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Abstract

Background: Branching events in phylogenetic trees reflect bifurcating and/or multifurcating speciation and
splitting events. In the presence of gene flow, a phylogeny cannot be described by a tree but is instead a directed
acyclic graph known as a phylogenetic network. Both phylogenetic trees and networks are typically reconstructed
using computational analysis of multi-locus sequence data. The advent of high-throughput sequencing technologies
has brought about two main scalability challenges: (1) dataset size in terms of the number of taxa and (2) the
evolutionary divergence of the taxa in a study. The impact of both dimensions of scale on phylogenetic tree inference
has been well characterized by recent studies; in contrast, the scalability limits of phylogenetic network inference
methods are largely unknown.

Results: In this study, we quantify the performance of state-of-the-art phylogenetic network inference methods on
large-scale datasets using empirical data sampled from natural mouse populations and a range of simulations using
model phylogenies with a single reticulation. We find that, as in the case of phylogenetic tree inference, the
performance of leading network inference methods is negatively impacted by both dimensions of dataset scale. In
general, we found that topological accuracy degrades as the number of taxa increases; a similar effect was observed
with increased sequence mutation rate. The most accurate methods were probabilistic inference methods which
maximize either likelihood under coalescent-based models or pseudo-likelihood approximations to the model
likelihood. The improved accuracy obtained with probabilistic inference methods comes at a computational cost in
terms of runtime andmainmemory usage, which become prohibitive as dataset size grows past twenty-five taxa. None
of the probabilistic methods completed analyses of datasets with 30 taxa or more after many weeks of CPU runtime.

Conclusions: We conclude that the state of the art of phylogenetic network inference lags well behind the scope of
current phylogenomic studies. New algorithmic development is critically needed to address this methodological gap.

Keywords: Phylogenetic network, Phylogenetic inference, Phylogenomics, Phylogenetics, Scalability, Large-scale,
Incomplete lineage sorting, Gene flow, Mutation, Performance study, Mouse

Background
In recent studies, gene flow – the process by which genetic
material is exchanged between different populations
and/or species existing at the same point in time – has
been shown to have played a major role in the evolution
of a diverse array of metazoans, including humans and
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ancient hominins [1, 2], mice [3], and butterflies [4]. Each
of these organisms (as well as many others across the Tree
of Life [5–7]) has a phylogeny, or evolutionary history,
which cannot be represented as a tree, where a branch-
ing event reflects strict bifurcating and/or multifurcating
speciation/splitting and subsequent genetic isolation of
the resulting species/populations. In these cases, the phy-
logeny takes the more general form of a directed acyclic
graph known as a phylogenetic network [8]. Phylogenetic
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networks are categorized as either explicit or implicit
networks. Reticulations in explicit networks are ascribed
to specific evolutionary processes (e.g., gene flow). In
contrast, graphical structure in an implicit network sum-
marizes conflicting phylogenetic signal but lacks a spe-
cific biological interpretation. For this reason, we focus
our attention on explicit phylogenetic networks and we
hereafter omit the “explicit” qualifier for brevity.
Similar to phylogenetic trees, phylogenetic networks are

typically inferred using computational analyses of multi-
locus biomolecular sequence data. The most widely used
approach is a concatenation analysis which estimates a
single phylogeny for all loci [9]. In the context of species
tree inference, methods used for concatenation analysis
typically only account for sequence mutation [10]. Repre-
sentative examples of concatenation-based network infer-
ence methods include Neighbor-Net [11] and the least
squares method of Schliep [12], which we refer to here
as SplitsNet. A primary complication with the concatena-
tion approach is that different loci in a genome commonly
exhibit local genealogical incongruence (i.e., gene trees
can differ from each other and the species phylogeny
in terms of topology and/or branch length) due to the
complex interplay of different evolutionary processes that
shaped the genomes. These include gene flow, sequence
mutation, gene duplication and loss, recombination, and
incomplete lineage sorting (ILS). ILS occurs when lineages
from two genetically isolated populations coalesce at a
time more ancient than their most recent common ances-
tral population, and is known to play a crucial role in the
evolution of much of the Tree of Life [9]. Under neutral
evolution, genetic drift – the outcome of purely stochastic
inheritance over successive populations – can cause ILS;
other factors contributing to the maintenance of ancestral
polymorphisms and ILS include balancing selection.
In contrast to concatenation analysis, multi-locus meth-

ods infer species phylogenies in the presence of these
evolutionary processes acting in combination. The most
widely used multi-locus methods perform inference that
account for a broad set of evolutionary processes, includ-
ing sequence mutation, gene flow, and ILS [13–15]. Multi-
locus methods are broadly classified by whether or not
they impose the requirement that a phylogenetic hypoth-
esis be specified a priori.
The main focus of our study is the category of methods

that perform full inference by searching among all possi-
ble phylogenies defined on a set of taxa. Many of these
methods utilize a gene-tree/species-phylogeny reconcili-
ation approach (or summary approach), where local trees
estimated from different loci – referred to as gene trees –
are used as input rather than sequence alignments from
the loci [16–19]. The full inference procedure therefore
requires two phases: a first phase where a set of gene trees
is estimated from biomolecular sequence alignments, and

