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Abstract We consider the behavior of the innermost stable
circular orbit (ISCO) in the magnetic field near “dirty” (sur-
rounded by matter) axially symmetric black holes. The cases
of near-extremal, extremal, and nonextremal black holes are
analyzed. For nonrotating black holes, in the strong magnetic
field ISCO approaches the horizon (when backreaction of the
field on the geometry is neglected). Rotation destroys this
phenomenon. The angular momentum and radius of ISCO
look model-independent in the main approximation. We also
study the collisions between two particles that results in the
ultra-high energy Ec.m. in the center-of-mass frame. Two sce-
narios are considered—when one particle moves on the near-
horizon ISCO or when collision occurs on the horizon, one
particle having the energy and angular momentum typical of
ISCO. If the magnetic field is strong enough and a black hole
is slowly rotating, Ec.m. can become arbitrarily large. The
kinematics of the high-energy collision is discussed. As an
example, we consider the magnetized Schwarzschild black
hole for an arbitrary strength of the field (the Ernst solution).
It is shown that backreaction of the magnetic field on the
geometry can bound the growth of Ec.m..

1 Introduction

The motion of particles in the vicinity of black holes is a sub-
ject that has been continuing to attract interest until recently.
In doing so, a special role is played by circular orbits—see,
e.g., Refs. [1,2] and references therein. Especially, this con-
cerns an innermost stable circular orbit (ISCO). It is impor-
tant in phenomena connected with accretion disc and proper-
ties of cosmic plasma [3,4]. Apart from astrophysics, such a
kind of orbits possesses a number of nontrivial features and,
therefore, is interesting from the theoretical viewpoint. In a
classic paper [5] it was shown that in the extremal limit ISCO
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approaches the horizon. As a result, some subtleties arise here
since the horizon is a lightlike surface, so a massive particle
cannot lie within it exactly. Nowadays, near-horizon circular
orbits for near-extremal and extremal rotating black holes are
still a subject of debates [6–9].

Quite recently, a new circumstance came into play that
makes the properties of ISCO important in a new context.
Namely, it is the ISCO that turns out to be a natural venue for
the realization of the so-called BSW effect. Several years ago,
it was shown by Bañados, Silk, and West that if two particles
collide near the black hole horizon of the extremal Kerr met-
ric, their energy Ec.m. in the center-of-mass (CM) frame can
grow unboundedly [10]. These findings stimulated further
study of high-energy collisions near black holes. The validity
of the BSW effect was extended to extremal and nonextremal
more general black holes. It was also found that there exists
a version of this effect near nonrotating electrically charged
black holes [11]. Another version of ultra-high-energy colli-
sions reveals itself in the magnetic field, even if a black hole
is neutral, vacuum, and nonrotating, so it is described by the
Schwarzschild metric [12]. Generalization to the case when
the background is described by the Kerr metric was done in
[13].

In the BSW effect, one of the colliding particles should
be so-called critical. It means that the energy and the angular
momentum (or electric charge) of this particle should be fine-
tuned. In particular, the corresponding critical condition is
realized with good accuracy if a particle moves on a circular
orbit close to the horizon. Therefore, an ISCO can play a
special role in ultra-high-energy collisions in astrophysical
conditions. Without the magnetic field, this was considered
in [14] for the Kerr black hole and in [15] for more general
rotating black holes. Kinematically, the effect is achieved due
to collision of a rapid typical so-called usual particle (without
fine-tuning) and the slow fine-tuned particle on the ISCO [16]
(see also below).
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In [12,13] collisions were studied just near the ISCO in
the magnetic field. In both cases, a black hole was taken to
be a vacuum one. Meanwhile, in astrophysical conditions,
black holes are surrounded by matter. By definition, such
black holes are called “dirty”, according to the terminology
suggested in Ref. [17]. (We would like to stress that it is
matter but not the electromagnetic field that makes a black
hole dirty.)

The aim of our work is two-fold, since two different issues
overlap here. The first one concerns the properties of ISCO
near dirty black holes in a magnetic field, so both matter and
the magnetic field are present. The second issue concerns the
scenarios of high-energy particle collisions near such orbits.
We derive general asymptotic formulas for the position of
the ISCO in the magnetic field, which are used further for
the evaluation of Ec.m. and examining of two scenarios of
the BSW effect near ISCO.

In Refs. [12,13], it was assumed that the magnetic field is
weak in the sense that backreaction of the magnetic field on
the metric is negligible but, at the same time, it is strong in the
sense that it affects he motion of test particles. Such a com-
bination is self-consistent, since the dimensionless param-
eter b that controls the magnetic field strength contains a
large factor q/m, relevant for the motion of particles. Our
approach is model-independent and is not restricted by some
explicit background metric. Therefore, most of the formulas
apply also to the metrics which are affected by the magnetic
field. On the other hand, if the magnetic field is too strong,
its backreaction on the metric can change the properties of
Ec.m. itself, as will be seen below. Thus we discuss two new
features absent from previous works in the sense that both
matter and magnetic field are taken into account in a model-
independent way.

It is worth noting that high-energy collisions in the mag-
netic field were studied also in another context, including
scenarios not connected with ISCO—see [18–21].

In general, it is hard to find and analyze ISCO even in the
Kerr or Kerr–Newman cases [1,2]. However, it is the prox-
imity to the horizon that enables us to describe some proper-
ties of ISCO, even not specifying the metric (so we work in
a model-independent way) and even with a magnetic field.
This can be considered as one manifestation of universality
of black hole physics.

The paper is organized as follows. In Sect. 2, the metric
and equations of motion are presented. In Sect. 3, we give
basic equations that determine ISCO. In Sect. 4, we consider
ISCO in a magnetic field for near-extremal black holes and
analyze the cases of small and large fields. In Sect. 5 the cases
of nonrotating (but dirty) and slowly rotating black holes are
discussed. As we have two small parameters (slow rotation
and inverse field strength), we consider different relations
between them separately. In Sect. 6 we show that if a black
hole rotates, even in the limit of a strong magnetic field ISCO

does not tend to the horizon radius. In Sect. 7, it is shown
that for extremal nonrotating black holes, for large b, ISCO
approaches the horizon radius. In Sect. 8, it is shown that this
property is destroyed by rotation. In Sect. 9, general formulas
for Ec.m. for particle collisions in the magnetic field are given.
In Sect. 10, we find the velocity of a particle on ISCO and
argue that a kinematic explanation of high-energy collisions
is similar to that for the BSW effect [16]. In Sect. 11, we apply
general formulas of collision to different black hole configu-
rations and different scenarios. In Sect. 12, the exact solution
of the Einstein–Maxwell equations (static Ernst black hole)
is chosen as a background for collisions. This enables us to
evaluate the role of backreaction of the magnetic field on
Ec.m.. In Sect. 13, the main results are summarized. Some
technical points connected with cumbersome formulas are
put in the appendix.

