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Abstract

A common problem when interpreting magnetotelluric (MT) data is that they often are distorted by shallow
unresolvable local structures, an effect known as galvanic distortion. We present two transfer functions that are (almost)
resistant to galvanic distortion. First, we introduce the electric phase tensor, which is derived from the electric tensor,
where the electric tensor relates the horizontal electric fields at a field and base site. The electric phase tensor is only
affected by galvanic distortion, if present, at the base site. Second, we introduce the quasi-electric phase tensor, which
is derived from the quasi-electric tensor, where the quasi-electric tensor relates the electric field at a field site with the
magnetic field at a base site. The quasi-electric tensor is not affected by galvanic distortion. Using a synthetic data-set,
we show that the sensitivity of the MT phase tensor, the quasi-electric phase tensor, and the electric phase tensor is
comparable for ourmodel under consideration. Furthermore, we demonstrate that stable (quasi-) electric phase tensors
can be recovered from a real data-set with the use of existing processing software. In addition, we provide a formalism
to propagate the uncertainties from the estimated (quasi-) electric and impedance tensors to their respective phase
tensors. The uncertainties of the (quasi-) electric phase tensors are of the same order of magnitude as the uncertainties
of the MT phase tensor. From our study, we conclude that the (quasi-) electric phase tensors are an attractive
complement to the standard MT responses.
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Background
Electromagnetic (EM) studies of the Earth aim to infer its
electrical conductivity. In the 1930s, Marcel and Conrad
Schlumberger pioneered an EM field survey that relied
on naturally occurring telluric currents rather than on the
active injection of a direct current by a pair of electrodes
(Schlumberger 1939). A telluric current is induced in the
Earth by time-varying magnetic fields. These originate in
the magnetosphere, ionosphere, and/or atmosphere with
sources as far away as the Sun and as close as thunder-
storms (Vozoff 1972). The first telluric surveys relied on
the simultaneous measurement of one electric field com-
ponent at a base and a field site. The difference in electric
field strength at the base and field site could only qual-
itatively be interpreted, i.e., information on the relative
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conductivity difference between the base and field site was
obtained.
Two decades later, the magnetotelluric (MT) method

was introduced. The MT method is based on measure-
ments of the time-varying (naturally occurring) orthogo-
nal horizontal electric (E) and magnetic (H) field compo-
nents at the Earth’s surface. The original papers assume
that the conductivity distribution of the subsurface is one-
dimensional (1-D), i.e., only varies with depth (Tikhonov
1950; Cagniard 1953). In that case, the ratio of E to H
is independent from the measurement coordinate system
and depends only on the 1-D electrical conductivity dis-
tribution of the subsurface. In practice, the conductivity of
the subsurface can vary in all three spatial directions and
the electric andmagnetic field components depend on the
measurement coordinates. The E andH field components
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are related through the 2 × 2 complex-valued impedance
tensor,

E(rf ,ω) = Z(rf ,ω)H(rf ,ω), Z(rf ,ω) =
(
Zxx Zxy
Zyx Zyy

)
,

(1)

where E = [Ex,Ey]T andH = [Hx,Hy]T indicate the hori-
zontal components of the electric andmagnetic field at the
field site rf . The superscript T denotes the transpose of a
vector. Hereinafter, the dependence of the responses and
EM fields on angular frequency ω is omitted but implied.
Z contains information about the subsurface’s conductiv-
ity at each field location rf , see, e.g., Berdichevsky and
Dmitriev (2008), Chave and Jones (2012), and Simpson
and Bahr (2005) for a detailed description of the MT
method.
However, in the 1950s, themagnetic fieldmeasurements

were characterized by a low signal-to-noise (S/N) ratio.
The S/N ratio was increased by measuring the magnetic
field variations at one site for several weeks and select-
ing the suitable time-windows. The tedious process of
analyzing these long recordings led in the 1960s to the
further elaboration of the telluric sounding (TS) method
(Berdichevsky 1965; Yungul 1966). In a TS survey, both
horizontal components of the electrical field aremeasured
simultaneously at a field site (rf ) and at a base site (rb) and
related through the electric tensor T according to

E(rf ) = T(rf , rb)E(rb), T(rf , rb) =
(
Txx Txy
Tyx Tyy

)
.

