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Abstract
In this paper, we introduce a general algorithm to approximate common fixed points
for a countable family of nonexpansive mappings in a real Hilbert space, which solves
a corresponding variational inequality. Furthermore, we propose explicit iterative
schemes for finding the approximate minimizer of a constrained convex minimization
problem and prove that the sequences generated by our schemes converge strongly
to a solution of the constrained convex minimization problem. Our results improve
and generalize some known results in the current literature.
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1 Introduction
A viscosity approximationmethod for finding fixed points of nonexpansive mappings was
first proposed by Moudafi in  []. He proved the convergence of the sequence gen-
erated by the proposed method. In , Xu [] proved the strong convergence of the
sequence generated by the viscosity approximation method to a unique solution of a cer-
tain variational inequality problem defined on the set of fixed points of a nonexpansive
map.
It is well known that the iterativemethods for finding fixed points of nonexpansivemap-

pings can also be used to solve a convexminimization problem; see, for example, [–] and
the references therein. In , Xu [] introduced an iterative method for computing the
approximate solutions of a quadratic minimization problem over the set of fixed points of
a nonexpansivemapping defined on a real Hilbert space. He proved that the sequence gen-
erated by the proposedmethod converges strongly to the unique solution of the quadratic
minimization problem. By combining the iterative schemes proposed by Moudafi [] and
Xu [], Marino and Xu [] considered a general iterative method and proved that the se-
quence generated by themethod converges strongly to a unique solution of a certain varia-
tional inequality problem, which is the optimality condition for a particular minimization
problem. Liu [] and Qin et al. [] also studied some applications of the iterative method
considered in []. Yamada [] introduced the so-called hybrid steepest-descent method
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for solving the variational inequality problem and also studied the convergence of the se-
quence generated by the proposed method. Very recently, Tian [] combined the iterative
methods of [, ] in order to propose implicit and explicit schemes for constructing a fixed
point of a nonexpansive mapping T defined on a real Hilbert space. He also proved the
strong convergence of these two schemes to a fixed point of T under appropriate condi-
tions. Related iterative methods for solving fixed point problems, variational inequalities
and optimization problems can be found in [–] and the references therein.
On the other hand, the gradient-projection method for finding the approximate solu-

tions of the constrained convexminimization problem iswell known; see, for example, []
and the references therein. The convergence of the sequence generated by this method
depends on the behavior of the gradient of the objective function. If the gradient fails
to be strongly monotone, then the strong convergence of the sequence generated by the
gradient-projection method may fail. Very recently, Xu [] gave an operator-oriented ap-
proach as an alternative to the gradient-projection method and to the relaxed gradient-
projection algorithm, namely, an averaged mapping approach. Moreover, he constructed
a counterexample which shows that the sequence generated by the gradient-projection
method does not converge strongly in the setting of an infinite-dimensional space. He
also presented two modifications of gradient-projection algorithms which are shown to
have strong convergence. Further, he regularized the minimization problem to derive an
iterative scheme that generates a sequence converging in norm to the minimum-norm so-
lution of the constrained convexminimization problem in the consistent case. The related
methods and results can be found in [–] and the references therein. By virtue of pro-
jections, the authors in [] extended the implicit and explicit iterative schemes proposed
in [].
The purpose of this paper is to introduce a general algorithm to approximate com-

mon fixed points for a countable family of nonexpansive mappings in a real Hilbert space.
We prove the strong convergence theorems for the sequences produced by the methods
to a common fixed point of a countable family of nonexpansive mappings which is the
unique solution of a corresponding variational inequality. We also propose explicit itera-
tive schemes for finding the approximateminimizer of a constrained convexminimization
problem and prove that the sequences generated by our schemes converge strongly to a
solution of the constrained convex minimization problem. Our results improve and gen-
eralize some known results in the current literature, see, for example, [, ].

2 Preliminaries
Throughout this paper, we denote the set of real numbers and the set of positive integers
by R and N, respectively. Let H be a real Hilbert space, and let C be a nonempty subset
of H . Let T : C → C be a mapping. We denote by F(T) the set of fixed points of T , i.e.,
F(T) = {x ∈ C : Tx = x}.

Definition . (i) A mapping T : C → C is said to be nonexpansive if ‖Tx–Ty‖ ≤ ‖x– y‖
for all x, y in C. T is said to be quasi-nonexpansive if F(T) �=∅ and ‖Tx – y‖ ≤ ‖x – y‖ for
all x in C and y in F(T).
(ii) A mapping T :H → H is said to be an averaged mapping [] if it can be written as

the average of the identity I and a nonexpansive mapping; that is,

T = ( – α)I + αS, (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/546
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where α is a number in (, ), and S :H →H is nonexpansive. More precisely, when (.),
holds, we say that T is α-averaged.
(iii) A mapping B : C →H is said to be L-Lipschitzian if ‖Bx–By‖ ≤ L‖x– y‖, ∀x, y ∈ C,

where L ≥  is a constant. In particular, if L ∈ [, ), then B is called a contraction on C; if
L = , then B is nonexpansive.
(iv) A mapping V :D(V ) ⊂H →H is called firmly nonexpansive [] if

〈x – y,Vx –Vy〉 ≥ ‖Vx –Vy‖, ∀x, y ∈ D(V ),

where D(V ) is the domain of V .

Clearly, a firmly nonexpansive mapping is a 
 -averaged map.

Proposition . [, ] Let H be a real Hilbert space, and let S,T ,B : H → H be map-
pings.
(a) If T = ( – α)S + αB for some α in (, ), and if S is averaged, and B is nonexpansive,

then T is averaged.
(b) T is firmly nonexpansive if and only if the complement (I –T) is firmly nonexpansive.
(c) If T = ( – α)S + αB for some α in (, ), and if S is firmly nonexpansive, and B is

nonexpansive, then T is averaged.
Recall that the metric (or nearest point) projection from H onto C is the mapping PC :

H → C,which assigns to each point x in H the unique point PCx in C satisfying the property

‖x – PCx‖ = d(x,C) := inf
y∈C ‖x – y‖.

Lemma . [] Let H be a real Hilbert space. For given x in H :
(a) z = PCx if and only if

〈z – x, z – y〉 ≤ , ∀y ∈ C.

(b) z = PCx if and only if

‖x – z‖ ≤ ‖x – y‖ – ‖y – z‖, ∀y ∈ C.

(c)

〈PCx – PCy,x – y〉 ≥ ‖PCx – PCy‖, ∀x, y ∈H .

Consequently, PC is nonexpansive and monotone.

In general, a projection mapping is firmly nonexpansive, and, thus, a /-averaged map.

Lemma . The following inequality holds in an inner product space X:

‖x + y‖ ≤ ‖x‖ + 〈y,x + y〉, ∀x, y ∈ X.

http://www.journalofinequalitiesandapplications.com/content/2013/1/546
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Lemma . [] In a Hilbert space H , we have

∥∥λx + ( – λ)y
∥∥ = λ‖x‖ + ( – λ)‖y‖ – λ( – λ)‖x – y‖, ∀x, y ∈H and λ ∈ [, ].

Lemma . (Demiclosedness principle []) Let T : C → C be a nonexpansive mapping
with F(T) �= ∅. If {xn} is a sequence in C that converges weakly to x, and if {(I – T)xn}
converges strongly to y, then (I – T)x = y; in particular, if y = , then x ∈ F(T).

Definition . Let H be a real Hilbert space. A nonlinear operator T , whose domain
D(T)⊂H and range R(T) ⊂H is said to be:
(a) monotone if

〈x – y,Tx – Ty〉 ≥ , ∀x, y ∈D(T),

(b) η-strongly monotone if there exists η >  such that

〈x – y,Tx – Ty〉 ≥ η‖x – y‖, ∀x, y ∈D(T),

(c) α-inverse strongly monotone (for short, α-ism) if there exists α >  such that

〈x – y,Tx – Ty〉 ≥ α‖Tx – Ty‖, ∀x, y ∈D(T).

It can be easily seen that (i) if T is nonexpansive, then I – T is monotone; (ii) the pro-
jection map PC is a -ism. The inverse strongly monotone (also referred to as co-coercive)
operators have been widely used to solve practical problems in various fields, for instance,
in traffic assignment problems; see, for example, [, ] and the references therein.

Proposition . [] Let T :H →H be an operator.
(a) T is nonexpansive if and only if the complement I – T is 

 -ism.
(b) If T is v-ism, then γT is v

γ
-ism for v > .

(b) T is averaged if and only if the complement I – T is v-ism for some v > 
 . Indeed, for

α in (, ), T is α-averaged if and only if I – T is 
α -ism.

Lemma . [] Let B : C → H be an L-Lipschitzianmapping with constant L ≥ , and let
A : C → H be a κ-Lipschitzian and η-strongly monotone operator with constants κ ,η > .
Then for  ≤ γL < μη, we have

〈
x – y, (μA – γB)x – (μA – γB)y

〉 ≥ (μη – γL)‖x – y‖, ∀x, y ∈ C.

