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Post translational modification of Parkin
Joy Chakraborty1, Valentina Basso1 and Elena Ziviani1,2*

Abstract: Mutations in the gene encoding for the E3 ubiquitin ligase Parkin are associated to a rare form of familiar
autosomal recessive Parkinsonism. Despite decades of research on the Parkin protein, whose structure has been
recently solved, little is known about the specific signalling pathways that lead to Parkin activation. Parkin activity
spans from mitochondria quality control to tumor suppression and stress protection; it is thus tempting to hypothesize
that the broad impact of Parkin on cellular physiology might be the result of different post translational modifications
that can be controlled by balanced opposing events. Sequence alignment of Parkin from different species indicates
high homology between domains across Parkin orthologs and identifies highly conserved amino acid residues that, if
modified, impinge on Parkin functions. In this review, we summarize findings on post translational modifications that
have been shown to affect Parkin activity and stability.
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Background
Parkinson’s Disease (PD) is the second most common
neurodegenerative disorder affecting primarily the
survival of a specific subset of dopaminergic neurons
residing in the Substantia Nigra Pars Compacta of the
midbrain [1]. Most PD cases are sporadic in origin.
However, a small proportion of PD cases derive from
mutations in PD associated genes, which have been
mainly identified by characterizing familiar Mendelian
inherited PD forms [2, 3]. The discovery of these genes
(S, PINK1, Parkin, DJ1, LRRK2, VPS35, FBXO7, PLA2G6
and ATP13A2) (see [4] for a review), has greatly
enhanced our understanding of the neurodegenerative
pathways leading to dopaminergic neurons loss. Although
there seem to be various causes of PD, genetic and
sporadic forms are almost undistinguishable in terms of
specific hallmarks, which at the cellular level includes for-
mation of intracellular inclusions named Lewy Bodies,
mitochondria abnormalities and selective loss of DA
neurons, leading to the well characterized locomotor
impairments at the systemic level [1]. The reason for
studying genetic mutations of PD is the belief that the
similarities between the sporadic and the inherited forms
share a common mechanism of neurodegeneration, which

can be more easily dissected at the molecular level in the
genetic forms.

The pleiotropic protein Parkin
Although there are no unequivocally accepted scientific
data that explain the selective neurodegeneration of
dopaminergic neurons, the pathogenesis of PD appear to
converge on three common features: mitochondria
dysfunction, oxidative stress and proteins misfolding and
aggregation [5]. Indeed studies on Parkin (PARK2), an
E3 ubiquitin ligase, which mutations have been associ-
ated to the early onset of autosomal recessive Parkinson-
ism [6], have provided evidences for a direct role of
mitochondrial dysfunction in the onset of the disease by
regulating the mitochondria quality control via mito-
phagy. In the mitophagy process, Parkin is selectively
recruited to depolarised mitochondria by PINK1 [7], a
mitochondrial serine/threonine kinase, also a PD related
protein [8]. In healthy mitochondria PINK1 is imported
into mitochondria by the TOM/TIM translocase com-
plex, cleaved and rapidly degraded by the proteasome
[9–11]. However, on depolarised mitochondria PINK1
remains stable on the surface of mitochondria where it
mediates the phosphorylation of Parkin, Parkin sub-
strates and ubiquitin [7, 12–15]. Primed phospho-
ubiquitin is specifically used by Parkin to ubiquitinate its
targets on the outer mitochondrial membrane (OMM)
[16], leading to the recruitment of downstream cytosolic
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receptors that are required for the activation of
autophagy, including p62/SQSTM1, HDAC6, NDP52
and Optineurin [17–20].
Parkin leads to the ubiquitination of a broad number

of targets that are expressed on the OMM, among
others TOM20, Mitofusins, VDAC and Fis1 [16, 20–22].
Moreover, by targeting proteins with ubiquitin mole-
cules, Parkin plays a crucial role in the degradative path-
ways mediated by the ubiquitin–proteasome system
(UPS), which is required for both clearance of misfolded
proteins and stress-induced mitophagy [19]. The avail-
able literature suggests that Parkin mediated mitochon-
drial outer membrane protein ubiquitination recruits
proteasome complex to mitochondria, in turn causing
rupture of the outer membrane, thus exposing inner
membrane proteins which can interact with LC3 and
guides mitochondria to mitophagy [23, 24]. It is possible
that widespread ubiquitination of mitochondrial surface
proteins by Parkin, acts as a general signal for mitochon-
drial quality control. In that respect, Parkin substrate
specificity is debatable because no single Parkin sub-
strate is essential for mitophagy and mitochondrial
localization of a number of deubiquitinating enzymes
(DUBs), including USP30 and USP2 [25], is sufficient to
inhibit mitophagy, where DUBs like USP30 or USP15
knock down [26, 27] rescues defective mitophagy even
in the absence of Parkin.
In addition to its established role in mitophagy and

