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Abstract

Background: Crystalline silica is considered as one of the most common and serious occupational hazards to
workers’ health. Although its association with lung cancer has been studied for many decades, the conclusion
remains somewhat controversial. Our objectives are to review and summarize the epidemiological evidence on the
relationship between occupational silica exposure and risk of lung cancer and to provide an update on this major
occupational health concern.

Methods: Eligible studies up to 29 April 2016 were identified. Pooled effect estimates were calculated according to
the reported outcome and the study design. Cohort, case control and proportional mortality studies were examined
separately. Studies reporting results according to silicotic status were grouped together and analyzed. Due to the
significant amount of heterogeneity expected, random effects models were implemented. Subgroup and meta-
regression analyses (both univariate and multivariate) were performed in an attempt to explain heterogeneity.
Studies which had adequate exposure characterization were selected to find out whether there was an exposure-
response relationship between silica and lung cancer.

Results: The risk of lung cancer was found to be elevated in both silicotics and non-silicotics. The pooled standardized
mortality ratio (SMR) was 2.32 with a 95 % confidence interval (95 % CI) of 1.91–2.81 and 1.78 (95 % CI 1.07–2.96)
respectively. The pooled standardized incidence ratio (SIR) was 2.49 (95 % CI 1.87–3.33) and 1.18 (95 % CI 0.86–1.62)
respectively. Subgroup analysis showed that workers in the mining industry had the highest risk of lung cancer with
a pooled SMR of 1.48 (95 % CI 1.18–1.86) and the weakest association was seen in potteries with a pooled SMR of 1.14
(95 % CI 1.05–1.23). A positive exposure-response relation was found between cumulative silica exposure and risk of
lung cancer.

Conclusion: The results of our meta-analysis supported the carcinogenic role of silica on the lungs, which was more
pronounced at higher levels of exposure, in the presence of silicosis and in the mining industry. Further research is
needed to evaluate whether non-silicotics are truly at risk, whether a predisposing factor would explain this potential
risk, and to determine the mechanism of carcinogenicity of silica in humans.
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Background
Crystalline silica is one of the commonest minerals on
earth and a major ingredient in sand, granite, soil and
glass. Traditionally, silica exposure occurs in workplaces
such as coal and metal mining, metallurgy, construction
industry and manufacturing of building materials, glass
and clay. Recent reports indicated that more than 33
million workers in China [1] and India [2], more than
3.2 million workers in Europe [3] and about 1.7 million
workers in the United States [4] are exposed to crystal-
line silica dust. Currently, environmental exposure to
ambient silica dust caught more attention, not only during
agricultural activities, but also during natural sandstorms
and volcanic explosions [5, 6]. Silica exposure causes
many adverse health effects including silicosis, cardiovas-
cular diseases, tuberculosis, malignancies, autoimmune
diseases and renal disorders and increased mortality, mak-
ing it a high-priority public health concern [7].
The possible carcinogenicity of silica became a subject

of intense debate in the scientific community in the
1980s, especially after the publication of epidemiological
studies by Westerholm in 1980 [8] and Finkelstein et al.
in 1982 [9], a literature review by Goldsmith et al. in 1982
[10] and presentation of new information at a 1984 sym-
posium in North Carolina [11]. This triggered the publica-
tion of further studies on cancer mortality and morbidity
in silica-exposed occupational groups. In 1997, based on a
review of these studies, the International Agency for
Research on Cancer (IARC) classified crystalline silica in
the form of quartz or cristobalite as carcinogenic to
humans (Group 1) [12]. However, the IARC working
group also stated that the carcinogenicity was not found
in all industrial circumstances, and their conclusion
remained somewhat controversial.
The latest IARC report in 2012 reported seven meta-

analyses conducted on this topic [13]. We noted that the
issue of between-study heterogeneity was either not ad-
dressed at all or not dealt with in sufficient detail in
these meta-analyses. Also, since the publication of the
last meta-analysis on the relation between occupational
silica exposure and lung cancer in 2009, more than 10
potentially relevant epidemiological studies have been
conducted.
In our paper, we have combined epidemiological data

from relevant studies published till date to evaluate the
risk of lung cancer due to silica dust exposure and we
have attempted to explain heterogeneity through sub-
group and meta-regression analyses. We have also per-
formed an exposure-response analysis by identifying
studies which had well-characterized exposure data.

Methods
The meta-analysis was conceived and performed in
accordance with the Preferred Reporting Items for

Systematic Reviews and Meta-Analyses (PRISMA)
guidelines [14].

Search strategy
We searched MEDLINE and EMBASE databases from
January 1982 through 29 April 2016 using the search
terms “lung cancer”, “silica”, “silicosis”, “risk”, “inci-
dence” and “mortality” with variation in term construct
to identify epidemiological studies published in the lit-
erature which evaluated the relationship between silica
exposure and lung cancer in workers, irrespective of
their silicotic status (Additional file 1). Reference lists of
the identified articles were also screened for potentially
eligible studies.
The following inclusion criteria were used for the

analysis:

� The article had to have been published in English;
� The study had to have had a cohort or case-control

or proportional mortality study design;
� Lung cancer should have been reported as a

major outcome;
� The article had to have reported original results

along with confidence intervals in the form of
standardized mortality ratio (SMR) or standardized
incidence ratio (SIR) or odds ratio (OR) or
proportional mortality ratio (PMR) or mortality
odds ratio (MOR) or relative risk (RR) with their
corresponding 95 % confidence interval.

Reviews, autopsy studies, comments, editorials, studies
with insufficient quantitative data required for the ana-
lysis (no risk estimate, no confidence intervals) and
those overlapping with studies which were already con-
sidered, were excluded.
When a particular study was reported in several

papers, the most recently-published reference was used
unless the required data was reported in a previous
paper and not in the latest-published one.

Data extraction
For each study, the following data was extracted: geo-
graphical location, year of publication, industrial setting,
study design, total number of subjects, exposure assess-
ment (including level and duration of exposure to silica
dust), outcome examined, study period (including the
start date, end date and duration of follow-up), person-
years of follow-up, covariates adjusted for, potential
occupational carcinogens including radon, arsenic, as-
bestos, diesel, polycyclic aromatic hydrocarbons (PAH),
talc, cadmium and amphiboles, number of lung cancer
cases, total number of deaths and number of deaths due
to lung cancer, measure of association and effect esti-
mates with corresponding 95 % confidence interval (CI).
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Two authors worked independently for study selection
and data extraction. Any disagreement was resolved after
a team discussion. The list of included studies was made
in consensus.

Assessing study quality
We used the Newcastle-Ottawa Assessment Scale (NOS)
for assessing the methodological quality of observational
studies [15]. The scale consists of three main categories
including selection of study population, comparability of
subjects and ascertainment of exposure for case-control
studies or ascertainment of outcome for cohort and pro-
portional mortality studies. Scores of 0–3, 4–6 and 7–9
were assigned to low, moderate and high quality studies
respectively.

Statistical analysis
Studies were pooled together according to the outcome
examined which could be incidence or mortality, the
study design which could be cohort or case-control or
proportional mortality study design and the measure of
association. When a study reported results stratified by
race, gender, industrial setting and silicotic status, they
were treated as two separate reports for analysis. Studies
which gave risk estimates according to silicotic status
were grouped and analyzed separately. Statistical analysis
was performed on the natural logarithm (ln) of the risk
estimate so as to approximate its sampling distribution
to a normal one. The difference between the upper and
lower limits of the confidence intervals was transformed
to the log scale and the standard error was calculated by
dividing the transformed interval by 3.92 [16]. Random
effects model was used to calculate the pooled effect es-
timates since a high level of heterogeneity was expected.
Heterogeneity between studies was quantified by two
methods namely the chi-squared test (Q test) for hetero-
geneity, reported by its p value, and the variability due to
heterogeneity (I2 statistic), reported as a percentage in this
paper [17]. We performed subgroup and meta-regression
analyses to try to explain any observed between-study het-
erogeneity. In subgroup analysis, the studies were catego-
rized into subgroups based on the predefined covariates.
In meta-regression, we investigate the relationship be-
tween the covariates and the observed outcome [18]. The
proportion of variance explained (R2) was used to quantify
the amount of heterogeneity accounted for by each covari-
ate. It was calculated as the percentage of ratio of variance
explained to the total amount of variance. Both univariate
and multivariate meta-regression models were used to try
to lower the variability due to heterogeneity (I2) to the
minimum level and to bring the p value of Q close to 1.
Heterogeneity should be completely absent (I2 is 0 and
p value of Q is 1) for an ideal comparison [19]. Differ-
ences in exposure assessment, study design and quality,

data collection processes, outcome assessment, selec-
tion of subjects and definition of confounding factors
often account for significant between-study heterogen-
eity [16]. Based on this statement, the covariates con-
sidered were year of publication, presence of at least
one confounding factor, adjustment for smoking, indus-
trial setting, geographical location, NOS score, cumula-
tive silica dust exposure level, duration of exposure,
concentration of silica dust, person-years of follow-up,
number of subjects and total number of deaths. For
sensitivity analyses, we assessed the influence of indi-
vidual studies on the pooled estimate by omitting each
study in turn (leave-one-out analysis). Publication bias
was assessed graphically by means of funnel plots and
quantitatively by Egger’s linear regression method [20].
For the exposure-response analyses, we used the aver-
age cumulative silica dust exposure as covariate and the
risk estimate of the corresponding study as the effect.
No imputation was made in relating the effect estimate
to the exposure level. Statistical analysis was done using
R software version 3.1.2 (2014-10-31) [21] with the
‘metafor’ package version 1.9-5 [22].
The levels of significance for all statistical tests were

assumed to be equal to or less than 0.05, except in the
case of heterogeneity testing whereby the level of signifi-
cance was assumed to be equal to or less than 0.10 [17].