a second phase where the gene trees are used to estimate
a species phylogeny. The multi-locus methods are further
classified by the optimization criterion used for inference.
Earlier parsimony-based approaches (e.g., the method of
Yu et al. [20], which we refer to here as MP, which stands
for maximum parsimony) utilize the minimize deep coa-
lescence (MDC) criterion proposed by Maddison [8],
which seeks the species phylogeny that minimizes the
number of deep coalescences necessary to explain a given
set of gene trees. More recently, probabilistic approaches
perform phylogenetic network inference under an explicit
evolutionary model that combines the coalescent model
with biomolecular substitution models. Examples include
two different methods proposed by Yu et al. [21] that
are implemented in the PhyloNet software package [22],
which differ primarily in their use of branch length infor-
mation: one method uses the approach of Degnan and
Salter [23] to calculate model likelihood using only gene
tree topologies, and the other method substitutes an alter-
native approach to calculate model likelihood using gene
tree topologies and branch lengths. We therefore refer to
these methods as MLE (which stands for maximum like-
lihood estimation) and MLE-length, respectively. These
probabilistic approaches have been noted to have high
computational requirements, and model likelihood calcu-
lations were found to be a major performance bottleneck
[24]. For this reason, pseudo-likelihood approximations
to full model likelihood calculations have been proposed,
including the method of Yu et al. [24] (referred to here
as MPL, which stands for maximum pseudo-likelihood),
which substitutes pseudo-likelihoods in the optimiza-
tion criterion used by MLE, and SNaQ (Species Net-
works applying Quartets) [25], which combines the use of
pseudo-likelihoods under a coalescent-based model with
quartet-based concordance analysis [26]. As suggested by
Yu et al. [14], the techniques used by Bryant et al. [27]
to infer a species tree directly from an input sequence
alignment – effectively integrating over gene tree distri-
butions at different loci – would provide an alternative to
reconciliation-based species network inference, but scal-
able inference methods using this alternative approach
have yet to be proposed and remain for future work as
of this writing; preliminary experiments by Yu et al. [14]
suggest that the scalability challenges of this approach will
be greater than with state-of-the-art reconciliation-based
approaches. All of these multi-locus methods address
problems that are either known or suspected to be NP-
hard [14, 15]. For this reason, heuristics are necessary to
enable efficient inference under the optimization criteria
associated with these methods. The practical design of
the heuristics are essential to accuracy and computational
efficiency.
A second category of methods requires a phyloge-

netic hypotheses to be provided a priori. Methods in
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this category are typically used to address high-level
questions such as detecting gene flow (e.g., the D-
statistic [1] and its extensions [13]), inferring ancestral
population sizes and other population genetic quanti-
ties (e.g., the CoalHMM method [28] which utilizes
a hidden Markov model (HMM) to capture within-
genome sequence dependence), and detecting genomic
loci involved in gene flow (e.g., PhyloNet-HMM [29]). We
note that these inference problems are contained within
the general phylogenetic inference problem. Since the
primary focus of our study is the general phylogenetic net-
work inference problem rather than special cases thereof,
we do not consider these methods further.
Thanks to rapid advances in genome sequencing and

related biotechnologies [30], large-scale phylogenetic
studies involving many dozens of genomes or more are
now common (see [31] for a survey). These developments
pose two primary scalability challenges: (1) the number of
taxa in a study, and (2) sequence divergence, which reflects
the evolutionary divergence of the taxa in a study.
For the special case of phylogenetic tree inference from

phylogenomic data, recent studies have examined these
scalability challenges [17, 32, 33] (including evolution-
ary scenarios involving gene flow [34, 35]) and proposed
new methods for large-scale analysis [32, 36, 37]. In con-
trast, for the more general case of phylogenetic network
inference, the limits of scalability on inputs with more
than a few dozen taxa as well as performance at these
limits have yet to be established. What are the computa-
tional requirements of state-of-the-art methods, and what
is their accuracy on large-scale inputs with dozens of taxa
or more?
To resolve these open questions, we conducted a scala-

bility study of state-of-the-art phylogenetic network infer-
ence methods on both simulated and empirical datasets.
To our knowledge, our study is the first to address these
open questions. We chose representative methods from
the different categories discussed above: Neighbor-Net
and SplitsNet (from the category of concatenation meth-
ods), MP (from the category of parsimony-based multi-
locus inferencemethods),MLE andMLE-length (from the
category of probabilistic multi-locus inference methods
that use full likelihood calculations), and MPL and SNaQ
(from the category of probabilistic multi-locus inference
methods that use pseudo-likelihood approximations to
the full model likelihood). Following the practice of prior
simulation studies [14, 25], our performance comparison
focuses on the simpler case of search among phylogenetic
networks with the correct number of reticulations. The
more general case of search among network hypotheses
with differing numbers of reticulations necessitates the
use ofmodel selection techniques to balancemodel fit ver-
sus complexity, and is suspected to be more difficult for
this reason [14, 38]. Furthermore, our performance study

focuses on a constrained class of phylogenetic networks
with at most a single reticulation, which are a subset
of other widely studied classes of phylogenetic networks
(e.g., galled trees [39, 40]); the undirected version of a phy-
logenetic network with one reticulation (which is obtained
by ignoring edge directionality) is referred to as a unicyclic
network [41]. Our findings therefore provide a bound on
the performance of the methods in our study, since more
complex networks are anticipated to present even greater
scalability challenges [14]. Our performance study utilized
empirical data from past studies of natural mouse popula-
tions and synthetic data which were simulated to capture a
range of evolutionary scenarios involving a single reticula-
tion. The performance of the phylogenetic network infer-
ence methods on the empirical and synthetic data was
evaluated using three performance measures: (1) com-
putational time, (2) memory usage, and (3) topological
accuracy.