(2)

During the 1970s, TS was often favored above MT
because of its relatively low costs and the simplicity of the
telluric measurements compared to the magnetic mea-
surements. TS measurements were usually interpreted in
terms of the effective electric intensity,

Teff(rf ) =
√

|det[ T(rf , rb)] |, (3)

represented as a contour map of equal Teff. Note that
the electrical intensity map contained qualitative informa-
tion of the subsurface’s conductivity (Berdichevsky and
Dmitriev 2008; Iliceto and Santaroto 1986). Only with
a known 1-D conductivity profile beneath the base site,
quantitative information on the conductivity of the sub-
surface could be provided (Yungul 1966).
In the mid-1970s, the telluric-magnetotelluric (T-MT)

method was introduced (Hermance and Thayer 1975). In
a T-MT survey, the magnetic field at a base site is related
with the electric field at a field site according to

E(rf ) = Q(rf , rb)H(rb), Q(rf , rb) =
(
Qxx Qxy
Qyx Qyy

)
.

(4)

We call Q the quasi-electric tensor to emphasize that the
electric field is measured solely at field sites. The main
advantage of the T-MT method is that with one magnetic
field measurement, almost the same information as con-
tained in the impedance tensor Z (defined in Eq. 1) is
obtained (Hermance and Thayer 1975).
In the last couple of decades, the electric and quasi-

electric tensors have fallen into disuse. The reason for
this is twofold. Firstly, increasing technologies improved
the quality of the magnetic field measurements such that
nowadays, the magnetic field measurements are not a lim-
iting factor anymore in a MT survey. Secondly, it was
realized (Bahr 1988; Jiracek 1990) that the measured elec-
tric fields can be distorted by charge accumulation at the
surface of small-scale heterogeneities in the shallow sub-
surface. These so-called galvanic distortions can often not
be determined adequately to remove their effect in a direct
manner. In particular, the TS and the T-MT method did
not allow for a correction of galvanic distortion. How-
ever, it is relevant to remark that recently, a time-domain
approach was introduced for a direct estimation of the
distortion effect (Püthe et al. 2014).
Here, we extend the TS and the T-MTmethod by intro-

ducing two new transfer functions, namely the electric
phase tensor (�) and the quasi-electric phase tensor (ϒ).
Like the MT phase tensor (Caldwell et al. 2004), the
(quasi-) electric phase tensors are almost free or com-
pletely free from galvanic distortion.
The paper is organized as follows. In “Governing

equations” section, we show the derivation of the (quasi-)
electric phase tensors and we discuss their characteris-
tics in “Multi-dimensional analysis of the structure of the
(quasi-) electric phase tensors” section. The behavior of
the different phase tensors is discussed in “(Quasi-) elec-
tric phase tensors predicted by a synthetic model” section
using a synthetic data-set. Finally, in “Calculating (quasi-)
electric phase tensors from a field data-set” section, we
demonstrate that stable (quasi-) electric phase tensors can
be recovered from a real data-set with the use of exist-
ing processing software. In the Appendix, we present a
formalism to propagate the uncertainties from the esti-
mated MT and (quasi-) electric tensors to their respective
phase tensors.

Methods
Governing equations
Galvanic distortion is caused by local small-scale het-
erogeneities in the shallow subsurface which are not
the target of the MT survey. At the surface of these
heterogeneities, charges accumulate and this affects the
direction and magnitude of the electric field but not its
phase. Thus, the effect of these local heterogeneities can
be represented as a linear function of the electric field
that would have been measured in absence of the local
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heterogeneities, Etrue, and a distortion matrix matrix �,
that is

E(r) = �Etrue(r), � ≡ �(r) =
(

λxx λxy
λyx λyy

)
, (5)

where� is unknown, real-valued, and frequency indepen-
dent (Bahr 1988). The interested reader is referred to, e.g.,
Groom and Bailey (1989), Groom and Bahr (1992), and
Chave and Smith (1994) for a more detailed explanation
of the theory of galvanic distortion.
Following Eq. 5, we canwrite the electric field at the base

and field site as

E(rb) = �bEtrue(rb), E(rf ) = �f Etrue(rf ). (6)

Eq. 6 implies that the electric tensor T, as defined in Eq. 2,
is distorted as well. Indeed, substitution of Eq. 6 into Eq. 2
yields

Etrue(rf ) = �−1
f T�bEtrue(rb), (7)

and thus the true electric tensor, which would be
measured in absence of the galvanic distortion, can be
written as

Ttrue = �−1
f T�b, (8)

and the electric tensor that is measured in presence of
galvanic distortions is given by

T = �fTtrue�−1
b . (9)

