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Abstract
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Background: Gene clustering algorithms are massively used by biologists when analysing omics data. Classical gene
clustering strategies are based on the use of expression data only, directly as in Heatmaps, or indirectly as in clustering
based on coexpression networks for instance. However, the classical strategies may not be sufficient to bring out all

Results: We propose a new unsupervised gene clustering algorithm based on the integration of external biological
knowledge, such as Gene Ontology annotations, into expression data. We introduce a new distance between genes
which consists in integrating biological knowledge into the analysis of expression data. Therefore, two genes are close
if they have both similar expression profiles and similar functional profiles at once. Then a classical algorithm (e.g.
K-means) is used to obtain gene clusters. In addition, we propose an automatic evaluation procedure of gene clusters.
This procedure is based on two indicators which measure the global coexpression and biological homogeneity of
gene clusters. They are associated with hypothesis testing which allows to complement each indicator with a p-value.
Our clustering algorithm is compared to the Heatmap clustering and the clustering based on gene coexpression
network, both on simulated and real data. In both cases, it outperforms the other methodologies as it provides the
highest proportion of significantly coexpressed and biologically homogeneous gene clusters, which are good

Conclusion: Our new clustering algorithm provides a higher proportion of good candidates for interpretation.
Therefore, we expect the interpretation of these clusters to help biologists to formulate new hypothesis on the

Background

Since omics data such as transcriptome profiling data
provide measures about a considerable number of genes,
data are classically decomposed to a more comprehen-
sible level by clustering genes into modules. Among the
unsupervised clustering strategies we can recall the two
techniques that are principally used: Heatmaps [1] which
consist in hierarchical classification on both subjects and
gene expressions, and clustering based on coexpression
networks [2]. Gene clustering is not only practical since
it reduces the number of objects to study, but is also
expected to convey a certain biological reality. In fact, we
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expect the similarities between gene expressions to reflect
similarity between gene functions. Gene clusters are then
interpreted in order to generate new hypotheses about the
functional roles of genes and their relationships.

In practice, to interpret gene clusters, external biolog-
ical knowledge such as Gene Ontology (GO) informa-
tion [3] is used. The most classical procedure consists of
gene set enrichment analysis with the aim to characterise
each cluster by a set of biological functions. Attempts
to improve gene set enrichment analysis have been pro-
posed, for instance Bauer et al. [4] proposed a Bayesian
enrichment analysis. The latter consists in representing
GO terms into a Bayesian network and the response
of each gene, in terms of expression, is modelled as a
function of the activation of GO terms. In Multivariate
Analysis (MVA), some attempts to directly superimpose

© 2013 Verbanck et al,; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.


https://core.ac.uk/display/81627966?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Verbanck et al. BMC Bioinformatics 2013, 14:42
http://www.biomedcentral.com/1471-2105/14/42

biological knowledge on the outputs of MVA exist [5,6].
The objective is to facilitate the interpretation of gene
expressions, or gene clusters, as MVA provides distance
matrices that can be used for clustering.

In these methodologies, gene clusters are obtained on
the basis of expression data only and biological knowledge
is a posteriori used to make the most of the clusters. The
limits of such procedures are clear: clustering genes on the
basis of expression data only allows to isolate coexpressed,
however not necessarily biologically coherent units [7,8].
Indeed, a clustering structure can only be as good as the
distance/similarity matrix it is based on. Hence, the idea of
actively integrating biological knowledge into expression
data, to isolate more meaningful biological entities.

In other contexts, this issue of actively integrating bio-
logical knowledge into expression data has been covered.
In the purpose of biological networks inference, Kashima
et al. [9] proposed a semi-supervised learning method.
The similarity between expression profiles and amino acid
sequences in a given species is reinforced if the same
similarity is observed amongst a cousin species. In order
to predict gene functional classes, such as the associa-
tions between genes and GO terms, Azuaje et al. [10]
combine two types of information: gene expression pro-
file similarity and a GO-based similarity. The average of
both similarity indexes is used to cluster genes. With the
same objective of predicting gene functional classes, in
Li et al. [11], expression data are combined with biologi-
cal knowledge by considering subsets of genes associated
with one same functional annotation. The subsets of genes
are then clustered on the basis of their expression profile
similarities.

The objective of the paper is to propose a new unsu-
pervised clustering algorithm based on a new distance
between genes that actively integrates external biological
knowledge into expression data. A cluster is considered as
satisfying if it gathers coexpressed genes that are impli-
cated into similar biological functions according to the
biological knowledge. Such a cluster is expected to be bio-
logically interesting and becomes a good candidate for
biological interpretation.