Results
Characteristics of studies and bias assessment
The PRISMA flowchart for the selection of studies is
shown in Fig. 1. The initial search criteria yielded 227 ci-
tations from the databases. 58 additional records were
further identified from references of related articles.
After removing duplicates, we were left with 273 re-
cords. Preliminary screening of abstracts eliminated 158
studies. Of the remaining 115 articles, 30 were excluded
for the following reasons: 6 articles were found to be ei-
ther reviews, editorials, comments or autopsy studies, 11
papers had no risk estimate data, 2 articles did not give
the confidence intervals of the effect estimate, 2 articles
did not report lung cancer as outcome and 9 articles had
overlapping populations with selected studies. After exclu-
sion of these 30 studies, 85 articles were left and included
in the final main quantitative synthesis [9, 10, 23–104].
The study of Puntoni et al. [105], which was excluded
from the main synthesis due to overlap with the study
cohort of Merlo et al. [66], was included in the list of sili-
cotic studies since it contained the risk estimate based on
silicotic status whereas the study by Merlo et al. had the
risk estimate of the whole cohort and not according to
silicotic status.
After categorization of the studies by outcome

assessed, study type and measure of association there
were 63 cohort studies reporting mortality due to lung

Poinen-Rughooputh et al. BMC Public Health  (2016) 16:1137 Page 3 of 17



cancer in the form of SMR as measure of association, 19
cohort studies reporting incidence of lung cancer in the
form of SIR, 1 cohort study reporting incidence in the
form of RR, 3 case-control studies reporting mortality in
the form of MOR, 9 case-control studies reporting inci-
dence in the form of OR, 5 case-control studies report-
ing mortality in the form of OR and 2 proportional
mortality studies or PMR. The characteristics of all in-
cluded studies are shown in Additional file 2.
Most studies comprised males only and a mere few in-

cluded both males and a small proportion of females
(around 10 %). Only exceptions were the studies of
Zhang et al. [104] and Smailyte et al. [84] with 26 and
31 % women respectively. Nine papers reported 2 or
more results stratified by industrial setting, sex, silicotic
status and racial background. Forty-one studies were
conducted in European countries, 18 in the United
States, 21 in Asian countries, 9 in Canada, 3 in Australia
and 1 in South Africa. The industries of concern were
mining, foundry, pottery and ceramic, refractory brick and
diatomaceous earth processing, granite which included
sand and quarry, cement production and construction.
The total number of studies available for analysis accord-
ing to silicotic status was 34. The characteristics of
silicotic and non-silicotic studies are described in Table 1.

The results of the study quality assessment are pre-
sented in Additional file 3. Ten articles were deemed to
be of low quality, 49 articles were found to be of
medium quality and 26 articles were shown to be of high
quality. The median score for all 85 articles was 5.3 out
of a maximum of 9.
As demonstrated graphically by the funnel plots in

Additional files 4, 5 and 6, there was evidence of publi-
cation bias for studies reporting mortality in the form of
SMR (p = 0.024 for Egger’s regression test) but no evi-
dence of publication bias for studies reporting incidence
in the form of SIR (p = 0.238) and OR (p = 0.457).

Data analysis
Using the random effects model, the pooled estimate was
1.55 (95 % CI 1.38–1.75) for SMR studies, 1.68 (95 % CI
1.45–1.96) for SIR studies, 1.10 (95 % CI 0.89–1.36) for
PMR studies, 1.69 (95 % CI 1.26–2.26) for MOR studies,
and 1.34 (95 % CI 1.24–1.46) for case-control studies
reporting incidence as outcome and 1.82 (95 % CI
1.25–2.66) for case-control studies reporting mortality
as outcome. The risk estimate in each category was statis-
tically significant (p < 0.05) except in the category of PMR
studies (p = 0.38). The results of the SMR, SIR and OR
studies with incidence as outcome are illustrated in forest

Fig. 1 The PRISMA flowchart for the selection of studies
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Table 1 Characteristics of silicotic and non-silicotic studies

Author, Year Country Industry Covariates adjusted for Number of
subjects

Outcome
examined

Measure, silicotic
status

Effect Estimate
(95 % CI)

Observed lung
cancer deaths
or cases

Cohort studies

1 Amandus, 1995 [25] USA Mixed Age, sex, race, talc, asbestos 760 Mortality SMR, silicotic 2.30 (1.50–3.40)

2 Berry, 2003 [28] Australia Mixed Age, sex, calendar period, smoking 1467 Mortality SMR, silicotic 1.90 (1.50–2.30) 94

3 Carta, 2001 [31] Sardinia Mine & quarries Age, sex, calendar period 724 Mortality SMR, silicotic 1.37 (0.98–1.91) 34

4 Chan, 2000 [33] Hong Kong Mixed Age, sex, calendar period 1502 Mortality SMR, silicotic 1.94 (1.35–2.70) 33

5 Chen, 1992 [34] China Mixed Age, sex 70179 Mortality SMR, silicotic 1.22 (0.90–1.60)

6 Chen, 1990 [35] China Iron mine Age, sex 1226 Mortality SMR, silicotic 5.30 (2.90–8.80) 14

Mortality SMR, non-silicotic 2.90 (1.60–4.70) 15

7 Chen, 2006 [37] China Mine Age, sex 932 Mortality SMR, silicotic 4.13 (3.15–5.29)

Mortality SMR, non-silicotic 1.96 (1.50–2.73)

8 Chia, 1991 [39] China granite Age, sex, calendar period 159 Incidence SIR, silicotic 2.01 (0.92–3.81) 9

9 Chiyotani, 1990 [40] Japan Mixed Age, sex 1941 Mortality SMR, silicotic 6.03 (5.29–6.77) 44

10 Finkelstein, 1982 [10] Canada mine Age, sex, calendar period 1190 Mortality SMR, silicotic 2.30 (1.80–3.00) 62

11 Finkelstein, 1995 [43] Canada Mixed Age, sex 328 Incidence SIR, silicotic 2.55 (1.43–8.28) 15

Incidence SIR, non-silicotic 0.90 (0.51–1.47) 16

12 Goldsmith, 1995 [49] USA Mixed Age, sex, calendar period 590 Mortality SMR, silicotic 1.90 (1.35–2.60) 39

13 Infante- Rivard, 1989 [54] Canada Mixed Age, sex, calendar period 1072 Mortality SMR, silicotic 3.47 (3.11–3.90) 83

14 Marinaccio, 2006 [63] Italy Mixed Age, sex, calendar period 14929 Mortality SMR, silicotic 1.10 (1.03–1.18) 798

15 Mehnert, 1990 [64] Germany quarry age, sex 2475 Mortality SMR, silicotic 1.83 (0.84–3.48) 9

Mortality SMR, non-silicotic 0.91 (0.54–1.44) 18

16 Merlo, 1995 [67] Italy Mixed Age, sex, calendar period 450 Mortality SMR, silicotic 3.50 (2.44–4.87) 35

17 Ng, 1990 [71] Hong Kong Mixed Age, sex, PAH, asbestos 1419 Mortality SMR, silicotic 2.03 (1.35–2.93) 28

18 Partanen, 1994 [73] Finland Mixed Age, sex, calendar period 811 Incidence SIR, silicotic 2.89 (2.35–3.48) 190

19 Puntoni, 1988 [105] Italy Refractory brick Age, sex 231 Mortality SMR, silicotic 1.67 (0.61–3.64) 6

Mortality SMR, non-silicotic 2.08 (0.67–4.84) 5

20 Scarselli, 2011 [81] Italy Mixed Age, sex, calendar period 2034 Mortality SMR, silicotic 1.39 (1.17–1.64) 139

21 Sherson, 1991 [83] Denmark Foundry Age, sex, calendar period 6144 Incidence SIR, silicotic 1.71 (0.85–3.06) 11

Incidence SIR, non-silicotic 1.30 (1.07–1.47) 150

22 Tornling, 1991 [88] Sweden Ceramic Age, sex 280 Mortality SMR, silicotic 2.36 (1.07–4.48) 9

23 Tse, 2014 [90] Hong Kong Mixed Age, sex, calendar period 3202 Mortality SMR, silicotic 1.86 (1.59–2.17) 157

24 Wang, 1996 [96] China Metallurgy Age, sex, calendar period 4372 Mortality SMR, silicotic 2.37 (1.96–2.86) 104
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Table 1 Characteristics of silicotic and non-silicotic studies (Continued)