Methods
Simulation study
Generation of random model networks. The random
model networks used in our simulation study were gen-
erated by first sampling random model trees using r8s
version 1.7 [42]. The following script was used to simulate
random birth-death model trees for 5, 6, 7, 9, 10, 15, 20,
25, and 30 taxa:

begin rates;

simulate diversemodel=bdback seed=<integer

random seed> nreps=20 ntaxa=<5 or 6 or 7 or

9 or 10 or 15 or 20 or 25 or 30> T=0;

describe tree=0 plot=chrono_description;

end;

Using a custom script, the branches of each random
model tree were scaled to obtain height h. We examined
two different h settings: a height of 1 was used throughout
the study, except for experiments involving inferred gene
trees where a height of 5 was used. This range of heights
correspond to moderate to high levels of ILS based on the
classification scheme of Vachaspati and Warnow [43]. We
then added a single reticulation to each random model
tree using the following procedure: (1) choose a random
time unit tM such that 0.01 ≤ tM ≤ h

4 , and (2) add unidi-
rectional migration, with a rate of 5.0 between two taxa or
subpopulations such that migration occurs from tM−0.01
to tM + 0.01. A single outgroup was added for each model
network at coalescent time 1.5h.

Simulation of coalescent histories and gene trees. We
simulated 1000 gene trees for each random model net-
work using ms [45]. The following ms command was
used:
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ms <number of taxa> <number of gene trees>

-T -I <number of taxa> <n_1 n_2 ... n_k>

-ej <t_0> i j -em <t_1> i j 5.0 -em

<t_2> i j 0

The -T parameter outputs the gene trees that represent
the history of the sampled taxa. The -I parameter is fol-
lowed by k that represents the number of populations. The
list of integers (n1 n2 . . . nk) represents the number of
taxa sampled for each population. We sampled one taxon
per population. The -ej parameter specifies tomove all lin-
eages in population i to population j at time t0. The first
-em parameter sets migration at time t1 from population
j to population i to 5.0. The second -em parameter sets
migration at time t2 from population j to population i to
zero.

Simulation of sequence evolution. The gene trees out-
put by ms were used as input to seq-gen [46], a sequence
evolution program, which can simulate the evolution of
sequences according to a finite-sites model. For each local
genealogy simulated by ms, we simulated DNA sequence
evolution using the Jukes-Cantor mutation model [47].
The total length of the simulated sequences was 1000 kb
distributed equally across all the local genealogies (1000
bp per local genealogy). The following command was used
to simulate the evolution of sequences:

seq-gen -mHKY -l 1000 -s <0.02 or or 0.04

or 0.08 or 0.16 or 0.32 or 0.64>

< genetreefile > seqfile

The -mHKY parameter specifies the Jukes-Cantor
mutation model. The -s parameter specifies mutation rate
θ of 0.02, 0.04, 0.08, 0.16, 0.32, or 0.64. The -l parameter
specifies the length of a sequence in base pairs.

Replicates. Each model condition in our study consisted
of a distinct set of choices for the simulation parameters
listed above. For each model condition, the simulation
procedure was repeated to obtain twenty replicates.

Multi-locusmethods for phylogenetic network inference.
A single pipeline with two stages was used to infer a
species phylogeny. The first stage consists of obtaining
gene trees, where either true gene trees were used or
FastTree was used to infer gene trees using the sequence
alignments for the loci. The second stage uses the gene
trees from the first stage to infer a species phylogeny.
To obtain estimated gene trees in the first stage, Fast-

Tree [48, 49] under the Jukes-Cantor model was used
to infer the maximum-likelihood unrooted gene tree for
each sequence alignment generated by seq-gen. Using
a custom script, we converted the branch lengths from

expected number of substitutions to coalescent time using
equation (3.1) in [50]. We applied two techniques to
root the gene trees. The first technique (two-step root-
ing) involves rooting the gene trees based on an out-
group using PAUP* [51]. Each unrooted gene tree was
used as a backbone and the outgroup was added to
root each gene tree under the maximum-likelihood cri-
terion. After rooting each inferred gene tree, the out-
group taxon and its pendant edge were pruned. The
second technique (one-step rooting) involves including
the outgroup in the local gene tree inference using Fast-
Tree, and then rooting the maximum-likelihood unrooted
gene tree generated by FastTree using the outgroup.
The outgroup taxon and its pendant edge are then
dropped.
In the second stage, the gene trees from the first stage

were used as input to the following phylogenomic infer-
ence methods: MLE-length, MLE, MPL, MP, and SNaQ.
MLE-length, MLE,MPL, andMP are implemented as part
of the PhyloNet package [22]. The following is a sample
NEXUS script file that was used to execute the PhyloNet
commands:

#NEXUS

BEGIN TREES;

TREE gt1 = gene tree 1 in Newick format

TREE gt2 = gene tree 2 in Newick format

...