UPS, Parkin impacts other neuroprotective cellular path-
ways [28], including TNFα signaling [29, 30], and Wnt/β
catenin signaling [31]. Parkin is also a putative tumor
suppressor [32–34]. Interestingly, many of these pleio-
tropic functions of Parkin, which are dependent on its
E3 ubiquitin ligase activity, do not result in ubiquitin
dependent degradation of Parkin targets [35–38].

The power of ubiquitination
How does Parkin fulfill its many biological functions?
Recent studies proposed ubiquitination as a modulator
of protein activity, via regulating its subcellular
localization and its ability to interact with other proteins
[39, 40]. In the ubiquitination process, multiple lysine
residues on the target protein can be ubiquitinated to
produce multi-monoubiquitination [41]. Alternatively,
an ubiquitin chain can form upon linear ubiquitination,
in which the carboxy-terminal glycine of one ubiquitin
molecule form a peptide bond with the amino-terminal
methionine of another (linear or M1-linked ubiquitina-
tion) [42, 43]. Also, following addition of a single ubiqui-
tin molecule to the target protein, further ubiquitin
molecules can be added to the first ubiquitin molecule
via linkage on lysine residue, producing an ubiquitinated
chain (polyubiquitination). Ubiquitin itself contains
seven lysine residues (Lys 6, Lys 11, Lys 27, Lys 29, Lys

33, Lys 48 and Lys 63), which allows the generation of
ubiquitin chains with different orientations. Although
some chain-types (specifically, K48 and K63-chains [44])
are more common than others, all possible linkages have
been detected in cells [45]. Interestingly, the type of ubi-
quitin chain attached impinges on chain conformation
and impacts the physiological outcome. For example,
Lys 48 and Lys 11-linked chains adopt compact con-
formation and target proteins to the 26S proteasome
[46–50]. Lys 63-linked chains or monoubiquitination, on
the other hand, are the post-translational modifications
that regulate lysosome dependent degradation [51, 52].
Monoubiquitination, Lys 63-linked chains and linear ubi-
quitination have also been described as non-degradative
ubiquitination, which can control protein-protein inter-
action, protein subcellular localization and protein activity
[53–59]. Very little is known regarding the physiological
relevance of Lys 6, Lys 27, Lys 29 and Lys 33-linked chains
and which biological outcomes these modifications would
lead to. In that respect, ubiquitin ligases are extremely ver-
satile enzymes that can potentially control almost every
cellular process.
It is known that Parkin can promote both degradative

Lys 48-mediated ubiquitination and non classical,
proteosome-independent ubiquitination, including Lys 6,
Lys 11, Lys 63, mono ubiquitination and linear ubiquiti-
nation [30, 60, 61]. Although Parkin dependent “regula-
tive” ubiquitination has only recently started to be
specifically addressed, emerging evidences suggest that
Parkin activity necessarily includes “functional” ubiquiti-
nation and has the potential of controlling a broad
subset of cellular processes depending on the activating
stimuli. Not surprisingly, Parkin exists in an inactive
state and it is normally repressed under basal conditions
by several mechanisms of autoinhibition.

Mechanisms of Parkin autoinhibition
High resolution Parkin crystal structure gave insight into
the mechanisms of Parkin autoinhibition. Parkin belongs
to the RBR (RING-between-RING) type of E3 ubiquitin
ligases, also known as RING/HECT hybrids, consisting
of an ubiquitin like domain (Ubl), followed by two RING
fingers domains (RING0 and RING1), an in between
RING finger domain (IBR), a linker domain called
Repressor Element of Parkin (REP) and a third RING
finger domain called RING2 [62–65] (Fig. 1a). In the
ubiquitin process, ubiquitin-activating enzymes (E1s)
activate the C-terminus of the ubiquitin molecule and
pass it to E2 conjugating enzymes that accept the acti-
vated ubiquitin and coordinate with E3 ubiquitin ligases
to finally transfer ubiquitin to the amino group of a sub-
strate protein [66–68]. Ubiquitin coordination and trans-
fer is allowed by forming a thioester bond between
catalytic cysteine residues on the E ubiquitin enzymes