25 Westerholm, 1980 [9] Sweden Mixed Age, sex, calendar period 3610 Mortality SMR, silicotic 3.80 (2.30–5.80)

26 Westerholm, 1986 [99] Sweden Mixed Age, sex, calendar period 712 Mortality SMR, silicotic 5.38 (2.20–11.10) 7

27 Yu, 2008 [102] Hong Kong mixed Age, calendar period, smoking 2798 Mortality SMR, silicotic 1.56 (0.98–2.63) 86

28 Zambon, 1987 [103] Italy Mixed Age, sex, calendar period 1313 Mortality SMR, silicotic 2.39 (1.86–3.02) 70

Case-control studies

1 Forastiere, 1989 [45] Italy Mixed Age, sex, calendar period 595 Mortality MOR, silicotic 2.50 (1.20–4.60) 10

2 Fu, 1994 [46] China Tin mine Age, sex, smoking 267 Incidence OR, silicotic 2.03 (1.25–3.29)

3 Lagorio, 1990 [61] Italy Pottery Age, calendar period, smoking 391 Mortality OR, silicotic 3.90 (1.80–8.30)

Mortality OR, non-silicotic 1.40 (0.70–2.80)

4 Neuberger, 1988 [70] Austria Mixed Age, sex, calendar period, area, smoking 2212 Mortality MOR, silicotic 1.41 (1.21–1.64) 182

5 Schuller, 1986 [82] Switzerland Mixed Calendar period 2399 Mortality MOR, silicotic 2.23 (1.90–2.60) 180

6 Tsuda, 2002 [91] Japan Mixed Age, sex, smoking 501 Mortality OR, silicotic 2.77 (1.60–4.77) 184

CI confidence interval, USA United States of America, PAH polycyclic aromatic hydrocarbons, SMR standardized mortality ratio, SIR standardized incidence ratio OR odds ratio, MOR mortality odds ratio
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plots in Figs. 2, 3 and 4 respectively. Significant between-
study heterogeneity was observed in SMR, MOR and SIR
studies with I2 of 96 %, 87 % and 75 % respectively. PMR
and OR studies with mortality as outcome showed lower
between-study heterogeneity (I2 62 % and 51 % respect-
ively), which was statistically insignificant (p value for Q
test >0.10 for both). No heterogeneity was observed in the
meta-analysis of OR studies with incidence as outcome.

Studies conducted in silicotic subjects yielded a signifi-
cantly higher pooled SMR of 2.32 (95 % CI 1.91–2.81) and
SIR of 2.49 (95 % CI 1.87–3.33) as compared to non-
silicotic studies which gave a resulting estimate of 1.78
(95 % CI 1.07–2.96) for SMR studies and 1.18 (95 % CI
0.86–1.62) for SIR studies. Between-study heterogen-
eity was statistically significant in silicotic and non-
silicotic studies with SMR as risk measure (I2 = 94 %

Fig. 2 Forest plot showing pooled standardized mortality ratio (SMR) of lung cancer due to silica dust. SMR, Standardized mortality ratio; RE,
Random effect; I2, Variability due to heterogeneity; Q, Chi-square test for heterogeneity; K, Number of studies
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with p < 0.0001 and I2 = 74 % with p = 0.013 respectively)
but they were found to be lower and statistically insignifi-
cant in silicotic and non-silicotic studies with SIR as meas-
ure of association (I2 = 25 % with p = 0.377 and I2 = 41 %
with p = 0.192) respectively.
Subgroup analyses were carried out individually for

SMR and SIR studies. We could not perform similar
subgroup analysis for the few remaining studies report-
ing other measures of association due to their limited
number. Since the level of between-study heterogeneity
was found to be 0 % in the group of OR studies report-
ing incidence as outcome, we did not perform any fur-
ther analysis to explore heterogeneity. Subgroup analysis
for SMR studies showed a positive association between
silica dust exposure and lung cancer in all subgroups
except in the subgroup of cement industries which had a
pooled risk estimate of 0.87 (95 % CI 0.42–1.82).

Heterogeneity became non-significant (p > 0.10) in the
subgroups of potteries (I2 = 0 % and p = 0.273), construc-
tion industries (I2 = 0 % and p-0.656) and in the sub-
group including studies done in Australia (I2 = 20 % and
p = 0.265). In all other subgroups, between-study hetero-
geneity remained significant. Out of 63 SMR studies,
only 2 adjusted for smoking [28, 102] and the effect
measure in this subgroup was 1.83 (95 % CI 1.51–2.22).
In the subgroup of studies without adjustment for smok-
ing, the pooled estimate was 1.55 (95 % CI 1.37–1.75).
Thirteen SMR studies having none of the other potential
occupational carcinogens mentioned in the Methods
Section yielded an estimate of 1.32 (95 % CI 1.14–1.54).
The positive association between silica and lung cancer
became weaker with increasing quality of the included
studies, from 2.56 (95 % CI 1.57–4.19) among SMR
studies with an NOS score of 1–3 to 1.24 (95 % CI

Fig. 3 Forest plot showing pooled standardized incidence ratio (SIR) of lung cancer due to silica dust. SIR, Standardized incidence ratio; RE,
Random effect; I2, Variability due to heterogeneity; Q, Chi-square test for heterogeneity; K, Number of studies

Fig. 4 Forest plot showing pooled odds ratio (OR) of lung cancer due to silica dust. OR, Odds ratio; RE, Random effect; I2, Variability due to
heterogeneity; Q, Chi-square test for heterogeneity; K, Number of studies
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1.01–1.52) in those with an NOS score of 7–9. A similar
trend was observed among SIR studies.
Subgroup analysis for SIR studies showed a positive re-

lation between occupational silica exposure and risk of
lung cancer in all subgroups, with statistically significant
risk estimates in all subgroups except that including
studies conducted in Canada (p = 0.494). Much of the
between-study heterogeneity could be explained by sub-
grouping the SIR studies and in most of the subgroups,
it became statistically insignificant (p > 0.1). None of the
SIR studies adjusted for smoking. Detailed main statis-
tical analysis, subgroup analyses for SMR and SIR stud-
ies and statistical analysis of silicotic and non-silicotic
studies are shown in Table 2.
Separate meta-regression analyses were performed for

SMR studies, SIR studies and silicotic studies reporting
SMR as risk measure. These were done using both uni-
variate and multivariate models. In the univariate meta-
regression analysis of SMR studies, NOS score was the
most important covariate accounting for 19 % of hetero-
geneity while in the multivariate analysis, the combination
of industrial setting, year of publication, geographical loca-
tion and number of subjects accounted for the maximum
amount of heterogeneity (R2 = 37 %). As for the SIR
studies, univariate analysis showed that total number of
deaths accounted for the highest amount of heterogeneity
(R2 = 100 %) and a combination of number of subjects and
NOS score corrected the maximum amount of heterogen-
eity (R2 = 15 %) in multivariate analysis. Regarding the sili-
cotic studies, the combination of year of publication and
total number of deaths corrected 43 % of between-study
heterogeneity. Detailed results of meta-regression analyses
are shown in Table 3.
For the exposure-response analysis of the relationship

between silica dust and risk of lung cancer, reference
was made to the subgroup analysis of SMR studies by
average level of cumulative silica dust exposure. Nine-
teen studies were included. It was found that the risk of
lung cancer increased with rising exposure level (risk es-
timate rose from 1.19 (95 % CI 1.02–1.39) in the first
quartile to 1.36 (95 % CI 0.87–2.13) in the fourth quar-
tile). However, the p value of the estimate was statisti-
cally insignificant for the second, third and fourth
quartiles (p > 0.05). A high level of between-study het-
erogeneity was also noted especially with rising quartiles
of cumulative silica dust (p < 0.0001).
Sensitivity analyses showed that omission of any study

did not significantly influence the pooled estimates.

Discussion
The present meta-analysis, which combines the results
from 85 different studies, supports the carcinogenicity of
respirable crystalline silica dust on the lung. This posi-
tive trend was observed independent of the measure of

association and of the level of heterogeneity. The pooled
risk estimates in the silicotic studies, which were 2.32
(95 % CI 1.91–2.81) for SMR studies and 2.49 (95 % CI
1.87–3.33) for SIR studies, were found to be higher than
those in non-silicotic studies, which were 1.78 (95 % CI
1.07–2.96) for SMR studies and 1.18 (95 % CI 0.86–1.62)
for SIR studies. Both silicotic and non-silicotic studies in-
clude subjects who are exposed to silica dust. Our results
support the hypothesis that silicosis has a stronger associ-
ation with lung cancer morbidity and mortality than silica
exposure on its own. The positive association between sil-
ica dust and lung cancer in non-silicotic subjects could
probably be due to genetic factors which predispose these
individuals to lung cancer with only a minimal exposure
to silica dust.
Previous meta-analyses have found a positive association

between crystalline silica dust and lung cancer in silicotics
and silica-exposed workers, but in non-silicotics, the associ-
ation was either negative or weakly positive [16, 106–111].
In these published studies, the cohort study subgroups gave
pooled estimates ranging from 1.25 (95 % CI 1.18–1.33) to
1.29 (95 % CI 1.20–1.40) in silica-exposed participants, 1.69
(95 % CI 1.32–2.16) to 2.78 (95 % CI 2.41–3.22) in silicotics
and 1.19 (95 % CI 0.87–1.57) to 1.20 (95 % CI 1.10–1.30) in
non-silicotics. The case-control study subgroups yielded
risk estimates ranging from 1.41 (95 % CI 1.18–1.70) to
1.42 (95 % CI 1.22–1.65) in silica-exposed workers, 1.70
(95 % CI 1.15–2.52) to 3.27 (95 % 1.32–8.20) in silicotics
and from 0.97 (95 % CI 0.68–1.38) to 1.00 (95 % CI 0.70–
1.30) in non-silicotics [13].
Based on the year of publication, we observed a grad-