In practice, we introduce the notion of coexpressed
biological functions which allows the integration of an
information of coexpression within the functional anno-
tations. Combining expression data with GO annotations
defines a new distance between genes. Two genes are
close if they are coexpressed and implicated into the same
set of biological functions at once. Afterwards a classical
clustering algorithm (K-means or hierarchical ascending
classification) is used to obtain gene clusters. In this paper
we will emphasize the biological principle supporting the
methodology and discuss the distance we propose.

To complement the clustering procedure, we propose
an automatic validation procedure of gene clusters to
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facilitate their interpretation. The aim of this procedure is
to highlight good candidates for interpretation which are
clusters of significantly coexpressed and significantly bio-
logically related genes. It is based on two indicators associ-
ated with hypothesis testing. One indicator measures the
coexpression of the genes within a cluster, whereas the
other quantifies its biological homogeneity.

The R code which is used to perform all analyses is avail-
able in the form of an R package at http://marie.verbanck.
free.fr/packages/.

Method

Integration of biological knowledge into expression data:
biological principle

Let us recall that most of the classical gene clustering
strategies are based on expression data only. Expression
data may be used directly as in Heatmaps, or indirectly
in the case of clustering based on coexpression networks.
Clusters thus obtained are candidates for interpretation
and remain to be biologically characterised. The bio-
logical characterisation is done using external biological
knowledge, such as Gene Ontology annotations. These
are established according to experiments reported in
the literature, or deduced by Bioinformatics. This clas-
sical approach relies on two implicit hypotheses. Firstly,
the biological characterisation of coexpressed clusters
implicates that biological connections systematically exist
between coexpressed genes. Secondly, the biological char-
acterisation is purely based on external biological knowl-
edge, therefore, part of the external biological knowledge
is expected to be related to the experiment in the study.

The first hypothesis may be questionable [7,8] and
in this paper we consider a new point of view on the
link between coexpression and biological connections.
Broadly speaking, coexpression between two genes may
result from two phenomena, either a genuine biological
connection (e.g. from a true gene regulation network), or
the parallel and independent activation of different bio-
logical responses to the same experimental condition. To
differentiate those two situations, we propose to give more
credit to the second hypothesis and then to actively rely
on external biological knowledge. Therefore, we consider
that if two coexpressed genes have already been char-
acterised as biologically related in the existing biological
knowledge, their coexpression is more likely to reflect a
genuine biological connection.

In practice, we use the ontology related to “Biologi-
cal Process” of GO annotations which provides for each
gene a list of biological functions which the gene is
involved in: henceforth, this list will be called functional
profile of the gene. Therefore, if two coexpressed genes
are associated with similar functional profiles, their coex-
pression is presumed to result from a genuine biological
connection. On the contrary, if two coexpressed genes
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have totally divergent functional profiles, their coexpres-
sion may result from the parallel activation of different
biological responses.

Unsupervised gene clustering algorithm

In this section, we propose a new distance between genes,
that fits the exposed biological principle, and to be used
in a clustering perspective. This distance allows to quan-
tify both the coexpression and the similarity of functional
profiles between two genes.

Encoding of the biological knowledge

Let us consider K genes and /] GO terms. The associa-
tions between genes and GO annotations are encoded in
a binary matrix T € M(K,J), where each line k repre-
sents one of the K genes and each column j one of the J
GO terms: the general term Tj; equals 1 if the gene & is
associated with the GO term j and 0 else wise (Figure 1).
A row k of the matrix can be interpreted as a gene func-
tional profile which is the set of biological functions the
gene is associated with. A column j of the matrix repre-
sents a biological function that can be assimilated to the
subset of genes that are associated with the function in
question. Let K/ = {k| Ty; = 1} be the subset of genes that
are associated with the function j.

A new distance between genes: coexpressed biological
functions

In order to fit the previously exposed biological princi-
ple, we define a distance that quantifies the similarity of
functional profiles {Tyj;j € J} of coexpressed genes. To do

| j ) Margin
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Figure 1 Matrix T: coding the associations between genes and
biological functions. The associations between genes and biological
functions are synthesised in the matrix 7. Each row represents a gene
functional profile, whereas each column represents the associations
between a biological function and genes. The general term Ty; equals
1 if the gene k is associated with the biological function j, 0 else wise.
The row margin T is the number of biological functions the gene k is
associated with. The column margin T} is the number of genes the
function j is associated with. Finally, T_ is equal to the total number of
associations between genes and biological functions.
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so, we apply a constraint on the biological knowledge by
defining a coexpressed biological function as the restric-
tion of the function to the only genes that are coexpressed.
In other words, if K/ can be split up into L; coexpressed
clusters, that will lead to as many coexpressed biological
functions to be considered. In order to obtain these coex-
pressed biological functions, we propose the following
algorithm based on hierarchical clustering.
For each biological function j:

1. adistance matrix between the genes of K/ based on
Pearson’s correlation coefficient is computed. The
distance between two genes k and k' may be
expressed as follows:

I
1 Gk —Gi\ (G — Gy

delk, k) =1—=

G(bi0 IZ( St )( Se )

i=1
(1)

where I is the number of samples, Gjx and G are
respectively the expression of genes k and &’ for
sample I, Gx and Gy are respectively the mean of
the I expression values of genes k and k', Sy and Sy
are respectively the standard deviation of the I
expression values of genes k and k'.

2. A hierarchical clustering procedure is performed on
the previously defined distance matrix (1): let

= {Kj; - K{; - Kél_} be a partition on K7 in L;

clusters. Forall/ =1,...,L;, K; is comprised of
coexpressed genes.

3. We build a matrix 77 € M(K, L;) by splitting up the
j?* column of T into L; columns. In T/ each line k
represents one of the K genes and each column is a
dummy variable such as Til equals 1 if the gene k

belongs to K; and 0 else wise: a column of 7/ can be
interpreted as a coexpressed biological function.

We define Tcoexp as the juxtaposition of all / matrices
T/ (Figure 2). Teoexp results from combining both types
of information. The analysis of Tisexy allows to study
the degree of similarity of gene functional profiles under
the condition of coexpression. Therefore a new distance
between genes can be calculated from Tpexp:

Tk/ Tyj

’ . Tk/ 2
6= ;;de(K,)( g~ 20y

(2)

where Ty and Ty . are respectively the row margins asso-
ciated with the genes k and k/, T_ is the total number of
associations between genes and biological functions and

1 keK{ a dummy variable which equals 1 if k € Kj , 0

else wise. The genes k and k' are both associated with
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Figure 2 Matrix Toexp: decomposition of the matrix T. Decomposing biological functions into coexpressed biological functions leads to build

the matrix Teoexp Where a row represents a gene and a column a coexpressed biological function. The general term of Teoexp, T‘Uﬂkew equals 1ifthe
. !

gene k is associated with the function j and if it belongs to the cluster K{, 0 else wise. The column margin of the coexpressed biological function /is

equal to the number of genes in the corresponding cluster, that is card(K{). In addition, for every function j, the sum of the column margins
associated with the coexpressed biological functions derived from j is equal to the column margin associated with the function j:

L ) ) L
Z/; card(K{) = T. Finally, we can remark that the row margins and the total number of associations are equal to those from T.

j: if they are not coexpressed they do not belong to the
same coexpressed cluster of P, In this case, the jth term
of the distance calculation (2) is high. Thus, genes which
have similar expression profiles and similar functional
profiles are close. This distance corresponds to the dis-
tance between genes in the Correspondence Analysis of
Tcoexp' )

Technical note 1: in step 2, P/ is the partition in L; coex-
pressed clusters of the genes associated with the biological
function j. P is determined by cutting the classification
tree. Cutting the classification tree provides a partition and
allows to calculate the sum of the intra-cluster inertias
for the partition in question. The relative loss of inertia is
calculated between the partition in L clusters and the par-
Z;jll inertia(l)
Zlel inertia(l)’
cutting the classification tree to obtain the partition with
the higher relative loss of inertia.

Technical note 2: in the particular case where all genes
associated with j, are coexpressed, j is then considered
as a coexpressed biological function. We add a step 0.
consisting in filtering biological functions: it allows to
define whether a biological function j can be considered
as coexpressed. For that matter, the coexpression of the
subset of genes associated with j is tested by calculat-
ing the p-value of the coexpression indicator according to
the procedure presented in the following section. If this
p-value is lower than a chosen threshold (e.g. 10%), the
function in question is considered as a coexpressed func-
tion and will not be split up in Tioexp, but conserved as
itis.

Note: in a totally different context, with the aim of
predicting gene functional classes, Li et al. [11] pro-
posed a fuzzy near-cluster algorithm base on the idea

tition in L + 1 clusters as P is obtained by

of detecting homogeneous co-expressed gene subgroups in
heterogeneous functional class which is close to ours. This
detection allows them to have a better prediction of gene
functional classes.

Obtaining gene clusters

To obtain gene clusters, a clustering algorithm, such as
K-means or hierarchical ascending classification, is then
applied to the distance matrix. We expect, from this pro-
cedure, to obtain clusters of coexpressed and biologically
related genes.