That is, μA – γB is strongly monotone with coefficient μη – γL.

The following lemma plays a key role in proving strong convergence of our iterative
schemes.

Lemma . [, Lemma .] Suppose that λ ∈ (, ) and μ,κ ,η > . Let A : C → H be an
L-Lipschitzian and η-strongly monotone operator on C. In association with a nonexpansive

http://www.journalofinequalitiesandapplications.com/content/2013/1/546
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mapping T : C → C, define the mapping Tλ : C →H by

Tλx := Tx – λμA(Tx), ∀x ∈ C.

Then Tλ is a contraction provided μ < η
κ
, that is,

∥∥Tλx – Tλy
∥∥ ≤ ( – λτ )‖x – y‖, ∀x ∈ C,

where τ =  –
√
 –μ(η –μκ) ∈ (, ].

Let A : C → H be a κ-Lipschitzian and η-strongly monotone operator with constants
κ ,η > . Let B : C → E be an L-Lipschitzian mapping with constant L ≥ . Assume that
T : C → C is a nonexpansive mapping with F(T) �= ∅. Let  < μ < η

κ
and  ≤ γL < τ ,

where τ = –
√
 –μ(η –μκ). Let the net {xt}t∈(,) be generated by the following implicit

scheme:

xt = PC
[
tγBxt + (I – tμA)Txt

]
. (.)

Then {xt}t∈(,) converges strongly to a fixed point x̃ of T , which solves the variational
inequality

〈
(γB –μA)x̃, x̃ – z

〉 ≤ , ∀z ∈ F(T). (.)

Let the sequence {xn}n∈N be generated by the following explicit scheme:

xn+ = PC
[
αnγBxn + (I – αnμA)Txn

]
. (.)

Then {xn}n∈N converges strongly to a fixed point x̃ of T , which is also a solution of the
variational inequality (.), see, for more details, [].
Consider a self-mapping St on C defined by

Stx = PC
[
tγBxt + (I – tμA)Tx

]
, ∀x ∈ C. (.)

Then, St is a contraction, and it has a unique fixed point in C, which uniquely solves the
fixed point equation (.), see [] for more details.

Proposition . [, Proposition .] Let H be a real Hilbert space, and let C be a
nonempty, closed and convex subset of H . Let A : C →H be a κ-Lipschitzian and η-strongly
accretive operator with constants κ ,η > . Let B : C → H be an L-Lipschitzian mapping
with constant L ≥ . Assume that T : C → C is a nonexpansive mapping with F(T) �= ∅.
Let  < μ < η

κ
and  ≤ γL < τ , where τ =  –

√
 –μ(η –μκ). For each t in (, ), let xt

denote a unique solution of the fixed point equation (.). Then, the following properties
hold for the net {xt}t∈(,):
() {xt}t∈(,) is bounded;
() limt→ ‖xt – Txt‖ = ;
() t �→ xt defines a continuous curve from (, ) into C.

http://www.journalofinequalitiesandapplications.com/content/2013/1/546
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Theorem . [, Theorem .] Let H be a real Hilbert space, and let C be a nonempty,
closed and convex subset of H . Let A : C →H be an κ-Lipschitzian and η-strongly accretive
operator with constants κ ,η > . Let B : C → H be an L-Lipschitzian mapping with con-
stant L ≥ . Assume T : C → C is a nonexpansive mapping with F(T) �=∅. Let  < μ < η

κ

and  ≤ γL < τ , where τ =  –
√
 –μ(η –μκ). For each t in (, ), let {xt} denote the

unique solution of the fixed point equation (.). Then the net {xt} converges strongly, as
t → , to a fixed point x̃ of T , which solves the variational inequality (.), or equivalently,
PF(T)(I –μA + γB)x̃ = x̃.

Lemma . [] Let {sn}, {γn} be sequences of nonnegative real numbers satisfying the
inequality:

sn+ ≤ ( – γn)sn + γnδn, ∀n≥ .

Suppose that {γn} and {δn} satisfy the conditions:
(i) {γn} ⊂ [, ] and

∑∞
n= γn =∞, or equivalently,

∏∞
n=( – γn) = ;

(ii) lim supn→∞ δn ≤ , or
(ii)′

∑∞
n= γnδn < ∞.

Then limn→∞ sn = .

Lemma . [] Let {βn} be a sequence of real numbers with

 < lim inf
n→∞ βn ≤ lim sup

n→∞
βn < .

Let {xn} and {zn} be two sequences in a Banach space E such that

xn+ = ( – βn)xn + βnzn, n≥ .

If

lim sup
n→∞

(‖xn+ – zn‖ – ‖xn+ – xn‖
) ≤ ,

then limn→∞ ‖xn – zn‖ = .

Let C be a subset of a real Banach space E, and let {Tn}∞n= be a family of mappings of
C such that

⋂∞
n= F(Tn) �=∅. Then {Tn}∞n= is said to satisfy the AKTT-condition [] if for

each bounded subset D of C, we have

∞∑
n=

sup
{‖Tn+z – Tnz‖ : z ∈D

}
< ∞.

Lemma . [] Let C be a nonempty subset of a real Banach space E, and let {Tn}∞n= be
a family of mappings of C into itself, which satisfies the AKTT-condition. Then for each x
in C, we have that {Tnx}∞n= converges strongly to a point in C.Moreover, let the mapping T
be defined by

Tx = lim
n→∞Tnx, ∀x ∈ C.

http://www.journalofinequalitiesandapplications.com/content/2013/1/546
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Then for each bounded subset D of C, we have

lim sup
n→∞

{‖Tnz – Tz‖ : z ∈D
}
= .

In the sequel,we will write that ({Tn}∞n=,T) satisfies the AKKT-condition if {Tn}∞n= satisfies
the AKKT-condition, and T is defined by Lemma ..

We end this section with the following simple examples of mappings satisfying the
AKTT-condition (see also Lemma .).

Example . (i) Let E be any Banach space. For any n ∈ N, let a mapping Tn : E → E be
defined by

Tn(x) =
x
n

(x ∈ E).

Then,Tn is a nonexpansivemapping for each n ∈N. It could easily be seen that ({Tn}∞n=,T)
satisfies the AKKT-condition, where T(x) =  for all x ∈ E.
(ii) Let E = l, where

l =

{
σ = (σ,σ, . . . ,σn, . . .) :

∞∑
n=

‖σn‖ <∞
}
, ‖σ‖ =

( ∞∑
n=

‖σn‖
) 



,∀σ ∈ l,

〈σ ,η〉 =
∞∑
n=

σnηn, ∀δ = (σ,σ, . . . ,σn, . . .),η = (η,η, . . . ,ηn, . . .) ∈ l.

Let {xn}n∈N∪{} ⊂ E be a sequence defined by

x = (, , , , . . .),

x = (, , , , , . . .),

x = (, , , , , , . . .),

x = (, , , , , , , . . .),

· · · ,
xn = (σn,,σn,, . . . ,σn,k , . . .),

· · · ,

where

σn,k =

⎧⎨
⎩ if k = ,n + ,

 if k �= ,k �= n + ,

for all n ∈ N. It is clear that the sequence {xn}n∈N converges weakly to x. Indeed, for any
� = (λ,λ, . . . ,λn, . . .) ∈ l = (l)∗, we have

�(xn – x) = 〈xn – x,�〉 =
∞∑
k=

λkσn,k → 

http://www.journalofinequalitiesandapplications.com/content/2013/1/546
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as n → ∞. It is also obvious that ‖xn – xm‖ =
√
 for any n �= m with n, m sufficiently

large. Thus, {xn}n∈N is not a Cauchy sequence. We define a countable family of mappings
Tj : E → E by

Tj(x) =

⎧⎨
⎩

n
n+x, if x = xn;
–j
j+x, if x �= xn,

for all j ≥  and n ≥ . It is clear that F(Tj) = {} for all j ≥ . It is obvious that Tj is a
quasi-nonexpansive mapping for each j ∈ N. Thus, {Tj}j∈N is a countable family of quasi-
nonexpansive mappings.
Let Tx = limj→∞ Tjx for all x ∈ E. It is easy to see that

T(x) =

⎧⎨
⎩

n
n+x, if x = xn;

–x, if x �= xn.

Then, we obtain that T is a quasi-nonexpansive mapping with F(T) = {} = F̃(T). LetD be
a bounded subset of E. Then there exists r >  such that D ⊂ Br = {z ∈ E : ‖z‖ < r}. On the
other hand, for any j ∈N, we have

∞∑
j=

sup
{‖Tj+z – Tjz‖ : z ∈ D

}
=

∞∑
j=

sup

{∥∥∥∥–j – 
j + 

z –
–j
j + 

z
∥∥∥∥ : z ∈D

}

=
∞∑
j=


(j + )(j + )

sup
{‖z‖ : z ∈D

}
< ∞.

