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Abstract: In this paper, we consider distribution solutions to the aggregation equa-
tion ρt + div(ρu) = 0, u = −∇V ∗ ρ in R

d , where the density ρ concentrates on
a co-dimension one manifold. We show that an evolution equation for the manifold
itself completely determines the dynamics of such solutions. We refer to such solutions
aggregation sheets. When the equation for the sheet is linearly well-posed, we show that
the fully non-linear evolution is also well-posed locally in time for the class of bi-Lips-
chitz surfaces. Moreover, we show that if the initial sheet is C1 then the solution itself
remains C1 as long as it remains Lipschitz. Lastly, we provide conditions on the kernel
g(s) = − dV

ds that guarantee the solution remains a bi-Lipschitz surface globally in time,
and construct explicit solutions that either collapse or blow up in finite time when these
conditions fail.

1. Background

Systems with a large number of pairwise interacting particles pervade many disciplines,
ranging from models of self-assembly processes in physics and chemistry [21–23,29]
to models for biological swarming [1,8,16,28] to algorithms for the cooperative control
of autonomous vehicles [33]. A simple example of these models employs a first order
system of ordinary differential equations for the positions xi (t) ∈ R

d of N particles,

dxi

dt
=

∑

j �=i

g

(
1

2
|xi − x j |2

)
(xi − x j ), 1 ≤ i ≤ N . (1)

The interaction kernel g(s) describes the manner in which particles interact with one
another, and therefore depends on the particular application for the model. The formal
continuum limit of this system then yields the well-known aggregation equation
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Fig. 1. Left: a “soccer ball” steady-state to the ODE model (1). Right: approximation of the steady state using
the co-dimension one continuum model (8), i.e. an approximately spherical surface with color indicating
particle density along the manifold

∂ρ

∂t
(y, t) + div(ρ(y, t)u(y, t)) = 0, y ∈ R

d , t ≥ 0,

u(y, t) =
∫

Rd
g

(
1

2
|y − z|2

)
(y − z) ρ(z, t) dz, (2)

for the density ρ of particles.
This equation has received significant attention in recent years, and the majority of the

analysis largely falls into two categories. More classical treatments focus on densities ρ
that are absolutely continuous with respect to Lebesgue measure, such as those lying in
an L p(Rd) space [2–6,9,10,14]. For densities that merely define a Borel measure on R

d ,
such as point masses, ideas from optimal transport have proven fruitful for demonstrat-
ing the well-posedness of (2) for some classes of interaction kernels [7,12,13,19,20].
However, several recent studies [15,26,30,31] have found that rings, spheres and more
complicated surface-like states naturally occur in the ODE systems (1) and the full PDE
models. This suggests that a co-dimension one description of (2) might prove useful for
studying such particle distributions (see Fig. 1). In this context, i.e. when the density
must have support of co-dimension one, even the most basic well-posedness results do
not yet exist. We therefore provide them in this paper.

Specifically, we analyze distribution solutions to (2) that have support homeomorphic
to the (d − 1) sphere Sd−1 ⊂ R

d , and so take the form

ρ(y, t) :=
∫

Sd−1
δ (y −�(x, t)) f (x, t) dSd−1(x). (3)

The map Φ(·, t) : Sd−1 → R
d parametrizes the manifold. The function f (·, t) :

Sd−1 → R is such that f (x, t)dSd−1(x) = ρΦ(x, t)dHΦ(x), where ρΦ(x, t) describes
the density of particles along the manifold and dHΦ(x) denotes the surface measure
on the manifold. By (3), we mean that ρ acts as a distribution on ψ ∈ C∞

0 (R
d × R

+)

as ρ[ψ] = ∫ ∞
0

∫
Sd−1 ψ(Φ(x, t), t) f (x, t) dSd−1(x)dt . In the usual manner, we then

require that
∫ ∞

0

∫

Sd−1
(ψt + 〈u,∇ψ〉) (�(x, t), t) f (x, t) dSd−1(x)dt = 0, (4)
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u(y) =
∫

Sd−1
g

(
1

2
|y −�(w, t)|2

)
(y −�(w, t)) f (w, t) dSd−1(w), (5)

hold for all ψ ∈ C∞
0 in order for (3) to define a formal distribution solution to (2). As

�(x, t) gives a Lagrangian parametrization of the manifold, it evolves according to

∂�

∂t
(x, t) = u(�(x, t), t)

=
∫

Sd−1
g

(
1

2
|�(x, t)−�(w, t)|2

)
(�(x, t)−�(w, t)) f (w, t) dSd−1(w).

(6)

Combining (4) and (6) with the fact that

∂

∂t
{ψ(�(x, t), t)} =

(
ψt +

〈
∂�

∂t
,∇ψ

〉)
(�(x, t), t),

we discover f must satisfy

0 =
∫ ∞

0

∫

Sd−1

∂

∂t
{ψ(�(x, t), t)} f (x, t) dSd−1(x)dt

= −
∫ ∞

0

∫

Sd−1
ψ(�(x, t), t)

∂ f

∂t
(x, t) dSd−1(x)dt

for all ψ , whence

f (x, t) ≡ f (x, 0). (7)

Therefore, given an initial density

ρ(y, 0) = ρ0(y) =
∫

Sd−1
δ (y −Φ0(w)) f0(w) dSd−1(w),

we formally obtain a distribution solution to (2) by evolving the surface according to

∂Φ

∂t
=

∫

Sd−1
g

(
1

2
|Φ(x, t)−�(w, t)|2

)
(Φ(x, t)−Φ(w, t)) f0(w) dSd−1(w), (8)

if x ∈ Sd−1 and t > 0, together with the initial conditionΦ(x, 0) = �0(x). Conversely,
provided the integro-differential equation (IDE) (8) has a solution that results in a suf-
ficiently regular velocity field (6), we can justify the preceding computations to obtain
distribution solutions to the original equation.

Variants of the IDE (8) appear in numerous contexts. The classical Birkhoff-Rott
equation in two dimensions results from taking g(s) = −(πs)−1, then rotating the
resulting velocity field to make it incompressible. Similarly, in [26] the authors derived
a generalization of the two dimensional Birkhoff-Rott equation directly from the princi-
ple of mass conservation. This results in velocity fields of mixed type that contain both
an incompressible contribution and a gradient contribution. The IDE (8), then, extends
their generalized equation to arbitrary dimensions d ≥ 2 in the case when the incom-
pressible contribution vanishes. Although we do not consider the fully general case, local
well-posedness for two dimensional mixed kernels does follow from our arguments as
well.
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Our primary concern instead lies in developing a well-posedness theory for (8). To
this end, we first demonstrate that solutions to (8) exist locally in time when the initial
data �0(x) defines a Lipschitz homeomorphism. Specifically, if the IDE (8) is linearly
well-posed we prove that the fully non-linear problem is also well-posed across the full
range of linearly well-posed kernels. We also show that if �0 ∈ C1 then the solution
itself remains C1 as long as it remains Lipschitz. We then address issues regarding con-
tinuation and global existence of solutions. We prove that a unique continuation exists
provided � and its inverse remain Lipschitz, and by explicit construction we show that
finite time singularities of each type may occur. For kernels with an attractive singularity
at the origin, we generalize the results for L∞(Rd) [3] and general L p(Rd) solutions [4]
to (2) that show finite time singularity occurs if and only if the kernel is Osgood. Finally,
for a subclass of the natural potentials studied in [4,3,7] we show that the solution exists
globally when the kernel has a repulsive singularity at the origin.

To make our hypotheses on the interaction kernel g(s) for these results precise, we
recall that the linear theory from [15,31] shows the solution �(x) ≡ Rx is linearly
well-posed only if

g
(

R2(1 − s)
)
(1 − s2)

d−3
2 ∈ L1([−1, 1]). (9)

For simplicity, we assume the kernel behaves as a power law, g(s) = O(s p), near the ori-
gin, although our arguments apply in a more general context. The linear well-posedness
condition then enforces

p >
1 − d

2
. (10)

This suggests the following assumptions on the interaction kernel:

Definition 1. Let g(s) : R
+ → R. Then g(s) defines an admissible interaction kernel

if g ∈ C1(R+\{0}), and there exist constants C > 0, δ > 0, p > 1−d
2 such that

max{|g(s)|, |sg′(s)|} ≤ Cs p ∀s ∈ (0, δ). (11)

These hypotheses suffice to establish local well-posedness, and are sufficiently mild to
still include many of the kernels that prove relevant for applications.