Throughout the paper we use units in which the funda-
mental constants are G = c = 1.

2 Metric and equations of motion

Let us consider the metric of the form

ds2 = −N 2dt2 + dr2

A
+ R2(dφ − ωdt)2 + gθdθ2, (1)

where the metric coefficients do not depend on t and φ. The
horizon corresponds to N = 0. We also assume that there is
an electromagnetic field with the four-vector Aμ where the
only nonvanishing component equals

Aφ = B

2
. (2)

In vacuum, this is an exact solution with B = const [22].
We consider configuration with matter (in this sense a black
hole is “dirty”), so in general B may depend on r and θ .

Let us consider motion of test particles in this background.
The kinematic momentum pμ = muμ, where m is the parti-
cle’s mass, the four-velocity uμ = dxμ

dτ
, where τ is the proper

time, xμ are coordinates. Then the generalized momentum
is equal to

pμ = Pμ − q Aμ, (3)

q is the particle’s electric charge. Due to the symmetry of the
metric, P0 = −E and Pφ = L are conserved, where E is the
energy, and L is the angular momentum.

We consider motion constrained within the equatorial
plane, so θ = π

2 . Redefining the radial coordinate r → ρ,
we can always achieve that

A = N 2 (4)
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within this plane. Then the equations of motion give

ṫ = X

N 2m
, (5)

φ̇ = β

R
+ ωX

mN 2 , (6)

m2ρ̇2 + V = 0, (7)

X = E − ωL , (8)

β = L
R

− qBR

2m
, (9)

V = m2N 2(1 + β2) − X2. (10)

A dot denotes differentiation with respect to the proper time
τ . As usual, we assume the forward in time condition ṫ > 0,
so X ≥ 0. Hereafter, we use the notations

L ≡ L

m
, E = E

m
, b = qB+R+

2m
. (11)

The subscripts “+”, “0” denote quantities calculated on the
horizon and ISCO, respectively.

In what follows, we will use the Taylor expansion of the
quantity ω near the horizon. We denote x = ρ − ρ+, where
ρ+ is the horizon radius. Then

ω = ω+ − a1x + a2x
2 + · · · (12)

3 Equations determining ISCO

By definition, ISCO is determined by the equations [5]

V (ρ0) = 0, (13)

dV

dρ
(ρ0) = 0, (14)

d2V

dρ2 (ρ0) = 0. (15)

Equations (10) and (13) entail

X (ρ0) = mN (ρ0)

√
1 + β2(ρ0), (16)

and Eqs. (14) and (15) turn into

1

m2

dVeff

dρ
= d

dρ
[N 2(1 + β2)] + 2Lω′

√
1 + β2N = 0,

(17)

1

m2

d2Veff

dρ2 = d2

dρ2 [N 2(1 + β2)] − 2L2ω′
√

1 + β2ω′2

+ 2Lω′
√

1 + β2ω′′N
√

1 + β2 = 0, (18)

where all quantities in (17) and (18) are to be taken at ρ =
ρ0. A prime denotes the derivative with respect to ρ (or,
equivalently, x).

In general, it is impossible to find exact solutions of Eqs.
(17) and (18). Therefore, in the next sections we analyze
separately different particular situations, with main emphasis
made on the near-horizon region. In doing so, we develop
different versions of the perturbation theory that generalize
the ones of [13]. The radius of ISCO, its energy, and angular
momentum are represented as some series with respect to
the corresponding small parameter, truncated at the leading
or subleading terms, similarly to [13].

4 Near-extremal black holes

Let us consider a nonextremal black hole. In what follows,
we are interested in the immediate vicinity of the horizon and
use the Taylor series for corresponding quantities. Then near
the horizon we have the expansion

N 2 = 2κx + Dx2 + Cx3 . . . , (19)

where κ has the meaning of the surface gravity.
By definition, we call a black hole near-extremal if

κ � Dx0, (20)

where x0 = ρ0 −ρ+. Then for the lapse function we have an
expansion near ISCO,

N = x
√
D + κ√

D
− κ2

2D3/2x
+ C

2
√
D
x2 + · · · (21)

Taking into account (18), after straightforward (but some-
what cumbersome) calculations, one can find that

− 1

2

dVef f
dρ

(ρ0) = A2x
2 + A3

κ2

x
+ · · · , (22)

La1 ≈ √
DP , (23)

P ≡ 1 + β2, (24)

A2 ≈ D

2

dP

dx
+ CP

2
+ a2

a1
PD, (25)

A3 = − P

2D
, (26)

where P and dP
dx are to be taken at x = x0 or, with the same

accuracy, at x = 0 (i.e., on the horizon).
Then

x3
0 ≈ − A3

A2
κ2 = H3κ2, (27)

H =
(

P0

2DA2

)1/3

= 1[
D

(
2 a2
a1
D + C + D

P
dP
dx

)]1/3 . (28)
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From (16) and (21) we have

N0 ≈ √
DHκ2/3, (29)

X0 ≈ m
√
P+

√
DHκ2/3. (30)

Using (23), (24), and (9) we derive an equation for the
value of the angular momentum L0 on ISCO:

L2
0

R2+
+ 2b

D

d − D

L0

R+
− D(1 + b2)

d − D
= 0, (31)

where

d ≡ R2+a2
1 . (32)

To have a well-defined limit b = 0, we require d − D > 0.
We are interested in the positive root according to (23). Then

L0(b)

R+
= − bD

d − D
+

√
D

d − D

√
d(1 + b2) − D, (33)

and, in a given approximation,

β0 = 1

d − D
[√D

√
d(1 + b2) − D − bd], (34)

P0 = d

d − D
− 2

b
√
Dd

(d − D)2

√
d(1 + b2) − D

+ b2d(d + D)

(d − D)2 , (35)
(

dβ

dx

)

+
= − R′+

R+

[
b + L0(b)

R+

]
− B ′+

B+
b, (36)

A2 ≈ Dβ0

(
dβ

dx

)

+
+ CP0

2
+ a2

a1
P0D, (37)

where we neglected the difference between
(

dβ
dx

)
+ and(

dβ
dx

)
0
. Equations (33)–(37) give the expression for H after

substitution into (28). To avoid cumbersome expressions, we
leave it in the implicit form.