Furthermore, we have

lim sup
j→∞

{‖Tjz – Tz‖ : z ∈ D
}
= .

Therefore, ({Tn}∞n=,T) satisfies the AKKT-condition.

3 Fixed point and convergence theorems
Let C be a nonempty, closed and convex subset of a real Hilbert spaceH , and let PC be the
metric (or nearest point) projection from H onto C.

Theorem . Let C be a nonempty, closed and convex subset of a real Hilbert space H .
Assume {Tn}∞n= is a sequence of nonexpansive mappings from C into itself such that⋂∞

n= F(Tn) �= ∅. Suppose, in addition, that T : C → C is a nonexpansive mapping such
that ({Tn}∞n=,T) satisfies the AKTT-condition, and S : C → C is a nonexpansive mapping
with F :=

⋂∞
n= F(Tn) ∩ F(S) �=∅. Let A : C → E be a κ-Lipschitzian and η-strongly mono-

tone operator with constants κ ,η > . Let B : C → E be an L-Lipschitzian mapping with
constant L≥ . Let  < μ < η

κ
and  ≤ γL < τ , where τ =  –

√
 –μ(η –μκ).

For arbitrarily given x in C, let the sequence {xn} be generated iteratively by

⎧⎨
⎩yn = PC[αnγBxn + (I – αnμA)xn],

xn+ = ( – βn)xn + βnTnSyn, n ∈ N,
(.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/546
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where {αn}, {βn} are two real sequences in (, ) satisfying the following control conditions:

(a) lim
n→∞αn =  and

∞∑
n=

αn =∞;

(b)  < lim inf
n→∞ βn ≤ lim sup

n→∞
βn < .

(.)

Then the sequence {xn} converges strongly to x∗ ∈ F(TS), which solves the variational in-
equality

〈
(μA – γB)x∗,x∗ – z

〉 ≤ , z ∈ F(TS). (.)

Proof We divide the proof into several steps.
Step I. We claim that the sequence {xn} is bounded. Let p in F be fixed. In view of

Lemma . we conclude that

∥∥(I – αnμA)xn – (I – αnμA)p
∥∥ ≤ ( – αnτ )‖xn – p‖, ∀n ∈N.

This together with (.)-(.) implies that

‖yn – p‖ =
∥∥PC

[
αnγBxn + (I – αnμA)xn

]
– PCp

∥∥
≤ ∥∥αnγBxn + (I – αnμA)xn – p

∥∥
=

∥∥αn
(
γBxn –μA(p)

)
+ (I – αnμA)xn – (I – αnμA)p

∥∥
≤ αnγL‖xn – p‖ + αn

∥∥(γB –μA)p
∥∥ + ( – αnτ )‖xn – p‖

=
(
 – αn(τ – γL)

)‖xn – p‖ + αn
∥∥(γB –μA)p

∥∥
≤ max

{
‖xn – p‖, ‖(γB –μA)p‖

τ – γL

}
. (.)

Since Tn is nonexpansive, for all n in N, it follows from (.) and (.) that

‖xn+ – p‖ =
∥∥( – βn)(xn – p) + βn(TnSyn – p)

∥∥
≤ ( – βn)‖xn – p‖ + βn‖TnSyn – p‖
≤ ( – βn)‖xn – p‖ + βn‖yn – p‖

≤ ( – βn)‖xn – p‖ + βnmax

{
‖xn – p‖, ‖(γB –μA)p‖

τ – γL

}

≤ max

{
‖xn – p‖, ‖(γB –μA)p‖

τ – γL

}
. (.)

By induction, we have that {xn} is bounded. This implies that the sequences {Axn}, {Bxn},
{yn}, {Syn} and {TnSyn} are bounded too. Let

M = sup
{‖xn‖,‖Axn‖,‖Bxn‖,‖yn‖,‖Syn‖,‖TnSyn‖ : n ∈N

}
< ∞,

http://www.journalofinequalitiesandapplications.com/content/2013/1/546
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and set

D =
{
z ∈ E : ‖z‖ ≤M

}
.

Then we have D is a bounded subset of E and {xn}, {Axn}, {Bxn}, {yn}, {TnSyn} ⊂D.
Step II. We claim that limn→∞ ‖yn – TSyn‖ = . In view of (.), we obtain

‖yn – xn‖ =
∥∥PC

[
αnγBxn + (I – αnμA)xn

]
– PC[xn]

∥∥
≤ ∥∥αnγBxn + (I – αnμA)xn – xn

∥∥
= ‖αnγBxn + xn – αnμAxn – xn‖
= αn

∥∥(γB –μA)xn
∥∥. (.)

Since limn→∞ αn = , it follows from (.) that

lim
n→∞‖yn – xn‖ = . (.)

In view of Lemma ., we conclude that

∥∥(I – αn+μA)xn+ – (I – αn+μA)xn
∥∥ ≤ ( – αn+τ )‖xn+ – xn‖, ∀n ∈N.

This implies that

‖yn+ – yn‖ =
∥∥PC

[
αn+γBxn+ + (I – αn+μA)xn+

]
– PC

[
αnγBxn + (I – αnμA)xn

]∥∥
≤ ∥∥αn+γBxn+ + (I – αn+μA)xn+ – αnγBxn + (I – αnμA)xn

∥∥
≤ ∥∥αn+γ (Bxn+ – Bxn) + γ (αn+ – αn)Bxn

+ (I – αn+μA)xn+ – (I – αn+μA)xn – αn+μAxn
∥∥

≤ αn+γL‖xn+ – xn‖ + ( – αn+τ )‖xn+ – xn‖
+ γ |αn+ – αn|‖Bxn‖ + αn+μ‖Axn‖

≤ (
 – αn+(τ – γL)

)‖xn+ – xn‖ + γM|αn+ – αn| +μMαn+

≤ ‖xn+ – xn‖ + γM|αn+ – αn| +μMαn+. (.)

Next, we show that limn→∞ ‖xn+ – xn‖ = . For this purpose, we denote a sequence {zn}
by zn = TnSyn. It follows from (.) that

‖zn+ – zn‖ = ‖Tn+Syn+ – TnSyn‖
≤ ‖Tn+Syn+ – Tn+Syn‖ + ‖Tn+Syn – TnSyn‖
≤ ‖yn+ – yn‖ + ‖Tn+Syn – TnSyn‖
≤ ‖xn+ – xn‖ + γM|αn+ – αn| +μMαn+

+ sup
{‖Tn+z – Tnz‖ : z ∈D

}
. (.)
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This implies that

‖zn+ – zn‖ – ‖xn+ – xn‖ ≤M|αn+ – αn| + sup
{‖Tn+z – Tnz‖ : z ∈D

}
. (.)

Since limn→∞ αn = , in view of the AKTT-condition and (.)(a), we conclude that

lim sup
n→∞

(‖zn+ – zn‖ – ‖xn+ – xn‖
) ≤ .

Utilizing Lemma ., we deduce that

lim
n→∞‖zn – xn‖ = .

It follows from (.) and (.)(b) that

lim
n→∞‖xn+ – xn‖ = lim

n→∞βn‖zn – xn‖ = . (.)

On the other hand, we have

‖yn – TnSyn‖ ≤ ‖yn – xn‖ + ‖xn – xn+‖ + ‖xn+ – TnSyn‖
≤ ‖yn – xn‖ + ‖xn – xn+‖ + ( – βn)‖xn – TnSyn‖
≤ ‖yn – xn‖ + ‖xn – xn+‖ + ( – βn)

[‖xn – yn‖ + ‖yn – TnSyn‖
]
.

This implies that

‖yn – TnSyn‖ ≤ 
βn

[
‖yn – xn‖ + ‖xn – xn+‖

]
. (.)

In view of (.) and (.)-(.), we obtain

lim
n→∞‖yn – TnSyn‖ = . (.)

By the triangle inequality, we obtain

‖yn – TSyn‖ ≤ ‖yn – TnSyn‖ + ‖TnSyn – TSyn‖
≤ ‖yn – TnSyn‖ + sup

{‖Tnz – Tz‖ : z ∈D
}
. (.)

In view of the AKTT-condition and (.)-(.), we deduce that

lim
n→∞‖yn – TSyn‖ = .

Step III. We prove that there exists x∗ in F(TS) such that

lim sup
n→∞

〈
(μA – γB)x∗,x∗ – yn

〉 ≤ .

For each t in (, ), we define the mapping St : C → C by

St(x) = PC
[
tγBx + (I – tμA)TSx

]
, ∀x ∈ C.
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Since S,T and I – tμA are nonexpansive mappings for each t in (, ), in view of (.), we
conclude that St is a contraction for each t in (, ), and hence by the Banach contraction
principle, there exists a unique fixed point xt in C such that St(xt) = xt . Thus, we have

xt = PC
[
tγBxt + (I – tμA)TSxt

]
. (.)