Chakraborty et al. Biology Direct  (2017) 12:6 Page 2 of 11



Fig. 1 Mapping of Parkin Post translational modifications. a Domain architecture of Parkin protein and sequence alignment from different
species. We differently highlighted the amino acids that are post-translationally modified (green: sulfhydration; pink: phosphorylation; yellow:
sulfonation). Parkin consists of five domains: UBL, ubiquitin-like domain; RING, really interesting new gene; IBR, in between RING; REP, repressor
element of Parkin. b Schematic representation of the full-length structure mapping the post-translational modifications onto the structure.
c Primary structure and domains of Parkin mapping the activating (“green”) and inactivating (“red”) post-translational modifications
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and the C-terminal carboxyl group of ubiquitin. Parkin
can selectively interact and coordinate with different E2
ubiquitin ligase to ubiquitinate its substrates. Interest-
ingly, these E2s are selectively expressed in specific sub-
cellular compartments. For example, Ubc6 and Ubc7 are
endoplasmic reticulum-associated E2s that specifically
interact with Parkin. Parkin can also interact with E2
enzymes UbcH7, UbcH8 and UbcH13/Uev1. Depending
on which E2 enzyme Parkin couples with, different types
of ubiquitin modification can arise, resulting in different
biological outcomes. For example, Parkin can employ
UbcH7 E2 ligase for K48-linked proteasome dependent
polyubiquitination, and UbcH13/Uev1a for K63-linked
autophagy dependent polyubiquitination [69–73]. How
Parkin can choose to couple with a specific E2 ubiquitin
ligase is largely unknown.
Two mechanisms of auto inhibition control Parkin

activity. Fist, the RING1 domain that contains the bind-
ing site for the E2 ubiquitin-conjugating enzyme is
occluded by the Ubl and the REP domains. Second, the
catalytic site in the RING2 domain is blocked by the
RING0 domain. Notably, Parkin catalytic Cys 431 in the
RING2 domain is physically distant from the E2 conju-
gating site, which further suggest that Parkin needs to
undergo a conformational change in order to function
[62–65]. Therefore, under basal conditions, Parkin main-
tains a close structure that resembles that of a coiled
snake [63] and its ubiquitin ligase activity is repressed
(Fig. 1b). Not surprisingly, disease-associated mutations
disrupt these interactions.

Post translational modifications of Parkin
Post translational modifications have emerged as a
powerful tool to modulate proteins activity, via regula-
tion of their subcellular localization and ability to inter-
act with other proteins to form signaling complexes.
Most Post translational modifications, such as phosphor-
ylation, acetylation, ubiquitination, are reversible modifi-
cations, mediated by large families of opposing enzymes.
Balanced opposing events mediated by antagonistic en-
zymes might provide a potential molecular switch to
modulate Parkin activity upon specific stimulation. Ac-
cordingly, Post translational modifications are required
to trigger Parkin activity or to keep it repressed.
In the following sections, we summarize the so far re-

ported Post translational modifications affecting Parkin
activity and stability. Sequence alignment of Parkin indi-
cates high homology between domains across Parkin
orthologs and identifies highly conserved amino acid
residues, most of which are post translationally modified
from mammals to insects to impinge on Parkin func-
tions. This analysis highlights evolutionarily conserved
posttranslational processes, in relation to Parkin activa-
tion, which is not characterized yet.

Phosphorylation
There are multiple proteins, which are involved in
Parkin phosphorylation, PINK1 being the most studied
[74–79]. It was first reported by Kim et al. [78] that
Parkin activity and mitochondrial localization is PINK1
kinase activity dependant. Authors further described that
RING1 and REP domains are indispensable for PINK1
mediated mitochondrial translocation of Parkin, as well
as PINK1 dependent phosphorylation of Thr 175/Thr
217 is crucial for its translocation. In a separate study
[79] the same was confirmed, and it was further shown
that phosphorylation of Parkin is required for Parkin to
interact with E2 ubiquitin ligase UbcH13/Uev1a to me-
diate K63-linked polyubiquitination of IKKγ in NFκB
stress response pathway.
Later, it was reported by two simultaneous studies