Now, two different limiting cases can be considered.

4.1 Small magnetic field

If B = 0,

L0(0) =
√
D√

a2
1 − D

R2+

, (38)

β(0) =
√
D√

d − D
, (39)

P0(0) ≈ d

d − D
= R2+a2

1

R2+a2
1 − D

, (40)

which agrees with Eq. (44) of Ref. [15]. It follows from (16)
and (30) that

E(0) ≈ ω+
√
D√

a2
1 − D

R2+

. (41)

Let us consider a small but nonzero b. We can find from (33)
that

L0(b) ≈ L0(0) − L2
0(0)

b

R+
+ O(b2), (42)

E0(b) ≈ ω0L0 + O(κ2/3, b2). (43)

4.2 Large magnetic field

Let b 	 1. Now, P0 ∼ b2, A2 ∼ b2. According to (27),
there exists a finite limB→∞ H = H∞. In doing so, we find
from (33), (9), and (30)

L0

R+
≈ b

√
D√

d + √
D

= b
√
D

a1R+ + √
D

, (44)

β ≈ −
√
db√

d + √
D

= − R+a1b

R+a1 + √
D

, (45)

P0 ≈ b2 d

(
√
d + √

D)2
, (46)

X0 ≈ m
√
DH∞κ2/3 ba1R+

a1R+ + √
D

, (47)

E ≈ b
√
D

[
ω+R+

a1R+ + √
D

+ √
DH∞κ2/3 a1R+

a1R+ + √
D

]
.

(48)

Thus according to (27), in general the radius of ISCO
depends on the value of the magnetic field via the coefficient
H . However, there is an exception. Let

C = 0, R′+ = 0, B ′ = 0. (49)

Then

H3 = − A3

A2
= a2

2a1

1

D2 , (50)

so the dependence on b drops out from the quantity H and,
correspondingly, from the ISCO radius (27). One can check
easily that the conditions (49) are satisfied for the near-
extremal Kerr metric in the magnetic field. This agrees with
Eq. (38) of [13] where the observation was made that in the
main corrections of the order κ2/3 the magnetic field does
not show up. Thus this is the point where dirty black holes
behave qualitatively differently from the Kerr metric in that
the dependence of the ISCO radius on b is much stronger
than in the Kerr case.

It is instructive to evaluate the relation between H(0) and
H(∞) for vanishing and large magnetic fields, which results,
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according to (27), in different values of the corresponding
radii x0. The dependence on the magnetic field is due to the
term 1

P
dP
dx in the denominator,

H3(0)

H3(∞)
= 2 a2

a1
D + C + Dwb=∞

2 a2
a1
D + C + Dwb=0

, w ≡ 1

P

dP

dx
. (51)

One can find that

wb=0 = −2R′+
R+

D

d
, (52)

wb=∞ = −2

{
R′+
R+

[
2
√
D + √

d√
d + √

D

]
+ B ′+

B+

}
(
√
d + √

D)√
d

.

(53)

Thus for d ∼ D ∼ C , H(0) ∼ H(∞). However, in
general they can differ significantly. Say, for C = 0 = B ′+
and d � D, d � D

R′+
R+

a1
a2

, we have H3(0)

H3(∞)
≈ 2d

D � 1. As a
result, the ISCO radius (27) also may vary over wide range.

5 Slowly rotating black hole

Now, we assume that κ is not small, so the first term in (19)
dominates. Here, we will consider different cases separately.

5.1 Nonrotating black hole

Here, we generalize the results known for the Schwarzschild
black hole [25,26] to a more general metric of a dirty static
black hole. In Eqs. (14) and (15) we should put a1 = 0 = a2.

For a finite value of the magnetic field parameter b, ISCO
lies at some finite distance from the horizon. However, now
we will show that in the limit b → ∞, the radius of ISCO
tends to that of the horizon with x0 ∼ b−1.

We will show that this indeed happens, provided the term
with L in (9) is large and compensates the second one with
b. Correspondingly, we write

L = L0 + L1, (54)

where

L0

R+
= b. (55)

For what follows, we introduce the quantity

α = L1

R+
, (56)

α = O(1). Then, near the horizon, where x is small, we can
use the Taylor expansion

β = α − 2
β0

R+
x − xα

R′+
R+

+ β2

R2+
bx2 + · · · , (57)

β2 = R′2+ − R+R′′+ − R′+R+B ′+
B+

− R2+B ′′+
2B+

, (58)

where

β0 = bs, (59)

s = R′+ + 1

2

B ′+R+
B+

. (60)

Now, β0 	 1 but, by assumption, β is finite.
In terms of the variable

u = β0

R+
x , (61)

it can be rewritten as

β = α − 2u + u

β0

(
β2u

s
− αc

)
+ O(β−2

0 ), (62)

c = R′+. (63)

It is clear from the above formulas that the expansion with
respect to the coordinate x is equivalent to the expansion with
respect to inverse powers of the magnetic field b−1, so for
b 	 1 this procedure is reasonable.

Then, after substitution of (62), we can represent (14) and
(15) in the form of an expansion with respect to β−1

0 :

1

m2

dVeff

dρ
= C0 + C1

β0
+ O(β−2

0 ) = 0, (64)

− 1

2m2

d2Veff

dρ2 = −S1β0 − S0 + O(β−1
0 ) = 0. (65)

Here, the coefficients at leading powers are equal to

C0 = 2κ(12u2 − 8uα + 1 + α), (66)

S1 = 16κ(3u − α). (67)

Then, in the main approximation, we have the equations
C0 = 0 and S1 = 0 which give us

u = 1√
3
, α = √

3, β = 1√
3
. (68)

To find the corrections O(b−1), we solve Eqs. (64) and (65)
perturbatively. In doing so, it is sufficient to substitute these
values into the further coefficients C1 and S0. The results are
listed in the appendix.