Next, we show that limt→ xt := x∗ exists. We first show that {xt} is bounded. To this end,
let p in F be fixed. In view of Lemma ., we obtain

‖xt – p‖ =
∥∥PC

[
tγBxt + (I – tμA)TSxt

]
– PCp

∥∥
≤ ∥∥tγBxt + (I – tμA)TSxt – p

∥∥
≤ ∥∥t(γBxt –μA(p)

)
+ (I – tμA)TSxt – (I – tμA)p

∥∥
=

(
 – t(τ – γL)

)‖xt – p‖ + t
∥∥(γB –μA)p

∥∥.
This implies that

‖xt – p‖ ≤ ‖(γB –μA)p‖
(τ – γL)

.

Thus, we have that {xt}t∈(,) is bounded and so are {ATSxt}t∈(,) and {(γB –μA)xt}t∈(,).
In view of (.), we obtain

‖xt – TSxt‖ =
∥∥PC

[
tγBxt + (I – tμA)TSxt

]
– PC(TSxt)

∥∥
≤ ∥∥tγBxt + (I – tμA)TSxt – TSxt

∥∥
≤ t

∥∥(γB –μA)xt
∥∥.

This implies that

lim
t→+

‖xt – TSxt‖ = . (.)

Using the techniques in the proof of Theorem ., we see that the variational inequality
(.) has a unique solution x̃ ∈ F(TS). We show that xt → x̃ as t → . To this end, set

yt = tγBxt + (I – tμA)TSxt , ∀t ∈ (, ).

Then we have xt = PCyt , and for any given z in F(TS),

xt – z = PCyt – yt + yt – z

= PCyt – yt + t(γBxt –μAz) + (I – tμA)TSxt – (I – tμA)TSz. (.)

Since PC is the metric projection from E onto C, for each z in F(TS), we have

〈PCyt – yt ,PCyt – z〉 ≤ .
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Exploiting Lemma . and (.), we obtain

‖xt – z‖

= 〈xt – z,xt – z〉
= 〈PCyt – yt ,PCyt – z〉 + 〈

(I – tμA)TSxt – (I – tμA)z,xt – z
〉
+ t〈γBxt –μAz,xt – z〉

≤ ( – tτ )‖xt – z‖ + t〈γBxt –μAz,xt – z〉. (.)

It follows from (.) that

‖xt – z‖ ≤ 
τ

〈γBxt –μAz,xt – z〉

≤ 
τ

[〈γBxt – γBz,xt – z〉 + 〈γBz –μAz,xt – z〉]
≤ 

τ

[
γL‖xt – z‖ + 〈γBz –μAz,xt – z〉].

This implies that

‖xt – z‖ ≤ 
τ – γL

〈γBz –μAz,xt – z〉. (.)

Let {tn} ⊂ (, ) be such that tn → + as n → ∞. Let x∗
n := xtn . It follows from (.) that

limn→∞ ‖x∗
n – TSx∗

n‖ = . The boundedness of {xt} implies that there exists x∗ in C such
that x∗

n ⇀ x∗, i.e., converges weakly, as n → ∞. In view of Lemma ., we deduce that
x∗ ∈ F(TS). Since x∗

n ⇀ x∗ as n→ ∞, it follows from (.) that limn→∞ ‖x∗
n–x∗‖ = .Thus,

we have that limt→+ xt = x∗ is well defined. Next, we show that x∗ solves the variational
inequality (.). Observe that

xt = PCyt = PCyt – yt + tγBxt + (I – tμA)TSxt .

Thus, we have

(μA – γB)xt =

t
(PCyt – yt) –


t
(I – TS)xt +μ(Axt –ATSxt).

Since TS is nonexpansive, we conclude that I – TS is monotone. The property of metric
projection implies that

〈
(γB –μA)xt ,xt – z

〉
=

t
〈PCyt – yt ,xt – z〉 – 

t
〈
(I – TS)xt – (I – TS)z,xt – z

〉
+μ〈Axt –ATSxt ,xt – z〉

≤ μ〈Axt –ATSxt ,xt – z〉
≤ μL‖xt – TSxt‖‖xt – z‖. (.)

Replacing t by tn in (.), letting n→ ∞, and noticing that {xt – z}t∈(,) is bounded for z
in F(TS), with (.), we have

〈
(γB –μA)x∗,x∗ – z

〉 ≤ . (.)
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Thus, we have that x∗ in F(TS) is a solution of the variational inequality (.). Conse-
quently, x∗ = x̃ by uniqueness. Therefore, xt → x̃ as t → . The variational inequality (.)
can be written as

〈
(I –μA + γB)x̃ – x̃, x̃ – z

〉 ≥ , ∀z ∈ F(TS).

So, in terms of Lemma ., it is equivalent to the following fixed point equation:

PF(TS)(I –μA + γB)x̃ = x̃.

Since {yn} is bounded, for any subsequence of {yn}, there exists a further subsequence {yni}
such that yni ⇀ u inC. In view of Lemma . and Step II, we conclude that u ∈ F(TS). This
together with (.) implies that

lim sup
n→∞

〈
μAx∗ – γBx∗,x∗ – yn

〉
= lim

i→∞
〈
μAx∗ – γBx∗,x∗ – yni

〉
=

〈
μAx∗ – γBx∗,x∗ – u

〉
≤ .

Step IV. We claim that limn→∞ ‖xn – x∗‖ = .
For each n in N∪ {}, we set

vn = αnγBxn + (I – αnμA)TSxn

and observe that yn = PCvn. Then, by Lemmas . and ., we obtain

∥∥yn – x∗∥∥ =
〈
yn – x∗, yn – x∗〉

=
〈
PCvn – vn,PCvn – x∗〉 + 〈

vn – x∗, yn – x∗〉
≤ 〈

vn – x∗, yn – x∗〉
= αn

〈
γBxn –μA

(
x∗), yn – x∗〉

+
〈
(I – αnμA)TSxn – (I – αnμA)TSx∗, yn – x∗〉

= αnγ
〈
Bxn – Bx∗, yn – x∗〉

+ αn
〈
(γB –μA)x∗, yn – x∗〉

+
〈
(I – αnμA)TSxn – (I – αnμA)TSx∗, yn – x∗〉

≤ αnγL
∥∥xn – x∗∥∥∥∥yn – x∗∥∥ + αn

〈
(γB –μA)x∗, yn – x∗〉

+ ( – αnτ )
∥∥xn – x∗∥∥∥∥yn – x∗∥∥

=
(
 – αn(τ – γL)

)∥∥xn – x∗∥∥∥∥yn – x∗∥∥
+ αn

〈
(γB –μA)x∗, yn – x∗〉

≤ (
 – αn(τ – γL)

) 

(∥∥xn – x∗∥∥ +

∥∥yn – x∗∥∥)
+ αn

〈
(γB –μA)x∗, yn – x∗〉. (.)
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This implies that

∥∥yn – x∗∥∥ ≤ ( – αn(τ – γL))
( + αn(τ – γL))

∥∥xn – x∗∥∥ +
αn

 + αn(τ – γL)
〈
(γB –μA)x∗, yn – x∗〉

≤ (
 – αn(τ – γL)

)∥∥xn – x∗∥∥ +
αn

 + αn(τ – γL)
〈
(γB –μA)x∗, yn – x∗〉

=
(
 – αn(τ – γL)

)∥∥xn – x∗∥∥ + αnθnξn, (.)

where

θn = τ – γL and ξn =


( + αn(τ – γL))(τ – γL)
〈
(γB –μA)x∗, yn – x∗〉.

In view of (.) and (.), we conclude that

∥∥xn+ – x∗∥∥ =
∥∥( – βn)xn + βnTnSyn – x∗∥∥

≤ ( – βn)
∥∥xn – x∗∥∥ + βn

∥∥TnSyn – x∗∥∥

≤ ( – βn)
∥∥xn – x∗∥∥ + βn

∥∥yn – x∗∥∥

≤ ( – βn)
∥∥xn – x∗∥∥ + βn

[(
 – αn(τ – γL)

)∥∥xn – x∗∥∥ + αnθnξn
]

≤ (
 – βnαn(τ – γL)

)∥∥xn – x∗∥∥ + βnαnθnξn

=
(
 – βnαn(τ – γL)

)∥∥xn – x∗∥∥ + βnαn(τ – γL)


τ – γL
θnξn, (.)

where γn = βnαn(τ – γL). It is easy to show that limn→∞ γn = ,
∑∞

n= γn = ∞ and
lim supn→∞ ξn ≤ .Hence, in view of Lemma . and (.), we conclude that the sequence
{xn} converges strongly to x∗ in F(TS). �

Remark . Theorem . improves and extends [, Theorems . and .] in the follow-
ing aspects.

(i) The identity mapping I is extended to the case of I –A : C → E, where A : C → E is
a k-Lipschitzian and η-strongly monotone (possibly nonself-) mapping.