Evaluation of gene clusters

For a cluster to be a good candidate for interpreta-
tion, it has to gather coexpressed and biologically related
genes. Classical evaluation procedures focus on what
can be called the biological homogeneity of a cluster
and its characterisation by biological functions. How-
ever, in our clustering procedure, coexpression is nec-
essarily competing with biological homogeneity, as both
types of information are actively combined. Therefore,
we propose an evaluation procedure of gene clusters
based on two indicators: a coexpression and a biolog-
ical homogeneity indicator associated with hypothesis
testing.

Coexpression indicator

Coexpression is defined as a positive correlation between
two genes. Indeed, if two genes are positively correlated,
they are over- and under-expressed in the same experi-
mental conditions. We want to find a coexpression indica-
tor (CI) that synthesizes correlations within a cluster. We
consider an empirical, but convenient, indicator which is
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the average of correlations between the genes of the same
cluster Kj. This indicator is calculated as follows:

1
CI(K) = Gramyeara®y—0 Dklkek;
2

1/ Gik—Gx G =Gy
x (Zk/\k/ekz,k’>k T 2i=1 ( S ) ( S
(3)

where [ is the number of samples, Gjx and G are respec-
tively the expression for the sample i of the genes k and &/,
G and Gy are respectively the mean of the I expression
values of the genes k and &, S¢ and Sy are respectively the
standard deviation of the I expression values of the genes
k and k'.

The coexpression indicator indeed offers a measure of
the global situation of coexpression of gene clusters. It
ranges from —% to 1 (See Appendix 1). If all genes are
perfectly coexpressed, the indicator equals 1. On the con-
trary, let us considered a cluster whose genes are not
coexpressed, to such an extent that two sub-clusters are
distinguished: within each sub-cluster, genes are positively
correlated, and between sub-clusters, they are negatively
correlated. In this case, the indicator is close to 0 and
might be less than 0.

Biological homogeneity indicator

We aim at defining a biological homogeneity indicator
based on the similarity of gene functional profiles. Clas-
sically, the biological homogeneity of a gene cluster is
appraised by the number and the nature of enriched
biological functions which are associated with it. How-
ever, the characterisation of a cluster by enrichment tests
does not guarantee the similarity of functional profiles
as enrichment tests are conducted separately for each
biological function. Datta & Datta [12] proposed a mul-
tidimensional biological homogeneity indicator with the
objective to evaluate the whole clustering procedure, not
the clusters themselves. We adapt this idea to measure the
biological homogeneity of gene clusters. We consider as
the biological homogeneity indicator (BHI) a coefficient
derived from Cramér’s V coefficient [13] which offers a
measure of the degree of similarity of functional profiles
of genes from Kj. This indicator is calculated as:

Iy.Tj 2
=T
] -
ZkEKI Zj:l T T
T,
BHI(K) =1 — 4
ol T (card(Kj) — 1) @

where Tj; equals 1 if the gene k is associated with the
biological function j, 0 else wise, T, is the row margin
associated with the gene k.
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The biological homogeneity indicator varies between 0
and 1 (See Appendix 2). Therefore, if all genes from a
cluster have perfectly similar functional profiles, the bio-
logical homogeneity indicator equals 1. On the contrary, if
none of the genes have similar functional profiles to such
an extent that none of the biological functions is associ-
ated with two of the genes from Kj, then the biological
homogeneity indicator equals 0.

Although this indicator has its limits, as biological
homogeneity should principally rely on biological inter-
pretation, nevertheless, it happens to be useful to auto-
matically be able to assess the biological interest of gene
clusters.

Hypothesis testing procedure

We complement the indicators with a hypothesis test-
ing procedure, which is all the more legitimate as both
indicators strongly depend on the size of the cluster:

e coexpression indicator: in its calculation (3) a division
by w is performed, CI’s value
mechanically decreases with the size of clusters

® biological homogeneity indicator: a division by
card(K;) — 1 is performed in the second term of its
calculation (4), and as this second term varies
between 0 and 1, BHI's value mechanically increases

with the size of the cluster

The objective is to evaluate to what extent a methodol-
ogy provides clusters whose coexpression and biological
homogeneity are higher than in a situation of random
clustering. Consequently, random clustering corresponds
to the null hypothesis of the test, and the values of the
indicators of random clusters are taken as a reference sit-
uation. In practice, to associate a p-value to the cluster
K; for one indicator, clusters of the same size are con-
stituted by simply drawing genes without replacement.
The indicator is then calculated for each cluster and a
distribution of the values of the indicator under the null
hypothesis is thus obtained. As usual, the observed value,
corresponding to the value of the indicator for the cluster
to be tested, is positioned in the corresponding distri-
bution under the null hypothesis. Ultimately, the p-value
is estimated by the proportion of randomly constituted
clusters whose indicator value is superior to the observed
value.