In the particular case of the Schwarschild metric, c =
β2 = s = 1, D = −r−2+ , κ = (2R+)−1, and R+ = r+.
Writing r+ = 2M , where M is the black hole mass, we have
from (54), (56), (61), (183), (185), and (187)
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r0 − r+
M

≈ 2√
3b

− 8

3b2 , (69)

L
R+

≈ b + √
3 − 1

3b
, (70)

E0 ≈ 2

33/4
√
b
. (71)

Equations (69) and (71) agree with [12,13].
It is interesting that in terms of the variables u, L0

R+ , and b
the result (68) looks model-independent in the main approx-
imation. This can be thought of as a manifestation of the uni-
versality of black hole physics near the horizon. The depen-
dence on a model reveals itself in higher-order corrections.

5.2 Extremely slow rotation

Now, we consider rotation as the perturbation. Here, the
angular velocity of rotation is the smallest parameter. Cor-
respondingly, in Eqs. (18) and (15) we neglect the term L2,
since it contains ω′2. More precisely, we assume

La2
1 � a2N , (72)

so from (184) and (185) we have

R+b3/2a2
1 � a2

√
κR+. (73)

In the particular case of the slowly rotating Kerr metric,
κ ≈ 1

2R+ , a1 ∼ a
M3 = a∗

M2 , a2 ∼ a
M4 = a∗

M3 , where a =
J/M , J is the angular momentum of a black hole, a∗ = a

M .
Then (72) reads

a∗b3/2 � 1. (74)

There are two kinds of corrections—due to the magnetic
field and due to rotation. One can check that the presence of
rotation leads to the appearance in the series (64) and (65)
of half-integer inverse powers of β0, in addition to integer
ones. In the main approximation, we consider both kinds of
corrections as additive contributions. Omitting details, we
list the results:

u ≈ 1√
3

+ 1

3bs

(
5

6

β2

s
+ 1

3

DR+
κ

− 3c

2

)

−
√

2
√
R+

35/4
√

κ
√
s
a1R+

√
b, (75)

L
R+

≈ b + √
3 − √

2
1

33/4
√

κ
√
s
a1R

3/2
+

√
b, (76)

N0 ≈
√

2κR+
31/4

√
bs

. (77)

It follows from (8) and (16) that

X ≈ 23/2m

33/4

√
κR+
bs

, (78)

E ≈ R+ω+b +
√

κR+√
b
√
s

23/2

33/4 . (79)

For the slowly rotating Kerr metric, R+ ≈ 2M ,

ω = R+a
r3 + O(a2). (80)

In the main approximation the difference between the Boyer–
Lindquist coordinate r and the quasiglobal oneρ has the same
order a2 and can be neglected. Then

a1 = 3a∗

2R2+
, (81)

u ≈ 1√
3

+ 1√
3b

− 4

3b2 − 1

31/4

a∗
√
b

, (82)

E ≈ 1√
b

2

33/4 + a∗

2
b, (83)

L
R+

≈ b + √
3 − 33/4a∗√b. (84)

They agree with the results of Sect. 3 B 2 of [13]. It is
seen from (82)–(84) that the fractional corrections have the
order a∗b3/2 and are small in accordance with (74). In the
more general case, the small parameter of the expansion cor-

responds to (73), so it is the quantity
√
R+b3/2a2

1
a2

√
κ

.

5.3 Modestly slow rotation

Let now, instead of (72) and (73), the opposite inequalities
hold:

La2
1 	 a2N , (85)

R+b3/2a2
1 	 a2

√
κR+, (86)

or

a∗b3/2 	 1 (87)

in the Kerr case. Correspondingly, in what follows the

small parameter of expansion is a2
√

κ,√
R+b3/2a2

1
, which reduces

to (a∗b3/2)−1 in the Kerr case.
Additionally, we assume that

ba∗2
1 	 1. (88)

It turns out (see the details in the appendix) that

x0 ≈ R+δ2

36
a∗2

1 , (89)
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ω0 ≈ ω+ − δ2

36R+
a∗3

1 , (90)

L
R+

= b

(
1 − δ2

6
sa∗2

1

)
, (91)

N0 ≈ 1

3
√

2

√
κR+a∗

1δ , (92)

where δ = 1
s
√

2κR+
.

It follows from (190), (191), and (199) that

β+ = β(0) ≈ −1

2
β0a

∗2
1 , (93)

β(x0) ≈ −2
δ2

9
bsa∗2

1 . (94)

X0 ≈ m
1

27

√
2κR+δ3bsa∗3

1 , (95)

E0 ≈ ω+R+b + νba∗3
1 , (96)

ν = 1

27

√
2κR+sδ3 − R+sδ2 ω+

a∗
1

− δ2

36
. (97)

5.3.1 Kerr metric

In the case of the slowly rotating Kerr black hole, Eq. (81)
entails

a∗
1 = 3

2
a∗, (98)

δ = 1 = s,

x0 ≈ R+
36

a2∗
1 = R+

16
a∗2, (99)

where we used (96).
One should compare this result to that in [13]. Now, R+ =

2M , the horizon radius of the Kerr metric r+ ≈ 2M
(
1− a∗2

4

)
.

Equation (53) of [13] gives us

r0 ≈ 2M

(
1 − 3a∗2

16

)
, (100)

whence x0 = r0−r+ ≈ R+
16 a

∗2, which coincides with (99). It
is seen from (91) and (98) that the angular momentum takes
the value

L
R+

≈ b

(
1 − 3

8
a∗2

)
, (101)

which coincides with Eq. (55) of [13]. Also, one finds that

X0 ≈ m

8
ba∗3. (102)

In Eq. (90) one should take into account that ω+ depends
on r+, which itself can be expressed in terms of a∗ and M .

Collecting all terms, one obtains from (96)

E0 ≈ a∗b
2

− ba∗3

32
, (103)

which agrees with Eq. (54) of [13].

6 ISCO for rotating nonextremal black holes in a strong
magnetic field

In the previous section we saw that in the limit b → ∞ the
ISCO radius does not coincide with that of the horizon, which
generalizes the corresponding observation made in Sect. III
B 3 of [13]. Now, we will see that this is a general result which
is valid for an arbitrary degree of rotation and finite κ (so, for
generic nonextremal black holes). It is worth noting that for
b = 0 it was noticed that the near-horizon ISCO are absent
[15,27]. However, for b 	 1 the corresponding reasonings
do not apply, so we must consider this issue anew.

We have to analyze Eqs. (17) and (18) in which (16) is
taken into account.