[80, 81] that the PINK1-dependent phosphorylation of
Ser 65 of the Ubl domain is required for Parkin trans-
location as well as stress-induced mitophagy. These
findings were confirmed in a subsequent study that used
as read out the degradation of Miro1, a bona fide Parkin
substrate, upon expression of full-length wild type or PD
disease-associated Parkin mutants [82]. In vivo data from
Drosophila also confirmed these findings and additionally
showed that phosphorylation of Parkin regulates spontan-
eous dopamine release from the neuron terminals, flight
activity as well as survival of the flies [83].
One recent study deciphered the sequence of Parkin

activation, and demonstrates that upon mitochondrial
depolarization PINK1 phosphorylates ubiquitin at Ser
65, which goes to bind Parkin and Parkin substrates.
Primed phospho-ubiquitin makes Parkin more accessible
for PINK1 mediated Ser 65 phosphorylation [84]. So, in
a nutshell, it has become evident that phosphorylation
by PINK1 is the central point of Parkin activation and
target recognition [81, 84, 85].
Phosphorylation is not only required for Parkin acti-

vation. Quite intriguingly, phosphorylation of Parkin
by cyclin dependent kinase 5 (Cdk-5), casein kinase 1
(CK-1) and c-Abl modulates Parkin folding and/or
activity [74–76, 86]. Phosphorylation by both Cdk-5
on Ser 131 and CK-1 on Ser 101, Ser 127 and Ser
378 influence the solubility of the protein, leading to
increased Parkin aggregation [75]. Quite surprisingly,
in both cases Parkin phosphorylation does not seem
to particularly affect Parkin E3 ubiquitin activity. The
role of c-Abl in regulating Parkin activity was re-
ported by two different studies where the authors
found that phosphorylation of Parkin by c-Abl at Tyr
143 can inactivate its E3 ligaes activity [74, 86] in
human cell lines and MPTP treated mice. Consistent
with this, increased protein levels of c-Abl and tyro-
sine phosphorylation of Parkin was reported in
human post mortem brains from PD patients.
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Ubiquitination
As previously mentioned, poly ubiquitination of proteins
in general is the signal for proteasomal degradation.
Parkin, though an E3 ubiquitin ligase itself, faces the
same fate when multiple ubiquitin chains are attached to
it. It has been reported that Parkin mediates its own ubi-
quitination via K48 proteosome dependent ubiquitin
chain formation [87], thus impinging on its own protein
turnover. Co-localization of ubiquitinated Parkin and
Lewy body in PD patients brain might ignite the idea
that ubiquitinated Parkin is a inactive form of the
enzyme. However, in reality Parkin mono-ubiquitination
at different sites can activate the enzyme. Mutations
causing ubiquitination of the Ubl domain of Parkin
makes the enzyme constitutively active and thus sup-
ports the idea of ‘regulative” Parkin autoubiquitina-
tion [88]. One intriguing possibility is that Parkin
dependent non-degradative self-ubiquitination might
be required to regulate Parkin subcellular localization
and its interaction with specific E2 ubiquitin ligases
and/or Parkin substrates. In that context, further
studies are required to identify the precise site of Par-
kin ubiquitination and dissect the functional role of
specific site ubiquitination.
Consistent with the hypothesis that Parkin self-

ubiquitination is a functional ubiquitination, Parkin
autoubiquitination is subjected to tight regulation by
other factors. Deubiquitinating enzymes (DUBs), for
example, antagonize Parkin autoubiquitination [89].
Durcan and colleagues identified DUB Ataxin-3 as a
binding partner of Parkin, which interacts with both the
Ubl and IBR-RING2 domain of Parkin and promotes
Parkin de-biquitination. Mutant Ataxin-3, which poly-
glutamine expansion is associated with the onset of
Machado-Joseph neurodegenerative disease, promotes
the degradation of Parkin via autophagy and leads to de-
creased Parkin levels in vivo [90, 91]. In a subsequent
study, the same group showed that Ataxin-3 in fact binds
to and coordinate with E2 ubiquitin ligase Ubc7 rather
than Parkin, and promotes Parkin de-ubiquitination only
upon Parkin autoubiquitination [92].
Recently, the same group has reported that DUB

USP8 preferentially remove K6 linked Ub conjugates
from Parkin and USP8 silencing hindered Parkin re-
cruitment to depolarised mitochondria, suggesting
that USP8 is required for active mitophagy [93].
Overall, these works highlighted an intricate regula-

tion of Parkin ubiquitination that involves the coordi-
nated activities of Parkin, DUBs and E2 ubiquitin
ligases. It is tempting to hypothesis that such complex
interplay is required to prime Parkin for further Post
translational modifications that affect Parkin activity
via regulation of its subcellular localization and/or
interaction with specific E2 and/or substrates.