The electric tensor is affected by galvanic distortion at
both the base and the field site. In contrast, the electric
phase tensor,

� = (�T)−1(�T), (10)

is only affected by galvanic distortion at the base site.
Here, the operator � points to the real part of the
complex-valued electric tensor T and the operator � to its
imaginary part. To prove that � is independent of �f , we
separate Eq. 9 into its real and imaginary parts

�T = �f �Ttrue�−1
b , �T = �f �Ttrue�−1

b , (11)

where we used that the distortion matrices �f and �b are
real-valued. Inverting the matrix �T by using (AB)−1 =
B−1A−1 yields

(�T)−1 = �b(�Ttrue)−1�−1
f . (12)

Substituting Eqs. 11 and 12 into Eq. 10 gives

� = �b(�Ttrue)−1�−1
f �f �Ttrue�−1

b
= �b(�Ttrue)−1�Ttrue�−1

b .
(13)

Here, we used that �−1
f �f = I, where I is the identity

matrix. Thus, with the new response �, we completely
rule out the problem of galvanic distortion at multiple
field sites and we only have to account for possible gal-
vanic effects at the base site.

Similarly, we use the quasi-electric tensor Q, Eq. 4, to
derive the quasi-electric phase tensor,

ϒ = (�Q)−1(�Q)

= (�Qtrue)−1�−1
f �f �Qtrue

= (�Qtrue)−1�Qtrue,
(14)

where we have assumed that the horizontal magnetic field
is not affected by galvanic effects (H = Htrue) (Groom
and Bailey 1989). It is seen from Eq. 14 that the quasi-
electric phase tensor is independent from the distortion
matrices �f and �b and is therefore completely free from
galvanic distortion. Note that while deriving the (quasi-)
electric phase tensors, we used the same approach as
was used for the derivation of the MT phase tensor
(Caldwell et al. 2004).

Multi-dimensional analysis of the structure of the (quasi-)
electric phase tensors
The (quasi-) electric phase tensors are inter-site response
functions. It is known that for the inter-site horizontal
magnetic tensor, the best location for the base site is above
a 1-D layered half space; otherwise, the effect of inho-
mogeneities at the base site will be transferred to the
entire survey area and the effect of the inhomogeneities
at the base site will be superimposed on the effects of the
inhomogeneities at the field sites (Leibecker et al. 2002;
Varentsov 2005; Habibian Dehkordi and Oskooi 2012).
However, we expect that the conductivity profile at the
base site does not play a major role if inter-site trans-
fer functions are used in a 3-D inversion. As long as the
conductivity below the base site is part of the inversion
domain, the inverse algorithm can solve for both the con-
ductivity below the base and the field sites. But in order
to obtain a better understanding of the structure of the
(quasi-) electric phase tensors, we assume in the following
a 1-D conductivity section below the base site.

The quasi-electric phase tensor
One-dimensional structures The quasi-electric tensor
Q (Eq. 4) and its phase tensor ϒ (Eq. 14) have the same
structure as the impedance tensor Z (Eq. 1) and its phase
tensor �. For a 1-D conductivity environment, that is
different at the base and the field site, Q reduces to

Q1D(rb, rf ) =
(

0 Q1D

−Q1D 0

)
, (15)

and ϒ reduces to

ϒ1D =
(

Υ 1D 0
0 Υ 1D

)
. (16)

If the 1-D conductivity section at the base site is identi-
cal to the 1-D conductivity section at the field site, Q1D in
Eq. 15 can be replaced by the 1-D impedance Z1D andΥ 1D

in Eq. 16 by the phase of impedance Φ1D.
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Two-dimensional structures For a 2-D conductivity dis-
tribution, a rotated coordinate system can always be found
such that

Q2D(rb, rf ) =
(

0 Qxy
Qyx 0

)
, (17)

and

ϒ2D =
(
tan φ

Q
yx 0

0 tan φ
Q
xy

)
, (18)

where φ
Q
xy and φ

Q
yx are the phase angles of the quasi-

electric tensor elements Qxy and Qyx, respectively.
The element Qxy relates Ex with Hy which means
that Υ 2D

yy ≡ tan φ
Q
xy and Υ 2D

yy is associated with the H-
polarization of the MT field. Note that wherever a 2-D
setup is discussed, we assume that the coordinate frame
is such that the x-axis is perpendicular to the strike
direction of the 2-D conductivity structure. Correspond-
ingly, Υ 2D

xx ≡ tan φ
Q
yx and Υ 2D

xx are associated with the
E-polarization of the MT field.