Neglecting higher-order corrections, we can rewrite them
in the form

(2κ + 2Dx)(1 + β2) + (2κx + Dx2)
dβ2

dx

−2L
√

1 + β2

m
N (a1 − 2a2x) = 0, (104)

2L2

m2 (a1 − 2a2x)
2 − 2a2N

√
1 + β2 L

m
− W = 0, (105)

W = (2D + 6Cx)(1 + β2) + 2
dβ2

dx
(2κ + 2Dx)

+ (2κx + Dx2)
d2β2

dx2 . (106)

(1) Let us suppose that β is finite or, at least, β � b. Then it
follows from (57), (9), and (55) that dβ

dx ∼ b and L ∼ b.
Also, x ∼ b−1 according to (61), N ∼ √

x ∼ b−1/2.
However, it is impossible to compensate the term with
L2 in (105) having the order b2.

(2) Let β ∼ L ∼ b. Then in (104) the first term has the order
b2 and cannot be compensated.

(3) Let β 	 b. Then Eq. (9) gives L ∼ β. Again, the first
term in (104) cannot be compensated.

Thus we see that, indeed, in the limit b → ∞ the assump-
tion about x → 0 leads to contradictions, so the ISCO radius
does not approach the horizon.

7 Extremal nonrotating black hole

Up to now, we considered the case of a nonextremal black
hole, so the surface gravity κ was arbitrary or a small quantity
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but it was nonzero anyway. Let us discuss now the case of the
extremal black hole, so κ = 0 exactly. We pose the question:
is it possible to get an ISCO such that for b → ∞ the ISCO
radius tends to that of the horizon? Now, we will see that
this is indeed possible for a nonrotating black hole (ω =
0). We assume that the electric charge that can affect the
metric is negligible. The extremal horizon appears due to the
properties of the matter that surrounds the horizon, which is
possible even in the absence of the electric charge, provided
the equation of state obeys some special conditions [23,24].

For ISCO close to the horizon we can use the expansion

N 2 = Dx2 + · · · , (107)

in which we drop the terms of the order x3 and higher. Now
we show that the case under discussion does exist with a finite
quantity β. We can use now (62) in which only the first term
is retained, so

β ≈ α − 2u, (108)

where u is given by Eq. (61). Then Eq. (10) reads

V ≈ m2 DR2+
b2s2 f (u) − E2, (109)

where

f (u) = u2(1 + α2 − 4uα + 4u2). (110)

Equations (14) and (15) reduce to

d f

du
(u0) = 0, (111)

d2 f

du2 (u0) = 0. (112)

They have the solution

u0 = 3

23/2 , α = 4√
2

= 2
√

2, (113)

whence

β ≈ 1√
2
. (114)

Correspondingly, Eqs. (107) and (13) give us

N (x0) ≈ 3

23/2

√
D
R+
bs

, (115)

X0

m
= E0 ≈ 33/2

4

√
D
R+
bs

. (116)

We can also find the angular momentum on ISCO

L0

R+
≈ b + 1

2

√
2. (117)

Thus for big b there is ISCO outside the horizon that tends
to it in the limit b → ∞, so that the quantity x0 → 0.

8 Extremal rotating black hole

Now, we consider the same question but now for rotating
black holes: is it possible to have ISCO in the near-horizon
region (as closely as we like) for the extremal BH, when
κ = 0? Mathematically, it would mean that

lim
b→∞ x0 = 0. (118)

Then Eqs. (17) and (21) with κ = 0 give for small x

x0D

[
(1 + β2) − La1

√
1 + β2

m
√
D

]

+ x2
0

2

{
C

[
3(1+β2)− La1

√
1+β2

m
√
D

]
+ D

(
β2

)′
}

=0.

(119)

Equation (18) with terms of the order x2
0 and higher

neglected, gives rise to

D(1 + β2)−L2a2
1 +x0[2D(β2)′+2a2L2

√
D

√
1 + β2(x0)

+2L2a1a2 + 3C(1 + β2)] = 0. (120)

Then the main terms in (119) and (120) entail

La1 = √
D

√
1 + β2. (121)

For b 	 1, assuming for definiteness that d > D (d is
defined according to (32)), one finds from (9) and (121) that

β+ ≈ −b

√
d√

d + √
D

, (122)

L
R+

= b

√
D√

d + √
D

, (123)

L2

m2 a
2
1 = D + D

(
L2

m2R2+
− 2

L

mR+
b + b2

)
. (124)

The terms x2
0 in (119) and x0 in (120) give us, with ( 121)

taken into account

(1 + β2)C + D(β2)′ = 0, (125)

(β2)′ + 2
a2

a1
(1 + β2) + 3C

2D
(1 + β2) = 0, (126)

whence

C = −4D
a2

a1
. (127)

The system is overdetermined; Eq. (127) cannot be sat-
isfied in general. In principle, one can consider (127) as a
restriction on the black hole parameters. This is similar to
the situation for the extremal Kerr–Newman metric (b = 0),
where ISCO near the horizon exists only for the selected
value of the angular momentum, approximately equal to
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a
M ≈ 1√

2
[8,9]. However, we will not discuss such excep-

tional cases further. Generically, the answer to our question
is negative, so the ISCO radius does not approach the horizon
in the limit b → ∞.

9 Particle collisions: general formulas

Let two particles collide. We label their characteristics by
indices 1 and 2. Then, in the point of collision, one can define
the energy in the center of mass (CM) frame as

E2
c.m. = −pμ p

μ = m2
1 + m2

2 + 2m1m2γ . (128)

Here,

pμ = m1u
μ
1 + m2u

μ
2 (129)

is the total momentum, and

γ = −u1μu
μ
2 (130)

is the Lorentz factor of their relative motion.
For motion in the equatorial plane in the external magnetic

field (2), one finds from the equations of motion (6) and (7)
that

γ = X1X2 − ε1ε2
√
V1V2

m1m2N 2 − β1β2. (131)

Here, ε = +1, if the particle moves away from the hori-
zon, and ε = −1 if it moves toward it.

Now, there are two scenarios relevant in our context. We
call them the O-scenario and H-scenario according to the
terminology of [15]. Correspondingly, we will use the super-
scripts “O” and “H”.

9.1 O-scenario

Particle 1 moves on ISCO. As V1(ρ0) = 0 on ISCO, the
formula simplifies to

(EO
c.m.)