Note 1: the interest of the procedure resides in the way
distributions under the null hypothesis are obtained. As
the calculation of the indicators remains based on real
data, the distributions under the null hypothesis respect
the distributions of the data.

Note 2: obviously clusters composed of one single gene are
not tested.
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Results

As we propose a new unsupervised clustering algorithm
associated with an automatic evaluation of the clusters,
we validate the whole methodology on simulated, and real
data sets, by comparing it with two of the most classi-
cally used gene clustering strategies. On the one hand we
compare it with clusters stemming from a Heatmap of the
expression data. On the other hand, we choose to gen-
erate a coexpression network from the expression data
using Weighted Gene Coexpression Network (WGCNA)
[2]. The coexpression network allows to calculate a dis-
similarity matrix between genes based on the topological
overlap of the nodes of the network. Finally a hierarchi-
cal clustering algorithm is computed on the dissimilarity
matrix and provides gene clusters.

Simulation study

Simulated data sets

In this section, we explain how to simulate expression and
GO data sets.

To simulate expression data, we use the same procedure
as in [14]. An expression data matrix Ggj,, constituted of
K genes and I samples, is simulated from random drawing
in a multivariate Gaussian distribution with a certain cor-
relation structure so that we have underlying clusters of
coexpressed genes. Since this way of simulating numerical
data is quite classical, we rather insist on the simula-
tion of GO annotation data which is not common in the
literature.

To simulate GO annotation data we fit the biological
principle previously exposed: GO annotations are consti-
tuted by information that can be related to the experiment
in the study and information that is not. In other words,
one part of the simulated GO annotations must have a
structure which is similar to the structure of the expres-
sion data, and the other must have a random structure.
Thus, a simulated GO matrix Ty, is obtained by juxta-
posing two types of matrices:

e T¢ :its gene functional profiles emulate gene
expression profiles, thus when two genes have similar
expression profiles in Gg;y,, they have similar
functional profiles in Ty,

e TV :its genes functional profiles are not related to
gene expression profiles

In practice, to obtain T, , first we build a gene classifica-
tion tree based on correlations between their expression
profiles only. Then we consider each node j of the classifi-
cation tree as a biological function. If the gene & is associ-
ated with the node j of the classification tree, Tfim (k,j) =
1, 0 else wise. As a result, genes that have similar expres-
sion profiles mechanically share close functional profiles.

oy . . e
To obtain T}, , we juxtapose r times the matrix T, and
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independently permute rows within each column, where r
is an integer representing the intensity of randomness of
Tsim: concretely, there are r times more random biological
functions than structured biological functions in Tj;y,.
This way of generating the similar matrix of T, is
chosen as it mimics the hierarchical structure of GO infor-
mation. This way of generating the random matrix T},
allows to conserve the margins of biological functions,
what is important as these margins represent the number
of genes that are associated with the functions and may be
interpreted as a degree of specificity of the functions.

Results

In practice, we apply the three methods to simulated data
sets. We consider two sizes of simulated expression data.
A first type composed of 10 individuals and 300 genes
for which we obtain a partition in 20 clusters for each
method. A second type composed of 25 individuals and
1000 genes for which we obtain a partition in 100 clusters
for each method. With both types of simulated expres-
sion data sets, we associate simulated GO annotations
whose intensity of randomness ranges from 1 to 3. For
each configuration 100 data sets are generated.

Whatever the clustering method, we associate with each
cluster, two p-values corresponding each to the coexpres-
sion indicator and the biological homogeneity indicator.
For a given partition, we measure the proportion of clus-
ters which are:

e significantly coexpressed: p-value associated with the
ClI lower than a chosen threshold

e significantly biologically homogeneous: p-value
associated with the BHI lower than a chosen
threshold

¢ both significantly coexpressed and biologically
homogeneous: both p-values associated with the CI
and the BHI lower than a chosen threshold

Results are gathered in Table 1. On average, all three
methods provide partitions with a high proportion of
significantly coexpressed clusters. This proportion does
not depend on the intensity of randomness for Heatmap
and WGCNA. However, for our clustering algorithm, we
observe a slight decrease in the proportion of significantly
coexpressed clusters when the intensity of randomness
increases. This is expected as coexpression is compet-
ing even more with biological homogeneity when the
intensity of randomness is high.