ual decline in the pooled risk estimate with time from a
pooled SMR of 2.37 (95 % CI 1.76–3.19) and a pooled
SIR of 2.32 (95 % CI 1.50–3.58) in publications before
1991 to a pooled SMR of 1.30 (95 % CI 1.16–1.46) and a
pooled SIR of 1.54 (95 % CI 1.40–1.70) in papers pub-
lished after 2000. Though some of the papers are up-
dates of older ones, the difference between them is the
extended follow-up period in the more recent ones. The
lowering risk of lung cancer in recent years may be due
to more objective outcome assessment and exposure as-
certainment by direct measurement and also due to
lower dust concentration as a result of the improvement
and stricter implementation of dust control measures.
Our study also showed that the risk of lung cancer dif-

fered among various industries. In the SMR studies, the
highest pooled risk estimate of 1.48 (95 % CI 1.18–1.86)
which was statistically significant was observed in the
mining industry. Possible reasons may be due to the
higher level of silica exposure and longer duration of time
spent in dust-laden environment. In the same subgroup,
the lowest risk of lung cancer was observed in the pottery
factories with a risk estimate of 1.14 (95 % CI 1.05–1.23).
This may be because clay coatings decrease the biological
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Table 2 Results of meta-analysis of all studies, silicotic studies and non-silicotic studies and subgroup analyses

Study design (effect measure) Number of studies Effect estimate P value of effect P value of
heterogeneity, Q

I2 P value Egger test

Cohort studies (SMR) 63 1.55 (1.38–1.75) 5.68E-13 <0.0001 96.18 0.02

Cohort studies (SIR) 19 1.68 (1.45–1.96) 1.36E-11 4.59E-08 74.51 0.24

Cohort studies (RR) 1 1.65 (1.13–2.40) 0.01 1 0.72

Case-control mortality studies (OR) 5 1.82 (1.25–2.66) 0.0017 0.1070 51.17 0.51

Case-control incidence studies (OR) 9 1.34 (1.24–1.46) <0.0001 0.2075 0 0.46

Case-control studies (MOR) 3 1.69 (1.26–2.26) <0.0001 <0.0001 86.70 1.00

Proportional mortality studies (PMR) 2 1.10 (0.89–1.36) 0.38 0.10 62.02 1.00

Silicotic studies (SMR) 24 2.32 (1.91–2.81) <0.0001 <0.0001 94.34 -

Silicotic studies (SIR) 4 2.49 (1.87–3.33) <0.0001 0.377 25.04 -

Silicotic studies (OR) 3 2.56 (1.84–3.57) <0.0001 0.345 2.65 -

Silicotic studies (MOR) 3 1.88 (1.31–2.71) 0.0006 <0.0001 86.98 -

Non-silicotic studies (SMR) 4 1.78 (1.07–2.96) 0.027 0.013 74.37 -

Non-silicotic studies (SIR) 2 1.18 (0.86–1.62) 0.292 0.192 41.21 -

Subgroup analysis of SMR studies

Year of publication

≤ 1990 16 2.37 (1.76–3.19) 1.24E-08 2.92E-94 95.58 0.35

1991–2000 21 1.44 (1.21–1.71) 2.97E-05 1.25E-30 89.89 0.16

> 2000 26 1.30 (1.16–1.46) 1.05E-05 9.98E-49 93.50 0.60

Industry

Mine 18 1.48 (1.18–1.86) 0.00 4.73E-59 97.17 0.18

Foundry 4 1.51 (0.99–2.29) 0.05 0.02 86.53 0.75

Pottery 7 1.14 (1.05–1.23) 0.00 0.27 0.02 1.00

Cement 4 0.87 (0.42–1.82) 0.71 <0.0001 84.87 0.75

Construction 2 1.55 (1.31–1.82) 1.94E-07 0.66 0.00 1.00

Stone & granite 8 1.32 (1.15–1.50) 6.24E-05 0.01 65.17 0.72

Mixed 19 2.03 (1.61–2.56) 1.68E-09 96.95 0.73

Country

Europe 26 1.54 (1.25–1.89) 4.95E-05 4.09E-33 95.70 0.13

USA 15 1.24 (1.12–1.38) 6.24E-05 5.32E-07 79.80 0.06

Canada 5 2.14 (1.46–3.13) 9.27E-05 2.34E-32 95.70 0.82

Australia 2 1.73 (1.51–1.98) 7.65E-15 0.26 19.61 1.00

Asia 14 1.74 (1.27–2.39) <0.0001 97.56 0.75

Occupational confounders

Absent 13 1.32 (1.14–1.54) <0.0001 1.79E-13 87.15 0.06

Present 30 1.35 (1.17–1.57) 7.28E-05 7.37E-55 94.47 0.55

Reported measure adjusted for smoking

Not adjusted 61 1.55 (1.37–1.75) 4.16E-12 96.37 0.02

Adjusted 2 1.83 (1.51–2.22) 7.23E-10 0.43 0.00 1.00

NOS score

1–3 6 2.56 (1.57–4.19) 0.00 2.35E-65 96.18 1.00

4–6 35 1.57 (1.36–1.82) 9.02E-10 1.68E-80 93.07 0.45

7–9 15 1.24 (1.01–1.52) 0.042025 1.56E-44 97.23 0.17
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availability of the toxic crystalline silica surfaces, thereby
diminishing or deferring the disease risk. Harrison et al.
found that the percentage of clay coating silica particles
was 45 % in pottery worksites, 18 % in tin mines and 13 %
in tungsten mines [112]. Studies have shown that clay and
aluminum oxide or aluminosilicate surface coatings of res-
pirable crystalline silica particle surfaces can modify the
cytotoxic and fibrogenic activities of crystalline silica
dust [113]. A negative association, with a risk esti-
mate of 0.87 (95 % CI 0.42–1.82), without statistical
significance (p = 0.714) was observed between cement
dust exposure and lung cancer mortality in cement
factory workers in this meta-analysis. A reverse trend
was observed among SIR studies in the subgroup of
cement industries. Possible explanations could be that

cement dust is weakly carcinogenic and cement
factory workers are immediately removed from the
high-risk job as soon as they are diagnosed with any
respiratory problems, thereby decreasing the chance
of progress to more severe disease and mortality.
When conducting a meta-analysis of epidemiological

studies, significant heterogeneity in risk across studies
reflects differences in workplace exposures, assessment
of exposure, data collection processes, population being
studied and, in the case of silica, in the biological activity
of the silica particles. It has been suggested that a vari-
able biological activity of silica particulates might be re-
lated to particle size, time since fracture and presence of
other minerals or dust components that might cover the
silenol radicals on the surface of the silica particles

Table 2 Results of meta-analysis of all studies, silicotic studies and non-silicotic studies and subgroup analyses (Continued)

Cumulative Silica Dust Exposure (CSDE) (mg/m3years)

0 < CSDE ≤ 0.83 5 1.19 (1.02–1.39) 0.02 0.02 68.92 0.23

0.83 < CSDE ≤ 3.9 5 1.27 (0.89–1.82) 0.19 1.04E-24 97.57 0.48

3.9 < CSDE ≤ 8.35 4 1.33 (0.94–1.87) 0.10 2.97E-10 91.94 0.75

CSDE > 8.35 5 1.36 (0.87–2.13) 0.18 1.15E-21 96.33 0.82

Subgroup analysis of SIR studies

Year of publication

≤ 1990 4 2.32 (1.50–3.58) <0.0001 0.07 64.63 0.75

1991–2000 6 1.77 (1.17–2.69) 0.01 5.07E-09 85.81 0.47

> 2000 9 1.54 (1.40–1.70) 8.29E-18 0.41 17.30 1.00

Industry

Mine 2 1.67 (1.32–2.13) 2.55E-05 0.07 69.32 1.00

Foundry 4 1.40 (1.23–1.58) 2.67E-07 0.52 7.15 0.33

Pottery 1 2.34 (0.62–8.84) 0.21 1 0.33

Cement 3 1.34 (1.01–1.76) 0.04 0.43 12.61 1.00

Construction 1 1.50 (1.26–1.79) 5.04E-06 1 1.00

Granite 3 1.94 (1.55–2.44) 1.33E-08 0.93 0.00 1.00

Mixed 5 2.13 (1.18–3.87) 0.01 4.08E-05 85.96 0.82

Country

Europe 13 1.78 (1.48–2.14) 1.16E-09 9.18E-08 77.40 0.13

Canada 2 1.42 (0.52–3.93) 0.49 0.05 74.77 1.00

Australia 1 1.89 (1.57–2.28) 2.26E-11 1 1.00

Asia 3 1.38 (1.10–1.73) <0.0001 0.28 6.72 1.00

Occupational confounders

Absent 3 1.94 (1.55–2.44) 1.33E-08 0.93 0.00 1.00

Present 12 1.57 (1.32–1.87) 4.14E-07 4.45E-08 80.28 0.64

NOS grading

1–3 3 1.99 (1.19–3.30) 0.01 0.95 0.00 1.00

4–6 11 1.55 (1.28–1.87) 5.74E-06 2.36E-08 82.02 0.76

7–9 1 1.61 (1.21–2.14) <0.001 1 0.76

I2 variability due to heterogeneity; R2, SMR standardized mortality ratio, SIR standardized incidence ratio OR odds ratio, MOR mortality odds ratio, PMR proportional
mortality ratio, NOS Newcastle-Ottawa scale
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Table 3 Results of meta-regression analyses

