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Abstract This paper studies the adaptive synchronization of two complex networks with non-delayed and
delayed couplings, in which the coupling configuration matrices are not necessarily symmetric or irreducible.
Considering the case of identical and nonidentical network topological structures, we obtain several criteria
for synchronization of two complex networks based on the Lyapunov stability theory. Numerical simulations
are presented to demonstrate the effectiveness of the proposed criteria.

Mathematics Subject Classification 90B18

1 Introduction

The synchronization problem of complex networks has been one of the focus points in many research and
application fields. In addition, time delays often appear in various complex dynamical networks due to the finite
information transmission and processing speeds among the network nodes, and some of time delays cannot
be ignored [18]. Therefore, much work has been done for the synchronization of complex networks with time
delays in many literatures. Pecora and Carroll [9] studied the stability of synchronization in linearly coupled
networks using the Master Stability function approach. Wang and Chen [12] investigated the synchronization
problem for two specific kinds of complex networks such as small-world networks and scale-free networks,
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respectively. Zhang and Lu [19] introduced a complex networks model with delayed nodes, and obtained sev-
eral novel criteria for globally exponentially asymptotic synchronization. Cai et al. [2] analyzed exponential
synchronization of complex networks with nonidentical time-delayed nodes, and derived two effective control
schemes. By utilizing geometrical decomposition of network states and linear matrix inequality method, Yang
and Cao [17] derived several criteria for the exponential synchronization of complex networks with a coupling
delay and impulses. Wang and Guan [13] investigated the chaos synchronization of a general complex network
with coupling delays, and presented some delay-independent and delay-dependent criteria for exponential syn-
chronization. In He et al. [5], generalized synchronization of two chaotic systems is investigated and some less
restrictive criteria are obtained to guarantee the asymptotical stability of the error system between the response
system and the auxiliary system, which indicates the drive-response systems are synchronized in a general
sense. Cao et al. [3] analyzed the complete synchronization problem in an array of linearly stochastically
coupled identical networks with time delays. Based on a simple adaptive feedback control scheme and some
stochastic analysis techniques, several sufficient conditions are developed to guarantee the synchronization in
an array of linearly stochastically coupled neural networks with time delays. Huang and Cao [6] introduced a
novel coupling scheme with different coupling delays and investigated the generalized synchronization using
the Lyapunov–Krasovskii functional method.

In the above references they all focused on the synchronization in one network that was named ‘inner
synchronization’ because it was a collective behavior within a network. Different from the ‘inner synchroni-
zation’, Li et al. [7] firstly studied the synchronization between two complex networks which is called ‘outer
synchronization’. By designing effective adaptive controllers, Tang et al. [11] achieve synchronization between
two complex networks with identical or nonidentical topological structures. In Sun et al. [10], a simple criterion
for linear generalized synchronization between two complex networks with the same connection topologies
is attained. Wang et al. [14] regard the outer synchronization between two delay-coupled complex networks
with nonidentical topological structures and a noise perturbation. Lu and Cao [8] study the adaptive complete
synchronization of chaotic and hyperchaotic systems with fully unknown parameters and derive an adaptive
scheme to compensate for the effects of parameters’ uncertainty based on the structure of chaotic systems.
In Wu et al. [16], the problem of generalized outer synchronization between two completely different com-
plex dynamical networks is investigated and a sufficient criterion for this generalized outer synchronization is
derived based on Barbalat’s lemma.

It is worth mentioning that these studies only consider the information transmission in complex network at
time t or at time t − τ . However, in many circumstances, this simplification does not match satisfactorily the
peculiarities of real networks: there exists the information communication of nodes not only at time t but also
at time t − τ [4]. In Guo et al. [4], the synchronization of the networks with both delayed and non-delayed
coupling is introduced, and some sufficient conditions for the global synchronization by adding linear and
adaptive feedback controllers to a part of nodes are obtained. For a given complex network with both delayed
and non-delayed couplings, Wang et al. [15] proposed the minimum number of adaptive controllers under
which synchronization can be achieved.