(ii) In order to find a common fixed point of a countable family of nonexpansive
self-mappings Tn : C → C, the Mann-type iterations in [, Theorem .] are
extended to develop the new Mann-type iteration (.).

(iii) The new technique of an argument is applied in deriving Theorem .. For instance,
the characteristic properties (Lemma .) of metric projection PC play an important
role in proving the strong convergence of the net {xt}t∈(,) in Theorem ..

(iv) Whenever we have C = E, B = , A = I , the identity mapping on C and μ = , then
Theorem . reduces to [, Theorem .]. Thus, Theorem . covers [,
Theorems . and .] as special cases.

Remark . In Theorem ., it is shown that any sequence generated by the iterative step
(.) converges strongly to the unique solution of the variational inequality problem (.).
This variational inequality problem ismore general thanmany variational inequality prob-
lems (see, for example, []) due to the fact that S is an arbitrary nonexpansive mapping,
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and due to the well-known relations between fixed points of nonexpansive mappings and
variational inequalities, the solution of (.) can be seen as a fixed point set of some non-
expansive mapping V , and then this mapping could be added to countable family of non-
expansive mappings Tn. In addition, the feasible set of the variational inequality problem
(.) is Fix(TS), withT and S being nonexpansivemappings. For several sub-sets of nonex-
pansivemapping, Fix(TS) = Fix(T)∩Fix(S) hold (see, e.g., [, ] for averagedmappings).

4 Constrained convexminimization problems
Let H be a real Hilbert space, and let C be a nonempty, closed and convex subset of H .
Consider the following constrained convex minimization problem:

minimize
{
f (x) : x ∈ C

}
, (.)

where f : C → R is a real-valued convex function. If f is Fréchet differentiable, then the
gradient-projection method (for short, GPM) generates a sequence {xn} using the follow-
ing recursive formula:

xn+ = PC
(
xn – λ∇f (xn)

)
, ∀n≥ , (.)

or more generally,

xn+ = PC
(
xn – λn∇f (xn)

)
, ∀n≥ , (.)

where in both (.) and (.), the initial guess x is taken from C arbitrary, and the param-
eters, λ or λn, are positive real numbers. The convergence of algorithms (.) and (.)
depends on the behavior of the gradient ∇f . As a matter of fact, it is known that if ∇f is
α-strongly monotone and L-Lipschitzian with constants α,L > , then the operator

T := PC(I – λ∇f ) (.)

is a contraction; hence, the sequence {xn} defined by algorithm (.) converges in norm
to the unique solution of the minimization problem (.). More generally, if the sequence
{λn} is chosen to satisfy the property

 < lim inf
n→∞ λn ≤ lim sup

n→∞
λn <

α
L

, (.)

then the sequence {xn} defined by algorithm (.) converges in norm to the unique mini-
mizer of (.).
However, if the gradient ∇f fails to be strongly monotone, the operator T defined by

(.) would fail to be contractive; consequently, the sequence {xn} generated by algorithm
(.) may fail to converge strongly (see [, Section ]). If ∇f is Lipschitzian, then algo-
rithms (.) and (.) can still converge in the weak topology under certain conditions.
Very recently, Xu [] gave an alternative operator-oriented approach to algorithm (.);

namely, an averaged mapping approach. He gave his averaged mapping approach to the
gradient-projection algorithm (.) and the relaxed gradient-projection algorithm.More-
over, he constructed a counterexample, which shows that algorithm (.) does not con-
verge in norm in an infinite-dimensional space, and also presented two modifications of
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gradient-projection algorithms, which are shown to have strong convergence. Further, he
regularized the minimization problem (.) to devise an iterative scheme that generates
a sequence converging in norm to the minimum-norm solution of (.) in the consistent
case.
Let A : C → H be a κ-Lipschitzian and η-strongly monotone operator with constants

κ ,η > , and let B : C →H be an l-Lipschitzianmapping with constant l ≥ . Suppose that
 < μ < η

κ
and  ≤ γ l < τ , where τ =

√
 –μ(η –μκ). Suppose that the minimization

problem (.) is consistent, and let � denote its solution set. Assume that the gradient
∇f is L-Lipschitzian with constant L > . Motivated by the work of Xu [], the authors of
[] introduced the following implicit scheme that generates a net {xλ}λ∈(, L ) in an implicit
way:

xλ = PC
[
sγBxλ + (I – sμA)Tλxλ

]
, (.)

where Tλ and s satisfy the following conditions:
(i) s := s(λ) = –λL

 for each λ ∈ (, L );
(ii) PC(I – λ∇f ) = sI + ( – s)Tλ for each λ ∈ (, L ).

They proved that {xλ}λ∈(, L ) converges strongly to a minimizer x∗ in � of (.), which
solves the variational inequality (.).
For a given arbitrary initial guess x in C and a sequence {λn} ⊂ (, L ) with λn → 

L , they
also proposed the following explicit scheme that generates a sequence {xn} in an explicit
way:

xn+ = PC
[
snγBxn + (I – snμA)Tnxn

]
, ∀n≥ , (.)

where rn = –λnL
 and PC(I –λn∇f ) = snI + (– sn)Tn for each n≥ . It is proven in [] that

the sequence {xn} strongly converges to a minimizer x∗ in � of (.).
On the other hand, we know that x∗ in C solves the minimization problem (.) if and

only if x∗ solves the fixed point equation

x∗ = PC(I – λ∇f )x∗,

where λ >  is any fixed positive number. Note that ∇f being Lipschitzian implies that the
gradient∇f is 

L -ism [], which then implies that λ∇f is 
λL -ism. So by Proposition .(c),

I – λ∇f is λL
 -averaged. Now since the projection PC is 

 -averaged, we know from Propo-
sition .(c) that I – λ∇f is +λL

 -averaged for each λ ∈ (, L ). Hence, we can write

PC(I – λ∇f ) =
 – λL


I +

 + λL


Tλ = sI + ( – s)Tλ,

where Tλ is nonexpansive, and s := s(λ) = –λL
 ∈ (,  ) for each λ ∈ (, L ). It is easy to see

that

λ → 
L

⇐⇒ s → +.

For each fixed λ ∈ (, L ), we now consider the self-mapping

Qλx = PC
[
sγBxλ + (I – sμA)Tλx

]
, ∀x ∈ C.
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It is easy to see that Qλ is a contraction, see [] for more details. Thus, there exists a
unique fixed point xλ in C, which uniquely solves the fixed point equation (.).
The following two results, which summarize the properties of the net {xλ}λ∈(, L ) have

been proved in [].

Proposition . Let C be a nonempty, closed and convex subset of a real Hilbert space H .
Let A : C → H be a κ-Lipschitzian and η-strongly monotone operator with constants
κ ,η > , and let B : C → H be an l-Lipschitzian mapping with constant l ≥ . Suppose
that  < μ < η

κ
and  ≤ γ l < τ , where τ =

√
 –μ(η –μκ). Suppose that the minimiza-

tion problem (.) is consistent, and let � denote its solution set. Assume that the gradient
∇f is L-Lipschitzianwith constant L > . For each λ in (, L ), let xλ denote a unique solution
of the fixed point equation (.), where Tλ and s satisfy the following conditions:

(i) s := s(λ) = –λL
 for each λ in (, L );

(ii) PC(I – λ∇f ) = sI + ( – s)Tλ for each λ in (, L ).
Then, the following properties for the net {xλ}λ∈(, L ) hold:
(a) {xλ}λ∈(, L ) is bounded;
(b) limλ→ 

L
‖xλ – Tλxλ‖ = ;

(c) xλ defines a continuous curve from (, L ) into C.

Theorem . Let C be a nonempty, closed and convex subset of a real Hilbert space H .
Let A : C → H be a κ-Lipschitzian and η-strongly monotone operator with constants
κ ,η > , and let B : C → H be an l-Lipschitzian mapping with constant l ≥ . Suppose
that  < μ < η

κ
and  ≤ γ l < τ , where τ =

√
 –μ(η –μκ). Suppose that the minimiza-

tion problem (.) is consistent, and let � denote its solution set. Assume that the gradient
∇f is L-Lipschitzianwith constant L > . For each λ in (, L ), let xλ denote a unique solution
of the fixed point equation (.), where Tλ and r satisfy the following conditions:

(i) s := s(λ) = –λL
 for each λ in (, L );

(ii) PC(I – λ∇f ) = sI + ( – s)Tλ for each λ in (, L ).
Then the net {xλ}λ∈(, L ) converges strongly, as λ → 

L , to aminimizer x∗ of (.),which solves
the variational inequality (.); equivalently, we have PC(I –μA + γB)x∗ = x∗.

Now, we are ready to propose explicit iterative schemes for finding the approximate
minimizer of a constrained convex minimization problem and prove that the sequences
generated by our schemes converge strongly to a solution of the constrained convex min-
imization problem.