We shall demonstrate well-posedness of the IDE in the space C0,1(Sd−1) of Lipschitz
functions over the sphere Sd−1, where C0,1(Sd−1) has the usual norm

||�||C0,1 := max
Sd−1

|�(x)| + Lip[�], Lip[�] := sup
x �=w

|�(x)−�(w)|
|x − w| . (12)

To allow for the singularity in g(s) at zero, we restrict attention to initial data �0(x)
lying in the subset OM ⊂ C0,1(Sd−1) of all functions where both Lip[�] ≤ M and
Lip[�−1] ≤ M ,

OM :=
{
� ∈ C0,1(Sd−1) : 1

M
≤ inf

x �=w

|�(x)−�(w)|
|x − w| ≤ Lip[�] ≤ M

}
. (13)

This class of initial data proves less restrictive than the requirements on initial data
that appear in related problems. As we enforce regularity in the kernel g(s) this allows
us to relax the regularity requirements on the initial sheet itself, and this makes our
task somewhat easier. In particular, we need not assume any regularity in addition to
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boundedness of derivatives along the sheet. Similar results for vortex patches [17,18]
require Hölder regularity in derivatives, and results for the Birkhoff-Rott equation typ-
ically require analyticity [25] or other additional regularity hypotheses [32]. Proving
an existence result for more singular kernels, such as the Newtonian potential, would
therefore require a different approach than we adopt here, so we make no effort in this
direction. Also in contrast to many studies on the Birkhoff-Rott equation, we consider
compact sheets instead of sheets homeomorphic to the real line. This also causes our
approach to demonstrating existence to differ to a large extent.

The remainder of the paper proceeds as follows: in Sect. 2 we first establish the
necessary estimates on the nonlocal term in the IDE, and this allows us to derive local
existence in Sect. 3 using a modified version of simple Picard iteration; Subsect. 3.1
addresses issues regarding differentiability of solutions and the final section addresses
questions regarding the long term behavior of solutions; we finish with some concluding
remarks.

2. Elementary Properties and A-Priori Estimates

Like its co-dimension zero counterpart (2), solutions to the IDE (8) exhibit several
conserved quantities. Foremost, it formally expresses conservation of mass in that

Mρ :=
∫

Rd
ρ(x, t) ≡

∫

Sd−1
f0(x) dSd−1(x) (14)

for all time. Moreover, we have conservation of center of mass

∫

Rd
xρ(x, t) =

∫

Sd−1
�(x, t) ≡

∫

Sd−1
�0(x), (15)

which we assume equals zero throughout the remainder of the paper. Potential energy
also dissipates along solutions. Indeed, let V (s) denote a potential for the evolution, i.e.
that dV

ds = −g(s), and define

E�(t) := 1

2

∫

Sd−1×Sd−1
V

(
1

2
|�(x, t)−�(z, t)|2

)
f0(x) f0(z) dSd−1(x)dSd−1(z).

A simple calculation then formally yields

d

dt
E�(t) = −

∫

Sd−1

∣∣∣∣
∂�

∂t

∣∣∣∣
2

f0(x) dSd−1(x). (16)

These statements can be readily justified using the arguments that follow.
We begin by recalling a standard theorem, i.e. the Funk-Hecke formula for spherical

harmonics [24]. While we shall only use the cases l = 0, 1 of the theorem, which readily
follow from polar coordinates, it proves more succinct to state the general formula. The
integrability hypothesis for the formula further motivates the growth rate (10) on g(s)
near the origin as well.
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Theorem 1 (Funk-Hecke Theorem). Let h(s)(1 − s2)
d−3

2 ∈ L1([−1, 1]). Then for any
x ∈ Sd−1 and any spherical harmonic Sl(x) of degree l,

∫

Sd−1
h(〈x,w〉)Sl(w) dSd−1(w)

= vol(Sd−2)

(∫ 1

−1
h(s)(1 − s2)

d−3
2 Pl,d(s) ds

)
Sl(x),

where Pl,d(s) denotes the Gegenbauer polynomial P
( d

2 −1)
l (s) from [27] normalized to

Pl,d(1) = 1.

Before turning our attention to estimating the nonlocality in (8), we first construct the
simple but important class of exact spherical solutions. These solutions will later prove
useful in determining how solutions to (8) behave for large times.

Example 1 (Spherical Solutions). Let Φ(x, t) = R(t)x for R(t) > 0 and f0(w) ≡ 1.
Substituting this expression into (8) yields

dR

dt
x = R(t)

∫

Sd−1
g

(
R(t)2

2
|x − w|2

)
(x − w) dSd−1(w).

The facts that w is a spherical harmonic of degree one and that Pl,d(s) = s combine
with the Funk-Hecke theorem for l = 0, 1 to show

dR

dt
x = vol(Sd−2)R(t)

[∫ 1

−1
g

(
R(t)2(1 − s)

)
(1 − s)(1 − s2)

d−3
2 ds

]
x.

Therefore Φ(x, t) = R(t)x defines a solution to (8) if R(t) solves the ordinary differ-
ential equation

dR

dt
= vol(Sd−2)R(t)

∫ 1

−1
g

(
R(t)2(1 − s)

)
(1 − s)(1 − s2)

d−3
2 ds. (17)

The case l = 0 of Theorem 1 also proves useful in establishing the following two
technical lemmas. Their proof constitutes the majority of the effort needed to establish
Theorem 2, as they suffice to show the right-hand side of (8) is locally Lipschitz in
C0(Sd−1). A combination of Picard iteration and a-posteriori estimates then yields the
theorem. The first lemma estimates expressions of the form

H(y) :=
∫

Sd−1
h

(
1

2
|y −Φ(w)|2

)
f0(w) dSd−1(w) (18)

for all y ∈ R
d , where we envision h(s) = g(s) or h(s) = sg′(s) so that h satisfies a

hypothesis similar to (11).

Lemma 1. Let h(s) : R
+ → R be locally bounded away from zero, and suppose ∃K >

0, σ > 0, q > 1−d
2 with |h(s)| ≤ K sq for all s ∈ (0, σ ). If Φ(x) ∈ OM then

|H(y)| ≤ C(h, dy,M)|| f0||L∞ .

The constant C depends only on h,M and dy := minx∈Sd−1 |y − Φ(x)|, and increases
with both dy and M.
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Proof. Fix y ∈ R
d and decompose

H(y) =
∫

|y−Φ(w)|≥√
2σ

+
∫

|y−�(w)|<√
2σ

:= I + II.

Let x0 denote a minimizer of |y −Φ(x)| over x ∈ Sd−1, so that dy = |y −�(x0)|. Due
to the boundedness of h away from zero,

|I| ≤ vol(Sd−1)||h||L∞([σ,2M2+d2
y ])|| f0||L∞(Sd−1).

As for the second integral, the growth hypothesis on h near zero implies that

|II| ≤ K 2−q || f0||L∞(Sd−1)

∫

Sd−1
|y −Φ(w)|2q dSd−1(w).

If q ≥ 0 then |II| ≤ K 2−q || f0||L∞(Sd−1)(dy + 2M)2qvol(Sd−1), so assume that q < 0.
The facts that |y −�(w)| ≥ 1

2 |�(x0)−�(w)| and that �−1 is Lipschitz with constant
M suffice to show

|II| ≤ K 2−2q || f0||L∞(Sd−1)M
−2q

∫

Sd−1
(1 − 〈x0,w〉)q dSd−1(w).

As q + d−3
2 > −1, the case l = 0 of Theorem 1 allows us to compute the last term,

∫

Sd−1
(1 − 〈x0,w〉)q dSd−1(w) = vol(Sd−2)

∫ 1

−1
(1 − s)q(1 − s2)

d−3
2 ds < ∞.

��
The second lemma allows us to differentiate expressions of the form

vi
Φ(y) :=

∫

Sd−1
g

(
1

2
|y −Φ(w)|2

)
(yi −Φ i (w)) f0(w) dSd−1(w), (19)

for any y = (y1, y2, . . . , yd)t ∈ R
d , where the subscript notation vi

�(y) indicates the
possibly changing dependence on�(x). A combination of both lemmas then establishes
the required properties of the right-hand side of (8) as corollaries.

Lemma 2. Suppose g(s) defines an admissible kernel and f0 ∈ L∞(Sd−1). If �(x) ∈
OM and 
(x) ∈ C0,1(Sd−1), then for fixed y ∈ R

d ,

d

dε

∫

Sd−1
g

(
1

2
|y −Φ(w)−ε
(w)|2

)
(yi −Φ i (w)−ε
 i (w)) f0(w) dSd−1(w) |ε=0

= −
∫

Sd−1

[
g

(
1

2
|y −�(w)|2

)

 i (w)

+g′
(

1

2
|y −�(w)|2

)
〈y −�(w),
(w)〉 (yi −�i (w))

]
f0(w) dSd−1(w).



458 J. H. von Brecht, A. L. Bertozzi

Proof. For fixed 1 ≤ i ≤ d and y ∈ R
d consider the quantity

vi
�+εΨ (y)− vi

�(y)

ε

= 1

ε

∫

Sd−1
g

(
1

2
|y −�(w)− εΨ (w)|2

)
(yi −�i (w)− εΨ i (w)) f0(w) dSd−1(w)

− 1

ε

∫

Sd−1
g

(
1

2
|y −�(w)|2

)
(yi −�i (w)) f0(w) dSd−1(w).