Motivated by above discussions, in this paper, we study the synchronization of two complex networks with
both delayed and non-delayed coupling. In particular, we not only prove that the synchronization between two
complex dynamical networks can be achieved by designing appropriate adaptive controller, but also consider
the two complex networks with both delayed-coupled and non-delay coupled which can reflect a more realistic
dynamical behavior of coupled networks in practice. For the coupling matrix, we do not assume that the cou-
pling configuration matrix is symmetric or irreducible. Numerical examples are also provided to demonstrate
the effectiveness of the theory.

2 Complex networks model and preliminaries

We consider a complex network consisting of N identical nodes. Each node of the network is n-dimensional
dynamical subsystem, which is described by

ẋi (t) = f (xi (t)) +
N∑

j=1

ci j Ax j (t), i = 1, 2, . . . , N , (1)

where xi (t) = (xi1(t), . . . , xin(t))T ∈ Rn is the state vector of the i th node, f (·) ∈ RN is a continuously
differentiable vector function, and ẋi (t) = f (xi (t)) represents the dynamics of a single node. The matrix
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A = diag(a1, a2, . . . , an) ∈ Rn×n is the inner connecting matrix of each node. The matrix C = (ci j )N×N ∈
RN×N is coupling configuration matrix describing the topological structure of the network, in which ci j > 0
if there is a link from node j to node i(i �= j), and ci j = 0 otherwise; and the diagonal elements of C are
given by cii = − ∑N

j=1, j �= j ci j , i, j = 1, 2, . . . , N .
In [11], the network (1) was taken as the drive network, and the response network with an adaptive control

scheme which is given by

ẏi (t) = f (yi (t)) +
N∑

j=1

di j Ay j (t) + ui (t), i = 1, 2, . . . , N , (2)

where yi (t) = (yi1(t), . . . , yin(t))T ∈ Rn is the state vector of the i th node in the response network, D =
(di j )N×N ∈ RN×N is the coupling configuration matrix, the f and A have the same meanings as those in (1),
and ui (t) is the controller for node i to be designed.

Based on the drive-response network systems (1)–(2), we will consider the following more general drive-
response networks with non-delayed and delayed coupling

ẋi (t) = f (xi (t)) +
N∑

j=1

ci j Ax j (t) +
N∑

j=1

c̃i j Ãx j (t − τ), i = 1, 2, . . . , N , (3)

ẏi (t) = f (yi (t)) +
N∑

j=1

di j Ay j (t) +
N∑

j=1

d̃i j Ãy j (t − τ) + ui (t), i = 1, 2, . . . , N , (4)

where xi (t), yi (t) and f have the same meanings as those in (1)–(2), τ > 0 is the coupling delay. The cou-
pling matrices C = (ci j )N×N ∈ RN×N and C̃ = (̃ci j )N×N ∈ RN×N represent the topological structure for
non-delayed configuration and delayed one, respectively. The D and D̃ have the same meanings as C and C̃
which are defined as in (1).

The interval conditions of the functional differential equations (3) and (4) are given by

xi (t) = φi (t), t ∈ [−τ, 0], i = 1, 2, . . . , N , (5)

yi (t) = ψi (t), t ∈ [−τ, 0], i = 1, 2, . . . , N . (6)

where φi (t) and ψi (t) are continuous and differentiable vector-valued functions of t ∈ [−τ, 0].

Remark 2.1 In our complex network model, the coupling configuration matrices C, C̃, D and D̃ don’t need to
be symmetric and irreducible. Moreover, it should be especially pointed out that our model has non-delayed
and delayed couplings simultaneously. As a result, the model generalizes many realistic complex networks.

Definition 2.2 Let xi (t; t0; φi ) and yi (t; t0;ψi ), i = 1, 2, . . . N be the solutions of the delayed network (3)
and (4), where φi = φi (t) ∈ C([−τ, 0], Rn) and ψi = ψi (t) ∈ C([−τ, 0], Rn) are initial conditions,
f : R × � → Rn is continuously differentiable, � ⊆ Rn . If there is a nonempty subset � ⊂ �, such that φi
takes values in � and xi (t; t0;φi ) ∈ � for all t ≥ t0, i = 1, 2, . . . , N , and

lim
t→∞ ‖yi (t; y0; ψi ) − x(t; x0;φi )‖ = 0, i = 1, 2, . . . , N , (7)

where ‖ · ‖ stands for the Euclidean vector norm, then the dynamical network (3) and (4) are said to be
synchronized.