Three-dimensional structures In 3-D conductivity
environments, the full quasi-electric tensor Q has to be
considered. Similar to the normalized skew angle of the
MT phase tensor (Booker 2014), we define ψϒ

ψϒ = tan−1
(

Υxy − Υyx
Υxx + Υyy

)
, (19)

which is a rotational invariant of ϒ . As for the MT phase
tensor, if the structure is 2-D thenψϒ = 0. However,ψϒ=
0 does not necessarily mean that the structure is 2-D as
locally 3-D symmetry canmakeψϒ small. A 2-D interpre-
tation of MT data is justified if the off-diagonal elements
of ϒ are one order of magnitude smaller than the diago-
nal elements of ϒ . Applying the aforementioned criterion
results into ψϒ ≥ tan−1(0.1) ≥ 6◦, as a practical guide-
line to decide whether a 3-D interpretation of the data is
required (Booker 2014).

The electric phase tensor
One-dimensional structures For a lateral uniform con-
ductivity distribution, the horizontal electric field is iden-
tical at the field and the base site and the electric tensor T
(Eq. 2) equals the identity matrix. If the field and the base
site are underlain by different 1-D conductivity sections,
the electric tensor T is a real-valued diagonalmatrix. Since
the phase of a real-valuedmatrix is zero, the electric phase
tensor reduces to zero for 1-D media. A zero-valued elec-
tric phase tensor cannot be used to decide whether the
subsurface is a laterally homogeneous 1-D medium or
consists of different 1-D conductivity sections.

Two-dimensional structures For 2-D structures, T is
symmetrical (Iliceto and Santaroto 1986), i.e., Txy = Tyx. If

the measuring axes coincide with the principle directions
of T, T reduces to

T2D(rb, rf ) =
(
Txx 0
0 Tyy

)
. (20)

In this coordinate frame, the electric phase tensor is
given by

�2D = λbxxλ
b
yy

λbxxλ
b
yy − λbxyλ

b
yx

(
tan φT

xx 0
0 tan φT

yy

)
, (21)

with φT
xx and φT

yy the phases of the complex-valued ele-
ments Txx and Tyy, respectively. The element Txx relates
Ex(rb) with Ex(rf ) (see Eq. 2), which means that �xx is
associated with the H-polarization of the MT field. Sim-
ilar reasoning results in �yy being associated with the
E-polarization of the MT field.

Three-dimensional structures In 3-D environments,
the full electric tensor T has to be considered implying
that the same holds for the electric phase tensor �. The
normalized skew angle of the electric phase tensor can be
defined as

ψ� = tan−1
(

�xy − �yx
�xx + �yy

)
. (22)

However, ψ� cannot be used as an indicator for 3-D con-
ductivity structures in the same way as ψϒ and ψ�. This
can be seen by the fact that ψ� becomes indefinite if
the conductivity section is 1-D (� = 0) and for a 2-D
conductivity structure ψ� reduces to zero. This makes it
impossible to define a workable limit for ψ� from which
a 3-D interpretation of the data is justified, as can be done
forψϒ (“The quasi-electric phase tensor” section) andψ�

(Booker 2014).

Results and discussion
(Quasi-) electric phase tensors predicted by a synthetic
model
We performed a model study to investigate the sensitivity
of the (quasi-) electric phase tensors compared to the sen-
sitivity of the standard MT phase tensor. Plane and side
views of the 3-D model are shown in Figs. 1 and 2, respec-
tively. The model mimics a conducting sedimentary basin
surrounded by resistive mountains with a conductive fault
beneath the left flank of the basin.We expect galvanic cou-
pling between the high conductive sedimentary basin and
the deep conducting basement by the downward leakage
of electric currents within the fault. We performed two
forward model runs, one run in which we have omitted
the conductive fault and a second run with a 2000-m-wide
conductive fault. The local structure is 3-D at the corner
points of the sedimentary basin, 2-D around the margins
of the basin and 1-D away from the margins of the sedi-
mentary basin. The 1-D conductivity structure away from
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Fig. 1 Plane view of the 3-D synthetic model. The high conductive
sedimentary basin (σ = 1 S/m and 2 km thick) is shown in gray and
the white area represents the surrounding resistive mountains
(σ = 0.01 S/m). The left side of the vertical fault is coincident with the
left side of the basin and the fault is 0 (i.e., no fault) or 2 km wide. The
dashed horizontal line depicts the observation profile