Let gε denote the integrand. As g is differentiable away from zero and Φ is one-to-one
it follows that

gε → −
[

g

(
1

2
|y −Φ(w)|2

)
Ψ i (w)

+ g′
(

1

2
|y −�(w)|2

)
〈y −�(w),
(w)〉 (yi −�i (w))

]
f0(w)

for almost every w ∈ Sd−1. The aim thus becomes to conclude that in fact

∫

Sd−1
gε → −

∫

Sd−1

[
g

(
1

2
|y −�(w)|2

)

 i (w)

+ g′
(

1

2
|y −�(w)|2

)
〈y −�(w),
(w)〉 (yi −�i (w))

]
f0(w). (20)

If dy = minSd−1 |y − �(w)| > 0, this immediately follows as g ∈ C1(R+\{0}) and
the dominated convergence theorem. The difficulty comes when y = �(x0) for some
x0 ∈ Sd−1. In this case, it suffices to show that the gε are uniformly integrable: for any
γ > 0 there exists N > 0 so that

sup
ε

∫

Sd−1
|gε |1{|gε |>N } < γ.

The Vitali convergence theorem then yields the desired result.
To show uniform integrability, let zε := �(x0)−�(w)− ε
(w) and z := �(x0)−

�(w). For fixed ε let A := {||ε
||∞ ≤ |z|
2 } and write

gε = gε1A + gε1Sd−1\A := g1
ε + g2

ε

gε =
[
−g

(
1

2
|zε |2

)

 i (w) +

g
( 1

2 |zε |2) − g
( 1

2 |z|2)
ε

zi

]
f0(w).

If w ∈ A then |z| ≤ 2|zε |. To estimate g1
ε , the mean value theorem furnishes s0 ∈

(
|z|2
8 ,

9|z|2
8 ) with g

( 1
2 |zε |2) − g

( 1
2 |z|2) = 1

2 g′(s0)(|zε |2 − |z|2). Therefore

|g1
ε | ≤ || f0||L∞(Sd−1)||
||L∞(Sd−1)

(∣∣∣∣g
(

1

2
|zε |2

)∣∣∣∣ + |g′(s0)|5|z|2
4

)
.
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To estimate g2
ε , since w /∈ A then |z|

|ε| ≤ 2||
||∞, so that

|g2
ε | ≤ || f0||L∞(Sd−1)

(∣∣∣∣g
(

1

2
|zε |2

)∣∣∣∣ ||
||∞ +

∣∣∣∣g
(

1

2
|zε |2

)∣∣∣∣
|z|
|ε| +

∣∣∣∣g
(

1

2
|z|2

)∣∣∣∣
|z|
|ε|

)

≤ 3|| f0||L∞(Sd−1)||
||L∞(Sd−1)

(∣∣∣∣g
(

1

2
|zε |2

)∣∣∣∣ +

∣∣∣∣g
(

1

2
|z|2

)∣∣∣∣

)
.

Combining these estimates yields

|gε | ≤ C1

(∣∣∣∣g
(

1

2
|zε |2

)∣∣∣∣ +

∣∣∣∣g
(

1

2
|z|2

)∣∣∣∣ + |g′(s0)||z|2
)

:= I + II + III

for some absolute constant C1 that depends only on || f0||L∞(Sd−1),||
||L∞(Sd−1). As a
linear combination of uniformly integrable functions is uniformly integrable, it suffices
to show the uniform of I − III individually.

To show the uniform integrability of I, as in the proof of Lemma 1 let xε0 denote a
minimizer of |�(x0)−�(w)− ε
(w)| over w ∈ Sd−1, and decompose

∫

{I>N }
I dSd−1(w) ≤

∫

{I>N }∩{|zε |≥√
2δ}

+
∫

{I>N }∩{|zε |≤√
2δ}
.

If |zε | ≥ √
2δ then I ≤ ||g||L∞([δ,(2M+||
||∞)2]) := K (M, ||
||∞) whenever |ε| ≤ 1.

When |zε | < √
2δ, the growth rate of g(s) near zero demonstrates

I ≤ C2−p|zε |2p.

If p ≥ 0 the dominated convergence theorem gives the desired result. If p < 0, the fact
that |zε | ≥ 1

2 |�(xε0) + ε
(xε0)−�(w)− ε
(w)| yields

I ≤ C2−3p|�(xε0) + ε
(xε0)−�(w)− ε
(w)|2p.

Now, as 
 ∈ C0,1(Sd−1) and �(x) ∈ OM , for all ε sufficiently small �(x) + ε
(x) ∈
O2M as well. Therefore, for |zε | < √

2δ,

I ≤ C2−3p(2M)−2p|xε0 − w|2p = C2−4p M−2p(1 − 〈
xε0,w

〉
)p := fM (

〈
xε0,w

〉
).

Summarizing the preceding, when N > 0,
∫

{I>N }
I ≤

∫

{I>N }∩{|zε |≥√
2δ}

+
∫

{I>N }∩{|zε |≤√
2δ}

≤ K (M, ||
||∞)
∫

{K>N }
+

∫

{ fM>N }
fM .

By the case l = 0 of Theorem 1,
∫

{ fM>N }
fM = C2−4p M−2pvol(Sd−2)

∫ 1

−1
(1 − s)p(1 − s2)

d−3
2 1{(1−s)p>N } ds.

Taking N sufficiently large, independently of ε, shows that

sup
ε

∫

Sd−1

∣∣∣∣g
(

1

2
|zε |2

)∣∣∣∣ 1{I>N } < γ
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as desired. For II, as �(x) ∈ OM , by Lemma 1
∫
Sd−1 II ≤ C(g, 0,M) < ∞. By the

dominated convergence theorem,
∫

Sd−1
II1{II>N } → 0

uniformly in ε as well. For III, again decompose
∫

{III>N }
III dSd−1(w) ≤

∫

{III>N }∩{|s0|≥√
2δ}

+
∫

{III>N }∩{|s0|≤√
2δ}
,

and recall that s0 ∈ (
|z|2
8 ,

9|z|2
8 ). As in Lemma 1, each term can be dominated by an

integrable function that does not depend on ε, so III is uniformly integrable as well. ��
Now, let v�(y) : R

d → R
d denote the right hand side of (8) evaluated at an arbitrary

point y ∈ R
d ,

v�(y) := (v1
�(y), . . . , vd

�(y))
t

with vi
�(y) given by (19). By taking 
(x) ≡ −e j for 1 ≤ j ≤ d in Lemma 2, we

conclude

[∇v�] (y) =
∫

Sd−1

[
g

(
1

2
|y −�(w)|2

)
Id

+ g′
(

1

2
|y −�(w)|2

)
(y −�(w))(y −�(w))t

]
f0(w) dSd−1(w), (21)

where Id denotes the d × d identity matrix. Applying Lemma 1 then shows the matrix
norm ||∇v�||2(y) ≤ C(g, g′, dy,M)|| f0||∞, for some constant C that increases with
dy. The mean value theorem then yields

Corollary 1. Let �(x) ∈ OM . Then for any two points y1, y2 ∈ R
d ,

|v�(y1)− v�(y2)| ≤ C(g, g′,max{dy1, dy2},M)|| f0||∞|y1 − y2|. (22)

Similarly, fix y ∈ R
d ,�,
 ∈ C0,1(Sd−1) and suppose that for 0 ≤ ε ≤ 1 the line

Lε := ε
 + (1 − ε)� ∈ OM . We can then use Lemma 2 to deduce

d

dε
vi

Lε (y) = −
∫

Sd−1

[
g

(
1

2
|y − Lε(w)|2

)
(
 i (w)−�i (w))

+ g′
(

1

2
|y − Lε(w)|2

)
〈y − Lε(w),
(w)−�(w)〉 (yi −Li

ε(w))
]

f0(w) dSd−1(w).

An application of Lemma 1 then shows
∣∣∣∣

d

dε
vi

Lε

∣∣∣∣ ≤ C(g, g′, dy,M)|| f0||∞ max
Sd−1

|
(x)−�(x)|,

where dy = supε minSd−1 |y − Lε | and the constant C depends only on Lε through M .
For y ∈ R

d fixed, the fundamental theorem of calculus then shows

|vi

(y)− vi

�(y)| =
∣∣∣∣
∫ 1

0

d

dε
vi

Lε (y) dε

∣∣∣∣ ≤ C(g, g′, dy,M)|| f0||∞ max
Sd−1

|
(x)−�(x)|.

We therefore get the following corollary
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Corollary 2. Let�,
 ∈ C0,1 be such that the line Lε := ε
 + (1 − ε)� ∈ OM for all
0 ≤ ε ≤ 1. Then for any y ∈ R

d ,

|v
(y)− v�(y)| ≤ C(g, g′, dy,M)|| f0||∞ max
Sd−1

|
(x)−�(x)|. (23)

The arguments in the proof of Lemma 2 also establish the following lemma that
demonstrates continuity of the gradient [∇v�](y) of the Eulerian velocity field. To avoid
redundancy, we leave the proof as an exercise for the reader.