Measure Parameter k Estimate P value estimate P value of Q I2 R2 p covariates

Meta-regression analysis of SMR studies

SMR No covariate 63 1.55 (1.38–1.75) <0.0001 <0.0001 96.18

Univariate model Year of publication 63 2.30E + 18 (2.41E + 08–2.19E + 28) 0.003 <0.0001 95.44 15.12 0.000

Industry 63 1.15 (0.86–1.53) 0.353 <0.0001 95.71 8.15 0.027

Person-years of follow-up 22 1.53 (1.25–1.87) <0.0001 <0.0001 94.73 13.4 0.050

NOS score 63 3.53 (2.27–5.49) <0.0001 <0.0001 95.11 19.18 0.000

Number of subjects 63 1.69 (1.48–1.92) <0.0001 <0.0001 95.43 10.89 0.008

Total number of deaths 54 1.69 (1.48–1.94) <0.0001 <0.0001 95.31 13.94 0.006

Multivariate model Industry, year of publication 63 1.07E + 19 (3.85E + 09-2.97E + 28) <0.0001 <0.0001 94.65 25.51 <0.0001

Industry, year of publication, geographical location 63 1.04E + 20 (4.90E + 10-2.21E + 29) <0.0001 <0.0001 94.3 28.85 <0.0001

Industry, year of publication, geographical location,
number of subjects

63 1.80E + 17 (1.67E + 08-1.94E + 26) <0.0001 <0.0001 93.18 37.41 <0.0001

Industry, year of publication, geographical location,
number of subjects, NOS score

63 1.06E + 16 (5.27E + 06-2.12E + 25) 0.001 <0.0001 93.05 37.04 <0.0001

Industry, year of publication, geographical location,
number of subjects, total deaths

54 5.32E + 18 (1.07E + 08-2.65E + 29) 0.001 <0.0001 92.72 34.76 <0.0001

Industry, year of publication, geographical location,
NOS score

63 1.29E + 17 (3.61E + 07-4.61E + 26) <0.0001 <0.0001 93.77 32.23 <0.0001

Person-years of follow-up, industry 22 1.22 (0.76–1.96) 0.408 <0.0001 94.12 13.87 0.086

Person-years of follow-up, industry, year of publication 22 2.80E + 14 (2.88E-08-2.73E + 36) 0.198 <0.0001 92.81 17.99 0.079

Person-years of follow-up, industry, year of publication,
geographical location

22 1.55E + 23 (4.66E-02-5.12E + 47) 0.064 <0.0001 92.31 23.08 0.056

Person-years of follow-up, number of subjects 22 1.62 (1.31–2.00) <0.0001 <0.0001 92.9 17.36 0.055

Meta-regression analysis of SIR studies

SIR No covariate 19 1.68 (1.45–1.96) <0.0001 <0.0001 74.51

Univariate model Year of publication 19 7.92E + 11 (3.71E-02-1.69E + 25) 0.080 <0.0001 72.31 4.27 0.086

Industry 19 1.37 (0.97–1.95) 0.077 <0.0001 70.88 11.68 0.214

Number of subjects 19 1.88 (1.55–2.28) <0.0001 <0.0001 69.94 18.16 0.086

Total number of deaths 5 1.29 (1.05–1.59) 0.017 0.687 0 100 0.017

Multivariate model Number of subjects, exposure level 19 2.09 (1.47–2.96) <0.0001 <0.0001 72.12 9.02 0.197

Number of subjects, NOS score 19 3.01 (1.52–5.95) 0.002 <0.0001 69.36 15.16 0.087

Number of subjects, industry 19 1.71 (1.03–2.85) 0.037 <0.0001 70.28 10.84 0.229
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Table 3 Results of meta-regression analyses (Continued)

Meta- regression of silicotic studies

SMR Year of publication 24 7.03E + 21 (5.05E + 04-9.79E + 38) 0.013 <0.0001 92.23 20.55 0.014

Year of publication, total number of deaths 20 1.59E + 23 (1.60E + 05-1.57E + 41) 0.012 <0.0001 86.98 42.87 0.002

Year of publication, total number of deaths, geographical
location, industry

20 4.61E + 22 (2.40E + 03-8.85E + 41) 0.021 <0.0001 86.9 33.84 0.022

Year of publication, total number of deaths, industry 20 6.07E + 22 (1.43E + 04-2.58E + 41) 0.017 <0.0001 87.46 38.8 0.002

Year of publication, total number of deaths, geographical
location

20 9.89E + 22 (2.24E + 04-4.37E + 41) 0.016 <0.0001 86.65 38.3 0.007

Year of publication, geographical location 24 1.26E + 22 (3.90E + 04-4.08E + 39) 0.013 <0.0001 92.05 16.98 0.050

k number of studies, Q chi-square test for heterogeneity, I2 variability due to heterogeneity, R2 amount of heterogeneity accounted for, SMR standardized mortality ratio, SIR standardized incidence ratio, NOS
Newcastle-Ottawa scale
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[114]. We were able to explore sources of heterogeneity
to varying extent in our study through meta-regression
analysis (up to 100 % heterogeneity could be corrected
when total number of deaths was used as covariate in the
univariate analysis of SIR studies). Higgins commented
that heterogeneity is an inevitable part of a meta-analysis
and that any amount of heterogeneity is acceptable,
provided the predefined eligibility criteria for the meta-
analysis are sound and the data are correct, both of which
have been duly verified in this study [18].
The exposure-response analysis showed that the

higher the level of cumulative silica dust exposure, the
more is the risk of lung cancer. However, the high level
of heterogeneity limits any inference of causality. Wrong
estimation of the level and duration of exposure of
workers, varying measurement methods and incorrect
data collection may lead to significant between-study
heterogeneity in the determination of an exposure-
response relationship. Similar findings were obtained in
the dose-response meta-analysis of silica and lung cancer
using 4 cohort and 6 case-control studies performed by
Lacasse et al. [16].
The first strength of our meta-analysis is that we have

tried to include the maximum number of relevant stud-
ies published till date. The number and variety of studies
included in a meta-analysis are sometimes reduced to in-
crease the homogeneity of the studies evaluated. How-
ever, this potentially reduces the amount of information
on factors that influence the outcome of individual stud-
ies. To our knowledge, our meta-analysis is the largest
one conducted on this topic. Secondly, we conformed to
the PRISMA guidelines for a systematic and objective
data analysis. Thirdly, subgroup and meta-regression
analyses have allowed us to explore in more detail the
issue of heterogeneity which, as expected was substan-
tially high. Fourthly, we have been able to explore the
exposure-response relationship between occupational
exposure to silica dust and risk of lung cancer.
Two main limitations of our study should be noted.

First is the ensuing risk of bias of the included studies.
Although publication bias was not detected from funnel
plots and by Egger’s regression test of OR and SIR stud-
ies, it was found to be significant (p < 0.05) for SMR
studies. The most important factors that can account for
confounding bias in the interpretation of the results are
cigarette smoking and occupational carcinogens includ-
ing radon, arsenic, PAH, diesel, talc, cadmium and
asbestiform fibers. When we compared the pooled risk
estimate of smoking-adjusted SMR studies with that of
the unadjusted studies, we found that cigarette smoking
does not account for increased risk of lung cancer
among silica-exposed workers. We obtained similar re-
sults by subdividing SMR studies into those with poten-
tial exposure to occupational confounders and those

excluding their presence. These findings imply that the
presence of other potential lung carcinogens in silica-
exposed jobs does not suggest a confounding effect on
the positive relationship between silica and lung cancer.
Observational studies are also prone to biases due to se-
lection of study population and loss to follow-up. It is,
however difficult to completely control or eliminate all
bias when designing or performing an observational
study [115]. Our meta-analysis has made an attempt to
address this limitation by conducting subgroup analysis
based on NOS score. We found that the lower-quality
studies tend to overestimate the effect measure, probably
due to reliance on self-reporting rather than objective
assessment of outcome and indirect methods of meas-
urement of past exposure to silica dust among workers.
Self-reporting are usually subject to recall bias leading to
exposure and outcome misclassification and overesti-
mation of risk estimates. Second drawback is the high
degree of between-study heterogeneity noted except in
the group of case-control studies with incidence as
outcome.
We have shown, through this meta-analysis that the

risk of lung cancer is higher in workers exposed to crys-
talline silica dust but the exact mechanism of carcino-
genicity in human beings are yet to be determined.
Three mechanisms have been proposed based on experi-
mental studies in animals. First, exposure to crystalline
silica impairs alveolar-macrophage-mediated particle
clearance thereby increasing persistence of silica in the
lungs, which results in macrophage activation, and the
sustained release of chemokines and cytokines. In rats,
persistent inflammation is characterized by neutrophils
that generate oxidants that induce genotoxicity, injury
and proliferation of lung epithelial cells leading to the
development of lung cancer. Second, extracellular gener-
ation of free radicals by crystalline silica depletes antioxi-
dants in the lung-lining fluid. Third, crystalline silica
particles are taken up by epithelial cells followed by
intracellular generation of free radicals that directly
induce genotoxicity. The IARC considers the first mech-
anism as the most prominent based on the current
experimental data using inhalation or intratracheal in-
stillation in rats, although the other mechanisms cannot
be excluded. More research has been recommended in
this particular field [13].