Theorem . Let C be a nonempty, closed and convex subset of a real Hilbert space H .
Assume that {Sn}∞n= is a sequence of nonexpansive mappings from C into itself such that⋂∞

n= F(Sn) �=∅. Suppose, in addition, that S : C → C is a nonexpansive mapping such that
({Sn}∞n=,S) satisfies the AKTT-condition. Let A : C →H be a κ-Lipschitzian and η-strongly
monotone operator with constants κ ,η > , and let B : C →H be an l-Lipschitzianmapping
with constant l ≥ . Suppose that  < μ < η

κ
and  ≤ γ l < τ , where τ =

√
 –μ(η –μκ).

Suppose that the minimization problem (.) is consistent, and let � denote its solution set.
Assume that the gradient ∇f is L-Lipschitzian with constant L > . Let {λn} be a sequence
in the interval (, L ) such that {Tn} and {sn} satisfy the following conditions:

(i) sn = –λnL
 for each n≥ ;

(ii) PC(I – λn∇f ) = snI + ( – sn)Tn for each n≥ ;
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(iii) sn → ;
(iv)

∑∞
n= sn =∞;

(v)
∑∞

n= |λn+ – λn| < ∞.
Suppose that {αn}, {βn} are two sequences of real numbers in (, ) satisfying the following
control conditions:

(a) lim
n→∞αn =  and

∞∑
n=

αn =∞;

(b)  < lim inf
n→∞ βn ≤ lim sup

n→∞
βn < . (.)

For given x in C arbitrarily, let the sequence {xn} be generated by
⎧⎨
⎩yn = PC[αnγBxn + (I – αnμA)xn],

xn+ = ( – βn)xn + βnTnSnyn, n ∈N.
(.)

If limn→∞ ‖yn –Syn‖ =  and
⋂∞

n= F(Tn)∩F(S) �=∅, then there exists a nonexpansive map-
ping T : C → C such that ({Tn}∞n=,T) satisfies the AKTT-condition, and {xn} converges
strongly to a common element x∗ in F(TS)∩ �, which solves the variational inequality

〈
(μA – γB)x∗,x∗ – z

〉 ≤ , z ∈ F(TS). (.)

Proof We divide the proof into several steps.
First, we note that
() x̃ in C solves the minimization problem (.) if and only if for each fixed λ > , x̃

solves the fixed point equation

x̃ = PC(I – λ∇f )x̃;

() PC(I – λ∇f ) is +λL
 -averaged for each λ in (, L ); in particular, the following relation

holds:

PC(I – λn∇f ) =
 – λnL


I +

 + λnL


Tn = snI + ( – sn)Tn, ∀n≥ .

Step I. We claim that the sequence {Tn} satisfies the AKTT-condition.
From the proof of Theorem ., {xn} is bounded and so are {Bxn} and {Tnxn}. Let D be a

bounded subset of C such that {Bxn,Tnxn : n ∈N} ⊂D. Since ∇f is 
L -ism, PC(I – λn∇f ) is

nonexpansive. It follows that for any given z in D and v in �,

∥∥PC(I – λn∇f )z
∥∥ ≤ ∥∥PC(I – λn∇f )z – v

∥∥ + ‖v‖
≤ ∥∥PC(I – λn∇f )z – PC(I – λn∇f )v

∥∥ + ‖v‖
≤ ‖z – v‖ + ‖v‖
≤ ‖z‖ + ‖v‖.

This implies that

sup
{∥∥PC(I – λn∇f )z

∥∥ : n ∈N, z ∈D
}
<∞.
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On the other hand, we have for any z in D and u in � that

‖ATnz‖ ≤ ‖ATnu –Az‖ + ‖Au‖
≤ κ‖Tnz – Tnv‖ + ‖Av‖
≤ κ‖z – v‖ + ‖Av‖
≤ ‖z‖ + ‖Av‖.

Therefore,

sup
{‖ATnz‖ : n ∈N, z ∈D

}
< ∞.

This shows that {ATnz : n ∈N, z ∈D} is bounded. We also obtain, for any z in D, that

‖Tn+z – Tnz‖

=
∥∥∥∥PC(I – λn+∇f ) – ( – λn+L)I

 + λn+L
z –

PC(I – λn∇f ) – ( – λnL)I
 + λnL

z
∥∥∥∥

≤
∥∥∥∥PC(I – λn+∇f )

 + λn+L
z –

PC(I – λn∇f )
 + λnL

z
∥∥∥∥ +

∥∥∥∥ ( – λnL)I
 + λnL

z –
( – λn+L)I
 + λn+L

z
∥∥∥∥

=
∥∥∥∥( + λnL)PC(I – λn+∇f )z – ( + λn+L)PC(I – λn∇f )z

( + λn+L)( + λnL)

∥∥∥∥
+

L|λn+ – λn|
( + λnL)( + λn+L)

‖z‖

≤
∥∥∥∥L(λn+ – λn)PC(I – λn+∇f )z

( + λn+L)( + λnL)

+
( + λn+L)PC(I – λn+∇f )z – ( + λn+L)PC(I – λn∇f )z

( + λn+L)( + λnL)

∥∥∥∥
+

L|λn+ – λn|
( + λnL)( + λn+L)

‖z‖

≤ L|(λn+ – λn)|‖PC(I – λn+∇f )z‖
( + λn+L)( + λnL)

+
( + λn+L)‖PC(I – λn+∇f )z – PC(I – λn∇f )z‖

( + λn+L)( + λnL)
+

L|λn+ – λn|
( + λnL)( + λn+L)

‖z‖

≤ |λn+ – λn|
[
L
∥∥PC(I – λn+∇f )z

∥∥ + 
∥∥∇f (z)

∥∥ + L‖z‖]
≤M|λn+ – λn|,

for some appropriate constantM >  such that

L
∥∥PC(I – λn+∇f )z

∥∥ + 
∥∥∇f (z)

∥∥ + L‖z‖ ≤M, ∀n≥ .

Thus, we get

∞∑
n=

sup
{‖Tn+z – Tnz‖ : z ∈D

} ≤M
∞∑
n=

|λn+ – λn| < ∞.
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Now, define a mapping T : C → C by

Tx = lim
n→∞Tnx, ∀x ∈ C.

Then T is a nonexpansive mapping. Since the minimization problem (.) is consistent,
we conclude that

⋂∞
n= F(Tn) �= ∅. Consequently, the sequence ({Tn}∞n=,T) satisfies the

AKTT-condition.
Step II. We claim that limn→∞ ‖yn – TSyn‖ = . In view of (.), we obtain

‖yn – xn‖ =
∥∥QC

[
αnγBxn + (I – αnμA)xn

]
–QC[xn]

∥∥
≤ ∥∥αnγBxn + (I – αnμA)xn – xn

∥∥
= ‖αnγBxn + xn – αnμAxn – xn‖
= ‖αnγBxn + xn – αnμAxn – xn‖
= αn

∥∥(γB –μA)xn
∥∥. (.)

Since limn→∞ αn = , it follows from (.) that

lim
n→∞‖yn – xn‖ = . (.)

In view of Lemma ., we conclude that

∥∥(I – αn+μA)xn+ – (I – αn+μA)xn
∥∥ ≤ ( – αn+τ )‖xn+ – xn‖, ∀n ∈N.

This implies that

‖yn+ – yn‖ =
∥∥PC

[
αn+γBxn+ + (I – αn+μA)xn+

]
– PC

[
αnγBxn + (I – αnμA)xn

]∥∥
≤ ∥∥αn+γBxn+ + (I – αn+μA)xn+ – αnγBxn + (I – αnμA)xn

∥∥
≤ ∥∥αn+γ (Bxn+ – Bxn) + γ (αn+ – αn)Bxn

+ (I – αn+μA)xn+ – (I – αn+μA)xn – αn+μAxn
∥∥

≤ αn+γL‖xn+ – xn‖ + ( – αn+τ )‖xn+ – xn‖
+ γ |αn+ – αn|‖Bxn‖ + αn+μ‖Axn‖

≤ (
 – αn+(τ – γL)

)‖xn+ – xn‖ + γM|αn+ – αn| +μMαn+

≤ ‖xn+ – xn‖ + γM|αn+ – αn| +μMαn+. (.)

Next, we show that limn→∞ ‖xn+ – xn‖ = . To this end, denote a sequence {zn} by zn =
TnSnyn. It follows from (.) that

‖zn+ – zn‖ = ‖Tn+Sn+yn+ – TnSnyn‖
≤ ‖Tn+Sn+yn+ – Tn+Sn+yn‖

+ ‖Tn+Sn+yn – Tn+Snyn‖ + ‖Tn+Snyn – TnSnyn‖
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≤ ‖yn+ – yn‖
+ ‖Tn+Sn+yn – Tn+Snyn‖ + ‖Tn+Snyn – TnSnyn‖

≤ ‖yn+ – yn‖
+ ‖Sn+yn – Snyn‖ + ‖Tn+Snyn – TnSnyn‖

≤ ‖yn+ – yn‖
+ sup

{‖Sn+z – Snz‖ : z ∈D
}
+ sup

{‖Tn+z – Tnz‖ : z ∈D
}

≤ ‖xn+ – xn‖ + γM|αn+ – αn| +μMαn+

+ sup
{‖Sn+z – Snz‖ : z ∈D

}
+ sup

{‖Tn+z – Tnz‖ : z ∈D
}
.