Lemma 3. Suppose g(s) defines an admissible kernel and f0 ∈ L∞(Sd−1). If �(x) ∈
OM , then the matrix [∇v�](y) given by (21) is continuous as a function on R

d .

3. Local Well-Posedness

We may now proceed to demonstrate our main result, i.e. local existence for the IDE
(8)—

Theorem 2 (Local Well-Posedness for the IDE). Let g(s) define an admissible kernel,
f0 ∈ L∞ and �0(x) ∈ OM/2. Then there exists T = T (g, g′,M, || f0||∞) such that the
IDE (8) has a solution satisfying

�(x, t) ∈ C1([−T, T ]; C0(Sd−1)) ∩ C([−T, T ]; C0,1(Sd−1) ∩ OM ),

∂�

∂t
(x, t) ∈ L∞([−T, T ]; C0,1(Sd−1)).

If 
(x, t) ∈ C([−T ′, T ′]; C0,1(Sd−1)) denotes another solution for any T ′ ≤ T , then
�(x, t) ≡ 
(x, t) on [−T ′, T ′].

Fix an initial datum �0(x) ∈ OM/2 and let �(x, t) ∈ C([0, T ]; C0,1(Sd−1)). In the
usual manner, define a mapping A[�] by

�(x, t) → A[�](x, t) := �0(x)

+
∫ t

0

∫

Sd−1
g

(
1

2
|�(x, s)−�(w, s)|2

)
(�(x, s)−�(w, s)) f0(w) dSd−1(w)ds,

so that it suffices to show this mapping has a fixed point. To this end, we need to prove
the following three propositions regarding the mapping, and may then proceed to apply
straightforward Picard iteration.

Proposition 1. Let �0(x) ∈ OM/2 and Lip[� − �0](t) ≤ min
{ M

2 ,
1
M

}
for all t ∈

[0, T ]. Then �(x, t) ∈ OM for all t ∈ [0, T ].
Proof. By the triangle inequality, |�(x, t)−�(w, t)| = |�(x, t)−�0(x)− (�(w, t)−
�0(w)) +�0(x)−�0(w)| ≤ Lip[�−�0](t)|x − w| + |�0(x)−�0(w)| ≤ M |x − w|.
By the reverse triangle inequality, |�(x, t) − �(w, t)| ≥ |�0(x) − �0(w)||x − w| −
Lip[�−�0](t)|x − w| ≥ ( 2

M − Lip[�−�0](t))|x − w| ≥ 1
M |x − w|. ��

Proposition 2. Let �(x, t) ∈ OM for all t ∈ [0, T ]. If T = T (g, g′,M, || f0||∞) is
sufficiently small, then

||A[�] −�0||C0,1(t) < min

{
M

2
,

1

M

}

for all t ∈ [0, T ].
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Proof. Set h(x, t) := A[�](x, t) − �0(x) = ∫ t
0 v�(�(x, s)) ds. By Lemma 1,

|v�(�(x, s))| ≤ C(g, 0,M)|| f0||∞, so that ||h||∞(t) ≤ T C(g, 0,M)|| f0||∞. By Cor-
ollary 1,

|h(x, t)− h(w, t)| ≤
∫ t

0
|v�(�(x, s))− v�(�(w, s))| ds

≤ C(g, g′, 2M,M)|| f0||∞
∫ t

0
|�(x, s)−�(w, s)| ds

≤ C(g, g′, 2M,M)|| f0||∞MT |x − w|.
Taking T = T (g, g′,M, || f0||∞) sufficiently small yields the desired bound for both
maxSd−1 |h(x, t)| and Lip[h](t) for all t ∈ [0, T ]. ��
Proposition 3. Let �0(x) ∈ OM/2. Suppose that both ||� − �0||C0,1 < min

{ M
2 ,

1
M

}

and ||
−�0||C0,1 < min
{ M

2 ,
1
M

}
. Then for T sufficiently small depending only on M,

sup
t∈[0,T ]

max
Sd−1

|A[
](x, t)− A[�](x, t)| ≤ K sup
t∈[0,T ]

max
Sd−1

|
(x, t)−�(x, t)|

for some K < 1.

Proof. We have

|A[
](x, t)− A[�](x, t)|
=

∣∣∣∣
∫ t

0
v
(
(x, s))− v
(�(x, s)) + v
(�(x, s))− v�(�(x, s)) ds

∣∣∣∣

≤
∫ t

0
|v
(
(x, s))− v
(�(x, s))| ds +

∫ t

0
|v
(�(x, s))− v�(�(x, s))| ds.

As Lip[ε
 + (1 − ε)�−�0](t) ≤ min
{ M

2 ,
1
M

}
for all 0 ≤ ε ≤ 1, Proposition 1 shows

that the line Lε := ε
(·, t)+ (1−ε)� ∈ OM . Corollary 1 provides a sufficient estimate
for the first term,

∫ t

0
|v
(
(x, s))− v
(�(x, s))| ds

≤ C(g, g′, 2M,M)|| f0||∞
∫ t

0
|
(x, s)−�(x, s)| ds,

whereas Corollary 2 provides a sufficient estimate for the second term,
∫ t

0
|v
(�(x, s))− v�(�(x, s))| ds

≤ C(g, g′, 3M,M)|| f0||∞
∫ t

0
max
Sd−1

|
(x, s)−�(x, s)| ds.

��
Straightforward Picard iteration now does the work. Given �0(x) ∈ OM/2, take

T = T (g, g′,M, || f0||∞) sufficiently small as in Propositions 2 and 3, and begin by
defining �0(x, t) ≡ �0(x) for all t ∈ [0, T ]. Then, iteratively set
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�n(x, t) := A[�n−1](x, t).

Inductively, assume that ||�n−1 −�0||C0,1(t) ≤ min{ M
2 ,

1
M } and�n−1(x, t) ∈ OM for

all t ∈ [0, T ]. By Proposition 2, ||�n −�0||C0,1(t) ≤ min{ M
2 ,

1
M } for all t ∈ [0, T ], so

that �n(x, t) ∈ OM as well from Proposition 1. Therefore,

sup
[0,T ]

||�n −�n−1||∞(t) ≤ K sup
[0,T ]

||�n−1 −�n−2||∞(t)

for some K < 1 by Proposition 3, yielding a contraction in C([0, T ]; C0(Sd−1)).
We therefore have a limit function �(x, t) ∈ C([0, T ]; C0(Sd−1)) with ||�n −
�||C([0,T ];C0(Sd−1)) → 0. However, we may note that

sup
[0,T ]

||�n −�0||C0,1(t) ≤ min

{
M

2
,

1

M

}
,

i.e. that each �n lies in a fixed ball in C0,1(Sd−1) with center �0(x). As they converge
uniformly to �(x, t), we conclude

sup
[0,T ]

||�−�0||C0,1(t) ≤ min

{
M

2
,

1

M

}

as well. Proposition 3 then demonstrates
∣∣∣∣
∫ t

0
v�n (�n)−

∫ t

0
v�(�)

∣∣∣∣ ≤ K sup
[0,T ]

||�n −�||∞(t) → 0,

so that

�(x, t) = �0(x)

+
∫ t

0

∫

Sd−1
g

(
1

2
|�(x, s)−�(w, s)|2

)
(�(x, s)−�(w, s)) f0(w) dSd−1(w)ds

as desired.
This yields a solution �(x, t) ∈ C([0, T ]; C0(Sd−1)) that lies in OM for each t ∈

[0, T ]. However, for t1 > t0 writing

�(x, t1) = �(x, t0) +
∫ t1

t0
v�(�(x, s))ds

and paralleling the proof of Proposition 2 demonstrates that in fact �(x, t) ∈
C([0, T ]; C0,1(Sd−1) ∩ OM ). The relation

∂�(x, t)

∂t
= v�(�(x, t))

and the fact that �(x, t) ∈ OM combine to show that ∂�
∂t is Lipschitz, by Corollary 1.

The contraction furnished by Proposition 3 shows that�(x, t) is the unique solution that
lies in C([0, T ]; C0,1(Sd−1)). Finally, each of the preceding arguments work equally
well backward in time. All together, this yields Theorem 2.
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3.1. Differentiability properties of solutions. Fix an arbitrary bi-Lipschitz solution
�(x, t) to (8) on [0, T ], and choose M = M(T ) so that�(x, t) ∈ OM for all t ∈ [0, T ].
For any such solution, we aim in this subsection to prove

Theorem 3. Let �(x, t) denote a solution to (8) on [0, T ] that lies in OM for all t ∈
[0, T ]. If D j�0(x) exists at x ∈ Sd−1, then D j�(x, t) ∈ C([0, T ]) also exists at x for
all t ∈ [0, T ], and it satisfies the linear ordinary differential equation

dD j�

dt
(x, t) = [∇v�](�(x, t))D j�(x, t), D j�(x, 0) = D j�0(x). (24)

In particular, when�0(x) ∈ C1(Sd−1) it follows that if�(x, t) bi-Lipschitz then actually
�(x, t) ∈ C1(Sd−1).