On average, partitions stemming from Heatmaps have
low proportions of clusters which are significantly biolog-
ically homogeneous. This proportion severely decreases
when the intensity of randomness increases. Taking
into account a network structure behind gene expres-
sions is beneficial since it provides a greater proportion



Verbanck et al. BMC Bioinformatics 2013, 14:42 Page 7 of 11
http://www.biomedcentral.com/1471-2105/14/42
Table 1 Results of the simulation study
Coexpression indicator Biological homogeneity indicator Both
I K r Heatmap WGCNA Integration Heatmap WGCNA Integration Heatmap WGCNA Integration
10 300 1 9215 94.90 98.65 65.50 81.5 89.5 64.60 78.95 88.80
10 300 2 92.31 94.80 96.55 5040 60.15 67.25 49.75 58.30 66.25
10 300 3 92.00 9532 94.52 36.77 4581 54.03 36.61 45.00 53.39
25 1000 1 88.70 99.12 9133 767 28.00 4544 7.35 27.09 44.72
25 1000 90.25 99.12 90.55 3.79 11.89 29.62 3.54 11.17 28.95
25 1000 3 89.00 98.99 85.67 1.94 3.55 18.66 1.80 3.34 18.06

Results of the simulation study for the three clustering algorithms: Heatmap classification (Heatmap), clustering based on coexpression network (WGCNA) and our
clustering algorithm (Integration). The simulated data sets vary according to the number of samples (/), the number of genes (K) and the intensity of randomness (r).
We give the average proportion of clusters (%), among a given partition, which are significantly coexpressed (Cl), biologically homogeneous (BHI) or both coexpressed
and biologically homogeneous (Both). Let us take the example of simulated expression data sets with 10 individuals and 300 variables, associated with simulated GO
annotations with an intensity of randomness of 1. On average the Heatmaps of these data sets provide partitions with 92.15% of significantly coexpressed clusters.

of significantly biologically homogeneous clusters than
Heatmap. However, the proportion of biologically homo-
geneous clusters provided by WGCNA literally drops
when the intensity of randomness is very high. Our clus-
tering algorithm provides a reasonably high proportion of
biologically homogeneous clusters even when the inten-
sity of randomness equals 3.

If we focus on the proportion of clusters which are
both significantly coexpressed and biologically homoge-
neous, our clustering algorithm outperforms the other
two methods.

Analysis of the chicken data set

The methodology is applied to an example of transcrip-
tomic data set which is related to a published data set
[15]. The aim, through this experiment, is to under-
stand the genetic mechanisms implemented in reply to
fasting in chickens. Therefore, the expression of about
12 000 hepatic genes was collected in 27 chickens sub-
mitted to 4 nutritional statuses: 16-hour fasting “F16’,
16-hour fasting followed by a 5-hour renutrition phase
“F16R5% 16-hour fasting followed by a 16-hour renu-
trition phase “F16R16” and finally, a continuously fed
status “F” We choose in our example to perform a selec-
tion of genes whose expression varies according to the
experimental factor, which led us to retain about 3600
genes thanks to the Factor Analysis for Multiple Testing
method [16].

In addition, similarly to Busold et al. [5], we use GO
information where the hierarchical structure amongst GO
terms is taken into account: when a gene is associated with
a term, it is automatically associated with its parents.

As in the simulation study, we perform three gene clus-
terings corresponding to a Heatmap, a clustering based
on a coexpression network (WGCNA) and our own
clustering procedure. We choose to set the number of

clusters obtained from each procedure to 200. For a given
partition, we associate with each cluster two p-values
for the coexpression indicator and the biological homo-
geneity indicator which are visualised in a joint graph.
In Figure 3, a point represents a cluster whose value on
the x-axis is equal to the coexpression indicator p-value
and whose value on the y-axis is equal to the biologi-
cal homogeneity indicator p-value. In addition, Table 2
provides the proportion of clusters, amongst each one of
the three partitions, which are significantly coexpressed
(CI), biologically homogeneous (BHI) or both coexpressed
and biologically homogeneous (Both), as in the simulation
study.

Firstly, the partition provided by the Heatmap is consti-
tuted of a large majority of clusters which are significantly
coexpressed (91.50%). However a small proportion of
the clusters are significantly biologically homogeneous to
such an extent that p-values associated with the BHI seem
to be distributed according to a uniform distribution. A
QQ-plot (Figure 4) actually confirms that the p-value
distribution associated with the biological homogeneity
indicator can be considered as uniform, which corre-
sponds to a distribution followed by p-values under the
null hypothesis. Therefore, Heatmap clustering may come
down to cluster genes independently from any biological
homogeneity.

Secondly, compared to Heatmap, considering a coex-
pression network considerably improves the results.
Thus WGCNA provides a much higher proportion of
biologically homogeneous clusters (68%). However, the
proportion of coexpressed clusters decreases. Ultimately
WGCNA provides a reasonable proportion of good can-
didates for interpretation (46%).