Conclusion
To conclude, this paper supports the positive association
of crystalline silica and lung cancer and the existence of
an exposure-response relationship between these two,
with a high degree of heterogeneity in the analyses. The
risk tends to be more pronounced in the presence of sili-
cosis and in the mining industry and is not significantly
affected by the presence or exclusion of occupational
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confounding factors or by adjustment for cigarette
smoking. A gradual reduction in the risk with time has also
been noted. Further research is needed to find out whether
non-silicotics are truly at risk, whether a predisposing
factor would explain this potential risk and to determine
the mechanism of carcinogenicity of silica in humans.

Additional files

Additional file 1: Search strategy for Medline database. (DOC 36 kb)

Additional file 2: Characteristics of all studies included. (DOC 232 kb)

Additional file 3 Newcastle-Ottawa Scale (NOS) score for cohort and
case-control studies. (DOC 141 kb)

Additional file 4: Funnel plot for studies with standardized mortality
ratio (SMR) as measure of association. (DOC 107 kb)

Additional file 5: Funnel plot for studies with standardized incidence
ratio (SIR) as measure of association. (DOC 109 kb)

Additional file 6: Funnel plot for studies with odds ratio (OR) as
measure of association. (DOC 144 kb)

Abbreviations
CI: Confidence interval; IARC: International Agency for Research on Cancer;
MOR: Mortality odds ratio; NOS: Newcastle-Ottawa scale; OR: Odds ratio;
PAH: Polycyclic aromatic hydrocarbons; PMR: Proportional mortality ratio;
PRISMA: Preferred reporting items for systematic reviews and meta-analyses;
SE: Standard error; SIR: Standardized incidence ratio; SMR: Standardized
mortality ratio

Acknowledgments
The authors are grateful to Dr Naresh Rughooputh for his advice on data
analysis and manuscript revision and to Dr Yuanchao Song for his valuable
assistance in literature search.

Funding
This work was financially supported by grants from the National Natural Scientific
Foundation of China (81372967) and from the National Environmental Protection
Public Welfare Industry Targeted Research Fund (201309046).

Availability of data and materials
All data and materials are available within the main manuscript and
additional files.

Authors’ contributions
The requirements of authorship were met by all authors. SPR and WC
conceived the idea of the study. SPR, MSR, YG, YR and WC were involved in
study design, selection of studies, extraction and interpretation of data,
statistical analysis and writing of the manuscript. All authors have read and
approved the final version of the manuscript for submission to your journal.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Author details
1Department of Occupational & Environmental Health, School of Public
Health, Tongji Medical College, Huazhong University of Science and
Technology, Wuhan, Hubei 430030, China. 2Key Laboratory of Environment
and Health, Ministry of Education & Ministry of Environmental Protection,
and State Key Laboratory of Environmental Health (Incubating), School of
Public Health, Tongji Medical College, Huazhong University of Science and
Technology, Wuhan, Hubei 430030, China. 3Department of Nephrology,

Tongji Hospital, Tongji Medical College, Huazhong University of Science and
Technology, Wuhan, Hubei 430030, China.

Received: 30 November 2015 Accepted: 21 October 2016

References
1. Ministry of Health of the People’s Republic of China. Chinese annual health

statistical report in 2009. Beijing: Ministry of Health of the People’s Republic
of China; 2009.

2. World Health Organization Global Occupational Health Network. Elimination
of silicosis. GOHNET Newsletter 12. Geneva: World Health Organization
Global Occupational Health Network; 2007.

3. Kauppinen T, Toikkanen J, Pedersen D, Young R, Ahrens W, Boffetta P, et al.
Occupational exposure to carcinogens in the European Union. Occup
Environ Med. 2000;57(1):10–8.

4. US National Institute for Occupational Safety and Health. Health effects of
occupational exposure to respirable crystalline silica. Washington: US
Department of Health and Human Services; 2002.

5. Small C, Naumann T. Holocene volcanism and the global distribution of
human population. Environ Hazards. 2001;3:93–109.

6. Molocznik A. Qualitative and quantitative analysis of agricultural dust in
working environment. Ann Agric Environ Med. 2002;9(1):71–8.

7. Leung CC, Yu IT, Chen W. Silicosis. Lancet. 2012;379(9830):2008–18.
8. Westerholm P. Silicosis. Observations on a case register. Scand J Work

Environ Health. 1980;6 Suppl 2:1–86.
9. Finkelstein M, Kusiak R, Suranyi G. Mortality among miners receiving

workmen’s compensation for silicosis in Ontario: 1940–1975. J Occup Med.
1982;24(9):663–7.

10. Goldsmith DF, Guidotti TL, Johnston DR. Does occupational exposure to
silica cause lung cancer? Am J Ind Med. 1982;3(4):423–40.

11. Goldsmith DF, Winn DM, Shy CM. Silica, silicosis and lung cancer. Controversy
in occupational medicine. New York: Praeger publications; 1986.

12. International Agency for Research on Cancer. Monographs on the evaluation
of carcinogenic risks to humans. Vol. 68: Silica, some silicates, coal dust and
para-aramid fibrils. Lyon: International Agency for Research on Cancer; 1997.

13. International Agency for Research on Cancer. Monographs on the evaluation
of carcinogenic risks to humans. Vol. 100C: metals, particles and fibers. Lyon:
International Agency for Research on Cancer; 2012.

14. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for
systematic reviews and meta-analyses: the PRISMA Statement. Open Med.
2009;3(3):123–30.

15. Wells GA, Shea B, O’Connell D, Peterson J, Welch V, Losos M, et al. The
Newcastle-Ottawa Scale (NOS) for assessing the quality of non-randomized
studies in meta-analyses. 2011. http://www.ohri.ca/programs/clinical_
epidemiology/oxford.htm. Accessed 4 May 2016.

16. Lacasse Y, Martin S, Simard S, Desmeules M. Meta-analysis of silicosis and
lung cancer. Scand J Work Environ Health. 2005;31(6):450–8.

17. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis.
Stat Med. 2002;21(11):1539–58.

18. Higgins JPT, Green S. Cochrane Handbook for Systematic Reviews of
Interventions version 5.1.0. 2011.

19. Hosmer DW Jr, Lemeshow S, Sturdivant RX. Applied logistic regression. 3rd
ed. New York: Wiley; 2013.

20. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis
detected by a simple graphical test. BMJ. 1997;315(7109):629–34.

21. Cran.r-project.org [Internet]. The comprehensive R archive network.
Available at: http://cran.r-project.org/. Accessed 30 Oct 2015.

22. Metafor-project.org [Internet]. The metafor Package: A Meta-Analysis
Package for R Last modified: 2015/05/08 08:19 by Wolfgang Viechtbauer.
Available at: http://www.metafor-project.org/. Accessed 30 Oct 2015.

23. Ahlman K, Koskela RS, Kuikka P, Koponen M, Annanmaki M. Mortality among
sulphide ore miners. Am J Ind Med. 1991;19(5):603–17.

24. Ahn YS, Won JU, Park RM. Cancer morbidity of foundry workers in Korea.
J Korean Med Sci. 2010;25(12):1733–41.

25. Amandus HE, Shy C, Castellan RM, Blair A, Heineman EF. Silicosis and lung
cancer among workers in North Carolina dust trades. Scand J Work Environ
Health. 1995;21 Suppl 2:81–3.

26. Andjelkovich DA, Shy CM, Brown MH, Janszen DB, Levine RJ, Richardson RB.
Mortality of iron foundry workers.III. Lung cancer case-control study.
J Occup Med. 1994;36(12):1301–9.

Poinen-Rughooputh et al. BMC Public Health  (2016) 16:1137 Page 15 of 17

dx.doi.org/10.1186/s12889-016-3791-5
dx.doi.org/10.1186/s12889-016-3791-5
dx.doi.org/10.1186/s12889-016-3791-5
dx.doi.org/10.1186/s12889-016-3791-5
dx.doi.org/10.1186/s12889-016-3791-5
dx.doi.org/10.1186/s12889-016-3791-5
http://www.ohri.ca/programs/clinical_epidemiology/oxford.htm
http://www.ohri.ca/programs/clinical_epidemiology/oxford.htm
http://cran.r-project.org/
http://www.metafor-project.org/


27. Bergdahl IA, Jonsson H, Eriksson K, Damber L, Jarvholm B. Lung cancer and
exposure to quartz and diesel exhaust in Swedish iron ore moners with
concurrent exposure to radon. Occup Environ Med. 2010;67(8):513–8.

28. Berry G, Rogers A, Yeung P. Silicosis and lung cancer: a mortality study of
compensated men with silicosis in New South Wales, Australia. Occup Med
(Lond). 2004;54(6):387–94.

29. Brown TP, Rushton L. Mortality in the UK industrial silica sand industry: I.
Assessment of exposure to respirable crystalline silica. Occup Environ Med.
2005;62(7):442–5.

30. Bruske-Hohlfeld I, Mohner M, Pohlabeln H, et al. Occupational lung cancer
risk for men in Germany: results from a pooled case-control study.
Am J Epidemiol. 2000;151:384–95.