...

...

TREE gt1000 = gene tree 1000 in Newick

format

END;

BEGIN PHYLONET;

InferNetwork_ML (all) 1 -bl;

InferNetwork_ML (all) 1;

InferNetwork_MPL (all) 1;

InferNetwork_MP (all) 1;

END;

The commands located in the TREES block contain
the gene trees. The commands located in the PHYLONET

block contain the inference methods and parameters used
to infer a species network. The InferNetwork_ML com-
mand infers a species network with one reticulation node
using maximum likelihood. The -bl parameter specifies
the use of branch lengths of gene trees in the infer-
ence. In the absence of -bl, only the topologies of gene
trees are used in the inference. The InferNetwork_MPL
command infers a species network with one reticulation
node using maximum pseudo-likelihood. The InferNet-
work_MP command infers a species network with one
reticulation node using a parsimony-based method under
the MDC criterion.
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The following is a sample script used to execute the
SNaQ commands:
d=readTrees2CF(<gene trees filename>);

T=readTopology(<starting topology

filename>);

snaq!(T, d, hmax=1, <output filename>,

outgroup=<outgroup name>);

The gene trees are summarized as quartet concordance
factors using the readTrees2CF function. The readTopol-
ogy reads the tree used as a starting point for the search.
The starting tree was estimated using the MDC crite-
rion. The snaq! command estimates a network using the
input quartet concordance factors T and starting from
tree d. hmax specifies the number of reticulation nodes.
outgroup specifies the outgroup taxon used to root the
inferred network.

Concatenation methods for phylogenetic network
inference. For the concatenation analyses, we inferred
species networks using two distance-based methods
implemented in the phangorn software package [52]:
(1) Neighbor-Net [11], a clustering method that extends
the neighbor-joining algorithm, and (2) the least squares
method of Schliep [12]. Throughout this manuscript, we
refer to the latter as SplitsNet. The LogDet distance [53]
was used to calculate a distance matrix for use as input to
the distance-based concatenation methods.

Performance measures. We evaluated the inference
methods based upon their topological accuracy and com-
putational requirements. Topological accuracy was eval-
uated by comparing the inferred phylogeny to the model
phylogeny using the tripartition distance metric [54],
which finds the proportion of tripartitions that are not
shared between the model and inferred networks. We
compare trees using the normalized Robinson-Foulds
(RF) distance [55]. The RF distance counts the number
of false positive bipartitions (bipartitions found in the
inferred network but not the model network) and false
negative bipartitions (bipartitions found in the model net-
work but not the inferred network). Finally, we used the
splits distance, which measures the proportion of biparti-
tions found in the trees encoded by the inferred species
network but not in the trees encoded by the true species
network and vice versa. The second evaluation criterion
used was the computational requirements of the inference
methods, which was measured in terms of CPU runtime
and memory usage. Each analysis was run on a 2.5 GHz
Intel Xeon E5-2670v2 processor with 128 GiB of main
memory.

Empirical study
We used genomic sequence data sampled from natural
mouse populations. A recent study has highlighted his-
torical gene flow between some of the populations in our
study [3]. The samples were collected in previous studies
[3, 56–60]. The collected sample information contained
100 haploid mouse genomes that are either wild or wild-
derived samples. The procedure that was used to generate
the sequence data is described in the study of Liu et al.
[3]. The sequences were filtered to 414,376 SNPs that were
genotyped across all samples.
Datasets were constructed from the empirical samples

using the following sampling procedure. For each dataset,
we randomly selected one sample from each of the follow-
ing mouse species or subspecies: Mus musculus domes-
ticus, M. musculus musculus, M. musculus castaneus, M.
spretus,M. spicilegus, andM. macedonicus. The sampling
was repeated twenty times to obtain twenty datasets.
We estimated recombination-free intervals for use

as the input loci to the phylogenetic network infer-
ence methods. This required inferring recombination
breakpoints. We obtained breakpoints using RecHMM,
a hidden Markov model-based method [61], resulting
in 3013 recombination-free genomic regions. For each
recombination-free genomic region, FastTree was used to
infer a gene tree withmaximum likelihood under the Gen-
eralized Time-Reversible model [62], resulting in 3013
gene trees. We used rat (the rn5 assembly downloaded
from the UCSC Genome Browser [63]) as an outgroup to
root each gene tree generated by FastTree.
MLE-length, MP, and SNaQ were used to infer species

networks with zero or one reticulation nodes. For inferred
networks with zero reticulation nodes, we measured the
topological distance between inferred trees using the
Robinson-Foulds distance. For inferred networks with one
reticulation node, the tripartition distance was used to
compute the topological distance between inferred net-
works. We further compared the reticulations inferred by
the inference methods to previous studies which detected
two cases of gene flow: one among the M. musculus sub-
species [56], and the other between M. musculus domes-
ticus andM. spretus [3]. Inference accuracy was evaluated
by computing the proportion of replicates for which the
inferred phylogeny was consistent with either of the two
known instances of gene flow. Finally, we compared the
inferred networks to the consensus Mus phylogeny pro-
posed by Guénet and Bonhomme [64]. Dendroscope [44]
was used to visualize the empirical phylogenies.