the margins continues till infinity. We placed the base
site (rb) approximately 140 km apart from the upper left
corner of the fault structure, see Fig. 1. At this location,
the condition of one dimensionality is met. The simula-
tions were conducted using the recently developed 3-D
EM code (Geraskin A, KruglyakovM, Kuvshinov A: Novel
robust and scalable 3-D forward solver based on contract-
ing integral equation method and modern programming
technologies, submitted to Computers and Geoscienses)
based on the contracting integral equation method.
In Fig. 3, the magnitude of the recovered diagonal

phase tensor elements (vertical axis) is shown along a
profile (horizontal axis) spanning the whole sedimentary
basin. The location of the profile is indicated with the
dashed horizontal line in Fig. 1. The absolute value of the

Fig. 2 Side view of the 3-D synthetic model

magnitude of the phase tensor elements is a dimensionless
number. For a 2-D conductivity structure, the magnitude
of Υxx equals tan φ

Q
yx and the magnitude of Υyy equals

tan φ
Q
xy (Eq. 18). Similarly, the magnitudes of the diagonal

elements of � are related to the phase angles of Z and the
magnitudes of the diagonal elements of � are related to
the phase angles of T. The results are shown for T = 30 s.
The upper two panels in Fig. 3 present the MT phase ten-
sor elements (�xx and �yy), the middle two panels the
quasi-electric phase tensor elements (Υxx and Υyy), and
the lower two panels the electric phase tensor elements
(�xx and �yy). The red- and black-colored curves indicate
the results for the cases with and without fault, respec-
tively. The leftmost vertical line denotes the location of
the fault and the rightmost vertical line indicates the bor-
der between the sedimentary basin and the surrounding
mountains.
From Fig. 3, we see that if no fault is present, the pro-

files of the phase tensor elements are symmetric around
the center of the sedimentary basin, as one would expect.
The introduction of the fault results in an asymmetry in
the phase tensor elements along the profile. Second, it
appears that the location of the fault is most pronounced
in the profiles of the yy-element of the MT- and the quasi-
electric phase tensor, corresponding to the x-directed
electric field or H-polarization (see Eq. 18). Similarly, the
presence of the fault is most pronounced in the profile
of the xx-element of the electric tensor, which also cor-
responds to the x-directed electric field or H-polarization
(see Eq. 21). The presence of the fault leads to a down-
ward deviation of the x-directed current, which explains
why the fault is most pronounced in the H-polarization.
As a result, the effect of the fault is seen at a larger offsets
from the fault in�yy,Υyy, and�xx. And finally, we observe
from Fig. 3 that the behavior of the MT- and the quasi-
electric phase tensor is similar (compare Fig. 3a, b and c,
d), which is expected since both involve horizontal mag-
netic fields, the MT-phase tensor—at each field site and
the quasi-electric phase tensor—only at the base site, and
these fields vary little from site to site for the considered
period and considered model.
In Fig. 4, the MT-, quasi-electric-, and electric- phase

tensor ellipses are shown for the model including the
fault and for the same period as the profile shown in
Fig. 3, i.e., for T = 30 s. We present the phase ten-
sor ellipses along three profiles, namely at the upper and
lower border of the sedimentary basin as well as along
the profile indicated in Fig. 1. The aim of plotting the
phase tensor ellipses is to visualize all four elements of
the phase tensor in one plot. Note that if the phase tensor
ellipses are circular shaped, the conductivity structure is
1-D. Otherwise, the conductivity structure is 2-D or 3-D
(Bibby et al. 2005).
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Fig. 3 Dominant elements of the MT (a,b), quasi-electric (c,d), and electric (e,f) phase tensors along the profile shown in Fig. 1 for T = 30 s. In black,
the profile is shown for the case that there is no fault present and in red for the case that the fault is present. The leftmost vertical line indicates the
fault and the rightmost vertical line indicates the right border of the sedimentary basin

Fig. 4 Ellipses for the MT phase tensor, quasi-electric phase tensor,
and electric phase tensor at T = 30 s for the model with fault. The
MT- and quasi-electric phase tensor ellipses are filled with a color
indicating their normalized skew angle ψ�,ϒ given in Eq. 19 for ϒ .
The green color indicates the “go-ahead” color for a 2-D interpretation
of the data. The gray color of the electric phase tensor ellipses is used
for visualization purposes only