Thirdly, with our own clustering algorithm, the propor-
tion of significantly coexpressed clusters decreases com-
pared with the other two methods. This is expected since
coexpression is competing with biological homogeneity.
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Figure 3 Representation of p-values associated with the coexpression indicator and the biological homogeneity indicator, for the three
clustering procedures. Results for the three clustering procedures applied to the chicken expression data are represented: Heatmap (Heatmap),
clustering based on coexpression network (WGCNA) and our clustering algorithm (Integration). Whatever the clustering method, to each cluster, is
associated a p-value corresponding to the coexpression indicator and a p-value corresponding to the biological homogeneity indicator. P-values
are represented in a joint representation, where each point represent a cluster, and p-values associated with the coexpression indicator are
represented on the x-axis, whereas p-values associated with the biological homogeneity indicator are represented on the y-axis.

However, the proportion of significantly biologically
homogeneous clusters considerably increases (79.50%).
This results in a higher proportion of good candidates for
interpretation (53.50%).

Note: clusters made up of one single gene are automat-
ically considered as bad candidates. Therefore, as our
clustering strategy provided a proportion of these clusters
which is not negligible, the percentage of good candidates is
mechanically lower.

In conclusion, by integrating biological knowledge into
expression data, we manage to obtain a reasonable pro-
portion of clusters, which gather significantly coexpressed
and biologically related genes. These clusters are good
candidates and their interpretation may lead to reveal new
relationships amongst genes.

Clusters interpretation

Clusters obtained by integrating biological knowledge into
expression data, and that present interesting properties,
are then good candidates for interpretation. In order to

Table 2 Results of the case study

Cl BHI Both

Heatmap 91.50 13.50 13.50
WGCNA 63.00 68.00 46.00
Integration 53.50 79.50 53.50

Results for the chicken data set for the three clustering algorithms: Heatmap
classification (Heatmap), clustering based on coexpression network (WGCNA)
and our clustering algorithm (Integration). We give the percentage of clusters
(%), amongst a given partition, which are significantly coexpressed (Cl),
biologically homogeneous (BHI) or both coexpressed and biologically
homogeneous (Both).

associate representative GO annotations with clusters,
we choose to apply a classical enrichment testing proce-
dure which consists in fisher’s exact tests associated with
a correction for multiple testing (Benjamini-Hochberg
with a 5% cut-off). The overall impression about the
results of the enrichment procedure is the coherence of
GO annotations associated with clusters. The enriched
GO annotations associated with one cluster are close

0.6 0.8 1.0
1 L

Observed

0.4

0.0

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Expected

Figure 4 QQ-plot of the p-values associated with the biological
homogeneity indicator in the Heatmap clustering. We focus here
on the p-values associated with the biological homogeneity indicator
of clusters obtained from the Heatmap clustering of chicken
expression data. The QQ-plot intersects probabilities that are
expected within a uniform distribution (x-axis), with p-values from the
biological homogeneity indicator (y-axis).
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in the GO hierarchy. This directly conveys the biologi-
cal homogeneity of gene clusters which is guaranteed by
our procedure.

In comparison with the paper by Désert et al. [15],
the general and well-known mechanisms implemented in
reply to fasting are also highlighted through the enriched
annotations of the clusters. In addition, our procedure
brings to light new tracks. For instance, a few clusters are
associated with Phospholipid and Sphingolipids mecha-
nisms, and whose genes are expressed in fasting chick-
ens, are not described in Désert et al.. These clusters
gather several enzymes that are implicated in the hydrol-
ysis of these lipids which results in freeing fatty acids.
Then, we think that in chickens, after a certain period
of fasting, fatty acids may be consumed from the plasma
membrane.

Discussion and conclusion

We propose a new unsupervised gene clustering algo-
rithm which relies on a new distance between genes by
integrating biological knowledge into expression data. To
do so, we propose a judicious coding that relies on the
concept of coexpressed biological function. As a biologi-
cal function can be assimilated to a set of genes that are
involved in the function, we can assimilate a coexpressed
biological function to a restriction of the set to coex-
pressed genes. Naturally, this distance is used to cluster
genes.

The properties of gene clusters are then assessed by
means of two indicators that we also propose, and which
allow to quantify coexpression and biological homogene-
ity. On the one hand, coexpression is evaluated by an
indicator based on correlations between genes. This indi-
cator is purely empirical, but very convenient and easy
to interpret. On the other hand, biological homogene-
ity is measured by an indicator based on Cramér’s V
coeflicient calculated from a matrix which encodes GO
annotations. Although this indicator has its limits as bio-
logical homogeneity should principally rely on biological
interpretation, it happens to be useful to automatically
have an idea of the biological interest of gene clusters.
In addition, we propose hypothesis testing to enhance
these indicators with p-values, in order to verify whether
clusters are significantly coexpressed and biologically
homogeneous.