Results
Performance evaluation on simulated datasets
Runtime andmemory usage. We began by assessing the
effect of dataset size on computational time and memory
requirements. Figure 1 shows results for the multi-locus
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a

b

Fig. 1 The impact of dataset size on the computational requirements of multi-locus methods. The model conditions had dataset sizes ranging from
5 to 25 taxa. Results are shown for MLE, MLE-length, MPL, MP, and SNaQ analyses using true gene trees as input. a Average runtime (h) and bmain
memory usage (GiB) are shown with standard error bars (n = 20). The analysis of MLE on 15 taxa, MLE-length on 25 taxa, and MPL on 25 taxa did not
complete after ten days of runtime

methods, which were the most accurate methods in our
study (see Additional file 1: Figure S1 for comparisons of
the multi-locus methods and the concatenationmethods).
For all methods except MP, runtime became imprac-

tical on datasets with more than a few dozen taxa. Of
the full likelihood methods, MLE-length was consistently
faster than MLE; the comparison of pseudo-likelihood-
based methods revealed that SNaQ was consistently
faster than MPL. Overall, we found that SNaQ was
the fastest probabilistic multi-locus method. Given a
maximum runtime of ten days, the fastest full likeli-
hood method (MLE-length) and pseudo-likelihood-based
method (SNaQ) were able to analyze datasets with 20 and
25 taxa, respectively. However, MLE-length and SNaQ
required more than ten days of runtime on datasets with
25 and 30 taxa, respectively. The other multi-locus meth-
ods were slower: after ten days of runtime, MLE did

not complete analyses of datasets with 15 taxa and MPL
analyses did not complete on datasets with 25 taxa. We
also attempted analyses of datasets with 40, 50 and 100
taxa; none of these analyses (MLE,MLE-length, MPL, and
SNaQ) had finished after ten days of runtime and, in fact,
are still running as of this writing after several months
of CPU runtime. For the dataset sizes shown in Fig. 1(a),
the full likelihood methods (MLE and MLE-length) had
runtime and memory usage that were strictly greater than
the pseudo-likelihood-based methods (MPL and SNaQ).
For all methods exceptMP, runtime grew super-linearly as
dataset size increased. The observed growth in runtime is
similar to previous performance studies [25, 65, 66], which
suggest an increase in runtime as sampled dataset sizes
grow.
Relative to runtime performance, the main memory

requirements of the different methods contrasted to a
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greater degree. On datasets withmore than seven taxa, the
full likelihood methods exhibited a super-linear growth in
main memory usage, similar to its performance in terms
of runtime (panel b in Fig. 1). The full likelihood meth-
ods’ main memory requirements are projected to become
prohibitive on datasets with more than a few dozen taxa.
MLE-length generally had lower memory requirements
than MLE. In contrast, MP, MPL, and SNaQ had mem-
ory usage that was largely constant at around a few GiB
on datasets with up to 25 taxa. MP and MPL had mem-
ory usage below 5 GiB on datasets with up to 20 taxa.
SNaQ’s memory usage was flat at around 1 GiB as dataset
size increased from 5 to 20 taxa, and increased by just
a few GiB as dataset size increased from 20 to 25 taxa.
Overall, SNaQ’s memory usage was the smallest among all
multi-locus methods across all of the dataset sizes in our
study.

Topological accuracy. We next examined the topolog-
ical accuracy of the inference methods as dataset scale
grew in two ways: the number of taxa and sequence
divergence. We evaluated the topological accuracy of the
inferred phylogenetic networks using tripartition distance
[67] (see “Methods”).
On sufficiently small datasets where analyses termi-

nated, the probabilistic multi-locus methods returned
improved topological accuracy compared to the
parsimony-based multi-locus method (Fig. 2). Further-
more, the full likelihood methods (MLE-length and MLE)
were more accurate than the pseudo-likelihood-based
methods. Thus, the methods fell into four categories

based upon topological accuracy. Across all model con-
ditions, (1) MLE-length was the most accurate, (2) MLE
was the second most accurate, (3) SNaQ and MPL were
the third most accurate, and (3) MP was the least accurate
method. Note that, for each replicate, the same set of
gene trees was provided to each multi-locus method as
input.
Overall, topological accuracy degraded as the number

of taxa increased (Fig. 2 and Additional file 1: Figures S2
and S3). The accuracy of each method was generally
smallest on the largest datasets in our study. Three excep-
tions to this observation were noted: (1) MP was con-
sistently less accurate than the other methods but oth-
erwise did not show a clear trend of change as dataset
size increased, (2) MLE, MLE-length, MPL, and SNaQ’s
topological accuracy decreased as dataset size increased
from 6 to 7 taxa, and (3) SNaQ’s topological accu-
racy decreased as dataset size increased from 20 to
25 taxa.
We further examined the topological accuracy of

the most accurate multi-locus inference method (MLE-
length) as sequence divergence grew. We observed
that the topological accuracy of MLE-length generally
degraded as sequence divergence increased due to larger
mutation rate θ (Fig. 3), with the exception of a rel-
atively small improvement in accuracy as θ increased
from 0.02 to 0.04. Compared to the rest of our simula-
tion study, the seven-taxon model condition with muta-
tion rate θ = 0.64 was unique because it returned
the highest topological error observed in our simulation
study.