This implies that

‖zn+ – zn‖ – ‖xn+ – xn‖ ≤ γM|αn+ – αn| +μMαn+

+ sup
{‖Sn+z – Snz‖ : z ∈D

}
+ sup

{‖Tn+z – Tnz‖ : z ∈D
}
. (.)

Since limn→∞ αn = , in view of Lemma . and (.), we conclude that

lim sup
n→∞

(‖zn+ – zn‖ – ‖xn+ – xn‖
) ≤ .

Using Lemma ., we deduce that

lim
n→∞‖zn – xn‖ = .

Thus, we have

lim
n→∞‖xn+ – xn‖ = lim

n→∞βn‖zn – xn‖ = . (.)

On the other hand, we have

‖yn – TnSnyn‖ ≤ ‖yn – xn‖ + ‖xn – xn+‖ + ‖xn+ – TnSnyn‖
≤ ‖yn – xn‖ + ‖xn – xn+‖ + ‖xn+ – TnSnyn‖
≤ ‖yn – xn‖ + ‖xn – xn+‖ + ( – βn)‖xn – TnSnyn‖
≤ ‖yn – xn‖ + ‖xn – xn+‖

+ ( – βn)
[‖xn – yn‖ + ‖yn – TnSnyn‖

]
. (.)

It follows from (.) that

‖yn – TnSnyn‖ ≤ 
βn

[
‖yn – xn‖ + ‖xn – xn+‖

]
. (.)

In view of (.) and (.), we obtain

lim
n→∞‖yn – TnSnyn‖ = . (.)
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By the triangle inequality, we obtain

‖yn – TnSyn‖ ≤ ‖yn – TnSnyn‖ + ‖TnSnyn – TnSyn‖
≤ ‖yn – TnSnyn‖ + ‖Snyn – Syn‖
≤ ‖yn – TnSnyn‖ + sup

{‖Snz – Sz‖ : z ∈D
}
. (.)

In view of Lemma ., (.) and (.), we deduce that

lim
n→∞‖yn – TnSyn‖ = . (.)

By the triangle inequality, we obtain

‖yn – TSyn‖ ≤ ‖yn – TnSyn‖ + ‖TnSyn – TSyn‖
≤ ‖yn – TnSyn‖ + sup

{‖Tnz – Tz‖ : z ∈D
}
. (.)

In view of the AKTT-condition and (.)-(.), we deduce that

lim
n→∞‖yn – TSyn‖ = .

Step III. We prove that

lim sup
n→∞

〈
(μA – γB)x∗,x∗ – yn

〉 ≤ ,

where x∗ ∈ F(TS) is the same as in Theorem . and satisfies

〈
(γB –μA)x∗,x∗ – z

〉 ≤ , z ∈ F(TS). (.)

Let {ynk } be such that

lim sup
n→∞

〈
(μA – γB)x∗,x∗ – yn

〉
= lim

k→∞
〈
(μA – γB)x∗,x∗ – ynk

〉
. (.)

By the same manner as in the proof of Theorem . Step II, we can find u ∈ F(TS) such
that ynk ⇀ u as k → ∞. In view of (ii), we have that

∥∥PC(I – λn∇f )yn – yn
∥∥ =

∥∥snyn + ( – sn)Tnyn – yn
∥∥

+ ( – sn)‖Tnyn – yn‖
≤ ‖Tnyn – yn‖
≤ ‖Tnyn – TnSyn‖ + ‖TnSyn – yn‖
≤ ‖yn – Syn‖ + ‖TnSyn – yn‖, (.)

where sn = –λnL
 for each n≥ . In view of (.) and taking into account ‖yn – Syn‖ → ,

we conclude that

lim
n→∞

∥∥PC(I – λn∇f )yn – yn
∥∥ = lim

n→∞‖yn – Tnyn‖ = .
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Hence we have∥∥∥∥PC

(
I –


L

∇f
)
yn – yn

∥∥∥∥ ≤
∥∥∥∥PC

(
I –


L

∇f
)
yn – PC(I – λn∇f )yn

∥∥∥∥
+

∥∥PC(I – λn∇f )yn – xn
∥∥

≤
∥∥∥∥
(
I –


L

∇f
)
yn – (I – λn∇f )yn

∥∥∥∥
+

∥∥PC(I – λn∇f )yn – yn
∥∥

=
(

L
– λn

)
‖∇fyn‖ + ‖Tnyn – yn‖.

Thus, from the boundedness of {xn}, sn →  (⇐⇒ λn → 
L ) and ‖Tnyn – yn‖ → , we

conclude that

lim
n→∞

∥∥∥∥PC

(
I –


L

∇f
)
yn – yn

∥∥∥∥ = . (.)

Note that the gradient ∇f is 
L -ism. Hence, it is known that PC(I – 

L∇f ) is a nonexpan-
sive self-mapping on C. As a matter of fact, we have for each x, y in C (see the proof of
Theorem .)

∥∥∥∥PC

(
I –


L

∇f
)
x – PC

(
I –


L

∇f
)
y
∥∥∥∥


≤ ‖x – y‖.

Since ynk ⇀ u, by Lemma ., we obtain

u = PC

(
I –


L

∇f
)
u.

This shows that u ∈ �. Consequently, from (.) and (.), it follows that

lim sup
n→∞

〈
(γB –μA)x∗, yn – x∗〉 = 〈

(γB –μA)x∗,u – x∗〉 ≤ .

As in the last part of the proof of Theorem ., we obtain that xn → x∗, which completes
the proof. �

Corollary . Let C be a nonempty, closed and convex subset of a real Hilbert space H .
Let A : C → H be a κ-Lipschitzian and η-strongly monotone operator with constants
κ ,η > , and let B : C → H be an l-Lipschitzian mapping with constant l ≥ . Suppose
that  < μ < η

κ
and  ≤ γ l < τ , where τ =

√
 –μ(η –μκ). Suppose that the minimiza-

tion problem (.) is consistent, and let � denote its solution set. Assume that the gradient
∇f is L-Lipschitzian with constant L > . Let {λn} be a sequence in the interval (, L ) such
that {Tn} and {sn} satisfy the following conditions:

(i) sn = –λnL
 for each n≥ ;

(ii) PC(I – λn∇f ) = snI + ( – sn)Tn for each n≥ ;
(iii) sn → ;
(iv)

∑∞
n= sn =∞;

(v)
∑∞

n= |λn+ – λn| < ∞.
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Suppose that {αn}, {βn} are two real sequences in (, ) satisfying the following control con-
ditions:

(a) lim
n→∞αn =  and

∞∑
n=

αn =∞;

(b)  < lim inf
n→∞ βn ≤ lim sup

n→∞
βn < .

For given x in C arbitrarily, let the sequence {xn} be generated by

⎧⎨
⎩yn = PC[αnγBxn + (I – αnμA)xn],

xn+ = ( – βn)xn + βnTnyn, n ∈N.

Then, there exists a nonexpansive mapping T : C → C such that ({Tn}∞n=,T) satisfies the
AKTT-condition, and {xn} converges strongly to a common element x∗ ∈ F(T) ∩ �, which
solves the variational inequality

〈
(μA – γB)x∗,x∗ – z

〉 ≤ , z ∈ F(T).

We end this section by considering simple examples of sequences that fulfill the desired
conditions of our results.

Example . Let {αn}∞n= be a sequence defined by

αn =


n + 
, ∀n ∈N.

Let L >  be any arbitrary real number, and let n ∈ N be such that n > L
 . We define the

sequence {λn}∞n= as follows:
⎧⎨
⎩λ = λ = · · · = λn =


L , if n≤ n,

λn = n
(n+)L , if n > n.

Then the sequences {αn}∞n= and {λn}∞n= satisfy all the aspects of the hypotheses of our
results.

5 Applications
Let H be a real Hilbert space, and let Q :H → H be a mapping. The effective domain of
Q is denoted by dom(Q), that is, dom(Q) = {x ∈H :Qx �=∅}. The range of Q is denoted by
R(Q). A multi-valued mapping Q is said to be monotone if for all x, y ∈ H , f ∈ Qx and g
in Qy,

〈x – y, f – g〉 ≥ .