Let x ∈ Sd−1 denote an arbitrary but fixed point on the sphere, and write x =
x(η1, . . . , ηd−1), where (η1, . . . , ηd−1) ∈ R

d−1 denote spherical coordinates. For fixed
1 ≤ j ≤ d − 1 and any |h| > 0 define xh

j = x(η1, . . . , η j + h, . . . , ηd−1) ∈ Sd−1, and

for an arbitrary function 
(x) : Sd−1 → R
d define the difference quotient

(Dh
j
)(x) := 
(xh

j )−
(x)

h
.

If the limit of the difference quotient exists as h → 0 then the j th partial derivative D j
of 
 exists at x, and we write

D j
(x) := lim
h→0

(Dh
j
)(x).

As�(x, t) satifies (8) for t ∈ [0, T ], we can take difference quotients in the integral
form of the equation to find that

(Dh
j�)(x, t) = (Dh

j�0)(x) +
1

h

∫ t

0

(
v�(�(xh

j , s))− v�(�(x, s))
)

ds

holds for all t ∈ [0, T ]. The fundamental theorem of calculus then shows that

(Dh
j�)(x, t) = (Dh

j�0)(x)

+
∫ t

0

∫ 1

0
[∇v�](ε�(xh

j , s) + (1 − ε)�(x, s))(Dh
j�)(x, s) dεds.

As�(x, t) ∈ OM for all t ∈ [0, T ],we have that the bound |ε�(xh
j , s)+(1−ε)�(x, s)−

�(w)| ≤ 2M holds independent of the values that s and h assume. By Lemma 1, then,

||[∇v�]||2(ε�(xh
j , s) + (1 − ε)�(x, s)) ≤ C(g, g′,M)|| f0||∞ (25)

for C some universal constant.
Now, for an arbitrary 
(t) ∈ C([0, T ]; R

d) define a linear operator Bh as

Bh[
](t) =
∫ t

0

∫ 1

0
[∇v�](ε�(xh

j , s) + (1 − ε)�(x, s))
(s) dεds. (26)

Due to (25), we conclude that for any t1, t2 ∈ [0, T ],
|Bh[
](t2)− Bh[
](t1)| ≤ ||
||C([0,T ])C(g, g′,M)|| f0||∞|t2 − t1|.
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The operator Bh therefore maps C([0, T ]; R
d) → C([0, T ]; R

d). Moreover, by taking
t1 = 0 we see that if T ′ ≤ T is sufficiently small, depending only on C , then the oper-
ator Bh maps C([0, T ′]; R

d) → C([0, T ′]; R
d) with operator norm ||Bh ||op ≤ 1/2. In

particular, Id − Bh is invertible. We therefore have that

(Dh
j�)(x, t) = (Id − Bh)

−1[(Dh
j�0)(x)](t)

for all t ∈ [0, T ′]. Analogously, define the linear operator B : C([0, T ′]; R
d) →

C([0, T ′]; R
d) as

B[
](t) =
∫ t

0
[∇v�](�(x, s))
(s) ds. (27)

Note that ||B||op ≤ 1/2 for the same value of T ′ as well. For these operators, we then
have the following lemma:

Lemma 4. Let Bh, B : C([0, T ′]; R
d) → C([0, T ′]; R

d) denote the linear operators in
(26) and (27), respectively. If g ∈ C1

(
R

+ \ {0}), satisfies (11) and �(x, t) ∈ OM for
all t ∈ [0, T ′], then Bh → B as h → 0 in operator norm.

Proof. Let 
(t) ∈ C([0, T ′]; R
d) with ||
||C([0,T ′]) ≤ 1. Then from the definitions of

the operators Bh and B,

||(Bh − B)[
]||C([0,T ′])

≤ C
∫ T ′

0

∫ 1

0
||[∇v�](ε�(xh

j , s) + (1 − ε)�(x, s))− [∇v�](�(x, s))||2 dεds.

By definition of the operator norm, then,

lim
h→0

||Bh − B||op

≤ C lim
h→0

∫ T ′

0

∫ 1

0
||[∇v�](ε�(xh

j , s) + (1 − ε)�(x, s))− [∇v�](�(x, s))||2 dεds.

The matrix [∇v�](y) is continuous by Lemma 3. This fact combines with the continuity
of � itself and the fact that xh

j → x to yield

||[∇v�](ε�(xh
j , s) + (1 − ε)�(x, s))− [∇v�](�(x, s))||2 → 0

for all s ∈ [0, T ′] and ε ∈ [0, 1]. The estimate (25) and the dominated convergence
theorem then show

lim
h→0

||Bh − B||

≤ C
∫ T ′

0

∫ 1

0
lim
h→0

||[∇v�](ε�(xh
j , s)+(1−ε)�(x, s))−[∇v�](�(x, s))||2 dεds =0

as desired. ��
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Returning to the task at hand, we have that the uniform estimates ||Bh ||op ≤ 1
2 and

||B||op ≤ 1
2 guarantee that both (Id − Bh)

−1 and (Id − B)−1 exist. Moreover, by using
the power series representations of the inverse operators, the uniform operator norm
estimates and the fact that Bh → B in operator norm, we see that ||(Id − Bh)

−1 −
(Id − B)−1||op → 0 as well. If D j�0(x) exists, we may define the constant functions

h, 
 ∈ C([0, T ′]; R

d) by 
h(t) ≡ (Dh
j�0)(x) and 
(t) ≡ D j�0(x). Lemma 4 then

shows

|(Dh
j�)(x, t)− (Id − B)−1[
](t)| = |(Id − Bh)

−1[
h](t)− (Id − B)−1[
](t)|
≤ 2||
h −
||C([0,T ′]) + ||(Id − Bh)

−1 − (Id − B)−1||op||
||C([0,T ′])
= 2|(Dh

j�0)(x)− D j�0(x)| + ||(Id − Bh)
−1 − (Id − B)−1||op|D j�0(x)| → 0

as h → 0. In other words, D j�(x, t) exists at x as well, and we have the representation

D j�(x, t) = (Id − B)−1[D j�0(x)](t). (28)

Moreover, D j�(x, t) is a continuous function in t for all t ∈ [0, T ′]. Pre-multiplying by
(Id − B) in (28) and using the definition (27) of B then shows that D j�(x, t) satisfies
the integral equation

D j�(x, t) = D j�0(x) +
∫ t

0
[∇v�](�(x, s))D j�(x, s) ds (29)

on [0, T ′]. Taking �(x, T ′) as initial data and applying the same argument then shows
that

D j�(x, t) = D j�(x, T ′) +
∫ t

T ′
[∇v�](�(x, s))D j�(x, s) ds

for t ∈ [T ′, 2T ′], so that (29) actually holds on [0, 2T ′]. Applying the argument a finite
number of times then shows that D j�(x, t) ∈ C([0, T ]) and satisfies (29) on [0, T ]. By
the fundamental theorem of calculus, then, (24) holds.

For the last statement in Theorem 3, by Lemma 3, Eq. (24) defines a linear ODE
with coefficients that depend continuously on the parameter x ∈ Sd−1. Its solutions
therefore depend continuously on both the parameter x ∈ Sd−1 and on the initial data.
As �0(x) ∈ C1(Sd−1) the initial data also depends continuously on x ∈ Sd−1, so that
the solution D j�(x, t) ∈ C(Sd−1) as desired.

4. Blowup, Collapse, and Global Existence

In the previous section, we demonstrated that if �0(x) ∈ O M
2

then there exists T =
T (g, g′,M, || f0||∞) such that integral equation (8) has a unique solution �(x, t) on
t ∈ [0, T ]. The solution lies in OM for all t ∈ [0, T ] as well. Clearly, we can take
�(x, T ) ∈ OM as initial data and then repeat the argument. This yields a unique solu-
tion on some larger time interval [0, T1] with T1 > T , and this process can continue as
long as Lip[�](t) and Lip[�−1](t) remain finite. Summarizing, we have the following
continuation result:
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Theorem 4. Let g and �0 satsify the assumptions of Theorem 2 and �(x, t) denote the
corresponding solution to the IDE (8). If [0, T f ) denotes the largest time interval on
which �(x, t) exists as a bi-Lipschitz solution, then at least one of

(i) lim sup
t↗T f

Lip[�](t) = ∞ (ii) lim sup
t↗T f

Lip[�−1](t)=∞ (iii) T f =∞ (30)

must hold.