The MT- and quasi-electric phase tensor ellipses are
filled with a color representing their normalized skew
angle ψϒ ,�, with ψϒ given in Eq. 19 and ψ� is defined
in a similar way by replacing φQ in Eq. 19 with φZ. The
same color is used for the range −6◦ < ψ�,ϒ < 6◦,
indicating the locations where a 2-D interpretation is jus-
tified. We omitted to fill the electric phase tensor ellipses
with a color indicating their normalized skew angleψ� for
reasons discussed in “Multi-dimensional analysis of the
structure of the (quasi-) electric phase tensors” section.
The gray color of the electric phase tensor ellipses is
used for visualization purposes only. As expected, the
MT phase tensor ellipses are circular shaped away from
the sedimentary basin, thus indicating a 1-D conduc-
tivity structure. At the upper and lower margin of the
sedimentary basin, the ellipses are elongated, indicating
either 2-D or 3-D effects. The value of ψ� is an indi-
cator whether a 2-D or 3-D conductivity model has to
be considered. Around the corner points of the sedimen-
tary basin, the normalized skew angle is larger/smaller
than ±6◦ indicating 3-D effects.
The quasi-electric phase tensor ellipses show a similar

behavior to the phase tensor ellipses. In contrast to the
MT and quasi-electric phase tensors ellipses, the electric
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phase tensor ellipses are rapidly vanishing away from the
sedimentary basin, which is indicative for a 1-D conduc-
tivity structure coinciding with the 1-D structure beneath
the base site.

Calculating (quasi-) electric phase tensors from a field
data-set
In this section, we investigate how reliably we can calcu-
late the new responses from a field data-set. For this aim,
we processed part of our MT data collected during March
2012 on Aluto volcano, situated in the main Ethiopian
rift valley (Fig. 5). The ultimate goal of this MT survey
was to obtain insight on the geothermal system below the
volcano (Samrock et al. 2015).
We estimated the inter-site (quasi-) electric tensors

between an exemplary (field) site, M23, and the remote
reference (base) site, RR (shown as blue rhombs in Fig. 5),
using the EMTF code (Eisel and Egbert 2001). Site M23
was selected based on its high signal-to-noise ratio. Note
that due to the strong topography and complicated geol-
ogy of the fieldwork area, RR is located in non 1-D
conductivity environment. The estimated (quasi-) elec-
tric tensor elements are shown in Fig. 6. For comparison,
we show as well the elements of the impedance tensor,
estimated using a remote reference processing technique
(Gamble et al. 1979). One can see that all tensor elements
are smooth functions of period. Furthermore, it is seen
that the uncertainties of the quasi-electric and electric
tensor elements are small and comparable to the uncer-
tainties of the impedance tensor elements. From these
tensors, we calculated the corresponding phase tensors

Fig. 5 Aluto volcano. Map of the fieldwork area. Exemplary field site
M23 and base site RR are depicted as blue rhombs

which are shown in Fig. 7. The uncertainties of the ele-
ments of phase tensors were calculated using the delta
method (Patro et al. 2013; Booker 2014), which is a
standard method for propagating variables’ uncertainties
(or errors) to the uncertainties of functions based on
them (Ver Hoef 2012). A summary of the mathematics
behind the delta method is given in Appendix 1, and in
Appendix 2, explicit formulas for the calculation of the
uncertainties for the elements of the phase tensors are
given. As one would expect—due to the smoothness of
the generating tensors—the MT phase tensor, as well as
the (quasi-) electric phase tensors appeared to be smooth
functions of period. Surprisingly enough, the (quasi-)
electric phase tensors seem to be smoother functions
of period than the MT phase tensor, which becomes
especially clear at long periods where the MT phase
tensor elements show some scatter. In contrast to our
model study, for this field data-set, the MT and quasi-
electric tensors are quite different, most probably due
to substantially different conductivity profiles below the
field and base site, as 3-D inversion revealed (Samrock
et al. 2015). Remarkably, the smoothest behavior and
the smallest uncertainties are observed in the electric
phase tensor.