Fig. 2 The impact of dataset size on the topological accuracy of multi-locus methods. The model conditions had dataset sizes ranging from 5 to 25
taxa. Results are shown for MP, MLE, MLE-length, MPL, and SNaQ using true gene trees as input. The tripartition distance between an inferred
network and the model network was used to measure topological accuracy. Average distance and standard error bars are shown (n = 20)
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Fig. 3 The impact of mutation rate on the topological accuracy of
MLE-length. We assessed the performance of MLE-length to
characterize the accuracy of multi-locus inference methods since
MLE-length was generally more accurate than MLE, SNaQ, MPL, and
MP (Fig. 2). The seven-taxon model conditions had mutation rate θ

ranging from 0.02 to 0.64. The tripartition distance between an
inferred network and the model network was used to measure
topological accuracy. Average distance and standard error bars are
shown (n = 20)

Performance evaluation on empirical datasets
Our performance study utilized empirical samples from
natural populations ofMusmusculus subspecies and sister
species (M. spretus, M. spicilegus, and M. macedonicus).
Prior studies detected gene flow between theM.musculus
subspecies [56] and betweenM. musculus domesticus and
M. spretus [58, 68]. We focused our comparison on the
most accurate methods from each category of multi-locus
methods: MLE-length from the full likelihood methods,
SNaQ from the pseudo-likelihood-based methods, and
MP. We omitted the concatenation methods from our
comparison since they were among the least accurate of
all methods in our simulation study (see Additional file 1:
Figure S1).
At a coarse level, probabilistic inference using MLE-

length was able to accurately detect gene flow in the
empirical datasets. Specifically, the model selection cri-
terion used by MLE-length consistently chose solutions
with gene flow (i.e., phylogenetic networks with one retic-
ulation node) as opposed to solutions without gene flow
(i.e., phylogenetic trees).
As shown in Table 1, all of the methods inferred an

identical species tree topology when constrained to infer
a solution involving zero reticulations. For the inferred
phylogenetic networks, greater topological similarity was

Table 1 Topological distances between inferred phylogenies in
the empirical study

Average (SE) topological distance between inferred phylogenetic
networks

MLE-length MP SNaQ

MLE-length .11 (.02) .42 (.06) .44 (.04)

MP .36 (.03) .52 (.05)

SNaQ .23 (.02)

Phylogenies were inferred using a representative method from each category of
multi-locus methods: MLE-length (a full likelihood probabilistic method), MP (a
parsimony-based method), and SNaQ (a pseudo-likelihood-based probabilistic
method). The normalized tripartition distance between solutions that included
gene flow (i.e., phylogenetic networks with one reticulation) is shown as an average
(standard error) across replicates (n = 20). When constrained to infer a phylogenetic
tree rather than a phylogenetic network, all methods inferred an identical species
tree across all replicates. Each replicate dataset consists of randomly selecting a
sample from the following mouse species and subspecies:Musmusculus domesticus,
M.musculus musculus,M.musculus castaneus,M. spretus,M. spicilegus, andM.
macedonicus

observed among phylogenies inferred using the same
method as opposed to phylogenies inferred using differ-
ent methods. Furthermore, greater topological agreement
was observed when solutions were constrained to have no
gene flow, as opposed to solutions involving gene flow.
Based on intra-method comparison of inferred networks,
the greatest topological agreement was observed among
MLE-length, followed by SNaQ, and then MP. Topologi-
cal comparison of the different methods (i.e., MLE-length
compared to MP, MLE-length compared to SNaQ, and
MP compared to SNaQ) yielded topological distances
which were the highest observed in our empirical study,
and comparable disagreement was observed between the
different pairs of methods as measured by average topo-
logical distance.
We further evaluated whether the methods detected

known instances of interspecific and intersubspecific gene
flow: the former involving gene flow between M. muscu-
lus domesticus andM. spretus and the latter involving gene
flow between theM.musculus subspecies. MP, SNaQ, and
MLE-length inferred a phylogenetic network consistent
with gene flow between M. musculus domesticus and M.
spretus in 12, 0, and 15 replicates, respectively (out of
20 replicates in total); the three methods inferred a net-
work consistent with intersubspecific gene flow among
the M. musculus subspecies in 0, 17, and 3 replicates,
respectively.
We also compared the phylogenetic networks inferred

by MLE-length, SNaQ, and MP to a consensus Mus
species tree obtained from prior literature studies [64].
(The consensus tree is visualized in Additional file 1:
Figure S5.) The bipartitions in the consensus tree were
consistently inferred by the different methods. Compared
to MP, the probabilistic multi-locus methods more fre-
quently inferred reticulations that were consistent with
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known interspecific/intersubspecific gene flow; however,
the methods largely disagreed on the exact location of
reticulation within the phylogeny.

