

2. Even if an extrinsic interpretation of some model
aspect exists it doesn’t have to be intuitive. The more
intuitive a model represents our perception of reality,
the better it explains the modelled system and
consequently contributes to an understanding of the
living nature.

3. The extrinsic interpretation depends on the
intention of the model. Therefore the same
mathematical construct can have more than one
biological meaning. For example, the exponential

grow ẋ = αx,α > 0 can be a model for different
biological phenomena.

4. It is tempting to assume that familiar biological
objects, like “cell” are represented in the model from
the structural perspective, i.e. that there is a
structural entity interpreted as “cell”. This often is
not the case. Figure 3 illustrates that all three
perspectives of meaning can refer to “cell”. This
shows, that biological objects can also have some
behavioural and functional aspects. The three
meaning perspectives should not be regarded as
independent from each other, but rather as different
views of an indivisible unity.

Related work
The insight in the dual interpretation of mathematical
models are of course not new: The “knowledge represen-
tation hypothesis” [33] demands that any useful formal
representation needs both: to play a formal role and to
have an “external semantical attribution”. Also, Simon’s
notion of artefacts (like models) as interfaces between an
inner and an outer environment [34] resembles the dual
interpretation of bio-models. However, for a systematic
formal specification of the meaning of bio-models it is
very useful to distinguish between the intrinsic and the
extrinsic interpretation. In fact, Rosen’s central “Model-
ing Relation” [35] is formulated as a congruence between
a natural system and a formal system (a model). Thereby,
biological “percepts” and “linkages” between them are
encoded by formal entities and relations. Inferences in
the formal systems can be decoded as predictions about
the behaviour of the natural system. Thus, [35] already
distinguish between the intrinsic/extrinsic sides on the
structural and the behavioural perspective with a focus on
the interplay of the two sides, not on the details of the
structure and behaviour provided in this paper.
There is a similar distinction between perspectives in

[36]: Their “model description” is more or less what we
call structural perspective. Their “simulation description”
is part of the functional perspective described above.
Our behavioural perspective is called “simulation results
description” in [36]. Our meaning facets however are
more systematic and provide more details from each
perspective. [36], nevertheless, gives a good overview of
important standards, languages, and ontologies for the
three perspectives.
Another systematic approach to models is Zeigler’s

“framework for modeling and simulation” [37]. The
framework consists of four elements: the source
system, the experimental frame, the model, and the
simulator. Each element involves knowledge on specific
“system specification levels” (for details cf. [37]). There
are some connections between Zeigler’s framework and
the meaning facets: Zeigler’s “state transition” level 3 [37],
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p.17f corresponds to the programme in (S3), the “coupled
component” level 4 corresponds to entities (S2) and rela-
tions (S3). Both levels together are used to specify models,
therefore a “model” in Zeigler’s framework is what we call
structural facets. The “experimental frame” formalises the
conditions for simulating the model, thus it corresponds
to the instantiation (F2) and the setup (F3). Zeigler claims
that the experimental frame “is a operational formulation
of the objectives that motivate a modeling and simulation
project” [37], p.27, so it corresponds also to the inten-
tion (F1). The “source system” is regarded as a source of
data of the “I/O behaviour” level 1, which corresponds
to raw data (B2). Although there are parallels between
the two frameworks, Zeigler’s work is focused on the
mathematical side of building models and using them
in simulations. In contrast, the approach proposed here
regards models as “integrators of knowledge” [13] in the
centre between computations and biological reality (cf.
Figure 2). As a consequence our conceptual framework
provides a detailed account of the extrinsic meaning from
different perspectives on models. Klir [38] also classifies
the knowledge about investigated systems. He establishes
what he calls “epistemological levels of systems” which
are very similar to Zeigler’s system specification levels. In
fact, Zeigler starts his presentation with a review of Klir’s
levels and shows the correspondence with his approach
[37], p.11ff.
The SemSim (for “semantic simulation”) project [39]

aims to support integration of bio-models by means
of their semantics. In SemSim models are annotated
from the structural perspective with links to differ-
ent biological ontologies [40]. Additional, they use
the Ontology of Physics for Biology (OPB, [41]) to
describe the physical quantity represented by a model
variable.
In [42] there is a distinction between function as medi-

ating between structure and behaviour and function as
purpose. The first determines the “structural behaviours”,
i.e. all possible behaviours the model is able to show. The
second restricts the possible behaviours to the “expected
behaviours” which are intended by the modeller mak-
ing function “the bridge between human intention and
physical behavior of artifacts” [43], p.271. The distinction
between structural and expected behaviours originates
from [44]. In this paper function is seen as purpose.
Thus, the behaviour perspective describes expected
behaviours.

Conclusion
In this paper, we present a systematic in-depth account
of the semantics of bio-models. We show, that the mean-
ing of bio-models has intrinsic and extrinsic aspects which
can be viewed at from three perspectives: the struc-
ture, the function, and the behaviour of the model. The

resulting six meaning facets provide a conceptual frame-
work for the formalisation of the knowledge involved in
building and using bio-models.
The proposed conceptual framework is a suitable foun-

dation for computer-aided annotation, integration, and
retrieval of bio-models. Obviously, this is only a first step
in solving the “semantic puzzle” of formalising the mean-
ing of bio-models. The framework helps in identifying
how do the missing pieces look like and how they are fit
together.
Our meaning facets are also a way for structuring and

clarifying our understanding of bio-models. They can
guide the model builder during the model building pro-
cess and can assist the model user in comprehending
models. In fact, the meaning facets framework estab-
lishes a new methodology for computer-aided collabora-
tive modelling in Systems Biology.
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