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1 Introduction: the existence of states in a landscape

The evidence for the existence of a landscape of vacua in theories (the theory?) of quantum

gravity can at best be described as limited. First there is the phenomenological fact of the

peculiar value of the cosmological constant. Second, there is the observation [1, 2] that it is

possible to turn on large numbers of fluxes in some string compactifications, and these can

take rather large values. For a typical choice of fluxes, however, systematic study is not

possible, so one can’t reliably determine whether or not there exist stable or metastable

states and their properties.

In practice, most state counting is based on examining a potential for fields computed in

a (not necessarily valid) semiclassical approximation, and counting stationary points. Apart

from the question of whether any systematic approximation is available for the analysis,

Banks has argued [3] that this analysis does not make sense in a quantum theory of gravity.

Without confronting such difficult issues, the minimal questions one might ask about this

procedure are: what fraction of these points are local minima of the potential, and of these,

what fraction are sufficiently metastable to be compatible with a universe like ours. The

most interesting result which might emerge from such studies is the existence of special

classes of solutions which exhibit larger fractions of (suitably metastable) “vacuum states”.

For the first question, suppose the would-be state in question contains N scalar fields.

We require that the N eigenvalues of the mass-squared matrix are positive. One’s naive

guess is that, without supersymmetry or some dynamical considerations, all eigenvalues

are positive (1/2)N of the time. In ref. [4], however, modeling a landscape with a plausible

random matrix model, it was shown that the suppression might be significantly more severe

— as e−c N2
, with c an order one constant. One might hope that supersymmetry would lead

to stability, since in general, in flat space with exact supersymmetry, all scalar masses are

positive. It is argued in [4] and [5], however, that there is still an exponential suppression

with N in this case. We will comment on this issue later in this paper, expressing some

skepticism but leaving the question for future research.
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Refs. [6, 7] raised the question of quantum stability in a flux landscape. With rare

exceptions, a classically stable state of small c.c. would be surrounded by many others of

large, negative c.c. (other issues in landscape tunneling have been discussed in [8, 9]). It

was argued that in a flux landscape, the bounce actions would generally be small, scaling

as an inverse power of the typical flux, so there would be many decay channels with

unsuppressed amplitudes. These authors asked what might account for a small tunneling

amplitude to every nearby state, and argued that supersymmetry broken at a scale well

below the fundamental scale was the most promising possibility.

The authors of [10] put forward a field theory model in which to address the question

of quantum metastability (an interesting alternative model has been discussed, from a

somewhat different viewpoint, in [11]). The model contains N scalar fields. The authors

assume the existence of a classical local minimum, and expand the potential in a power

series about that point, choosing the coefficients at random. The authors performed a

numerical simulation, obtaining scaling laws for minimal barrier heights, distances in field

space to the barrier, and bounce actions. Their results indeed indicate that long-lived

states are likely to be extremely rare in such a landscape. The authors presented results on

statistics of distances to nearby saddle points and their heights. In this note, we provide a

simple explanation of the results obtained for these features of the potential. In particular,

within the model, we argue that tunnelings in the direction of the smallest mass provide

an upper bound on the barrier height and the distance. With a slight modification of the

model, they permit a precise computation of the median values of these quatities. The

authors of [10] employed a proxy for the tunneling amplitude in terms of the distances and

heights, which lead to a particular scaling law for the tunneling amplitude. Our analysis

allows a more direct computation, and leads to a different scaling law.

This understanding of the model, we will see, yields a close relation between the issues

raised in ref. [4] of classical stability and the problem of quantum metastability. In a

landscape model where one studies stationary points of some potential, the question of

metastability is that of the likelihood that the masses-squared of all scalars are positive.

For quantum metastability, the requirement, as we will see, is (roughly) that all masses be

larger than some number. Depending on the nature of the landscape and its potential, this

can provide either modest or substantial further suppression of the number of states.

In the next section, we will present the model of [10], and derive the scaling laws

for mean lowest barrier heights and distance to the barrier with N . We will see that

tunneling is typically dominated by the lightest scalars, and as a result the tunneling

amplitude is controlled by the mass and self-couplings of these scalars. This permits,

in a semiclassical limit, a calculation of the tunneling amplitude. As we explain, if the

semiclassical analysis is not valid, then one expects that tunneling is unacceptably rapid.