Conclusions
We introduced two new response functions which can
be exploited for the interpretation of MT data. First,
we present the electric phase tensor, which is based on
the inter-site electric tensor. The electric phase tensor
requires the simultaneous measurement of the horizon-
tal electric field components at the base and a field site
and is only distorted by galvanic effects, if present, at
the base site. Second, we present the inter-site MT phase
tensor, which we called the quasi-electric phase tensor.
The quasi-electric phase tensor requires the simultaneous
recording of the horizontal magnetic field components at
the base site and the horizontal components of the electric
field at a field site. The quasi-electric phase tensor is not
distorted by galvanic effects. The base site has to be cho-
sen carefully, preferably in a low-noise environment, and
where the conductivity section is 1-D, to ensure that the
(quasi-) electric phase tensor is not contaminated by 2-D
or 3-D effects at the base site.
With a synthetic data-set, we showed that the sensitivity

of the (quasi-) electric phase tensors is comparable to the
sensitivity of the MT phase tensor.
We showed for a real data-set that it is possible to

estimate stable (quasi-) electric tensors using existing pro-
cessing software. For our real data-set, the calculated
(quasi-) electric phase tensors appeared to be smoother
functions of period than the MT phase tensor. We elabo-
rated formulas to propagate uncertainties of the (quasi-)
electric tensors to their respective phase tensors. Further,
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Fig. 6 Estimated impedance (a,d), quasi-electric (b,e), and electric (c,f) tensor elements for site M23. The upper row displays the real parts of the
respective response function elements and the lower row its imaginary parts

we demonstrated that for our data-set, the uncertainties of
the MT phase tensor and the (quasi-) electric phase ten-
sors are comparable. Moreover, we observed the smallest
uncertainties and the smoothest behavior for the electric
phase tensor.
Summing up, we believe that the newly introduced

inter-site phase tensors could be a useful complement to
the standard MT responses. The next natural step is to
incorporate the (quasi-) electric phase tensors into a 3-D
inversion scheme. Incorporation of (quasi-) electric phase
tensors seems rather straightforward, but employing the
electric tensor during inversion requires the simultane-
ous determination of the conductivity distribution and
four additional parameters, the real-valued elements of
the distortion matrix �b (see Eq. 13) at a base site. Note
that recently, Avdeeva et al. (2015) addressed in a simi-
lar way the impedance tensor Z inversion by recovering
simultaneously the 3-D conductivity distribution and the
distortion matrix �f at all sites.

Appendix 1
The phase tensor is a non-linear function of the eight
elements of the corresponding tensor, namely the real

and imaginary parts of tensor elements. The tensor ele-
ments are statistical variables with variances and covari-
ances. We use the delta method (Casella and Berger
2002; Ver Hoef 2012) to propagate the uncertainty from
the estimated tensors to their phase tensors. Here,
we introduce the delta method and in Appendix 2,
explicit formulas for the uncertainties of the electric,
quasi-electric-, and MT-phase tensor are given.

The delta method
Consider the Taylor series of a multi-variate differentiable
function g(m) around μ,

g(m) = g(μ) +
K∑

k=1
g′
k(μ)(mk − μk) + remainder (23)

with m =[m1, . . . ,mK ]T being a set of random variables
and μ =[μ1, . . . ,μK ]T being the corresponding means.
The index k runs from 1 to K , with K being the number of
elements in vectorm, andmk pointing to the kth element
ofm. The variance of g(m) is defined as

Var
[
g(m)

] = E
[(
g(m) − g(μ)

)2] , (24)

Fig. 7MT (a), quasi-electric (b), and electric phase (c) tensor elements derived from the estimated impedance, quasi-electric, and electric tensors
shown in Fig. 6. The error bars are calculated using the delta method (see Eq. 33)
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where E indicates the expected value operator. By substi-
tution of Eq. 23 into Eq. 24 and dropping the remainder, an
expression for the variance of g(m) is found as a function
of the variances and covariances ofm,

Var
[
g(m)

] ≈ E

⎡
⎣(

g(μ) +
K∑

k=1
g′
k(μ)(mk − μk) − g(μ)

)2⎤⎦

≈ E

⎛
⎝

( K∑
k=1

g′
k(μ)(mk − μk)

)2⎞⎠

=
K∑

k=1
g′
k(μ)2Var[mk]+2

K∑
k>l

g′
k(μ)g′

l(μ)Cov[mk ,ml] ,

(25)

where the last equality comes from expanding the square,
g′
k = ∂g(m)

∂mk
, Var[mk] is defined as

Var[mk]= E
[
(mk − μk)

2] , (26)

and Cov[mk ,ml] as

Cov[mk ,ml]= E [(mk − μk)(ml − μl)] for k 	= l.
(27)

Equation 25 is valid if the covariance matrix is symmet-
ric. However, the covariance matrix of the electric tensor
is not symmetric (see Appendix 2) and hence we write
Eq. 25 as