By recalling the class of solutions �(x, t) = R(t)x from Example 1, we find simple
examples that demonstrate each of (i), (ii) and (iii) can happen in isolation. Indeed, if
g(s) = s p for p > 0 the ODE (17) reduces to R′ = C p R1+2p; the constant

C p = vol(Sd−2)

∫ 1

−1
(1 − s)1+p(1 − s2)

d−3
2 ds

is positive. We readily compute the explicit solution and maximal interval of existence
[0, T f ) as

R(t) =
(

1

R(0)−2p − 2pC pt

) 1
2p

, T f = 1

2pC p R(0)2p
, (31)

so that (i) occurs as t ↗ T f while (ii) remains finite. Conversely, suppose g(s) = −s−p

for 0 < p < d−1
2 . Then

C p = vol(Sd−2)

∫ 1

−1
(1 − s)1−p(1 − s2)

d−3
2 ds > 0,

R(t) =
(

R(0)2p − 2pC pt
) 1

2p
, T f = R(0)2p

2pC p
, (32)

and the solution can collapse to zero in finite time. That is, (ii) occurs at T f while (i)
remains finite.

As these examples indicate, we must prevent both blowup and collapse in order to
guarantee the solution exists as a bi-Lipschitz surface for all time. It comes as no sur-
prise that this amounts to having control over the gradient matrix [∇v�](y) generated
by the Eulerian velocity field v�(y), as similar criteria abound for related active scalar
problems. Specifically, it proves both necessary and sufficient to have

∫ T

0
||∇v�||L∞(|y|≤||�||∞(t))dt < ∞. (33)

Precisely analogous conditions guarantee existence for related problems, such as solu-
tions to the Euler equations ([18], Chap. 5) and for the boundary of a vortex patch written
in contour dynamics form ([18], Chap. 8).

Theorem 5. Suppose g(s) defines an admissible kernel and f0 ∈ L∞. Then the solution
�(x, t) ∈ C([0, T ]; C0,1(Sd−1)) to (8) exists as a bi-Lipschitz surface past time T if
and only if both ||�||∞(T ) < ∞ and (33) hold.
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Proof. Clearly, if �(x, t) is bi-Lipschitz on [0, T ′] for T ′ > T then ||�||∞(T ) < ∞
and M := sup[0,T ] Lip[�−1](t) < ∞ as well. Recalling from (21) that

[∇v�] (y) =
∫

Sd−1

[
g

(
1

2
|y −�(w)|2

)
Id

+ g′
(

1

2
|y −�(w)|2

)
(y −�(w))(y −�(w))t

]
f0(w) dSd−1(w),

the proof of Lemma 1 shows that ||∇v�||∞(y, t) ≤ C(M, Dy). The constant C increases
with M and Dy := maxSd−1 |y − �(w, t)| and remains finite provided M and Dy
stay bounded. Of course Dy ≤ 2||�||∞(t) ≤ 2 sup[0,T ] ||�||∞(t) < ∞, provided
|y| ≤ ||�||∞(t), so that

||∇v�||L∞(|y|≤||�||∞(t)) ≤ C

(
M, 2 sup

[0,T ]
||�||∞(t)

)
< ∞

and (33) holds.
For the converse, it suffices to show that both Lip[�](T ) and Lip[�−1](T ) remain

bounded. To this end, for x, z ∈ Sd−1, let �(x, z, t) := �(x, t) −�(z, t). The funda-
mental theorem of calculus then yields

1

2

∂

∂t
|�(x, z, t)|2

=
∫ 1

0
〈�(x, z, t), [∇v�](ε�(x, t) + (1 − ε)�(z, t))�(x, z, t)〉 dε. (34)

As |ε�(x, t) + (1 − ε)�(z, t)| ≤ ||�||∞(t), the relation (34) implies

1

2

∂

∂t
|�(x, z, t)|2 ≥ −K ||∇v�||L∞(|y|≤||�||∞(t))|�(x, z, t)|2

for some absolute constant K that depends only on the size of the matrix. By Gronwall’s
inequality,

|�(x, z, 0)|e−K
∫ t

0 ||∇v�||L∞(|y|≤||�||∞(s))ds ≤ |�(x, z, t)|.
Dividing through by |x − w| and taking an infimum gives the estimate

Lip[�−1](T ) ≤ Lip[�−1
0 ]eK

∫ T
0 ||∇v�||L∞(|y|≤||�||∞(s))ds < ∞

due to (33). Analogously, the fundamental theorem of calculus and the proof of Lemma 1
combine to show

1

2

∂

∂t
|�(x, z, t)|2 ≤ C(Lip[�−1](t), 2||�||∞||(t))|�(x, z, t)|2.

Applying Gronwall’s inequality, then dividing by |x − w| and taking a supremum yields

Lip[�](T ) ≤ Lip[�0]e
∫ T

0 C(Lip[�−1](s),2||�||∞(s)) ds < ∞.

The last inequality holds since Lip[�−1](t) remains finite on [0, T ] due to the previous
estimate, and since ||�||∞(t) remains bounded for all t ∈ [0, T ] by hypothesis. ��
Remark 1. From the proof of the previous theorem, we can rephrase the result to say
that the solution �(x, t) ∈ C([0, T ]; C0,1(Sd−1)) exists as a bi-Lipschitz surface past
time T if and only if both Lip[�−1](T ) and ||�||∞(T ) remain finite. This rephrasing
generally proves more useful than the statement in Theorem 5.
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4.1. The Osgood condition for locally attractive kernels. We first focus our attention
on the case when g(s) has an attractive (i.e., negative) singularity at the origin, such
as g(s) = −s−p. From (32) we know collapse can occur in finite time, so we wish to
characterize precisely when this happens. Earlier studies on the aggregation equation
(2) have shown that the Osgood condition on the kernel g(s) provides a precise char-
acterization. Indeed, for initial data ρ0 ∈ L∞(Rd) the Osgood condition proves both
necessary and sufficient for ρ to remain in L∞ for all positive times [3]. For initial data
in ρ0 ∈ L p(Rd) with p > d

d−1 , the Osgood condition proves necessary and sufficient
for global existence as well [4]. For our co-dimension one distribution solutions, we
show that this characterization holds for the surface equation (8) in this section.

Following [3], we say that the kernel g(s) is Osgood if

lim
ε↓0

∫ 1

ε

1

sg(s)
ds = −∞. (35)

Adapting the arguments from [3] to our setting easily yields the necessity of (35) for
global existence, as we demonstrate in the lemma that follows.

Lemma 5. Suppose g(s) is non-positive and non-decreasing in some neighborhood
(0, δ]of the origin and that f0(w) ≥ 0. If (35) fails, then all solutions with ||�0||2∞ < δ/2
collapse to the origin in finite time.

Proof. The proof follows exactly as in [3]. As long as�(x, t) exists, by continuity there
exists x ∈ Sd−1 with |�(x, t)| = ||�||∞(t). From the hypotheses on g, f0 and the fact
that 〈�(x, t),�(x, t)−�(w, t)〉 ≥ 0 for all w ∈ Sd−1 it then follows that

∂

∂t
|�(x, t)|2

= 2
∫

Sd−1
g

(
1

2
|�(x, t)−�(w, t)|2

)
〈�(x, t),�(x, t)−�(w, t)〉 f0(w) dSd−1(w)

≤ 2g
(

2|�(x, t)|2
) [∫

Sd−1
|�(x, t)|2 f0(w) dSd−1(w)

−
〈
�(x, t),

∫

Sd−1
�(w, t) f0(w) dSd−1(w)

〉]

= 2Mρ |�(x, t)|2g
(

2|�(x, t)|2
)

≤ 0.

The last line results from (14),(15) and our assumption that �0(x) has zero center of
mass. If (35) fails, the solution to the ODE

dr

dt
= 2Mρrg(2r) r(0) = ||�0||2∞ (36)

reaches zero in finite time, whence ||�||∞(t) must reach zero in finite time as well. ��
As a consequence, in general (35) must hold in order to guarantee that solutions to (8)

do not collapse in finite time. We therefore assume (35), and turn our attention toward
demonstrating the sufficiency of the Osgood condition for global existence. For this it
will prove useful to rewrite g(s) in the form

g(s) = h ((2s)p)

(2s)p
, (37)
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so that the Osgood condition then reads

lim
ε↓0

∫ 1

ε

1

h(u)
du = −∞. (38)

Following [4], we shall say h(r) defines a natural kernel provided it satisfies the following
regularity, boundedness and monotonicity conditions:

Definition 2. Let g(s) satisfy (37) for some 0 < p < (d −1)/2. We then say h(r) defines
a natural kernel if

(H1) h(r) ∈ C1
(
R

+\{0}) ,
(H2) h(r) ∈ L∞(R+) and h′(r) ∈ L∞([1,∞)),

(H3) h′(r) is monotonic (either increasing or decreasing) near zero.

Remark 2. For simplicity of exposition, we have chosen the convention that the expo-
nent p in Definition 2 has the opposite sign from the exponent p in Definition 1. The
restriction 0 < p < (d − 1)/2 in Definition 2 then simply restates the integrability
constraint (11).

