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Abstract: In the partonic (or light-front) description of relativistic systems the electro-

magnetic form factors are expressed in terms of frame-independent charge and magnetiza-

tion densities in transverse space. This formulation allows one to identify the chiral compo-

nents of nucleon structure as the peripheral densities at transverse distances b = O(M−1
π )

and compute them in a parametrically controlled manner. A dispersion relation connects

the large-distance behavior of the transverse charge and magnetization densities to the

spectral functions of the Dirac and Pauli form factors near the two-pion threshold at time-

like t = 4M2
π , which can be computed in relativistic chiral effective field theory. Using

the leading-order approximation we (a) derive the asymptotic behavior (Yukawa tail) of

the isovector transverse densities in the “chiral” region b = O(M−1
π ) and the “molecu-

lar” region b = O(M2
N/M

3
π); (b) perform the heavy-baryon expansion of the transverse

densities; (c) explain the relative magnitude of the peripheral charge and magnetization

densities in a simple mechanical picture; (d) include ∆ isobar intermediate states and

study the peripheral transverse densities in the large-Nc limit of QCD; (e) quantify the

region of transverse distances where the chiral components of the densities are numerically

dominant; (f) calculate the chiral divergences of the b2-weighted moments of the isovector

transverse densities (charge and anomalous magnetic radii) in the limit Mπ → 0 and de-

termine their spatial support. Our approach provides a concise formulation of the spatial

structure of the nucleon’s chiral component and offers new insights into basic properties of

the chiral expansion. It relates the information extracted from low-t elastic form factors to

the generalized parton distributions probed in peripheral high-energy scattering processes.
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1 Introduction

Understanding the spatial structure of hadrons and their interactions is one of the main

objectives of modern strong interaction physics. A space-time picture is needed not only

to gain a more intuitive understanding of hadrons as extended systems, but also to enable

the formulation of approximation methods taking advantage of the relevant distance scales.

For non-relativistic quantum systems such as atoms in electrodynamics or nuclei in con-

ventional many-body theory a space-time picture follows naturally from the Schrödinger

wave function, resulting in a rich intuition based on concepts like the spatial size of con-

figurations and the orbital motion of the constituents. For essentially relativistic systems

such as hadrons the space-time picture is more complex, as the particle number can change

due to vacuum fluctuations, the notion of wave function is reference frame-dependent, and

constraints like crossing invariance and analyticity need to be satisfied.

The light-front description of relativistic systems provides a framework in which it is

possible to formulate a rigorous space-time picture. One way to arrive at this description

is to consider the system in a frame where it moves with a large momentum and decouples

from the vacuum fluctuations (“infinite-momentum frame”) [1–4]. Another, equivalent way

is to view the system at fixed light-front time, which can be done in any frame (“light-front

quantization”) [5–7]; see ref. [8] for a review. Either way one obtains a closed quantum-

mechanical system that can be described by a wave function, consisting of a coherent

superposition of components with definite particle number, with simple transformation

properties under Lorentz boosts. Most observables of interest, such as the matrix elements

of current operators, can be expressed as overlap integrals of the wave functions in the initial

and final state. The resulting space-time picture is frame-independent and preserves much

of the intuition of non-relativistic physics. It is important to realize that the light-front

formulation of relativistic dynamics can be used not only when describing hadron structure

in terms of the fundamental theory of QCD (where it matches with the conventional parton

model), but also in effective theories based on hadronic degrees of freedom. The space-time

picture available in this formulation can greatly help to elucidate the physical basis of the

approximations made in such effective theories and quantify the limits of their applicability.