Discussion
The probabilistic multi-locus methods were the most
accurate methods in our study, but they were also among
the most computationally intensive methods in terms of
runtime. SNaQ was the fastest probabilistic multi-locus
method in our study, but was not generally more accurate
than the full likelihood methods; our findings are consis-
tent with the observations of Solís-Lemus and Ané [25].
However, given ten days of runtime, none of these meth-
ods completed analyses of datasets with more than two
dozen taxa. Our finding resolves an open question in
the literature: can state-of-the-art phylogenetic network
inference methods scale to dataset sizes typically seen
in today’s phylogenomic studies? Our study has shown
that the answer is no, despite the methodological trade-
offs made by some of the methods. For example, the
pseudo-likelihood-based methods use an approximation
to full likelihood calculations under the coalescent model
to improve scalability. Based on the discussion in the study
of Solís-Lemus andAné [25], we expected that the tradeoff
would yield at least several factors of runtime improve-
ment compared to full likelihood methods, at the cost of
reduced topological accuracy. Instead, the tradeoff only
scaled up analyses of around 20 to 25 taxa. On datasets
with more than 30 taxa, the computational requirements
of the probabilistic multi-locus methods are projected to
be nearing the limits of the most powerful computational
clusters available to us. This dataset size is the largest
in our study and yet is not considered large in the con-
text of today’s phylogenomic studies. We expect that, like
the full likelihood method, the pseudo-likelihood-based
methods’ memory requirements will grow super-linearly
as dataset sizes increase past an inflection point. Find-
ing the inflection point will require additional experi-
ments using dataset sizes larger than those explored in
our study.
Our study generally shows that the performance com-

parison between the different classes of methods holds as
dataset size and divergence increases, and further quan-
tifies the impact upon topological accuracy. Increasing
either of the two dimensions of scale – the number of taxa
and sequence divergence – generally reduced the topo-
logical accuracy of each method. Both observations are
consistent with related studies of phylogenetic tree infer-
ence in the presence of gene flow [34, 35]; the studies also
suggest other factors impacting scalability (e.g., number
of loci). The heuristic approaches necessary for analy-
sis of NP-hard optimization problems contribute to the
methods’ scalability; practical issues such as local optima
in the search space can pose major challenges to the

performance of these heuristics. We observed a U-shaped
trend where topological accuracy improved slightly as the
mutation rate θ increased from 0.02 to 0.04, and accuracy
rapidly degraded as the mutation rate increased past 0.04.
The trend is likely due to two factors. First, we conjec-
ture that the model condition with the smallest mutation
rate in our study had relatively low sequence variation
and therefore offered little phylogenetic signal. Second,
increased sequence divergence due to increasingmutation
rates reduced the accuracy of inferred gene trees, which
is consistent with theoretical expectations and empirical
observations about long branch attraction in other phylo-
genetic studies [69]. The inferred gene tree error observed
in our study (Additional file 1: Table S2) was comparable
to that of other performance studies [70, 71], ranging from
0.38 to 0.80 as θ grew from 0.02 to 0.64 for the seven taxon
model.
Our study included probabilistic multi-locus methods

that either accounted for or ignored branch length infor-
mation in input gene trees. In particular, MLE-length
and MLE were identical methods with one major excep-
tion: the former calculated model likelihood using gene
tree topologies and branch lengths [27], whereas the lat-
ter substituted the approach of Degnan and Salter [23]
which calculates model likelihood using only gene tree
topologies. We found that MLE-length returned greater
topological accuracy than MLE, which is consistent with
the prevailing opinion that models incorporating branch
length information will be generally more accurate than
inference under related models that ignore branch length
information [27] (although see the review of Nakhleh
[10] for an opposing viewpoint). The pseudo-likelihood-
based methods (MPL and SNaQ) were less accurate
than the full likelihood methods. This is expected as
pseudo-likelihood-basedmethods were designed to trade-
off inference accuracy for computational efficiency. Con-
sistent with other performance studies examining the
related problem of scalable phylogenetic tree estimation
[17, 69, 72], the parsimony-based multi-locus method
were not as accurate as the most accurate probabilis-
tic multi-locus method. The topological accuracy of MP
improved somewhat as dataset size increased from 5 to 25
taxa. We attribute this finding to long branch attraction,
where increasing numbers of taxa and constant model
phylogeny height resulted in denser taxon sampling. The
impact of long branches on parsimony-based phyloge-
netic inference is well understood [72], and may cause
it to be more vulnerable to long branch attraction issues
compared to the other probabilistic methods in our study.
We also compared the most accurate multi-locus infer-
encemethod (MLE-length) to two concatenationmethods
(SplitsNet and Neighbor-Net). The concatenation meth-
ods were less accurate than MLE-length as dataset size
increased from 5 to 10 taxa. These results are supported
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by other performance studies focusing on the problem of
phylogenetic tree estimation [17].
Using an information theoretic approach for model