31. Carta P, Aru G, Manca P. Mortality from lung cancer among silicotic
patients in Sardinia: an update study with 10 more years of follow-up.
Occup Environ Med. 2001;58(12):786–93.

32. Cassidy A, Mannetje A, Van Tongeren M, Field JK, Zaridze D, Szeszenia-
Dabrowska N, et al. Occupational exposure to crystalline silica and risk of
lung cancer: a multicenter case-control study in Europe. Epidemiology.
2007;18(1):36–43.

33. Chan CK, Leung CC, Tam CM, Yu TS, Wong TW. Lung cancer mortality among
a cohort of men in a silicotic register. J Occup Env Med. 2000;42(1):69–75.

34. Chen J, McLaughlin JK, Zhang JY, Stone BJ, Luo J, Chen RA, et al. Mortality
among dust-exposed Chinese mine and pottery workers. J Occup Med.
1992;34(3):311–6.

35. Chen SY, Hayes RB, Liang SR, Li QG, Stewart PA, Blair A. Mortality experience
of haematite mine workers in China. Br J Ind Med. 1990;47(3):175–81.

36. Chen W, Liu Y, Wang H, Hnizdo E, Sun Y, Su L, et al. Long-term exposure to
silica dust and risk of total and cause-specific mortality in Chinese workers:
a cohort study. PLoS Med. 2012;9(4):e1001206.

37. Chen W, Yang J, Chen J, Bruch J. Exposure to silica mixed dust and cohort
mortality study in tin mines: exposure-response analysis and risk assessment
of lung cancer. Am J Ind Med. 2006;49(2):67–76.

38. Cherry N, Harris J, McDonald C, Turner S, Taylor TN, Cullinan P. Mortality in a
cohort of Staffordshire pottery workers: follow-up to December 2008.
Occup Environ Med. 2013;70(3):149–55.

39. Chia SE, Chia KS, Phoon WH, Lee HP. Silicosis and lung cancer among
Chinese granite workers. Scand J Work Environ Health. 1991;17(3):170–4.

40. Chiyotani K, Saito K, Okubo T, Takahashi K. Lung cancer risk among
pneumoconiosis patients in Japan with special reference to silicotics. IARC
Sci Publ. 1990;97:95–104.

41. Cocco PL, Carta P, Belli S, Picchiri GF, Flore MV. Mortality of Sardinian lead
and zinc miners: 1960–88. Occup Environ Med. 1994;51(10):674–82.

42. Costello J, Castellan RM, Swecker GS, Kullman GJ. Mortality of a cohort of U.
S workers employed in the crushed stone industry, 1940–1980. Am J Ind
Med. 1995;27(5):625–40.

43. Finkelstein MM. Radiographic abnormalities and the risk of lung cancer
among workers exposed to silica dust in Ontario. Can Med Assoc J. 1995;
152(1):37–43.

44. Finkelstein MM, Verma DK. Mortality among Ontario members of the
International Union of Bricklayers and Allied Craftworkers. Am J Ind Med.
2005;47(1):4–9.

45. Forastiere F, Lagorio S, Michelezzi P, Perucci CA, Axelson O. Mortality pattern
of silicotic subjects in the Latium region. Italy Br J Ind Med. 1989;46(12):877–80.

46. Fu H, Gu X, Yu S, Wu K, Guidotti TL. Lung cancer among tin miners in
Southeast China: silica exposure, silicosis, and cigarette smoking. Am J Ind
Med. 1994;26(3):373–81.

47. Gallagher LG, Park RM, Checkoway H. Extended follow-up of lung cancer
and non-malignant respiratory disease mortality among California
diatomaceous earth workers. Occup Environ Med. 2015;72(5):360–5.

48. Giordano F, Dell’orco V, Fantini F, Grippo F, Perretta V, Testa A, et al.
Mortality in a acohort of cement workers in a plant of Central Italy.
Int Arch Occup Environ Health. 2012;85(4):373–9.

49. Goldsmith DF, Beaumont JJ, Morrin LA, Schenker MB. Respiratory cancer
and other chronic disease mortality among silicotics in California. Am J Ind
Med. 1995;28(4):459–67.

50. Grabber JM, Stayner LT, Cohen RA, Conroy LM, Attfield MD. Respiratory
disease mortality among US coal miners; results after 37 years of follow-up.
Occup Environ Med. 2014;71(1):30–9.

51. Graham WG, Costello J, Vacek PM. Vermont granite mortality study: an
update with an emphasis on lung cancer. J Occup Environ Med.
2004;46(5):459–66.

52. Guenel P, Hojberg G, Lynge E. Cancer incidence among Danish stone
workers. Scand J Work Environ Health. 1989;15(4):265–70.

53. Hodgson JT, Jones RD. Mortality of a cohort of tin miners 1941–86.
Br J Ind Med. 1990;47(10):665–76.

54. Infante-Rivard C, Armstrong B, Petitclerc M, Cloutier LG, Theriault G.
Lung cancer mortality and silicosis in Quebec, 1938–1985. Lancet.
1989;2(8678–8679):1504–7.

55. Kachuri L, Villeneuve PJ, Parent ME, Johnson KC, the Canadian Cancer
Registries Epidemiology Group, Harris LA. Occupational exposure to
crystalline silica and the risk of lung cancer in Canadian men. Int J Cancer.
2014;135:138–48.

56. Kauppinen T, Heikkila P, Partanen T, Virtanen SV, Pukkala E, Ylostalo P, et al.
Mortality and cancer incidence of workers in Finnish road paving
companies. Am J Ind Med. 2003;43(1):49–57.

57. Kinlen LJ, Willows AN. Decline in the lung cancer hazard: a prospective
study of the mortality of iron ore miners in Cumbria. Br J Ind Med. 1988;
45(4):219–24.

58. Koh DH, Kim TW, Jang SH, Ryu HW. Cancer mortality and incidence in
cement industry workers in Korea. Saf Health Work. 2011;2(3):243–9.

59. Koskela RS, Klockars M, Laurent H, Holopainen M. Silica dust exposure and
lung cancer. Scand J Work Environ Health. 1994;20(6):407–16.

60. Kusiak RA, Springer J, Ritchie AC, Muller J. Carcinoma of lung in Ontario
gold miners: possible aetiological factors. Br J Ind Med. 1991;48(12):808–17.

61. Lagorio S, Forastiere F, Michelozzi P, Cavariani F, Perucchi CA, Axelson O.
A case-referent study on lung cancer mortality among ceramic workers.
IARC Sci Publ. 1990;97:21–8.

62. Lawler AB, Mandel JS, Schuman LM, Lubin JH. A retrospective cohort
mortality study of iron ore (haematite) miners in Mineesota. J Occup Med.
1985;27(7):507–17.

63. Marinaccio A, Scarselli A, Gorini G, Chellini E, Mastrantonio M, Uccelli R.
Retrospective mortality cohort study of Italian workers compensated for
silicosis. Occup Environ Med. 2006;63(11):762–5.

64. Mehnert WH, Staneczek W, Mohner M, Konetzke G, Muller W, Ahlendorf W,
et al. A mortality study of a cohort of slate quarry workers in the German
Democratic Republic. IARC Sci Publ. 1990;97:55–64.

65. Meijers JM, Swaen GM, Slangen JJ. Mortality and lung cancer in ceramic
workers in The Netherlands: preliminary results. Am J Ind Med. 1996;30(1):
26–30.

66. Merlo F, Costantini M, Reggiardo G, Ceppi M, Puntoni R. Lung cancer risk
among refractory brick workers exposed to crystalline silica: a retrospective
cohort study. Epidemiology. 1991;2(4):299–305.

67. Merlo F, Fontana L, Reggiardo G, Ceppi M, Barisione G, Garrone E, et al.
Mortality among silicotics in Genoa, Italy, from 1961 to 1987. Scand J Work
Environ Health. 1995;21 Suppl 2:77–80.

68. Miller BG, MacCalman L. Cause-specific mortality in British coal workers and
exposure to respirable dust and quartz. Occup Environ Med. 2010;67(4):270–6.

69. Moulin JJ, Clavel T, Roy D, Dananche B, Marquis N, Fevotte J, et al. Risk of
lung cancer in workers producing stainless steel and metallic alloys. Int Arch
Occup Environ Health. 2000;73(3):171–80.

70. Neuberger M, Westphal G, Bauer P. Long-term effect of occupational dust
exposure. Japanese J Ind Health. 1988;30(5):362–70.

71. Ng TP, Chan SL, Lee J. Mortality of a cohort of men in a silicosis register:
further evidence of an association with lung cancer. Am J Ind Med.
1990;17(2):163–71.

72. Olsen GW, Andres KL, Johnson RA, Buehrer BD, Holen BM, Morey SZ, et al.
Cohort mortality study of roofing granule mine and mill workers. Part II.
Epidemiologic analysis, 1945–2004. J Occup Environ Hyg. 2012;9(4):257–68.

73. Partanen T, Pukkala E, Vainio H, Kurppa K, Koskinen H. Increased incidence
of lung and skin cancer in Finnish silicotic patients. J Occup Med.
1994;36(6):616–22.

74. Peters S, Reid A, Fritschi L, Musk AW, de Klerk N. Cancer incidence and
mortality among underground and surface goldminers in Western Australia.
Br J Cancer. 2013;108(9):1879–82.