Sumoylation and Neddylation
Post-translational modification of proteins by small ubiqui-
tin like modifiers (SUMO) or in general SUMOylation is
still not fully unravelled, though holds the indications that
like ubiquitination or phosphorylation, it might have far
reaching implications as well. In a very simplistic way,
SUMO gets matured, activated and attached to target pro-
teins by a series of specific enzyme complexes, much like
the ubiquitination process [94]. Interestingly, from the
point of view of PD, three of the prominent proteins that
are mutated in familiar Parkinsonism, SNCA, DJ-1 and
Parkin, fall under the targets of SUMOylation [95–98]. At
first sight, it appears that reports connecting SUMOylation
of SNCA and aggregate formation followed by cell death
are contradictory [97, 99], but the precise site of SUMOyla-
tion might be the deciding factor for aggregate formation
and cell death by α-synucleinopathy [100]. As far as Parkin
is concerned, reports are significantly less which properly
deciphers the physiological role of SUMO attachment to
Parkin. One solitary report by Um and Chung [98] demon-
strates that covalent attachment of SUMO-1 (but not
SUMO-2, which possible due to differential preference of
subtrates by SUMO-1, 2 and 3) to Parkin, both in vitro and
in vivo, increases its nuclear localization and auto-
ubiquitination. In the nucleus, Parkin transcriptionally re-
presses p53 by interacting with p53 promoter. Interestingly,
this activity of Parkin is independent of its ligase function.
NEDD8 is another protein that shows similarity with ubi-

quitin, in terms of structural homology and the way of get-
ting attached to other proteins as post-translational
modification [101]. Like ubiquitin, NEDD8 is also expressed
in most tissue types and strikingly concentrated in different
types of protein aggregates, which includes Mallory bodies
in liver, Rosenthal fibres in astrocytoma, neurofibrillary pla-
ques of Alzheimer’s disease and Lewy bodies in PD [101].
Um et al. [102] showed that attachment of NEDD8 to
Parkin increase the E3 ligase activity by increasing affinity
towards E2 ubiquitin ligase UbcH8 and the putative sub-
strate the p38 subunit of aminoacyl trasferase. Choo et al.
[103] also reported increased Parkin E3 ligase activity upon
neddylation. The also found that PINK1 undergoes neddy-
lation, which results in increased stability of PINK1 55KDa
proteolytic fragment. Interestingly, genetic enhancement of
neddylation was shown to rescue the phenotypes associated
with a Drosophila in vivo model of PINK1 deficiency.
Moreover, PD neurotoxin MPP+ treatment showed de-
creased neddylation of both PINK1 and Parkin, clearly
indicating a causal link between NEDD8 modification of
PINK1/Parkin and PD pathogenesis.

Nitrosylation, sulfhydration and sulfonation
Among many other contributing factors, nitric oxide
(NO), hydrogen sulphide (H2S) and oxidative stress have
been found to influence the progression of PD [104].
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Increased attachment of NO to thiol groups (S-nitrosy-
lation) of Parkin in PD was first reported by Ted Dawson’s
group [105] where the authors showed increased nitosyla-
tion of Parkin in MPTP treated mice and human patient’s
brains. They also demonstrated that nitrosylation de-
creased the protective effect of Parkin by inhibiting its E3
ligase activity. A concurrent study by Stuart Lipton’s group
also reported the same while showing a steep increase of
the Parkin E3 ubiquitin ligase activity, which autoubiquiti-
nates the enzyme, followed by decreased activity [106].
In contrast to these works, one solitary study demon-

strates that S-nitrosylation of Parkin, more specifically at
Cys 323, increases the Parkin E3 ligase activity, and it is
required for efficient removal of depolarised mitochon-
dria [107]. The authors suggest that Cys 323 is not
involved in zinc ion coordination and therefore its modi-
fication can regulate Parkin activity without disrupting
the ability of the protein to coordinate ion zinc that is
required for Parkin activity. Furthermore, the authors
give evidences that PINK1 dependent phosphorylation
and nitrosylation of Parkin act independently and that
Parkin nitrosylation is mostly cytosolic.
These conflicting studies identified sites of potential S-