The most basic information about the spatial structure of the nucleon comes from the

transition matrix elements of conserved currents (vector, axial vector) between nucleon

states. They are parametrized by form factors depending on the invariant four-momentum

transfer, t. In the light-front picture of nucleon structure, the Fourier transforms of the

form factors describe the spatial distributions of charge and magnetization in the transverse

plane [9–12]; see ref. [13] for a review. They represent the cumulative 4-vector current

seen by an observer at a transverse distance (or impact parameter) b from the center of

momentum (“line-of-sight densities”) and have an objective physical meaning. They are

true spatial densities in the light-front wave functions of the system and, thanks to the frame

independence of the latter, can be unambiguously related to other nucleon observables of

interest. In particular, in the context of QCD the transverse densities correspond to a

reduction of the generalized parton distribution (or GPDs), which describe the transverse

spatial distributions of quarks, antiquarks and gluons in the nucleon [10, 11, 14]. The
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transverse charge and magnetization densities thus represent an essential tool for exploring

the spatial structure of the nucleon as a relativistic system. Empirical densities have

been obtained by Fourier-transforming the elastic form factor data [12, 15–17] and can

be interpreted in terms of partonic structure of the nucleon or compared with dynamical

model calculations; see ref. [13] for a review.

At large distances the behavior of strong interactions is governed by the spontaneous

breaking of chiral symmetry. The associated Goldstone bosons — the pions — are almost

massless on the hadronic scale, couple weakly to hadronic matter in the long-wavelength

limit, and act as the longest-range carriers of the strong force. The resulting effective

dynamics manifests itself in numerous distinctive phenomena in low-energy ππ, πN and

NN interactions, as well as electromagnetic and weak processes. It can be studied system-

atically using methods of chiral effective field theory (chiral EFT, or chiral perturbation

theory), in which one separates the dynamics at distances of the order M−1
π from that at

typical hadronic distances, as represented e.g. by the inverse vector meson mass M−1
V [18–

21]; see ref. [22] for a review. A natural question is what this “chiral dynamics” implies

for the transverse densities in the nucleon at distances of the order b = O(M−1
π ). This

question has several interesting aspects, both methodological and practical, which make it

a central problem of nucleon structure physics.

On the methodological side, the light-front formulation allows us to study how chiral

dynamics plays out in the space-time picture appropriate for relativistic systems. It is

important to note that in typical chiral processes the pion momenta are of the order of the

pion mass, k = O(Mπ), i.e. the pion velocity is v = O(1), so that chiral pions represent

an essentially relativistic system. Methods from non-relativistic physics, such as the Breit

frame density representation of form factors, are not adequate for describing the spatial

structure of this system. In the light-front formulation the transverse distance b has an

objective physical meaning and acts as a new parameter justifying the chiral expansion.

The peripheral transverse densities at b = O(M−1
π ) represent clean chiral observables free

of short-distance contributions. They exhibit “Yukawa tails” similar to the classic results

from non-relativistic NN interactions, but their interpretation is not restricted to the non-

relativistic limit. Generally, the possibility to study well-defined spatial densities rather

than integral quantities (charge radii, magnetic moments and radii, etc.) provides many

new insights into basic properties of the chiral expansion. For example, it allows us to study

the spatial support of the chiral divergences of the charge and magnetic radii and provides a

new perspective on the convergence of the heavy-baryon expansion for nucleon form factors.

The spatial view enabled by the transverse densities also sheds new light on the role of

the intrinsic non-chiral hadronic size in chiral processes. The EFT describes the dynamics

of the pion field at momenta O(Mπ) by an effective Lagrangian, in which the non-chiral

degrees of freedom — e.g. the bare nucleon in processes with baryons [23, 24] — are

introduced as pointlike sources. Their finite physical size is encoded in the pattern of

higher-order coupling constants and counter terms appearing in loop calculations [25].

While efficiently implementing the separation of scales, this formulation does not convey

an immediate sense of the spatial size of the hadrons involved in chiral processes. The

spatial representation in the light-front formulation clearly reveals the non-chiral size of
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the participating hadrons. This allows one to quantify the size of chiral and non-chiral

contributions to nucleon observables and connect the couplings of the chiral Lagrangian

with other measures of the hadron size.

On the practical side, the chiral periphery of the transverse densities represents an

element of nucleon structure that can be computed from first principles and included in a

comprehensive parametrization. The chiral periphery influences the behavior of the form

factors at very low spacelike momentum transfers |t| . 10−2GeV2 (see ref. [26] for a prelim-

inary assessment). It affects extrapolation of the form factor data to t = 0 and comparison

with the charge radii measured in atomic physics experiments, and could possibly be stud-

ied in dedicated experiments. Another interesting aspect is the connection of the transverse

charge and magnetization densities with the peripheral nucleon GPDs. The latter could

be probed in peripheral hard high-energy processes which directly resolve the quark/gluon

content of the nucleon’s chiral periphery [27, 28].