AmonotonemappingQ :H → H is said to bemaximal if its graphG(Q) : {(x, f ) : f ∈Q(x)}
is not properly contained in the graph of any other monotone mapping. It is well-known
that a monotone mapping Q : H → H is maximal if and only if, for (x, f ) in H × H , 〈x –
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y, f –g〉 ≥  for every (y, g) ∈G(Q) implies that f ∈ Q(x). For amaximalmonotone operator
Q on H and r > , we may define a single-valued operator Jr = (I + rQ)– : H → dom(Q),
which is called the resolvent of Q for r > . Assume that Q– = {x ∈ H :  ∈ Qx}. It is
known that Q– = F(Jr) for all r > , and the resolvent Jr is firmly nonexpansive, i.e.,

‖Jrx – Jry‖ ≤ 〈x – y, Jrx – Jry〉, ∀x, y ∈H .

The following lemma has been proved in [].

Lemma . Let H be a real Hilbert space, and let Q be a maximal monotone operator
on H . For r > , let Jr be the resolvent operator associated with Q and r. Then

‖Jρx – Jσx‖ ≤ |ρ – σ |
ρ

‖x – Jρx‖

for all ρ,σ >  and x ∈H .

We also know the following lemma from [].

Lemma . Let C be a nonempty, closed and convex subset of a real Hilbert space H , and
let Q be a maximal monotone operator on H such that Q– �= ∅ and cl(dom(Q)) ⊂ C ⊂⋂

r> R(I + rQ), where cl(dom(Q)) stands for the closure of dom(Q). Suppose that {rn} is a
sequence of (,∞) such that inf{rn : n ∈N} >  and

∑∞
n= |rn+ – rn| < ∞. Then

(i)
∑∞

n= sup{‖Jrn+z – Jrnz‖ : z ∈ D} < ∞ for any bounded subset D of C.
(ii) limn→∞ Jrnz = Jrz for all z in C and F(Jr) =

⋂∞
n= F(Jrn ), where rn → r as n→ ∞.

From Theorem . and Lemma ., we obtain the following result.

Theorem . Let C be a nonempty, closed and convex subset of a real Hilbert space H .
Let Q be a maximal monotone operator on H such that Q– �= ∅. Given real sequences
{αn}, {βn} in (, ) and {rn} in (,∞), assume that {αn}, {βn} satisfy the following control
conditions:

(a) lim
n→∞αn =  and

∞∑
n=

αn =∞;

(b)  < lim inf
n→∞ βn ≤ lim sup

n→∞
βn < ;

(c) rn ≥ ε, ∀n ∈N and
∞∑
n=

|rn+ – rn| < ∞.

Suppose, in addition, that S : C → C is a nonexpansive mapping with F :=
⋂∞

n= F(Jrn ) ∩
F(S) �= ∅. Let A : C → E be a κ-Lipschitzian and η-strongly monotone operator with con-
stants κ ,η > , let B : C → E be an L-Lipschitzian mapping with constant L ≥ . Let
 < μ < η

κ
and  ≤ γL < τ , where τ =  –

√
 –μ(η –μκ). For given x in C arbitrar-

ily, let the sequence {xn} be generated iteratively by

⎧⎨
⎩yn = PC[αnγBxn + (I – αnμA)xn],

xn+ = ( – βn)xn + βnJrnSyn, n ∈N.
(.)
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Then the sequence {xn} defined by (.) converges strongly to x∗ in F(JrS), which solves the
variational inequality

〈
(μA – γB)x∗,x∗ – z

〉 ≤ , z ∈ F(JrS). (.)

The following result is yet another easy consequence of Theorem . and Lemma ..

Theorem . Let C be a nonempty, closed and convex subset of a real Hilbert space H .
Let Q be a maximal monotone operator on H such that Q– �= ∅. Given real sequences
{αn}, {βn} in (, ) and {rn} in (,∞), assume that {αn}, {βn} satisfy the following control
conditions:

(a) lim
n→∞αn =  and

∞∑
n=

αn =∞;

(b)  < lim inf
n→∞ βn ≤ lim sup

n→∞
βn < ;

(c) rn ≥ ε, ∀n ∈N and
∞∑
n=

|rn+ – rn| < ∞.

Let A : C → E be a κ-Lipschitzian and η-strongly accretive operator with constants κ ,η > ,
B : C → E be an L-Lipschitzian mapping with constant L ≥ . Let  < μ < η

κ
and  ≤ γL <

τ , where τ =  –
√
 –μ(η –μκ). For given x in C arbitrarily, let the sequence {xn} be

generated iteratively by

⎧⎨
⎩yn = PC[αnγBxn + (I – αnμA)xn],

xn+ = ( – βn)xn + βnJrnyn, n ∈ N.

If
⋂∞

n= F(Jrn ) �=∅, then the sequence {xn} converges strongly to x∗ in Q–, which solves the
variational inequality

〈
(μA – γB)x∗,x∗ – z

〉 ≤ , z ∈
∞⋂
n=

F(Jrn ).

The following results are easy consequences of Theorem . and Lemma ..

Theorem . Let C be a nonempty, closed and convex subset of a real Hilbert space H .
Assume that {Sn}∞n= is a sequence of nonexpansive mappings from C into itself such that⋂∞

n= F(Sn) �=∅. Suppose, in addition, that S : C → C is a nonexpansive mapping such that
({Sn}∞n=,S) satisfies the AKTT-condition. Let A : C →H be a κ-Lipschitzian and η-strongly
monotone operator with constants κ ,η > , and let B : C →H be an l-Lipschitzianmapping
with constant l ≥ . Suppose that  < μ < η

κ
and  ≤ γ l < τ , where τ =

√
 –μ(η –μκ).

Suppose that the minimization problem (.) is consistent, and let � denote its solution set.
Assume that the gradient ∇f is L-Lipschitzian with constant L > . Let {λn} be a sequence
in the interval (, L ) such that {Jrn} and {sn} satisfy the following conditions:

(i) sn = –λnL
 for each n≥ ;

(ii) PC(I – λn∇f ) = snI + ( – sn)Jrn for each n≥ ;
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(iii) sn → ;
(iv)

∑∞
n= sn =∞;

(v)
∑∞

n= |λn+ – λn| < ∞.
Suppose that {αn}, {βn} are two real sequences in (, ) satisfying the following control con-
ditions:

(a) lim
n→∞αn =  and

∞∑
n=

αn =∞;

(b)  < lim inf
n→∞ βn ≤ lim sup

n→∞
βn < .

For given x in C arbitrarily, let the sequence {xn} be generated by

⎧⎨
⎩yn = PC[αnγBxn + (I – αnμA)xn],

xn+ = ( – βn)xn + βnJrnSnyn, n ∈N.

If limn→∞ ‖yn – Syn‖ = , then the sequence {xn} converges strongly to a common element
x∗ in F(JrS)∩ �, which solves the variational inequality

〈
(μA – γB)x∗,x∗ – z

〉 ≤ , z ∈ F(JrS).

Theorem . Let C be a nonempty, closed and convex subset of a real Hilbert space H .
Assume that {Sn}∞n= is a sequence of nonexpansive mappings from C into itself such that⋂∞

n= F(Sn) �=∅. Let A : C →H be a κ-Lipschitzian and η-strongly monotone operator with
constants κ ,η > , and let B : C → H be an l-Lipschitzian mapping with constant l ≥ .
Suppose that  < μ < η

κ
and  ≤ γ l < τ , where τ =

√
 –μ(η –μκ). Suppose that the

minimization problem (.) is consistent, and let � denote its solution set. Assume that the
gradient ∇f is L-Lipschitzian with constant L > . Let {λn} be a sequence in the interval
(, L ) such that {Jrn} and {sn} satisfy the following conditions:

(i) sn = –λnL
 for each n≥ ;

(ii) PC(I – λn∇f ) = snI + ( – sn)Jrn for each n≥ ;
(iii) sn → ;
(iv)

∑∞
n= sn =∞;

(v)
∑∞

n= |λn+ – λn| < ∞.
Suppose that {αn}, {βn} are two real sequences in (, ) satisfying the following control con-
ditions:

(a) lim
n→∞αn =  and

∞∑
n=

αn =∞;

(b)  < lim inf
n→∞ βn ≤ lim sup

n→∞
βn < .

For given x in C arbitrarily, let the sequence {xn} be generated by

⎧⎨
⎩yn = PC[αnγBxn + (I – αnμA)xn],

xn+ = ( – βn)xn + βnJrnyn, n ∈ N.
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Then the sequence {xn} converges strongly to a common element x∗ in Q–∩�,which solves
the variational inequality

〈
(μA – γB)x∗,x∗ – z

〉 ≤ , z ∈
∞⋂
n=

F(Jrn ).

Remark . In Theorem ., it is shown that any sequence generated by the iterative step
(.) converges strongly to the unique solution of the variational inequality problem (.).
This variational inequality problem ismore general thanmany variational inequality prob-
lems (see, for example, []) due to the fact that S is an arbitrary nonexpansive mapping.
Indeed, in particular case, when S = I , the identity mapping on H , the corresponding re-
sults in current literature are special cases of our result (Theorem .).
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