75. Pham QT, Gaertner M, Mur JM, Braun P, Gabiano M, Sadoul P. Incidence of
lung cancer among iron miners. Eur J Respir Dis. 1983;64(7):534–40.

76. Preller L, Van den Bosch LM, Van den Brandt PA, Kaupinen T, Goldbohm A.
Occupational exposure to silica and lung cancer risk in the Netherlands.
Occup Environ Med. 2010;67(10):657–63.

77. Rafnsson V, Gunnarsdottir H. Lung cancer incidence among an Icelandic
cohort exposed to diatomaceous earth and cristobalite. Scand J Work
Environ Health. 1997;23(3):187–92.

Poinen-Rughooputh et al. BMC Public Health  (2016) 16:1137 Page 16 of 17



78. Reid PJ, Sluis-Cremer GK. Mortality of white South African gold miners.
Occup Environ Med. 1996;53(1):11–6.

79. Rodriguez V, Tardon A, Kogevinas M, Prieto CS, Cueto A, Garcia M, et al.
Lung cancer risk in iron and steel foundry workers: a nested case-control
study in Asturias. Spain Am J Ind Med. 2000;38(6):644–50.

80. Samet JM, Pathak DR, Morgan MV, Coultas DB, James DS, Hunt WC. Silicosis
and lung cancer risk in underground uranium miners. Health Phys. 1994;
66(4):450–3.

81. Scarselli A, Binazzi A, Forastiere F, Cavariani F, Marinaccio A. Industry and
job-specific mortality after occupational exposure to silica dust. Occup Med
(Lond). 2011;61(6):422–9.

82. Schuler G, Walchi P, Ruttner JR, Delmore M, Taylor M, Schnieper R.
Incidence of lung cancer and age at death in silicosis deaths of the
Swiss National Accident Insurance Fund, 1960–1978. Soz Praventivmed.
1982;27(5):218–9.

83. Sherson D, Svane O, Lynge E. Cancer incidence among foundry workers in
Denmark. Arch Environ Health. 1991;46(2):75–81.

84. Smailyte G, Kurtinaitis J, Andersen A. Mortality and cancer incidence
among Lithuanian cement producing workers. Occup Environ Med.
2004;61(6):529–34.

85. Steenland K, Brown D. Mortality study of gold miners exposed to silica and
nonasbestiform amphibole minerals: an update with 14 more years of
follow-up. Am J Ind Med. 1995;27(2):217–29.

86. Steenland K, Sanderson W. Lung cancer among industrial sand workers
exposed to crystalline silica. Am J Epidemiol. 1982;11(2):175–80.

87. Thomas TL. Lung cancer mortality among pottery workers in the United
States. IARC Sci Publ. 1990;97:75–81.

88. Tornling G, Hogstedt C, Westerholm P. Lung cancer incidence among
Swedish ceramic workers with silicosis. IARC Sci Publ. 1990;97:113–9.

89. Tse LA, Yu IT, Qiu H, Au JS, Wang XR. Occupational risks and lung cancer
burden for Chinese men: a population-based case-referent study. Cancer
Causes Control. 2012;23(1):121–31.

90. Tse LA, Yu IT, Qiu H, Leung CC. Joint effects of smoking and silicosis on
diseases to the lungs. PLoS One. 2014;9(8):e104494.

91. Tsuda T, Mino Y, Babazono A, Shigemi J, Otsu T, Yamamoto E, et al.
A case-control study of lung cancer in relation to silica exposure and
silicosis in a rural area in Japan. Ann Epidemiol. 2002;12:288–94.

92. Ulm K, Gerein P, Eigenthaler J, Schmidt S, Ehnes H. Silica, silicosis and lung
cancer.: results from a cohort study in the stone and quarry industry.
Int Arch Occup Environ Health. 2004;77(5):313–8.

93. Ulm K, Waschulzik B, Ehnes H, Guldner K, Thomasson B, Schwebig A, et al.
Silica dust and lung cancer in the German stone, quarrying, and ceramics
industries: results of a case-control study. Thorax. 1999;54(4):347–51.

94. Vacek PM, Verma DK, Graham WG, Callas PW, Gibbs GW. Mortality in
Vermont granite workers and its association with silica exposure.
Occup Environ Med. 2011;68(5):312–8.

95. Vida S, Pinto J, Parent ME, Lavoué J, Siemiatycki J. Occupational exposure to
silica and lung cancer: pooled analysis of two case-control studies in
Montreal Canada. Cancer Epidemiol Biomarkers Prev. 2010;19:1602–11.

96. Wang Z, Dong D, Liang X, Qu G, Wu J, Xu X. Cancer mortality among
silicotics in China’s metallurgical industry. Int J Epidemiol. 1996;25(5):
913–7.

97. Watkins DK, Chiazze L, Fryar CD, Fayerweather W. A case-control study of
lung cancer and non-malignant respiratory disease among employees in
asphalt roofing, manufacturing and asphalt production. J Occup Environ
Med. 2002;44(6):551–8.

98. Westburg H, Andersson L, Bryngelsson IL, Ngo Y, Ohlson CG. Cancer
morbidity and quartz exposure in Swedish iron foundries. Int Arch
Occup Environ Health. 2013;86(5):499–507.

99. Westerholm P, Ahlmark A, Maasing R, Segelberg I. Silicosis and risk of lung
cancer or lung tuberculosis: a cohort study. Environ Res. 1986;41(1):339–50.

100. Wiebert P, Alderling M, Svartengren M, Gustavsson P, Plato N. Cancer,
mortality and myocardial infarction in workers exposed to respirable
crystalline silica dust at a Swedish porcelain factory. Occup Environ Med.
2014;71 Suppl 1:A31.

101. Xu Z, Brown LM, Pan GW, Liu TF, Gao GS, Stone BJ, et al. Cancer risks
among iron and steel workers in Anshan, China, Part I: Proportional
mortality ratio analysis. Am J Ind Med. 1996;30(1):1–6.

102. Yu I, Tse LA, Chi CL, Tze WW, Cheuk MT, Alan CC. A retrospective cohort
study on mortality among silicotic workers in Hong Kong with emphasis on
lung cancer. Chin J Occup Hyg Occup Dis. 2008;26(1):29–33.

103. Zambon P, Simonato L, Mastrangelo G, Winkelmann R, Saia B, Crepet M.
Mortality of workers compensated for silicosis during the period 1959–1963 in
the Veneto regionof Italy. Scand J Work Environ Health. 1987;13(2):118–23.

104. Zhang X, Wang H, Zhu X, Liu Y, Wang L, Dai Q, et al. Cohort mortality study
in three ceramic factories in Jingdezhen in China. J Huazhong Univ Sci
Technolog Med Sci. 2008;28(4):386–90.

105. Puntoni R, Goldsmith DF, Valerio F, Vercelli M, Bonassi S, Di Giorgio F, et al.
A cohort study of workers employed in a refractory brick plant. Tumori.
1988;74(1):27–33.

106. Erren TC, Glende CB, Morfeld P, Piekarski C. Is exposure to silica associated
with lung cancer in the absence of silicosis? A meta-analytical approach to
an important public health question. Int Arch Occup Environ Health. 2009;
82(8):997–1004.

107. Kurihara N, Wada O. Silicosis and smoking strongly increase lung cancer risk
in silica-exposed workers. Ind Health. 2004;42(3):303–14.

108. Pelucchi C, Pira E, Piolatto G, Coggiola M, Carta P, La Vecchia C.
Occupational silica exposure and lung cancer risk: a review of
epidemiological studies 1996–2005. Ann Oncol. 2006;17(7):1039–50.

109. Steenland K, Stayner L. Silica, asbestos, man-made mineral fibers, and
cancer. Cancer Causes Control. 1997;8(3):491–503.

110. Tsuda T, Babazono A, Yamamoto E, Mino Y, Matsuoka H. A meta-analysis on
the relationship between pneumoconiosis and lung cancer. J Occup Health.
1997;39(4):285–94.

111. Smith AH, Lopipero PA, Barroga VR. Meta-analysis of studies of lung cancer
among silicotics. Epidemiology. 1995;6:617–24.

112. Harrison J, Chen JQ, Miller W, Chen W, Hnizdo E, Lu J, et al. Risk of silicosis
in cohorts of Chinese tin and tungsten miners and pottery workers (II):
Workplace-specific silica particle surface composition. Am J Ind Med.
2005;48(1):10–5.

113. Le Bouffant L, Daniel H, Martin JC, Bruyere S. Effect of impurities and
associated minerals on quartz toxicity. Ann Occup Hyg. 1982;26(1–4):625–34.

114. Cocco P, Dosemeci M, Rice C. Lung cancer among silica-exposed workers:
The quest of truth between chance and necessity. Med Lav. 2007;98:3–17.

115. Sica GT. Bias in research studies. Radiology. 2006;238(3):780–9.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Poinen-Rughooputh et al. BMC Public Health  (2016) 16:1137 Page 17 of 17


	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Methods
	Search strategy
	Data extraction
	Assessing study quality
	Statistical analysis

	Results
	Characteristics of studies and bias assessment
	Data analysis

	Discussion
	Conclusion
	Additional files
	show [a]
	Acknowledgments
	Funding
	Availability of data and materials
	Authors’ contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Author details
	References