nitrosylation within the RING1, RING2 and the IBR do-
main [106, 107]. Most of those that were identified as
potential sites of nitrosylation are highly conserved
among different species (except for Cys 323 that is only
conserved in vertebrates), although further studies are
required to understand whether these nitrosylated sites
are responsible for altered Parkin E3 activity. Cysteine
sites in these domains are important for zinc coordin-
ation and their nitrosylation is likely to distrupt the con-
formation of these domains that are both important for
E2 coordination and Parkin catalytic activity. It is there-
fore not surprisingly that nitrosylation at those sites
affect Parkin E3 ligase activity.
Interestingly, a recent work demonstrated that nitrosy-

lation of Parkin increased p53 level [108]. Authors sug-
gested that cell death due to nitrosative stress occurs via
increase of pro apoptotic factor p53 and correlated the
increased nitrosylation of Parkin to p53 levels in human
post mortem PD brains. It was reported that nitrosylated
Parkin preferentially accumulates in the cytoplasm and
does not translocate to the nucleus, where Parkin oper-
ates as repressor of p53 promoter. This finding might
explain the correlation between increased p53 levels and
nitrosylated Parkin in PD brains, and potentially p53
dependent-cell death due to nitrosative stress, the later
being the causative factor for the increase of p53 levels.
Modification of Parkin by H2S, termed sulfhydration,

was found to be protective in nature. Three independent
studies documented the protective effect of systemic ad-
ministration of NaHS as H2S donor in preventing the
progression of Parkinsonism in toxin induced animal

models of PD [109–111]. In a subsequent study, Vaniver
et al. [112], specifically discovered the sulfhydrated
cysteine residues which enhanced Parkin protective ac-
tivity. The authors systematically mutated the various
Parkin cysteines and measured Parkin activity. Muta-
tion C95S completely abolished Parkin enhanced ubi-
quitination activity upon administration of GYY4137, a
H2S donor. Mutants C59S and C182S also result in sub-
stantial diminution of the enhancement of ubiquitination
upon sulfhydration. Though the protective effect of sulf-
hydration against neurotoxin-induced Parkinsonism has
been widely documented, the molecular mechanism is
largely known.
Interestingly, the level of Parkin sulfhydration was

found to be reduced in PD patient’s brain, while nitrosy-
lation showed a steep increase. These findings suggest
that nitosylation and sulfhydration are two reciprocal,
opposing events that both impinge on cysteine residues
and provide them with chemical groups that opposingly
impact Parkin E3 ligase activity [112].
In a slightly different context, it was shown that heat

shock, oxidative stress induced by H2O2 or deletion of
13 amino acids from the C terminal end of Parkin can
lead to its aggregation, which is inhibited by the overex-
pression of heat shock protein chaperones [113]. More
recently, a study by Meng et al. [114] showed that oxida-
tive stress induced by either MPP+ or H2O2 treatment
result in oxidation of a specific subset of cysteine resi-
dues of Parkin. The process of cysteine oxidation, also
known as sulfonation, alters Parkin solubility and leads
to Parkin inactivation. Upon mass spectrometry analysis
of Parkin oxidation, authors also showed that several of
the Parkin cysteine that are sulfonated upon oxidative
stress (Cys 212, Cys 253, Cys 268, Cys 289, Cys 431 and
Cys 441) were previously reported to be mutated in
familial PD cases, supporting the hypothesis that rare
hereditary mutations and environmentally linked PD
cases might share a common mechanism of inactivation
of Parkin.

Post translational modifications of Parkin: a
protein analysis between orthologs
In order to keep their function, proteins need to pre-
serve their three-dimensional structure, meaning that
they have to keep the same or similar amino acid
sequence. If there are conserved amino acids in some
regions of orthologous proteins, it can be concluded that
these amino acids are important for the function of the
protein. This is especially relevant when the conserva-
tion occurs at the protein rather than at the DNA level.
Interestingly, amino acids sequence alignment between
Parkin orthologs revealed that the Parkin residues that
are post translationally modified are highly conserved
from mammals to insects (Fig. 1a). These include sites
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of phosphorylation (Ubl and RING0 resident residues
Ser 65, Tyr 175 and Tyr 217), sulfhydration (Ubl and
RING0 resident residues Cys 59 and Cys 182) and
sulfonation (RING1 and RING2 resident residues Cys
212, Cys 253, Cys 268, Cys 289, Cys 431 and Cys
441) (Fig. 1a).
It is interesting to note that phosphorylation sites lead-

ing to Parkin activation are highly conserved, whereas
those which impairs Parkin activity are only conserved
in mammals. It is intriguing to hypothesis that evolution
might have been more stringent when it comes to mech-
anisms of Parkin activation.
This analysis also led us to the interesting observation

that the residues that are post translationally modified to
activate Parkin are either in the Ubl or the RING0 do-
main, whereas the inactivating modifications mainly affect
residues of the RING1 or RING2 domain, that contain the
E2 binding site and the catalytic site, respectively (Fig. 1c).