In this article we perform a comprehensive study of the peripheral transverse charge

and magnetization densities in the nucleon using methods of dispersion analysis and chiral

EFT. We establish the parametric regimes in the transverse distance, develop a practical

method for calculating the peripheral densities, compute the chiral components of the

charge and magnetization densities using leading-order chiral EFT, discuss their formal

properties within the chiral expansion (heavy-baryon expansion, parametric order of charge

and magnetization density, chiral divergences of moments), include ∆ isobar intermediate

states and explore the peripheral densities in the large-Nc limit of QCD, and quantify the

spatial region where the chiral component is numerically relevant.

The main tool used in our study is a dispersion representation of the transverse charge

and magnetization densities, which expresses them as dispersion integrals of the imaginary

parts (or spectral functions) of the Dirac and Pauli form factors in the timelike region t > 0.

The large-distance behavior of the isovector densities is governed by the spectral functions

near the threshold at t = 4M2
π , and the chiral expansion of the densities can be obtained

directly from that of the spectral functions in this region [23, 29–32]. The dispersion repre-

sentation of transverse densities offers many practical advantages. The dispersion integral

for the densities converges exponentially at large t > 0 and effectively extends over masses

in a range
√
t − 2Mπ = O(b−1), such that the transverse distance b acts as the physical

parameter justifying the chiral expansion. The dispersion representation allows one to com-

pute the peripheral transverse densities using well-established methods of Lorentz-invariant

relativistic chiral EFT, even though the quantities computed have a partonic interpreta-

tion. It greatly simplifies the chiral EFT calculations, as only the spectral functions need

to be computed using t-channel cutting rules. The dispersion representation also allows

one to combine chiral and non-chiral contribution to the transverse densities in a consistent

manner; the latter result from the higher-mass states in the spectral function, particularly

the ρ meson resonance, and can be modeled phenomenologically. Using the dispersion rep-

resentation we study several aspects of the peripheral transverse densities in the nucleon:

(a) Large-distance behavior of transverse densities. We analyze the asymptotic behavior

of the transverse densities at large distances on general grounds. In the dispersion rep-

resentation it is directly related to the behavior of the spectral functions of the form
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factors near the threshold at t = 4M2
π . It is well-known that the spectral functions

in this region are essentially influenced by a subthreshold singularity on the unphysical

sheet, whose presence is required by the general analytic properties of the πN scattering

amplitude [33–35]. The distance of this singularity from threshold is M4
π/M

2
N and thus

anomalously small on the chiral scale, M2
π . It implies the existence of two parametric

regimes of the transverse densities: regular “chiral” distances b = O(M−1
π ), and anoma-

lously large “molecular” distances, b = O(M2
N/M

3
π). They exhibit different asymptotic

behavior and require dedicated approximation methods. The structure of the peripheral

densities is thus much richer than that of a single “Yukawa tail.” A similar phenomenon

was observed in the two-pion exchange contribution to the low-energy NN interaction

in nonrelativistic chiral EFT [36, 37]; see ref. [38] for a review.

(b) Heavy-baryon expansion of transverse densities. We derive the heavy-baryon expan-

sion (i.e., the power expansion in Mπ/MN ) of the transverse charge and magnetization

densities in the chiral region b = O(M−1
π ) and study its practical usefulness. In our

approach it is directly obtained from the heavy-baryon expansion of the spectral func-

tions near threshold, which was studied in detail in refs. [29–32]. The subthreshold

singularity in the spectral functions limits the convergence of the heavy-baryon expan-

sion. Even so, a very satisfactory heavy-baryon expansion of the peripheral charge and

magnetization densities is obtained, which can be used for numerical evaluation at all

practically relevant distances.

(c) Charge vs. magnetization density. We compare the transverse charge and magnetiza-

tion densities in the nucleon’s chiral periphery at b = O(M−1
π ). It is shown that the

spin-independent and spin-dependent components of the 4-vector current matrix ele-

ment, which are directly related to the charge and magnetization densities [13], are of

the same order in the parameter Mπ/MN . Moreover, the absolute value of the spin-

dependent current density is found to be bounded by the spin-independent density.