2 = m2
1 + m2

2 + 2

(
X1X2

N 2 − m1m2β1β2

)
. (132)

As we are interested in the possibility to get γ as large as
one likes, we will consider the case when the ISCO is close
to the horizon, so N is small. In doing so, we will assume that
(X2) = 0, so particle 2 is usual according to the terminology
of [15]. We also must take into account Eq. (16), whence

(EO
c.m.)

2 =m2
1 + m2

2 + 2

⎛
⎝m1

X2

√
1 + β2

1

N
− m1m2β1β2

⎞
⎠ .

(133)

For ISCO close to the horizon, the first term dominates
and we have

(EO
c.m.)

2 ≈ 2m1

(X2)0(

√
1 + β2

1 )0

N0
. (134)

9.2 H-scenario

Now, particle 1 leaves ISCO (say, due to additional colli-
sion) with the corresponding energy E = E(x0) and angu-
lar momentum L = L(x0), which corresponds just to ISCO.
This particle moves toward the horizon where it collides with
particle 2.

Mathematically, it means that we should take the horizon
limit N → 0 first in Eq. (131). We assume that both particles
move toward the horizon, so ε1ε2 = +1. Then

(EH
c.m.)

2 = m2
1 + m2

2 + m2
1(1 + β2

1 )
X2

X1
+ m2

2(1 + β2
2 )

X1

X2

−2m1m2β1β2, (135)

where all quantities are to be calculated on the horizon.
For small X1, when

X1 � X2
m1

m2

√
1 + β2

1

1 + β2
2

, (136)

we see from (135) that

(EH
c.m.)

2 ≈ m2
1(1 + β2

1 )+
(X2)+
(X1)+

. (137)

Now,

X1 = E0 − ω+L0 = X0 + (ω0 − ω+)L0, (138)

where X0 = E0 − ω0L corresponds to ISCO. With (12) and
(16) taken into account, in the main approximation

X1 ≈ m1N0

√
1 + β2

1 (x0) − a1x0L0. (139)

Now, we apply these formulas to the different cases con-
sidered above.

10 Kinematics of motion on ISCO

It is instructive to recall that the general explanation of high
Ec.m. consists in the simple fact that a rapid usual particle,
having a velocity close to speed of light, hits the slow particle
that has parameters approximately equal to the critical values.
This was explained in detail in [16] for the standard BSW
effect (without considering collision near ISCO). Does this
explanation retain its validity in the present case? One particle
that participates in a collision is usual, so it would cross the
horizon with a velocity approaching the speed of light in
an appropriate stationary frame (see below). We consider the
near-horizon ISCO, so the velocity of a usual particle is close
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to the speed of light. Now, we must check what happens to
the velocity of a particle on ISCO.

To describe the kinematic properties, it is convenient to
introduce the tetrads that in the local tangent space enable
us to use formulas similar to those of special relativity. A
natural and simple choice is the tetrad of a so-called zero-
angular observer (ZAMO) [5]. It reads

h(0)μ = −N (1, 0, 0, 0), (140)

h(1)μ = N−1(0, 1, 0, 0), (141)

h(2)μ = √
gθ (0, 0, 1, 1), (142)

h(3)μ = R(−ω, 0, 0, 1). (143)

Here, x0 = t, x1 = r , x2 = θ , x3 = φ. It is also convenient
to define the local three-velocity [5] according to

v(a) = v(a) = uμhμ(a)

−uμhμ(0)

, (144)

a = 1, 2, 3.
From the equations of motion (13)–(22) and the formulas

for the tetrad components, we obtain

− uμhμ(0) = X

mN
, (145)

uμhμ(3) = β, (146)

v(3) = mβN

X
, (147)

v(1) =
√

1 − m2N 2

X2 (1 + β2), (148)

the component v(2) = 0 for equatorial motion.
Then, introducing also the absolute value of the velocity

v according to

v2 = [v(1)]2 + [v(3)]2, (149)

one can find that

X = mγ0N , γ0 = 1√
1 − v2

. (150)

Equation (150) was derived in [16] for the case when the
magnetic field is absent. We see that its general form does
not depend on the presence of such a field.

For a circle orbit, Eq. (16) should hold. Comparing it with
(150), we find that

γ0 =
√

1 + β2, (151)

which has the same form as for the static case [12]. Now we
can consider different cases depending on the value of the
magnetic field and the kind of black hole.

10.1 Near-extremal black holes

For small b, Eq. (39) shows that β is finite, so is the quan-
tity γ0. Therefore, v < 1. For the Kerr metric, in the main
approximation, β = L0

mR+ = 1√
3

on ISCO (see Eq. 4.7 of

[14] and Eq. 77 of [15], R+ = 2M), so γ0 = 2√
3

, v = 1
2 ,

which is a well-known result (see discussion after Eq. 3.12
b in [5]).

For large b, accoding to (59), the quantity β is propor-
tional to b,and grows, v → 1. However, this case is not very
interesting since the individual energy (48) diverges itself.

10.2 Nonrotating or slowly rotating nonextremal black
holes

According to Eq. (68), β ≈ 1√
3
. Slow rotation adds only

small corrections to this value. Thus, rather unexpectedly,
we again see that on ISCO

v ≈ 1

2
. (152)

This value coincides for the near-extremal Kerr without a
magnetic field and a nonrotating or slowly rotating dirty black
hole in the strong magnetic field.

10.3 Modestly rotating nonextremal black hole

It follows from (93) and (88) that |β| 	 1. However, as the
energy of a particle on ISCO (96) tends to inifnity, this case
is also not so interesting.

To summarize, in all cases of interest (when an individual
energy is finite), β remains finite even in the strong magnetic
field. Correspondingly, v < 1 on ISCO and the previous
explanation of the high Ec.m. [16] applies. For less inter-
esting cases, when an individual energy diverges, we have
collision between two rapid particles but their velocities are
not parallel and this also gives rise to high γ0 (see Eq. 20 in
[16]).

11 Center-of-mass energy of collision

11.1 Near-extremal black hole

11.1.1 O-scenario

Using (134), (21) and (29) one obtains

(EO
c.m.)

2 ≈ 2m1

(X2)+
√

1 + β2
1√

DHκ2/3
. (153)

In a strong magnetic field, with b 	 1, using the expres-
sion (45) for β, we obtain

123



Eur. Phys. J. C (2015) 75 :403 Page 11 of 14 403

(EO
c.m.)