Var
[
g(m)

] =
K∑

k=1
g′
k(μ)2Var[mk]

+
K∑

k,l=1
k 	=l

g′
k(μ)g′

l(μ)Cov[mk ,ml] .
(28)

Appendix 2
Uncertainties of phase tensors
In this section, we first derive an explicit formula
for the uncertainty of the MT phase tensor elements
Φxx,Φxy,Φyx, and Φyy, using Eq. 28. The MT phase tensor
elements correspond to the function g in Eq. 28 and the
vector m in Eq. 28 contains the real and imaginary parts
of the impedance tensor Z.
For our derivation, it is convenient to write the phase

tensor � as

� = A−1B, Z = A + iB, (29)

with � given by,(
�xx �xy

�yx �yy

)
= 1

AxxAyy − AxyAyx

(
Ayy −Axy

−Ayx Axx

) (
Bxx Bxy

Byx Byy

)

= 1
Det[ A]

(
AyyBxx − AxyByx AyyBxy − AxyByy

AxxByx − AyxBxx AxxByy − AyxBxy

)
.

(30)

Next, we write the vectorm as

m = [
Axx,Axy,Ayx,Ayy,Bxx,Bxy,Byx,Byy

]T . (31)

The introduction of m allows us to write the partial
derivatives of the phase tensor as ∂�ij

∂mk
with i, j= x, y. These

partial derivatives of the elements of the phase tensor are
listed in Table 1.
The impedance tensor elements are complex-valued

random vectors. If we assume that the statistical proper-
ties of the impedance tensor elements are only described
by their covariance matrix, we can write the covariance
matrix ofm in terms of the covariance matrix of Z (Picin-
bono 1996) as follows,

Cov[m]=
( 1

2�[ Cov[ Z]] − 1
2�[ Cov[ Z]]1

2�[ Cov[ Z]] 1
2�[ Cov[ Z]]

)
. (32)

Note that the covariance matrix of m is asymmetric and
Cov[ Z] is the complex-valued 4 by 4 covariance matrix
of the electric tensor Z. Combining Eqs. 28 and 32, an
expression for the variance of the electric phase tensor
elements is obtained,

Var
[
�ij

] =
8∑

k=1

(
∂�ij

∂mk

)2
Var[mk]

+
8∑

k,l=1
k 	=l

∂�ij

∂mk

∂�ij

∂ml
Cov[mk ,ml] ,

(33)

with ∂�ij
∂mk

given in Table 1, Cov[mk ,ml] given in Eq. 32,
and Var[mk] corresponding to the diagonal elements of
Cov[mk ,ml].

Table 1 Partial derivatives of �, where Det[ A]= AxxAyy − AxyAyx
is the determinant of A

∂Φxx ∂Φxy ∂Φyx ∂Φyy

∂Axx
−AyyΦxx
Det[A]

−AyyΦxy
Det[A]

Byx−AyyΦyx
Det[A]

Byy−AyyΦyy
Det[A]

∂Axy
−Byx+AyxΦxx

Det[A]
−Byy+AyxΦxy

Det[A]
AyxΦyx
Det[A]

AyxΦyy
Det[A]

∂Ayx
AxyΦxx
Det[A]

AxyΦxy
Det[A]

−Bxx+AxyΦyx
Det[A]

−Bxy+AxyΦyy
Det[A]

∂Ayy
Bxx−AxxΦxx

Det[A]
Bxy−AxxΦxy

Det[A]
−AxxΦyx
Det[A]

AxxΦyy
Det[A]

∂Bxx
Ayy

Det[A] 0
−Ayx
Det[A] 0

∂Bxy 0
Ayy

Det[A] 0
−Ayx
Det[A]

∂Byx
−Axy
Det[A] 0 Axx

Det[A] 0

∂Byy 0
−Axy
Det[A] 0 Axx

Det[A]
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In a similar way, we write the quasi-electric phase tensor
ϒ as

ϒ = R−1S, Q = R + iS, (34)

where Q is the quasi-electric tensor. The uncertainties of
ϒ are calculated by constructing a vector m containing
the elements of R and S, similar to the vector m in Eq. 31
and substitution of � = ϒ andm into Eq. 33.
For the electric phase tensor �, we have

� = U−1V, T = U + iV, (35)

where T indicates the electric tensor. The uncertainties for
� can be calculated by constructing a vectorm containing
the elements of U and V and substituting � = � and m
into Eq. 33.
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