selection, MLE-length consistently inferred historical
gene flow between the sampled mouse populations in
our study, which is consistent with prior studies [56, 68].
MLE-length was the most accurate method in terms of
detecting gene flow supported by literature evidence. Sim-
ilarly, MLE-length was the only tested inference method
that detected the two gene flow events supported by
the literature (i.e. gene flow between the M. musculus
subspecies and between M. musculus domesticus and M.
spretus). SNaQwas the secondmost accuratemethod, and
detected gene flow among the M. musculus subspecies
but not between M. musculus domesticus and M. spretus.
MP was least accurate and detected gene flow betweenM.
musculus domesticus andM. spretus but not among theM.
musculus subspecies. These findings support the observa-
tions in our simulation study, where full likelihood-based
methods returned improved accuracy compared with
pseudo-likelihood-based and parsimony-based methods.
For inferred networks, none of the methods were robust
to the choice of sampled taxa. This suggests low sup-
port which could be due to several causes, including the
impact of dataset size and sequence divergence on infer-
ence error (consistent with the simulation study) and/or a
soft polytomy due to a short branch involving M. muscu-
lus subspecies (consistent with the consensus phylogeny
proposed by Guénet and Bonhomme [64]). Furthermore,
except for MP, the topological distances observed in the
empirical study were larger than the topological errors
observed in comparable datasets from our simulation
study. Even assuming that a species phylogeny inferred on
one of the replicates was correct (or close to correct), the
topological distances between inferred phylogenies imply
that inferences on many of the other replicates would
have error comparable to or greater than those observed
in the simulation study. One contributing factor is that
the empirical datasets may pose a more difficult inference
problem since they reflect a broader array of evolutionary
processes than those involved in the simulation study. For
example, positive selection and recombination have been
shown to play significant roles in the evolution of the nat-
ural house mouse populations that were sampled in our
study [56, 58, 68].

Conclusions
In this study, we have evaluated the scalability of state-
of-the-art methods for inferring phylogenetic networks
from multi-locus sequences that evolved under genetic
drift/ILS, gene flow, and point mutations, where much
of the difficulty of this inference problem is due to the
complex interplay of all three evolutionary processes.
(The absence of drift and ILS would imply that a unique

solution can be found in a straightforward manner for
the model phylogenies considered in our study). We
quantified the performance of the methods in terms of
computational runtime, main memory usage, and topo-
logical accuracy on datasets that varied along two separate
dimensions of scale: the number of taxa and sequence
divergence.
The methods in our study face tremendous scalability

challenges on datasets that are well within the scope of
today’s phylogenomic studies. In terms of accuracy, the
probabilisticmulti-locusmethods outperformed the other
methods, which is consistent with the state of the art
of phylogenetic tree inference. For this reason, we gen-
erally recommend using the former – particularly MLE
or MLE-length, a full likelihood-based approach – rather
than the latter. The latter included concatenationmethods
– the predominant approach used in today’s phyloge-
nomic studies.More taxa and greater sequence divergence
degraded the topological accuracy of all methods. While
the probabilistic multi-locus methods retained a perfor-
mance advantage in terms of topological accuracy, their
computational requirements were excessive. On datasets
with fewer than 25 taxa, the pseudo-likelihood-based
multi-locus method (SNaQ) generally completed analy-
sis within a day using around a few GiB of main memory
or less; the full likelihood multi-locus method (MLE-
length) was able to analyze datasets with around 15 taxa
within a day and required around 10 GiB of main mem-
ory; the full likelihood multi-locus method (MLE) was
able to analyze datasets with around 7 taxa within a day
and required around 10 GiB of main memory. The com-
putational requirements of the probabilistic multi-locus
methods grew rapidly as the number of taxa increased
and became prohibitive on datasets with more than 30
taxa. We note that, in a sense, the two dimensions of
scale act in opposition: increasing taxon sampling can
help reduce individual branch lengths and mitigate the
negative effect of long branch attraction on inference
accuracy, but comes at the cost of increasing the num-
ber of taxa which increases runtime requirements and can
also increase inference error as well.
We highlight several aspects of our study for future

work. Most importantly, our study has highlighted the
clear need for new phylogenetic inference methods that
can cope with the scale of current phylogenomic stud-
ies, involving as many as hundreds of genomes; the near
future will bring studies that are orders of magnitude
larger. We anticipate that our study foreshadows new
methodological development on the topic of large-scale
phylogenetic network inference. An expanded empirical
study with larger datasets will be possible as future stud-
ies follow up on initial reports of gene flow among natural
populations (particularly involving different species) and
perform additional sequencing. Finally, we propose that
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the dichotomy between the different categories of meth-
ods in our study represents an algorithmic engineering
opportunity. By synthesizing these approaches, advan-
tages in one category of methods can help offset disadvan-
tages in the other.

Additional file

Additional file 1: Appendix with Supplementary Material. Appendix,
including text, tables, and figures for supplementary experiments.
(PDF 292 kb)
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