2 ≈ 2m1(X2)+√
DHκ2/3

R+a1b

R+a1 + √
D

. (154)

In the near-extremal Kerr case, D = M−2, R+ = 2M ,
κ ≈ 1

2

√
1 − a∗2, H = M−5/3, a1 = M−2. As a result,

(EO
c.m.)

2 ≈ 28/3m1(X2)+b
3(1 − a∗2)1/3 , (155)

which coincides with Eq. (61) of [13], in which the limit
b → ∞ should be taken.

11.1.2 H-scenario

Now, due to (121), Eq. (139) gives X1 = 0. It means that
in the expansion (21) we must retain the first correction in
the expression for N , when it is substituted into (139). As a
result, we have

X1 ≈
m1κ

√
1 + β2

1 (x0)√
D

. (156)

There are also terms of the order x2
0 ∼ κ4/3 but they are neg-

ligible as compared to κ . Correspondingly, Eq. (135) gives

(EH
c.m.)

2 ≈ m1
√
D

√
1 + β2

1 (X2)+ κ−1. (157)

In a strong magnetic field, with b 	 1, using (45) again
we obtain

(EH
c.m.)

2 ≈ m1
√
D

R+a1b

R+a1 + √
D

(X2)+ κ−1. (158)

Thus in both versions, for b 	 1 the effect is enhanced
due to the factor b. For b = 0 we return to [15].

In the Kerr case,

(EH
c.m.)

2 ≈ 4

3
m1

(X2)+ b

(1 − a∗2)1/2 , (159)

which corresponds to Eq. (59) of [13], in which b 	 1.

11.2 Extremely slowly rotating or nonrotating black hole

11.2.1 O-scenario

Now, Eqs. (184) and (134) give us

(EO
c.m.)

2 ≈ 3−1/4 4m1(X2)+√
2κR+

√
bs. (160)

In the Schwarschild case, 2κR+ = 1 = s,

(EO
c.m.)

2 ≈ 4m1(X2)+
31/4

√
b, (161)

which coincides with Eq. (63) of [13].

11.2.2 H-scenario

Using (78) and neglecting in (139) the second term (rotational
part), we get

(EH
c.m.)

2 ≈ 2

33/4

m1(X2)+√
2κR+

√
bs. (162)

11.3 Modestly rotating black holes in strong magnetic field

11.3.1 O-scenario

With β1 	 1, it follows from (92), (94), and (134) that

(EO
c.m.)

2 ≈ 4

3

√
2

m1√
κR+

δbs(X2)+a∗
1 . (163)

In the Kerr case, taking into account (98), we obtain

(EO
c.m.)

2 ≈ 4m1(X2)+a∗b, (164)

which agrees with Eq. (67) of [13].

11.3.2 H-scenario

In a similar manner, one can obtain from (137), (139), and
(95) that (EH

c.m.)
2 ∼ b with a somewhat cumbersome coeffi-

cient, which we omit here.
Both these scenarios are less interesting, since according

to (96), the individual energy E0 ∼ b diverges itself in the
limit b → ∞.

11.4 Extremal nonrotating black holes

11.4.1 O-scenario

Using (115), (114) we find from (134) that

(EO
c.m.)

2 ≈ 4m1(X2)+bs√
3DR+

. (165)

11.4.2 H-scenario

Now, it follows from (116), (114), and (137) that

(EH
c.m.)

2 ≈ 2m1
(X2)+bs√

3DR+
; (166)

b(1 + ξ2)

�3+
.

12 Backreaction of magnetic field: Ernst static black
hole

Now, we illustrate the obtained results using the metric of a
static magnetized black hole [28] that can be considered as
the generalization of the Schwarzschild solution. This will
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also allow us to elucidate the role of backreaction due to the
magnetic field on the behavior of Ec.m., which bounds the
BSW effect. The metric reads

ds2 = �2

[
−

(
1 − r+

r

)
dt2 + dr2

1 − r_
r

+ r2dθ2

]

+ r2 sin2 θ

�2 dφ2, �2 = 1 + B2r2

4
sin2 θ (167)

Aφ = B̃

2
, B̃ = B�, (168)

r+ = 2M is the horizon radius, B is a constant parameter. It
follows from (11) (with B replaced with B̃) and (167) that

β = L
R

− b
r

2M
, b = qBM

m
. (169)

Many important details of the particle’s motion in this
background can be found in Ref. [29].

Calculating the corresponding coefficients according to
(58)–(60) and substituting them into (182)–(187), we obtain

(r − r+)

r+
= (1 + ξ)

(1 + ξ2)b

×
[

1√
3

+ −8 + 18ξ − 3ξ2 − 2ξ3 − ξ4

18b(1 + ξ2)2

]
(170)

ξ = B2M2, (171)

L
2M

= 1

(1 + ξ)

[
b+√

3+ −1+3ξ − ξ3 − ξ4

3b(1 + ξ2)2

]
+ O(b−2)

(172)

E0 ≈ 2(1 + ξ)3/2

33/4
√
b

1√
1 + ξ2

. (173)

It follows from (186) that

β ≈ 1√
3

+ (ξ − 1)(−ξ3 − ξ2 − 2ξ + 2)

3b(1 + ξ2)2 (174)

For the energy of collision we have from (160) and (162)

(EO
c.m.)

2 ≈ 3−1/44m1(X2)+z, (175)

(EH
c.m.)

2 ≈ 2

33/4m1(X2)+z, (176)

where

z =
√
b(1 + ξ2)

(1 + ξ)3 . (177)

When ξ � 1, there is agreement with the results for the
Schwarzschild metric [12,13] since Eq. (170) turns into (69)
and (172) turns into (70). It is interesting that for any ξ , the
velocity of a particle on ISCO is equal to 1/2 like this happens
for ξ � 1. The approach under discussion works well also
for ξ 	 1, provided that the ISCO lies close to the horizon

to ensure large Ec.m., i,e, N 2 � 1.According to (167) and
(170), this requires

b 	 ξ (178)

or, equivalently,

q

m
	 BM 	 1. (179)

Otherwise, both energies (175) and (176) contain the fac-

tor
√

b
ξ

∼
√

q
mBM , which bounds Ec.m., which begins to

decrease when B increases. One should also bear in mind
that it is impossible to take the limit ξ → ∞ literally since
the geometry becomes singular. In particular, the component
of the curvature tensor Rθφ

θφ grows like ξ2. The maximum

possible Ec.m. is achieved when ξ ∼ 1, then z ∼
√

q
m .