We are able to provide the scaling of the lowest bounce action with N . In section 3, we

discuss extending models like that of [4] to determine what fraction of stationary points in

a model landscape will exhibit quantum metastability. We will see that, depending on the

nature of the underlying landscape, the additional suppression can be comparable to, or

more modest than, the requirements of classical metastability. In section 4, we conclude

with a discussion of implications of these results. We recall the analysis which indicates
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that states with some degree of supersymmetry exhibit quantum metastability. We explain

that, while these results do not rule out the possibility of non-supersymmetric states in

a landscape, they do suggest that supersymmetry might be more generic than naively

expected. We note that, even if supersymmetric states predominate, these arguments by

themselves do not necessarily suggest that supersymmetry is broken at a low energy (TeV

or multi TeV) scale; merely that it should be broken at scales well below the Planck scale

or other relevant fundamental scales. In an appendix, we explain the probability analysis.

2 A model landscape

The authors of ref. [10] put forth a simple model for a landscape: a theory with N scalar

fields, φi, interacting through a potential V (φi). They imagine that they are studying a

particular stationary point of the potential, defined to be φi = 0, which is classically stable.

They expand the potential about that point, keeping cubic and quartic terms:

V =





∑

i

µ2
iφ

2
i +

∑

ijk

γijkφiφjφk +
∑

ijkl

λijklφiφjφkφℓ



 (2.1)

Our notation differs somewhat from that of [10] but the content is the same. The param-

eters µ2
i , γijk and λijkl are taken to be random variables, with ranges, following [10]:

0 < µ2
i < M2; −M < γijk < M ; − 1 < λijk < 1. (2.2)

M is some fixed mass which will scale out of our problem. It is easy to modify the results

we obtain below at large N for different ranges of the parameters.1 Note that the vacua

are assumed classically metastable.

The question which interests us is what fraction of vacua are significantly metastable.

Assuming the validity of a semiclassical analysis, this is the question: what fraction of

states have bounce action for all possible bounce solutions greater than some fixed, large

number B0? This assumption is self consistent. If all tunneling amplitudes are small, all

bounce actions are large, justifying the semiclassical analysis. Following [10], we will ignore

gravitational effects, commenting on them in the concluding section.

In [10], computer simulations of this problem were reported. The authors searched for

stationary points of the action, looking for nearby critical points with low barriers. They

then applied a crude model for the bounce action. They were able to perform their analysis

for as many as 10 fields. They found:

1. The distance to the nearest stationary point behaves as

φtop ≈ 0.5N−1.15 : (2.3)

2. The height of the lowest stationary point behaves as:

Vtop ≈ 0.2N−3.16 (2.4)
1The authors of [10] also introduced a parameter λ multiplying the potential. By rescaling the parame-

ters, this can be absorbed into the ranges of µ2
i , γijk, etc.
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3. The lowest bounce action scales as:

B ≈ N−2.7. (2.5)

These scalings are similar for both cubic and quartic potentials.

In [12], it was noted that some aspects of these results could be understood with certain

assumptions about the distributions of quartic couplings. Here we point out that the first

two of these results can be understood by simple statistical reasoning. This analysis leads

to a quite different scaling of the overall bounce action than found in [10].

What is striking about the results above is the rapid decrease with N , and the similar

behavior for cubic and quartic potentials. One might hope to provide a simple explanation

of these scalings. To this end, we consider first straight line trajectories in the field space. In

some directions the potential will grow indefinitely; these are not interesting for tunneling.

In others, the potential will turn over, becoming negative for a while or indefinitely. One

possible explanation for the scaling with N would be rapid growth of the effective cubic

and quartic couplings for large N . Ref. [12, 13] noted that if the quartic couplings grew like

N2 and the cubic like N3/2, one could account for these scaling laws. But simply thinking

in terms of random walks such growth is hard to explain.

But there is a simpler explanation, which immediately provides bounds on these quan-

tities compatible with the observed numerical results. For large N , one has some small

masses, µ2
i of order 1/N . Let’s proceed first under the assumption that the smallest bounce

action (and lowest barrier and shortest distance to tunnel) are obtained in one of these

directions. Call i = 1 the direction with smallest µ2. Let’s assume, first, that the lowest

bounce action is obtained by a straight line trajectory in the 1 direction. The important

cubic and quartic couplings are then γ111 ≡ γ, λ1111 ≡ λ and these will typically be of

order 1. In this case, the cubic term dominates, and

φtop =
2

3

µ2

γ
Vtop = − 4

27

(

µ6

γ2

)

, (2.6)

with corrections of order 1/N .