Throughout the paper, we make the following assumption and lemma.

Assumption 2.3 There exists a positive constant L satisfying

‖ f (y) − f (x)‖ ≤ L‖y − x‖. (8)
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Lemma 2.4 [1] For any vectors x, y ∈ Rn, and positive definite matrix Q ∈ Rn×n, the following matrix
inequality holds

2xT y ≤ xT Qx + yT Q−1 y. (9)

Define error vectors as

ei (t) = yi (t) − xi (t), (10)

where i = 1, 2, . . . , N, then we have the error system as

ėi (t) = ẏi (t) − ẋi (t)

= f (yi (t)) − f (xi (t)) +
N∑

j=1

(di j Ay j (t) − ci j Ax j (t))

+
N∑

j=1

(d̃i j Ãy j (t − τ) − c̃i j Ãx j (t − τ)) + ui (t), (11)

where i = 1, 2, . . . , N. It is obvious that the stability of the synchronization between network (3) and network
(4) is equivalent to stability of the zero solution of system (11).

3 Synchronization criteria

In this section, the synchronization of the drive-response networks with both delayed and non-delayed coupling
is studied.

Theorem 3.1 Suppose that Assumption 2.3 holds. Under the condition of nonidentical configurations, i.e.
C �= D and C̃ �= D̃, the drive network (3) and the response network (4) can realize synchronization, if the
adaptive controller and control laws are designed as follows

ui (t) =
N∑

j=1

bi j Ay j (t) +
N∑

j=1

b̃i j Ãy j (t − τ) − gi ei (t),

ḃi j = −eT
i (t)Ay j (t),

˙̃bi j = −eT
i (t) Ãy j (t − τ),

ġi = δi‖ei (t)‖2, i = 1, 2, . . . , N ,

(12)

where δi is positive constant.

Proof Construct the Lyapunov function candidate as follows

V (t) = 1

2

N∑

i=1

eT
i (t)ei (t) + 1

2

N∑

i=1

N∑

j=1

(di j + bi j − ci j )
2 + 1

2

N∑

i=1

N∑

j=1

(d̃i j + b̃i j − c̃i j )
2

+1

2

N∑

i=1

(gi − l)2

δi
+

N∑

i=1

∫ t

t−τ

eT
i (θ)ei (θ)dθ, (13)

where l is a positive constant to be determined. By using the inequality xT y ≤ |xT y| ≤ ‖x‖‖y‖, along with
Equations (11) and (12), we get

V̇ (t) =
N∑

i=1

eT
i (t)ėi (t) +

N∑

i=1

N∑

j=1

(di j + bi j − ci j )ḃi j +
N∑

i=1

N∑

j=1

(d̃i j + b̃i j − c̃i j )
˙̃bi j

+
N∑

i=1

1

δi
(gi − l)ġi +

N∑

i=1

(eT
i (t)ei (t) − eT

i (t − τ)ei (t − τ))
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=
N∑

i=1

eT
i (t)

⎡

⎣ f (yi (t))− f (xi (t))+
N∑

j=1

(di j Ay j (t)−ci j Ax j (t)) +
N∑

j=1

(d̃i j Ãy j (t − τ) − c̃i j Ãx j (t − τ))

+
N∑

j=1

bi j Ay j (t) +
N∑

j=1

b̃i j Ãy j (t − τ) − gi ei (t) + ei (t)

⎤

⎦ −
N∑

i=1

N∑

j=1

(di j + bi j − ci j )e
T
i (t)Ay j (t)

−
N∑

i=1

N∑

j=1

(d̃i j + b̃i j − c̃i j )e
T
i (t) Ãy j (t − τ) +

N∑

i=1

(gi − l)‖ei (t)‖2 −
N∑

i=1

eT
i (t − τ)ei (t − τ)

=
N∑

i=1

eT
i (t) [ f (yi (t)) − f (xi (t)) − gi ei (t) + ei (t)] +

N∑

i=1

N∑

j=1

ei (t)
T ci j Ae j (t)