The example with the Ernst metric shows that strong back-
reaction of the magnetic field on the geometry may restrict
the growth of Ec.m. to such extent that even in spite of large
b, the effect disappears because of the factor ξ that enters the
metric. It is of interest to consider the exact rotating magne-
tized black hole [30] that generalizes the Kerr metric but this
problem certainly needs separate treatment.

13 Summary and conclusion

We obtained characteristics of ISCO and the energy in the
CM frame in two different situations. For the near-extremal
case, we considered the BSW effect. Previous results applied
to the weakly magnetized Kerr metric or dirty black holes
without the magnetic field. Now, we took into account both
factors, so generalized the previous results for the case when
both matter and magnetic field are present. In doing so, there
is qualitative difference between dirty rotating black holes
and the Kerr one. Namely, the radius of ISCO depends on the
magnetic field strength b already in the main approximation
with respect to small surface gravity κ in contrast to the case
of the vacuum metric [13], where this dependence reveals
itself in the small corrections only.

For extremal black holes, we showed that, due to the strong
magnetic field, there exists the near-horizon ISCO that does
not have a counterpart in the absence of this field. Corre-
spondingly, we described the effect of high-energy collisions
near these ISCO.

We demonstrated that rotation destroys near-horizon
ISCO both for the nonextremal and extremal horizons, so
limb→∞ r0(b) = r+. However, if the parameter responsible
for rotation is small, Ec.m. is large in this limit.

For slowly rotating black holes we analyzed two different
regimes of rotation thus having generalized previous results
on the Kerr metric [13]. The parameters of expansion used
in calculations and the results agree with the Kerr case. In
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particuar, for modestly slow rotation the individal energy of
the particle on ISCO is unbound.

In the main approximation, the expressions for the ISCO
radius and angular momentum in dimensionless variables are
model-independent, so here one can see universality of black
hole physics.

We also found the three-velocity of a particle on ISCO in
the ZAMO frame. It turned out that for slowly rotating dirty
black holes in the magnetic field it coincides with the value
typical of the Kerr metric without a magnetic field, v ≈ 1

2 .
Correspondingly, the previous explanation of the high Ec.m.

as the result of collisions of very fast and slow particles [16]
retains its validity in the scenarios under discussion as well.

In previous studies of the BSW effect in the magnetic
field [12,13,21], some fixed background was chosen. In this
sense, the magnetic field was supposed to be weak in that it
did not affect the metric significantly (although it influenced
strongly motion of charged particles). Meanwhile, the most
part of the formulas obtained in the present work applies
to generic background and only asymptotic behavior of the
metric near the horizon was used. Therefore, they apply to
the backgrounds in which the magnetic field enters the metric
itself, with reservation that the surface gravity κ = κ(b), etc.
In particular, we considered the static magnetized Ernst black
hole and showed that strong backreaction of the magnetic
field on the geometry bounds the growth of Ec.m..

Thus we embedded previous scenarios of high-energy col-
lisions in the magnetic field near ISCO in the vicinity of black
holes [12,13] and took into account the influence of the mag-
netic field on the metric.

Throughout the paper, it was assumed that the effect of
the electric charge on the metric is negligible. It is of interest
to extend the approach of the present work to the case of
charged black holes.
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Appendix

Here, we list some rather cumbersome formulas which are
excluded from the main text.

A. Nonrotating black holes

C1 = 4κ
β2

3
√

3s
+ 4

3
√

3
DR+, (180)

S0 ≈ 8
κ

R+

(
−β2

s
+ 3c

)
. (181)

The results with the leading term and subleading correc-
tions read

u ≈ 1√
3

+ ε1, ε1 = 1

3bs

(
5

6

β2

s
+ 1

3

DR+
κ

− 3c

2

)
,

(182)

α ≈ √
3 + δ1, δ1 = 1

3bs

(
β2

s
+ DR+

κ

)
, (183)

N ≈ √
2κx0 ≈

√
2κR+
bs

1

31/4 , (184)

L
R+

≈ b + √
3 + δ1, (185)

β = 1√
3

+ 1

bs

(
β2

s

1

3
− c

)
+ O(b−2), (186)

E0 = X0 ≈ 23/2

33/4

√
κR+
bs

. (187)

B. Modestly slow rotation

Now, one can check that, in contrast to the previous case,
a finite β is inconsistent with Eqs. (64) and (65). Instead,
β ∼ b for large b. By trial and error approach, one can find
that the suitable ansatz reads

x = 4

9
R+ya∗2

1 , (188)

where we introduced in this ansatz the dimensionless quantity

a∗
1 = R2+a1, (189)

and the coefficient 4
9 to facilitate comparison to the case of

the Kerr metric (otherwise, this coefficient can be absorbed
by y).

In doing so,

β = 4

9
β0a

∗2
1 h(y), (190)

h ≈ h1 − 2y, (191)

which is analog of (62), β0 = bs according to (59). By defi-
nition, here h = 0. For the angular momentum we have from
(9)

L
R+

= b + β+ = b + 4

9
β0a

∗2
1 h1. (192)

Let us consider the main approximation with respect to
the parameter ε = 4

9a
∗2
1 and take into account that |β| 	 1.

Then Eq. (17) gives

|β|L√
2κxa1 ≈ κβ2 + κx

dβ2

dx
. (193)
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Equation (18) reads

L2a2
1 ≈ 2

dβ2

dx
κ + κx

d2β2

dx2 , (194)

where now, with a given accuracy,

dβ2

dx
= 4

R+
β2

0ε(2y − h1), (195)

dβ2

dx2 = β2
0

R2+
dh2

dy2 = 8β2
0

R2+
. (196)

Substituting L
R+ ≈ b into (193) and (194 ) and assuming

h < 0, one finds the system of two equations

6y − h1 = 3δ
√
y, (197)

h1 = 3y − 9

16
δ2, (198)

δ = 1
s
√

2κR+
. This system can be solved easily. There are

two roots here but only one of them satisfies the condition
h = 0:

y0 = δ2

16
, h1 = −3

8
δ2, h(y0) = −δ2

2
. (199)

(For β > 0, one can obtain the equation 6y − h1 = −3δ
√
y

but in combination with (198) it would give y < 0, which
is unacceptable since outside the horizon we should have
y > 0. Thus this case should be rejected.)

Then, using (188), (192), and (12), we find the results
(93)–(97).
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