Even with our assumption of straight line trajectories along particular mass eigenstates,

the assumption that the lightest scalar dominates is not exactly correct. The cubic and

quartic couplings, in particular, can fluctuate downward, in which case one of the larger

masses may dominate. A more careful analysis gives, for the median values of φtop, for

large N :

φtop = .924 N−1 (2.7)

and

Vtop = 0.284N−3. (2.8)

This is compatible with the results of [10], up to corrections of order 1/N . These authors

worked to N = 10.

Our real interest is in the scaling of the tunneling amplitude. Here ref. [10] makes a

crude approximation. In a manner reminiscent of the thin-wall approximation, the authors
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take the bounce action to be

B =
π2

2
σR3 (2.9)

where σ is essentially a one dimensional bounce action and R is the bubble radius, both

estimated by considering straight line paths to the nearest saddle point of the potential.

Given the N scaling of the barrier height and width,

σ ∝
∫

dφ
√
V ∼ N−5/2 (2.10)

roughly as they find.

However, knowing that the tunneling trajectories are dominated by small µ2, we can

do a more systematic calculation of the large N tunneling behavior. Given the domination

by the cubic term, we are interested in tunneling in a potential of the form

V = µ2φ2 − γφ3 (2.11)

Simple scaling arguments give

φ(r) =
µ2

γ
φ0(rµ), (2.12)

where φ0 is the bounce for the potential V = φ2 − φ3, and the bounce action scales as

µ2/γ2. Sarid [14] has studied this problem numerically, obtaining

B = 2.376× 2π2µ
2

γ2
. (2.13)

One sees immediately that, for large N , the lowest bounce action typically behaves as

π2/N . More careful analysis gives, for the median bounce action at large N :

Bmed =
97.5

N
(2.14)

So if N = 100, for example, the exponential of the typical bounce action is not large.

Note that if we allow the ranges of parameters to be:

µ2
i < a1M

2; |γijk| < a2 M |λijkl| < a3 (2.15)

and, as in [10] we include an overall factor of λ in the potential, B, our expression for the

median bounce action becomes

Bmed =
a1
λa22

97.5

N
. (2.16)

We are actually interested in the probability that the lowest action satisfies, say

B > B0 (2.17)

for some constant B0. For actions of the form (2.13), the probability distribution will

be (A.4):

P (B > B0) = P (w > w0) =















w0 < 1
(

1− w0
3

)N

w0 > 1
(

2
3
√
w0

)N
(2.18)
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where B ≡ 2.376×2π2w. Requiring that the B0 give a lifetime for the most rapid tunneling

process longer than the age of the universe gives w0 > 5.7. To get some feeling for numbers,

taking N = 100, this is a suppression of order 10−56.

We need, however, to reexamine our assumption that the straight line trajectory de-

fined by a scalar field of definite mass yields the bounce with the lowest action. Quite

generally, we expect to be able to lower the bounce action, at least slightly, by simply con-

sidering straight line trajectories in slightly different directions in the field space, and by

studying paths which are not straight lines. But the real worry is that there are directions

which effectively have large γ. If we consider a field direction, Φ, with

φi = aiΦ+ . . .
∑

a2i = 1 (2.19)

then in this direction, the quadratic and cubic couplings are

µ2 = µ2
i a

2
i ; Γ = γijkaiajak. (2.20)

If the typical (median) maximum Γ grows with N as Np, then, given that the typical µ2

will be of order 1/2, the distance to the nearest minimum will behave as N−p, and the

barrier height will behave as N−2p. The bounce action will behave as N−2p. So if p = 1/2,

this direction will be competitive with the direction of the smallest mass. If p > 1/2, it

will dominate.

To assess this, we have studied numerically the value of the maximum Γ for randomly

chosen γijk for N as large as 40. We find no evidence for growth of the (median) maximum

Γ with N , much less the growth required for this to provide the dominant trajectory. At the

same time, for modestN , this direction is competitive with the smallest mass direction. For

the full range of N , we find that the median Γ is 2.2, so µ2/Γ2 ≈ 0.1. This should be com-

pared to 2/N from the small mass directions. So small mass “wins” only for N > 20 or so.

But a realistic landscape, if such exists, might not resemble the model of [10]. In

particular, there might be correlations among various couplings, and one might expect

that there would be some sort of locality in the space of field (indices). So, for example,

one might guess that

γijk =
aijk

1 +A ((i− j)2 + (j − k)2 + (i− k)2)
(2.21)

with aijk a similarly distributed set of random numbers, would provide a more realistic

model. In this case, the typical Γ would be small (and there would not grow with N .

Similar correlations among the elements of the mass matrix would have implications for

the suppression found in [4].)