+
N∑

i=1

N∑

j=1

ei (t)
T c̃i j Ãe j (t − τ) +

N∑

i=1

(gi − l)‖ei (t)‖2 −
N∑

i=1

eT
i (t − τ)ei (t − τ)

≤
N∑

i=1

[‖ei (t)‖‖ f (yi (t))− f (xi (t))‖ + (1 − l)‖ei (t)‖2] +
N∑

i=1

N∑

j=1

ei (t)
T ci j Ae j (t)

+
N∑

i=1

N∑

j=1

ei (t)
T c̃i j Ãe j (t − τ) −

N∑

i=1

‖ei (t − τ)‖2. (14)

By Assumption 2.3, we have

‖ f (yi (t)) − f (xi (t))‖ ≤ L‖ei (t)‖. (15)

By Lemma 2.4, we further have

N∑

i=1

N∑

j=1

c̃i j e
T
i (t) Ãe j (t − τ) ≤ 1

2

N∑

i=1

N∑

j=1

[
c̃2

i j e
T
i (t)Qei (t) + eT

j (t − τ) ÃT Q−1 Ãe j (t − τ)
]

=
N∑

i=1

N∑

j=1

[
N

4
c̃2

i j e
T
i (t) Ã2ei (t) + 1

N
eT

j (t − τ)e j (t − τ)

]

≤ N

4

N∑

i=1

N∑

j=1

c̃2
i j‖eT

i (t)‖‖ Ã2‖‖ei (t)‖ +
N∑

j=1

‖e j (t − τ)‖2

≤ N 2‖ Ã2‖ max1≤i, j≤N {̃c2
i j }

4

N∑

i=1

‖eT
i (t)‖2 +

N∑

j=1

‖e j (t − τ)‖2, (16)

where Q = N
2 Ã2 > 0.

Substituting Equations (15) and (16) into Equation (14) yields

V̇ (t) ≤
(

L + 1 − l + N‖A‖ max
1≤i, j≤N

{|ci j |} + N 2‖ Ã2‖ max1≤i, j≤N {̃c2
i j }

4

)
N∑

i=1

‖ei (t)‖2 (17)

Therefore, if l is chosen as

l > L + 1 + N‖A‖ max
1≤i, j≤N

{|ci j |} + N 2‖ Ã2‖ max1≤i, j≤N {̃c2
i j }

4
, (18)

we have V̇ (t) ≤ 0. It is obvious that V̇ (t) = 0 if and only if ei (t) = 0 for all i = 1, 2, . . . , N . The orbits of
(11) are globally asymptotically stable at ei (t) = 0. That is, the synchronization between the drive network (3)
and the response network (4) can be realized under the adaptive controller (12). The proof is thus completed.

��
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Remark 3.2 The constant δi (i = 1, 2, . . . , N ) in the adaptive controller (12) can be chosen properly to adjust
the speed of synchronization. A lager adaptive gain δi would lead to faster synchronization.

To make Theorem 3.1 more applicable, we give the following corollaries.

Corollary 3.3 Suppose that Assumption 2.3 holds. The drive network (3) and the response network (4) can
realize synchronization, if the adaptive controller and control laws are designed as follows

ui (t) =
N∑

j=1

bi j Ay j (t) +
N∑

j=1

b̃i j Ãy j (t − τ) − gi ei (t),

ġi = δi‖ei (t)‖2, i = 1, 2, . . . , N ,

{ ˙̃bi j = −eT
i (t) Ãy j (t − τ), c̃i j �= d̃i j˙̃bi j = 0, c̃i j = d̃i j

{
ḃi j = −eT

i (t)Ay j (t), ci j �= di j

ḃi j = 0, ci j = di j
(19)

where δi is positive constant, i = 1, 2, . . . , N.

Corollary 3.4 Suppose that Assumption 2.3 holds. The drive network (3) and the response network (4) have
the identical configuration matrices, i.e., C = D and C̃ = D̃, then the two complex networks can realize
synchronization using the following adaptive controller

ui (t) = −gi ei (t), ġi = δi‖ei (t)‖2, i = 1, 2, . . . , N , (20)

where δi is positive constant.

The proofs of Corollaries 3.3 and 3.4 follow directly from Theorem 3.1 and are omitted here.