Conclusions
Parkin is an E3 ubiquitin ligase with various pleiotropic
functions. Elucidating the molecular mechanisms that
control its function can have important implications not
only in the regulation of mitochondria quality control
and proteosomal dependent degradation of abnormal
proteins, but also in the context of various Parkin cytopro-
tective functions, that include inhibition of the activity of
pro apoptotic proteins p53 and Bax, and enhancement
of expression of pro survival protein OPA1 via NF-kB
signalling [29, 30].
Under basal conditions, Parkin adopts a coiled inhibited

conformation and its activity is repressed [62–65, 115, 116].
Post translational modifications can control Parkin ac-
tivity, subcellular localization, conformation, solubility,
E2 choice and interaction with cofactors that are re-
quired for Parkin activation, substrate affinity as well as
specificity. Post translational modifications can occur
rapidly to respond to changes in metabolism or when
cell experience environmental stress. More importantly,
Post translational modifications are reversible and are
controlled by the counteracting activities of opposing
enzymes, which can be timely and rapidly regulated. Pro-
tein phosphatases oppose protein kinases, de-ubiquitinating
enzymes oppose ubiquitin ligases, protein deacetylases
counteract acetyltransferases, denitrosylation opposes S-
nitrosylation and so on. Balanced regulation of opposing
events can result in complex biological outcomes, particu-
larly when the targets of this regulation are proteins with
pleiotropic functions, like Parkin.
Potentially each PTM can be targeted for therapeutic

intervention as long as its physiological outcomes is
known and specific synthetic molecules are available to
either inhibit or enhance such modification depending
on its outcome. In this context, much effort has been

recently put towards the identification of specific deubi-
quitinating enzymes that directly or indirectly oppose
Parkin activity. Along the same line, it will be important
to evaluate whether specific protein phosphatases are in
place to oppose PINK1 in the phosphorylation of Parkin.
Future works will also clarify whether other modifica-

tions, such as acetylation (second most common PTM after
phosphorylation) or glycosylation (third most common
PTM) might play a role in the control of Parkin activation.
The next challenge will be to identify appropriate in

vitro system that allows rapid and specific read out of
Parkin activation. In that respect, in a very recent report
Pao et al. [117] developed a newly engineered probe to
monitor the thansthiolation activity of E3 ligases to
decipher mechanisms of Parkin activation. Interestingly,
this report demonstrates that initial phosphorylation of
ubiquitin is upstream Parkin phosphorylation and subse-
quent activation, allowing the precise dissection of a
rather complex multi step process.
The compatibility of newly generated probes to study

Parkin activity from cell extracts and the potential repro-
ducibility of the assay in samples extracted from human
patients, will pave the way for the development of rapid
methods to address how different post-translational modi-
fications affect Parkin activity in vitro as well as in vivo.
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Cell Biology, University of Alberta, Canada (reviewer 2).
Reviewer 1 summary: In their manuscript, the au-

thors provide a comprehensive and timely review on the
regulation of the E3 ubiquitin ligase Parkin by posttrans-
lational modifications. This overview is well-balanced
and includes a wide spectrum of Parkin functions.
Therefore it will be interesting and helpful for a broad
readership.
Reviewer 2 summary: The review article by