Both observations can naturally be explained in an intuitive “mechanical” picture of

the chiral πN component of the nucleon’s light-cone wave function producing the pe-

ripheral densities. It shows how the particle-based light-front formulation can illustrate

basic properties of chiral dynamics that are not obvious in the general field-theoretical

formulation. A detailed exposition of the mechanical picture will be given in a forth-

coming article, where we study the time evolution of chiral processes and express the

peripheral charge and magnetization densities as overlap integrals of the light-front wave

functions of the chiral πN system [39].

(d) Intermediate ∆ isobars and large-Nc limit of QCD. We calculate the effect of ∆ isobar

intermediate states on the nucleon’s transverse densities at large distances. Intermediate

∆ states pose a challenge for the traditional chiral expansion of integral quantities, as

the N∆ mass difference represents a non-chiral scale that is numerically not far from

the physical pion mass. In our coordinate-space approach we focus on the two-pion

contribution to the densities at distances b = O(M−1
π ) and can include the ∆ in a natural

manner, as a modification (new singularity) of the πN scattering amplitude describing
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the coupling of the two-pion t-channel state to the nucleon. In this way we study the

interplay of N and ∆ states in the transverse densities at fixed b = O(M−1
π ), with the

N∆ mass splitting an unrelated external parameter. Inclusion of the ∆ is important for

practical reasons, as the πN∆ coupling is large and results in substantial contribution to

the density at intermediate distances b ∼ 1–2 fm. It is even more important theoretically,

to ensure the proper scaling behavior of the transverse densities in the large-Nc limit

of QCD [40–42]. We show that in large-Nc limit the N and ∆ contributions to the

isovector charge density at b = O(M−1
π ) cancel each other in leading order of the 1/Nc

expansion, bringing about the correct Nc-scaling required by QCD. In the isovector

magnetization density the N and ∆ contributions add and give a large-Nc value that is

3/2 times the density from intermediate N alone, as expected on general grounds; see

ref. [43] for a review. These results show that the two-pion components of the transverse

densities obtained in our approach obey the general Nc-scaling laws and can be regarded

as legitimate approximations to peripheral nucleon structure in large-Nc QCD.

(e) Region of dominance of chiral component. We quantify the region of transverse dis-

tances where the chiral component of the nucleon densities becomes numerically domi-

nant. The spatial view of the nucleon, combined with the dispersion representation of

the transverse densities, provides a framework that allows us to address this question in

a transparent and physically motivated manner. Non-chiral contributions to the trans-

verse densities arise from higher-masss states in the spectral functions, particularly the

vector meson states, and can be added to the chiral near-threshold contribution with-

out double counting. Using a simple parametrization of the higher-mass states in terms

of vector meson poles we show that the chiral component of the isovector transverse

densities becomes numerically dominant only at surprisingly large distances b & 2 fm.

More generally, our coordinate-space approach provides a novel way of identifying the

chiral component of nucleon structure, for the purpose of either theoretical calculations

or experimental probes.

(f) Chiral divergences of moments. The b2-weighted integrals (moments) of the transverse

charge and magnetization densities are proportional to the derivatives of the Dirac

and Pauli form factors at t = 0 and represent the analog of the traditional charge

and magnetic radii in the 2-dimensional partonic picture of spatial nucleon structure.

These quantities exhibit chiral divergences in the limit Mπ → 0. We verify that the

moments of our peripheral densities at b = O(M−1
π ) reproduce the well-known universal

chiral divergences of the nucleon’s charge and magnetic radii [23]. This also allows us

to determine the spatial support of the chiral divergences. It is seen that the chiral

logarithm of the transverse charge radius results from the integral over a broad range

of distances b0 ≪ b ≪ M−1
π (b0 represents a short-distance cutoff), while the power-

like divergence of the magnetic radius comes from distances b ∼ M−1
π . These findings

connect our approach with the usual chiral EFT studies of the pion mass dependence

of integral quantities and illustrate its spatial structure.