3 Connecting classical and quantum stability

We have focussed here on quantum stability, but he first question one might explore is the

likelihood that all mass-squareds are positive in a non-supersymmetric or nearly supersym-

metric theory. Actually, our results in the previous section suggest that these problems are

similar. Naively as we have noted, one might expect that with N fields, one would have
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a suppression of 2N of the probability that a given stationary point is in fact a minimum.

If one requires, instead, that all masses be larger than some given number, and all γ’s

suitably small, one has an additional suppression, as we have seen.

But the suppression might be much stronger. We have mentioned the work of [4] on

the distribution of eigenvalues of the scalar mass matrix in supergravity theories. Here the

focus was on classical stability, i.e. the probability of obtaining all eigenvalues of the mass-

squared matrix positive. The authors worked in the framework set out in [15]. That work

studied the distribution of SUSY breaking scales around stationary points of a supergravity

potential motivated by Type II string theories compactified with fluxes. Among other re-

sults, they found a distribution heavily concentrated at the highest possible supersymmetry

breaking scales.

The analysis of [4], as in [15], was conducted in the framework of a supergravity effective

action, keeping only terms with two derivatives, and modeling particular terms in the mass

matrix with suitable random matrices. The principal observation was that the lowest

eigenvalue is typically negative, so one wants the probability for a fluctuation in which all

eigenvalues are positive. Within the particular random matrix model, these authors found

that (classical) metastability, in the absence of approximate supersymmetry, was highly

suppressed, as e−cN2
. With approximate supersymmetry, they found suppression as e−c′N1

.

One might question the use of a supersymmetric action given the dominance of large

supersymmetry breaking. If F (the decay constant of the Goldstino superfield) is of order

Mp, there is no reason to ignore terms with arbitrary numbers of (covariant) derivatives. So

perhaps an approach with weaker assumptions is to consider N real fields and describe their

mass matrix in terms of symmetric matrices. For these, there is a reasonably well-developed

theory of fluctuations, and one can write, for the probability that all masses are positive [16]:

P = e−N2 ln(3)
4

+O(N). (3.1)

This is compatible with the results of [4].

But there is reason to be skeptical about this extreme suppression. We have commented

in the previous section on the possibility of correlations between various terms in the action.

We suggested there that one might expect some degree of locality within the space of field

indices. If this is the case, then one would expect something closer to the naive result,

P = e−aN for the probability that all masses are positive. Of course, this would still be an

enormous suppression, but, unlike the more extreme case, one might imagine that there

are still significant numbers of states for large N .

In our tunneling discussion, we are focussed on precisely the small subset of states

which are not merely classically stable but for which all of the masses, µ2
i , are positive

and larger than some fixed number (more precisely that µ2/γ2 larger than some number).

In the language of ref. [4], the question is one of finding a fluctuation where all masses

fluctuate to some value larger than some positive µ2
0. If we imagined a flat, uncorrelated,

distribution (now running, from, say, −1 to 1, the “naive” estimate above) we would expect

the a suppression similar to that we obtained from eq. (2.18) over and above that required

to obtain all masses positive.
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In a model landscape like that of [4], we might expect even stronger suppression. In-

deed, we can again consider the case of random symmetric matrices. Our discussion of

tunneling suggests that we require a further, strong constraint, that all masses-squared be

larger than some fixed number. If we assume, as before, that cubic and quartic couplings

are roughly uniformly distributed random variables, with typical values of order the fun-

damental scale, then from our previous analysis, requiring all tunneling amplitudes to be

larger than the age of the universe, we require:

µ2

γ2
> 2.9. (3.2)

To assess this probability, we can again borrow results from [16]. These authors determined

the probability that all of the eigenvalues (masses-squared for our problem) are larger than

some value, z. For z ≪
√
N , one has the additional suppression:

P (z) = exp

(

− 2

√
6

9
z N3/2

)

(3.3)

while for z ≫
√
N ,

P (z) = exp(−54Nz2). (3.4)

To estimate the size of z, we need to ask what is a typical γ (we will not attempt a

serious analysis including fluctuations in γ). We might imagine γ ∼ Mp, supposing Mp

to be a typical scale. In this case, z ≪
√
N , and the additional suppression required by

quantum stability, while substantial, is in some sense a minor correction to that required

by classical stability. On the other hand, in flux landscapes, the couplings in the lagrangian

scale like the square of a typical flux. So the bound on µ2 also scales as the square, and

this could well lead to an enormous additional suppression.