Using the arguments from [4], we establish

Lemma 6. Let h(r) define a natural kernel with h(0) = 0. Then either

(a) min
{

h(r)
r , h′(r)

}
≥ C0 for some C0 > −∞ and all r ∈ [0, 1], or both

(b1) h(r)
r → −∞ and h′(r) → −∞ as r → 0+, and

(b2) ∃δ > 0 such that ∀r ∈ (0, δ] h′(r) ≥ h(r)
r ,

h(r)
r increases, h(r) decreases,

and if δ1 ≤ δ then infr≥δ1
h(r)

r = h(δ1)
δ1

and infr≥δ1 h′(r) = h′(δ1).

Proof. Suppose first that there exists C1 > −∞ such that

lim inf
r→0+

h(r)

r
> C1.

As h(0) = 0, given any r sufficiently small there exists s < r with

h′(s) = h(r)

r
> C1.

It then follows from (H3) that limr→0+ h′(r) ≥ C0. Thus h′(r) is bounded from below
in a neighborhood of the origin as well, so (a) holds. Otherwise, there exist sequences
rn → 0+ and sn < rn with

lim
n→∞

h(rn)

rn
= h′(sn) = −∞. (39)

When combined with (H3), this gives both that h′(r) → −∞ and that h′(r) is increas-
ing on some neighborhood (0, σ ] of zero. Clearly h decreases in this neighborhood as
h′ < 0. Moreover, for any r ∈ (0, σ ] there exists s < r ≤ σ with
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h(r)

r
= h′(s) ≤ h′(r)

as desired. This also gives that d
dr

(
h(r)

r

)
= 1

r

(
h′(r)− h(r)

r

)
≥ 0, so that h(r)

r increases.

Coupled with (39) this shows h(r)
r → −∞, completing the proof of (b1). Finally, from

these statements it follows that h(r)
r and h′(r) are monotonic in (0, σ ] and tend to −∞

as r → 0+, so the remainder of (b2) follows provided δ ≤ σ is sufficiently small. ��
Note that if g(s) is Osgood, it follows from (38) that necessarily h(0) = 0. We can

therefore apply Lemma 6 to such kernels, and this allows us to provide a lower bound for
the time of collapse of 1/Lip[�−1](t) to zero in terms of the solution to an ODE. When
part (a) of the lemma holds, a crude estimate suffices to demonstrate global existence
from this ODE. When (b1) and (b2) hold the ODE proves more complicated. However,
as g(s) is Osgood, the solution to this ODE still remains positive for all time, and this
yields global existence in the second case.

Lemma 7. Let h(r) define a natural kernel g(s) that is Osgood. Suppose further that
f0(z) ≥ 0. If (a) in Lemma 6 holds then the solution �(x, t) exists globally in time.

Proof. By the remark following Theorem 5, this follows from a straightforward upper
bound for Lip[�−1](t) and ||�||∞(T ). For x,w, z ∈ Sd−1 and ε ∈ R let �(x,w, t) :=
�(x, t)−�(w, t) and

Lε(x,w, z) = ε�(x, t) + (1 − ε)�(w, t)−�(z, t). (40)

Using the fundamental theorem of calculus as before,

1

2

∂

∂t
|�(x,w, t)|2

=
∫ 1

0
〈�(x,w, t), [∇v�](ε�(x, t) + (1 − ε)�(w, t))�(x,w, t)〉 dε

=
∫ 1

0

∫

Sd−1

[
g

(
1

2
|Lε |2

)
|�|2 + g′

(
1

2
|Lε |2

)
〈�, Lε〉2

]
f0(z) dSd−1(z)dε.

Recalling (37), this reads

1

2

∂

∂t
|�(x,w, t)|2 = |�|2

∫ 1

0

∫

Sd−1

[
h(|Lε |2p)

|Lε |2p

(
1 − 2p cos2(θε)

)

+ h′(|Lε |2p)2p cos2(θε)
]

f0(z) dSd−1(z)dε, (41)

where θε denotes the angle between Lε and �. Let

C0(t) = C0(||�||∞(t)) = inf
r∈

[
0,22p ||�||2p∞ (t)

] min

{
h(r)

r
, h′(r)

}
.

When (a) holds, it follows from (H1) that C0(t) > −∞ provided ||�||∞(t) remains
finite. Therefore,

1

2

∂

∂t
|�(x,w, t)|2 ≥ C0(t)Mρ |�(x,w, t)|2.
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Gronwall’s inequality then yields

|�(x,w, t)| ≥ |�(x,w, 0)|eMρ

∫ t
0 C0(s)ds .

Dividing through by |x − w| and taking an infimum yields

Lip[�−1](t) ≤ Lip[�−1
0 ]e−Mρ

∫ t
0 C0(s)ds,

so that Lip[�−1](t) remains bounded for all finite times provided ||�||∞(t) does. As
h(r) defines a natural kernel, the hypotheses (H2) shows that

∂

∂t
||�||∞(t) ≤ K ||�||1−2p∞ (t),

for some absolute constant K , so that ||�||∞(t) does indeed remain bounded for all
finite time as desired. ��

Now let us turn to the second case, i.e. that (b1) and (b2) from Lemma 6 hold. For
use in the following lemma, let us define the quantity we wish to estimate, r(t) :=
1/Lip[�−1](t), and the integral

I(r2p(t)) =
∫ 1

−1

h
(
r2p(t)2−p(1 − s)p

)

2−p(1 − s)p
(1 − s2)

d−3
2 ds. (42)

With these definitions, and taking δ as in Lemma 6 part (b2) we can demonstrate

Lemma 8. Let h(r) define a natural kernel g(s) that is Osgood. Suppose further that
f0(z) ≥ 0 and 0 < r(t0) < δ for some t0 ≥ 0. If (b1) and (b2) in Lemma 6 holds, then
r2p(t) remains bounded below by the solution q(t) to the ODE

dq

dt
= 2p

[
vol(Sd−2)|| f0||∞I(q(t)) + Mρh(q(t))

]
, q(t0) = r2p(t0) (43)

for all t ≥ t0 with q(t) > 0.

Proof. Use the fundamental theorem of calculus as in the first case, define Lε as in (40)
and let f (ε, z) denote the integrand. Then split the resulting integral (41) into two terms
to find

∫ 1

0

∫

Sd−1
f (ε, z) dSd−1(z)dε =

∫ 1

0

∫

Sd−1∩{|Lε |2p≤δ1}
+

∫ 1

0

∫

Sd−1∩{|Lε |2p≥δ1}
.

:= I + II.

For any δ1 ≤ δ with δ as in Lemma 6, as h′(|Lε |2p) ≥ h(|Lε |2p)

|Lε |2p and h ≤ 0, it follows
that

I ≥ || f0||∞
∫ 1

0

∫

Sd−1∩{|Lε |2p≤δ1}
h(|Lε |2p)

|Lε |2p
dSd−1(z).

Let x0 = x0(ε) denote a minimizer of |ε�(x, t) + (1 − ε)�(w, t) − �(z, t)| over
z ∈ Sd−1, so that

|Lε | ≥ 1

2
|�(x0, t)−�(z, t)| ≥ r(t)

2
|x0 − z|.
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Combining this with the facts that h(r)
r is non-decreasing and that h ≤ 0 then shows

I ≥ 22p|| f0||∞
∫ 1

0

∫

{|Lε |2p≤δ1}
h

(
r2p(t)2−2p|x0 − z|2p

)

r2p(t)|x0 − z|2p
dSd−1(z)dε

≥ 22p|| f0||∞
∫ 1

0

∫

{r2p(t)2−2p |x0−z|2p≤δ1}
h

(
r2p(t)2−2p|x0 − z|2p

)

r2p(t)|x0 − z|2p
dSd−1(z)dε.

The case l = 0 of Theorem 1 then implies

I ≥ vol(Sd−2)|| f0||∞
∫

{(r2(1−s)/2)p≤δ1}
h

(
r2p(t)2−p(1 − s)p

)

r2p(t)2−p(1 − s)p
(1 − s2)

d−3
2 ds.

For II, using the last part of (b2) it follows that h(r)
r ≥ h(δ1)

δ1
for all r ≥ δ1 and similarly

that h′(r) ≥ h′(δ1) ≥ h(δ1)
δ1

provided δ1 ≤ δ. Therefore

II ≥ h(δ1)

δ1

∫ 1

0

∫

Sd−1
f0(z) dSd−1(z)dε = Mρ

h(δ1)

δ1
.

For any time when r2p(t) < δ, the choice δ1 = r2p(t) yields

1

2

∂

∂t
|�|2 ≥ |�|2

[
vol(Sd−2)|| f0||∞I(r2p(t)) + Mρh(r2p(t))

]
r−2p(t). (44)

An application of Gronwall’s inequality then shows

|�(x,w, t)|2p ≥ |�(x,w, 0)|2p exp

(
2p

∫ t

t0

[
vol(Sd−2)|| f0||∞I(r2p(s))

+ Mρh(r2p(s))
]

r−2p(s)ds

)
.