Chakraborty et al. provides a useful, up-to-date resource
for Parkin researchers by describing the complete set of
known Parkin post-translational modifications. There is
a three-part figure that accompanies the manuscript,
which provides a helpful illustration of what is described
within the manuscript. The sequence of chapters is
logical, starting with phosphorylation. Ultimately, my
suggestions are minor changes that would hopefully
make the manuscript even more useful that it already is.
Response to reviewers: First of all we would like to

thank both reviewers for their valuable and relevant
comments. As specified in the following chapters, re-
viewers concerns have been carefully addressed in the
revised version of the manuscript.
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Reviewer 1
Comment: Some suggestions to increase linguistic clar-
ity: Page 10, line 15 to 18: “Quite intriguingly, phosphor-
ylation of Parkin by cyclin dependent kinase 5 (Cdk-5),
casein kinase 1 (CK-1) and c-Abl leads to either increased
Parkin aggregates properties or Parkin inhibition.” … modu-
lates Parkin folding and/or activity.
Response: we have modified the sentence according to

the suggestion.
Comment: Page 11, line 15: The statement that

“mutation in the Ubl domain leads to multi ubiquitinated
Parkin that is constitutively active” should be substanti-
ated by a reference.
Response: We have modified the sentence and supported

the statement by reference.
Minor points: Check correct spelling, for example:-Page

3, line 3: “familiar”-Page 4, line 15: “rational”-Page 8, line
15: “autoinhibitions”-Page 14, line 11: “S-nitrosylayion” -
Fig. 1a: “Sulfhydatin” Check wording, for example:-Page 3,
line 4 : “brought to”-Page 5, line 21: “whether” - Page 14,
line 10: “imposes” - Page 17, line 4: “whether”
Response: we have modified the specified sentences.

Reviewer 2
Comment: what is the mechanism that causes proteasome
degradation of mitochondrial proteins? Are these protea-
somes mitochondria-localized? This is not well explained.
Response: we have explained this in the updated

manuscript.
Comment: the description of highly conserved residues

within Parkin on page 9 is confusing. Are all of these
post-translationally modified? Are only these post-
translationally modified?
Response: we have mentioned in the manuscript that most

of these are post translationally modified. This list might not
be exclusive and we have focused on the so far reported ones.
Comment: I would reconsider using the PTM abbrevi-

ation. I had some trouble getting used to it.
Response: to our knowledge, PTM is quite frequently

used abbreviation for posttranslational modification. We
however reconsidered using the abbreviation in the
manuscript, as suggested by the reviewer.
Comment: on page 5, it is stated that PINK1 is a serine/

threonine kinase, but on page 9, PINK1 is said to phos-
phorylate tyrosines on Parkin. It is later mentioned that
Parkin serines are also phosphorylated. What is the rela-
tionship between tyrosine and serine phosphorylation? This
needs to be better explained. What phosphorylation occurs
in D. melanogaster? What is the relationship between
phosphorylation by PINK1 and other kinases? What is
known about Parkin serine phosphorylation in PD patient
brains?
Response: We would like to thank the reviewer for

actually spotting this. We realised that the abbreviation

for Threonine was misspelled (Tyr instead of Thr): PINK1
indeed is a serine/threonine kinase that phosphorylates
substrates on threonine (Thr) residues. We apologise
for the confusion the misspelled abbreviation might
have caused.
To our knowledge, nothing is known about Parkin

serine phosphorylation in PD patients brains.
Comment: What is the functional difference between

SUMO-1 and SUMO-2?
Response: The basic difference between SUMO-1 and 2

is their substrate preference. We have mentioned this in
the manuscript.
Comment: Where could NO originate that modifies

Parkin and why does it increase in PD brain? It is
unclear whether there is a correlative or causative link
between Parkin nitrosylation and p53.
Response: NO is synthesized by nitric oxide synthase

(NOS), which comes in three forms: endothelial, neuronal
and inducible NOS. So, in the brain the origin of NO
could be due to the functionality of neuronal NOS. The
increase in NO in PD brain and its relevance is quite
controversial as it can be marked as both causative and/
or after effect of neuro-inflammation. It is beyond the
scope of this review to discuss that in details.
In the stated report the authors discovered that nitrosy-

lation of Parkin decreases its activity as a repressor of
P53. Later increase in both nitrosylated Parkin and P53
was found in human patients brain and the conclusion
was drawn stating nitrosylated Parkin is the causal
factor for P53 increase. We have mentioned this in the
updated MS.
Comment: The authors may consider swapping panels

a and b in Fig. 1.
Response: We don’t understand the reason for this

request. Panel a is described before panel b in the text.
Comment: English grammar and spelling needs to be

improved in some spots. This is especially the case in the
abstract, which I suggest to rewrite from scratch, but also
in some other instances (e.g., lines 19–23 p. 5; line 18 p.
6; lines 11–13 p.9; lines 8–14 p. 11; lines 7, 13 p.12).
Some issues with singular/plural confusion and wrong
usage of articles.
Response: We have modified the manuscript according

to the suggestions.
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