To test our clustering algorithm as well as our evalu-
ation procedure, we apply it to both simulated and real
data sets. In addition, to position our method we compare
it with two gene clustering strategies which are classi-
cally used by biologists: Heatmaps and clustering based on
coexpression network.

Concretely our methodology shows some limitations
as it provides a relatively important proportion of
clusters constituted with one single gene. However,
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it outperforms the other methods: actively integrating
biological knowledge into expression data provides par-
titions with the highest proportion of good candidates.
These clusters indeed appears to be good candidates for
interpretation as can testify the ones related to Phos-
pholipid and Sphingolipids mechanisms. However an
ultimate external biological validation remains to be done,
what consists in conducting more advanced biological
interpretations.

Appendix

Appendix 1: Range of variation of the coexpression
indicator

The coexpression indicator consists in calculating the
average of genes correlations within a cluster Kj. Let
us recall the calculation of the coexpression indica-
tor(Equation (3)):

1
CI(K)) = card(Ky) (card(K)—1) Z
2

klkekK;

1
1 Gik — Gi\ (G — Gr
* Z 1 Z ( Sk )( Sk )

KK ek k'>k = i=1

CI's minimum varies according to card(Kj). In order
to obtain a maximum of negative correlations within a
Kj, we consider two sub-groups such as intra-group cor-
relation equals 1 and inter-group correlation equals -1.
All genes of K; are equally distributed between both
sub-groups.

If card(K) is even
In this case, each sub-group is formed by genes.

The maximum number of negative correlations is equal to
card(Kj) card(Ky)
2 XT3

card(Kj)
2

[card(Kl)(card(K/)fl) card(K;) 2] card(K;)\2
CI(K[) _ 2 - ( 2 ) _( 2 )

card(Ky) (card(K))—1)
2

1

I = _card(l(l) -1

If card(K;) is odd

In this situation, one of the sub-group is constituted

by card(Kp)—1 card(Kp)+1
2

. The maxi-
card(Kp)—1
2

genes, the other by

mum number of negative correlations equals
card(Kp)+1
5=,

X
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[card(l(l)(card(l(l)fl) _ card(Kp)—1
2 p) X

card(Kp)+1 card(Kj)—1 card(Kp)+1
R R X 2

CI(K) =

1

I(K) = ——
I card(Kj)

CI is maximum and equals 1 when all genes Kj are
perfectly positively correlated.

Appendix 2: Range of variation of the biological
homogeneity indicator

Let us recall the calculation of the biological homogeneity
indicator(Equation (4)):

2
T T,
T
T T,
T,

J
ZkeKl Zj:l

BHIK) =1 T (card(K}) — 1)
where Ty; equals 1 if the gene k is associated with the
biological function j, 0 else wise, Ty, is the row margins
associated with the gene k.

BHI is minimum and equals 0 when none of the genes
of K; have similar functional signature to such an extend
that none of the biological functions is associated with two
genes of K :

T Ti. T
7 KT
Dokek; | =1 T
BHI(K) =1 —
&) T (card(K}) — 1)
Vil =1, T; =

1
VilTxi =0,T; =0

2
(1_%) Tk
Zke](, Tk, Ty +(T. - Tk,)f

T.

T.(Cérd(Kz) -1

2 2
T, T
ke (T ( - Tk> + Tk — Tk>

BHI(K) = 1—

T (card(K;) — 1)

T2-2T Ty +T2+T. Ty — T
ZkGK[ T.

T (card(K;) — 1)
ZkeKl T. - ZkeI([ Ty,

BHI(K)) =1 —
! \

BHI(K)) = 1 —
: \

BHIK) =1 =\ = rd &) — 1)
BHIUG) =1 - | SrUOT. T

Ky =1=\/F (card(Kp) — 1)
BHI(K}) =0

card(Kp) (card(Kp—1)
2

BHI is maximum and equal to 1 when all genes of K; have
perfectly similar functional profiles:

T 2
kTj
Tk/‘%)

Ty T
T.

J
ZkEKl Zj:l

BHI(K) =1 — T (card(K;) — 1)

VilTyg =1, Tj = card(Kp) & Ty = ;55
VjlT =0,T;=0

Therefore :
2
T.
J
Zke[(; ijl %mmu@
T.
BHI(K}) =1 —
(K1) T (card(K}) — 1)
BHI(K) =1
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