Dividing through by |x − w| and taking infimums yields the estimate

r2p(t)/r2p(t0)

≥ exp

(
2p

∫ t

t0

[
vol(Sd−2)|| f0||∞I(r2p(s)) + Mρh(r2p(s))

]
r−2p(s)ds

)
, (45)

which holds for all t ≥ t0 such that r2p(t) < δ on [t0, t].
For ε ∈ (0, 1), let qε denote the solution to (43) with initial data qε(t0) =

(1 − ε)r2p(t0). Note that qε(t) =

(1 − ε)r2p(t0)exp

(
2p

∫ t

t0

[
vol(Sd−2)|| f0||∞I(qε(s)) + Mρh(qε(s))

]
/qε(s) ds

)

as long as qε(t) > 0. As h(r)/r increases whenever r < δ, this combines with the esti-
mate (45) to show that r2p(t) > qε(t) for all t ≥ t0 such that qε(t) > 0 and r2p(t) < δ

on [t0, t]. By continuous dependence of the ODE (45) on its initial data, qε(t) → q(t) as
long as q(t) > 0. Thus r2p(t) ≥ q(t) for all t ≥ t0 such that q(t) > 0 and r2p(t) < δ on
[t0, t]. Of course, q(t) < δ for all t ≥ t0 as h ≤ 0 on (0, δ], so that in fact r2p(t) ≥ q(t)
for all t ≥ t0. ��
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The last ingredient we need demonstrates that in the second case, the solution to (43)
remains positive for all time when h(r) defines a natural, Osgood kernel.

Lemma 9. Let h(r) define a natural, Osgood kernel satisfying (b1) and (b2), and take
δ > 0 as in Lemma 6. Then the solution �(x, t) with initial data �0(x) exists globally
in time.

Proof. It suffices to show that I(q(t)) ≥ Ch(q(t)), where C , denotes some finite,
positive constant. Indeed, as h(r) defines an Osgood kernel the solution to (43) then
remains positive for all time, whence Lip[�−1](t) remains finite for all time by Lemma
8. From (H2) it follows that ||�||∞(t) also remains bounded for all time, and the claim
then follows.

To see that I(q(t)) ≥ Ch(q(t)) holds, recall from Lemma 6 part (b2) that h(r)
decreases on (0, δ]. As q(t)2−p(1 − s)p ≤ q ≤ δ for s ∈ [−1, 1], it then follows that

I(q(t)) :=
∫ 1

−1

h
(
q(t)2−p(1 − s)p

)

2−p(1 − s)p
(1 − s2)

d−3
2 ds

≥ 2ph(q(t))
∫ 1

−1
(1 − s)

d−3
2 −p(1 + s)

d−3
2 ds.

As p < d−1
2 by hypothesis, the last integral is finite, which gives I(q(t)) ≥ Ch(q(t))

as desired. ��
We may now encapsulate the previous lemmas into the main result of this section,

i.e. the following theorem demonstrating the equivalence between the Osgood condi-
tion (38) and the global existence of all solutions to the IDE (8) for the class of natural
kernels.

Theorem 6 (Necessary and Sufficient Condition for Global Existence). Let g(s) satisfy
(37), where h(r) defines a natural kernel and h(r) ≤ 0 in a neighborhood of the origin.
Then all solutions to (8) exist globally in time if and only if (38) holds.

Proof. Suppose first that (38) fails. Then either h(0) < 0 or h(0) = 0. In the first case,
there exists ε > 0 so that

g(s) <
h(0)

2(2s)p
,

for some p > 0 and all s ∈ [0, ε]. The proof of Lemma 5 then shows that all solutions
with ||�0||2∞ ≤ ε/2 collapse to the origin in finite time. In the second case, either (a) or
(b1,b2) in Lemma 6 holds. If (a) holds then ∃C0 > 0 so that

h(r) ≥ −C0r

for all r in a neighborhood of the origin. This contradicts the assumption that (38) fails,
so both (b1) and (b2) must hold. As a consequence, g(s) is non-positive and non-decreas-
ing in a neighborhood of the origin. Lemma 5 then applies, so that all solutions with
||�0||∞ sufficiently small must collapse in finite time.

Conversely, if (38) holds then necessarily h(0) = 0. Thus either Lemma 7 or Lemma 9
applies, yielding global existence of all solutions in either case. ��

4.2. Locally repulsive kernels. Lastly, we provide a global existence result for locally
repulsive kernels, i.e. when g(s) has a positive singularity near the origin. As before, we
assume
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g(s) = h ((2s)p)

(2s)p
,

with p < (d − 1)/2, but enforce the further restriction that 0 < p ≤ 1/2 as well. As
the proofs that follow elucidate, without this further restriction the sign of h near zero
does not guarantee a repulsive kernel. We modify the assumptions on h(r) slightly, in
that we replace the monotonicity condition (H3) with a boundedness condition (H4). All
together, we assume

(H1) h(r) ∈ C1 (
R

+\{0}) ,
(H2) h(r) ∈ L∞(R+),

(H4) inf
(0,1)

h′(r) > −∞.

(46)

These hypotheses include many kernels that appear in applications, including the power
laws g(s) = s−p for p ≤ 1

2 as well as the ubiquitous Morse potential [16,11]

g(s) = e−√
2s − Fe−L

√
2s

√
2s

.

Under these assumptions, we have the following global existence result:

Theorem 7. Let g(s) = h((2s)p)(2s)−p for some 0 < p ≤ 1/2 if d ≥ 3 and p < 1/2 if
d = 2. Let h(r) satisfy (46) and f0(w) ≥ 0. If there exists a neighborhood (0, δ] of the
origin on which h(r) ≥ 0, then the solution �(x, t) given by Theorem 2 exists globally
in time.

Proof. Again using the remark following Theorem 5, this follows from a straightfor-
ward upper bound for Lip[�−1](t) and ||�||∞(T ). For x,w, z ∈ Sd−1 and ε ∈ R let
�(x,w, t) := �(x, t)−�(w, t) and

Lε(x,w, z) = ε�(x, t) + (1 − ε)�(w, t)−�(z, t).

Then as before it follows that

1

2

∂

∂t
|�(x,w, t)|2 = |�|2

∫ 1

0

∫

Sd−1

[
h(|Lε |2p)

|Lε |2p

(
1 − 2p cos2(θε)

)

+ h′(|Lε |2p)2p cos2(θε)
]

f0(z) dSd−1(z)dε,

where θε denotes the angle between Lε and �. As h ≥ 0 when |Lε |2p < δ and h′ is
bounded below it follows that

1

2

∂

∂t
|�(x,w, t)|2 ≥ |�|2

∫ 1

0

∫

Sd−1

[
h(|Lε |2p)

|Lε |2p

(
1 − 2p cos2(θε)

)
1{|Lε |2p≥δ}

+ h′(|Lε |2p)2p cos2(θε)
]

f0(z) dSd−1(z)dε

≥|�|2vol(Sd−1)|| f0||∞
(

min

{
inf

r∈(0,22p ||�||2p∞ (t)]
h′(r), 0

}
− ||h||∞

δ

)
.
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Using Gronwall’s inequality as before shows that Lip[�−1](t) remains finite for all time
provided ||�||∞(t) does. However, as in Lemma 7 hypothesis (H2) shows that

∂

∂t
||�||∞(t) ≤ K ||�||1−2p∞ (t),

for some absolute constant K , so that ||�||∞(t) does remain bounded for all finite time
as desired. ��

5. Concluding Remarks

This paper provides the basic local in time well-posedness theory for an aggregation
sheet, i.e. a solution to the aggregation equation that concentrates on a co-dimension
one manifold. We focused our efforts on the case when the evolution equation (8) is
linearly well-posed, and used the linear well-posedness condition to demonstrate that
nonlinear well-posedness also holds. This condition enforces regularity in the kernel, and
we therefore assumed only a modest amount of regularity for the sheet itself. This con-
trasts to similar problems in the linearly ill-posed regime, most notably the Birkhoff-Rott
equation, where local existence results have been known for some time for analytic sheets
in two and three dimensions [25], and for chord-arc initial data [32] in two dimensions.
Demonstrating local existence of sheet solutions to the aggregation equation (2) in the
ill-posed regime proves an interesting open problem.

Regarding global existence, we showed that for attractive kernels the Osgood con-
dition (35) determines whether or not solutions collapse in finite time. This makes a
nice connection to the existing literature on the co-dimension zero aggregation equa-
tion, where similar results exist [3,4]. For a class of kernels with a repulsive singularity
near the origin we provided a simple global existence result. While this class includes
many kernels that appear in applications, such as the Morse potential, it fails to capture
reasonable examples such as the power laws g(s) = s−p for p > 1/2. Our current
methods for demonstrating global existence do not apply to such kernels, so we leave
the problem of proving global existence for a broader class of repulsive kernels for future
research.
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