4 Implications of the suppression

In modeling the possible existence of a landscape, one typically considers some structure,

such as compactified string theories with fluxes, and counts the number of stationary points

of the resulting effective action. This represents the “state of the art”, but it raises many

questions. For example, following [10], we have assumed the validity of a semiclassical

analysis, and neglected gravitational effects. The neglect of gravitation is reasonable if all

of the relevant scales are small compared to the Planck scale, but we might expect that

at typical stationary points, all scales are comparable and dimensionless couplings are of

order one. In such a regime, on the other hand, there is no small parameter which might

account for the long lifetime of would-be states. We would simply argue that the rarity

of stability in cases for which one does (might) have control supports the expectation that

stability among strongly coupled/Planck scale states is exceptional.

Confronted with the huge suppression of metastable states, both classically and quan-

tum mechanically, it is natural to ask: does there exist a landscape at all, in the sense of

some vast number of states? Conceivably this sort of analysis (combined with arguments
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like those of [7] about decays with flux emission) would leave only a modest number (i.e.

not exponentially large) of metastable states. But it is also possible that there are simply

so many stationary points that a dense landscape of states exists. Resolving the issue of

whether the suppression is e−aN2
or e−cN may well be critical to answering this question.

A different viewpoint on this result has to do with the possible role of supersymmetry

in an underlying theory. A longstanding question is the extent to which supersymmetry

might be typical of states in a landscape. One might expect that it is special, perhaps

exponentially rare, and so unlikely to account for hierarchies. This viewpoint was explored,

for example, in [17, 18]. However, considerations of stability point in the opposite direction.

First, classically, if we require that the cosmological constant is small, unbroken or slightly

broken supersymmetry implies classical stability for all but a small subset of fields. So

one, at least naively, expects that an order one fraction of these states will be classically

stable. References [4] and [5] found a quite different result, and we will comment on

this in a moment. As stressed in [7], unbroken or slightly broken supersymmetry implies

quantum stability.2 Among stationary points, supersymmetry could be quite rare, and still

overwhelm the enormous suppression which we have discussed.

The question of possible exponential suppression with N in the supersymmetric case is

related to the question of correlations. in the models studied in [4] and [5], it was assumed

that there is a Goldstino field, Z, along with matter fields, φi, with couplings

W = Z f + aiZ
2φi +

mi

2
φ2
i (4.1)

Integrating out the massive fields leads to a contribution to the Z mass:

δm2
Z = −

N
∑

i=1

|ai|2
∣

∣

∣

∣

f2

4m2
i

∣

∣

∣

∣

. (4.2)

If the N fields have comparable mass, and the ai’s are all similar, then for large N , the

probability that the Z mass-squared is positive is exponentially small. But one might well

imagine that only a few of the ai’s are substantial (in particular, a number which does not

scale with N).

Stability, by itself, is not an argument for TeV scale supersymmetry; it is presumably

enough that the scale of supersymmetry breaking be a few orders of magnitude below the

fundamental scale (Planck, string(?)). Indeed, in [19], it was argued that, with dynamical

supersymmetry breaking but random value for the superpotential, the distribution of su-

persymmetry breaking scales was roughy constant, decade by decade. Lower scales might

arise if the superpotential itself was dynamical. Our arguments don’t address the rela-

tive likelihood of these various possibilities. Stability, then, raises the troubling possibility

that supersymmetry does exist at comparatively low energies, but not necessarily at scales

which would be accessible to any conceivable accelerator. Sharpening these arguments is

clearly of great importance.

2Similar to the classical case, this does not consider the possibility of tunneling along directions involving

a finite set of light fields. The question of further exponential suppression will be studied elsewhere.
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A Random variables

In this section we will give the probability density functions (p.d.f) of several functions of

random variables that appear in the paper.

Let X be a uniformly distributed random variable, then its p.d.f. will be

fX(x) =

{

1 0 < x < 1

0 otherwise
(A.1)

The p.d.f for a variable Z ≡ X2, where X is defined as above

fZ(z) =











1
2
√
z
0 < z < 1

0 otherwise

(A.2)

The p.d.f of a variable Y ≡ X/Z, where X and Z have p.d.f. defined in (A.1) and (A.2)

respectively, is:

fY (y) =











1
3 0 < z < 1

1
3z3/2

z > 1

(A.3)

Finally, letW = min{Yj , j = 1, · · · , N}, where all the Yj are distributed according to (A.3),

its p.d.f. will be

fW (w) =















N
(

1− w
3

)N−1
w < 1

N
3w3/2

(

2
3
√
w

)N−1
w > 1

(A.4)

For large N the median of (A.4) is given by

wM =
3 ln 2

N
+O(N−2)
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