4 Numerical simulations

In this section, two numerical examples are used to show the effectiveness of the proposed synchronization
criteria. We consider the chaotic Lorenz system as the node dynamic system of the complex network. A chaotic
Lorenz system can be described by

ẋi = f (xi ) =
⎛

⎝
−a a 0
c −1 0
0 0 −b

⎞

⎠

⎛

⎝
xi1
xi2
xi3

⎞

⎠ +
⎛

⎝
0
−xi1xi3
xi1xi2

⎞

⎠

� H xi + W (xi ), (21)

where i = 1, 2, . . . , 5, a = 10, b = 8/3 and c = 28, the system has a chaotic attractor. For any two state
vectors xi and x j , there exists a positive constant r such that

|W (x j ) − W (xi )| ≤ r |x j − xi |
hence the Assumption 2.3 is satisfied (for details, see Ref. [11]).

Example 4.1 In the first example, both the drive complex network (3) and the response network (4) are assumed
to have the same configuration matrices, i.e., C = D and C̃ = D̃, which are described by

C =

⎡

⎢⎢⎢⎢⎢⎣

−2 1 1 −2 1 1
−1 −3 0 1 2 1
1 0 −3 1 1 0
1 1 1 −4 1 0
1 1 1 0 −4 1
1 1 0 0 0 −2

⎤

⎥⎥⎥⎥⎥⎦
, C̃ =

⎡

⎢⎢⎢⎢⎢⎣

−2 1 1 1 −1 0
−1 −2 0 1 1 1
1 0 −3 1 1 0
0 1 1 −3 1 0
1 1 1 0 −4 1
1 1 1 0 0 −3

⎤

⎥⎥⎥⎥⎥⎦
.

The inner connection matrices are taken as identity matrices of dimension 3, i.e. A = Ã = I3. It is assumed
that the coupling delay is τ = 0.5. Then, according to Corollary 3.4, we derive the control scheme by Eq. (20).

The trajectories of synchronization errors ei1(t), ei2(t) and ei3(t) are shown in Fig 1. As described in
Fig. 1, it can be observed that all of the state errors ei1(t), ei2(t) and ei3(t) tend to zero, which implies that
two networks achieve synchronization.
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Fig. 1 Synchronization errors ei1(t), ei2(t), ei3(t) (i = 1, 2, . . . , 6) under updating law (20)

Example 4.2 The second example considers the case in which the drive complex network (3) and the response
network (4) have different configuration matrices. Suppose that the configuration matrices for the drive com-
plex network (3) C and C̃ as in the above subsection, and the configuration matrices for the response complex
network (4) are given as follows

D =

⎡

⎢⎢⎢⎢⎢⎣

−1 0 1 −1 0 1
−1 −2 0 0 3 0
1 0 −2 1 0 0
1 0 1 −3 1 0
0 2 1 0 −3 0
1 1 0 1 0 −3

⎤

⎥⎥⎥⎥⎥⎦
, D̃ =

⎡

⎢⎢⎢⎢⎢⎣

−3 0 0 1 2 0
−2 −2 0 3 1 0
1 0 −2 0 1 0
0 1 1 −3 1 0
1 0 1 0 −3 1
1 1 1 0 0 −3

⎤

⎥⎥⎥⎥⎥⎦
.

We also assume that A = Ã = I3 and τ = 0.5. Then, by using the adaptive control algorithm (12) of
Theorem 3.1. Figure 2 plots the trajectories of synchronization errors ei1(t), ei2(t) and ei3(t) between the two
complex networks, which shows the realization of synchronization between the two complex networks.
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Fig. 2 Synchronization errors ei1(t), ei2(t), ei3(t) (i = 1, 2, . . . , 6) under updating law (12)
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5 Conclusion

In this paper, the adaptive synchronization problem for drive-response complex networks with non-delayed
and delayed coupling has been studied. Considering the case of identical and nonidentical network topological
structures, the adaptive controllers and update laws are designed to ensure synchronization between two com-
plex networks. Additionally, two corollaries are also obtained. Moreover, the coupling configuration matrices
are not necessarily symmetric or irreducible. Numerical simulations are provided to verify the effectiveness
of the proposed scheme.
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