The plan of this paper is as follows. In section 2 we summarize the basic properties of

the transverse densities associated with the nucleon’s electromagnetic form factors and dis-
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cuss their space-time interpretation, in particular the relation between the magnetization

density and the physical spin-dependent current density. We then describe the dispersion

representation of the transverse densities and its usage, discuss the behavior of the spectral

functions near threshold based on general principles, and introduce the parametric regions

of transverse distances. In section 3 we calculate the chiral component of the transverse

densities and perform a detailed analysis of its properties. We summarize the chiral La-

grangian and the basics of the dispersive approach to chiral EFT and present a t-channel

cutting rule that permits efficient calculation of the spectral functions from the chiral EFT

Feynman diagrams (appendix A). We study the spectral functions near threshold and nu-

merically evaluate the transverse densities. We derive the heavy-baryon expansion of the

densities in the chiral region, b = O(M−1
π ), and study its convergence numerically. Explicit

analytic expressions for the densities are obtained and evaluated in terms of special func-

tions (appendix B). We also derive the asymptotic behavior of the density in the molecular

region, b = O(M2
N/M

3
π), and give explicit formulas. We then compare the relative magni-

tude of the charge and magnetization densities in the nucleon’s periphery and explain it

in a simple mechanical picture. Finally, we discuss the physical significance of the contact

terms appearing in the chiral EFT calculation, and their relation to the form of the πNN

vertex in the chiral Lagrangian (axial vector vs. pseudoscalar coupling). In section 4 we

calculate the peripheral densities arising from ∆ intermediate states and evaluate them

numerically. We then discuss the general large-Nc scaling behavior of the transverse densi-

ties in QCD, and show that the two-pion component of the peripheral densities, including

both N and ∆ intermediate states, obeys the general large-Nc scaling laws. In section 5 we

quantify the region of transverse distances where the chiral component of the charge and

magnetization densities becomes numerically dominant. Using a simple parametrization of

higher-mass states in the spectral functions in terms of vector meson poles, we compare

the chiral and non-chiral contributions to the transverse densities at different distances b.

In section 6 we study the chiral divergences of the b2-weighted moments of the transverse

densities. We show that our results for the peripheral densities reproduce the universal

chiral divergences of the nucleon’s charge and magnetic radii (i.e., the slope of the Dirac

and Pauli form factors) and discuss the spatial support of the chiral divergences in our pic-

ture. A summary of our main conclusions and an outlook on further studies are presented

in section 7.

An overview of the properties of the peripheral transverse charge density and their

phenomenological implications was given already in ref. [26]. In the present article we offer

a detailed exposition of the theoretical framework, extend the calculations to the Pauli

form factor and the magnetization density, and explore several new aspects of the chi-

ral component of transverse densities (heavy-baryon expansion, mechanical interpretation,

spatial support of chiral divergences).

In this paper we study the chiral component of the transverse charge and magneti-

zation densities using the established Lorentz-invariant formulation of chiral EFT, taking

advantage of the analytic properties of the form factors. The partonic or light-front picture

will be invoked only for the interpretation of the densities, not as a framework for actual

calculations, and readers not familiar with these aspects should be able to follow the presen-
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tation. It is, of course, possible to calculate the chiral component of the densities directly

in a partonic picture, using the infinite-momentum frame or light-front time-ordered per-

turbation theory. In this formulation the densities are expressed as overlap integrals of

the peripheral πN light-cone wave functions of the physical nucleon, which are calculable

directly from the chiral Lagrangian. This formulation will reveal several new aspects, such

as the role of orbital angular momentum in chiral counting, the longitudinal structure of

the configurations contributing to the densities at given b, and the connection with chi-

ral contributions to the nucleon’s parton densities and high-energy scattering processes.

We shall explore this formulation in a following article and address all pertinent questions

there [39].

In the present study we use chiral EFT in the leading-order approximation to evaluate

the transverse densities in the chiral region. The leading-order densities do not depend on

an explicit short-distance cutoff, involve only a few basic parameters, and have a trans-

parent physical structure. Our intention here is to discuss the properties of the peripheral

densities at this level and compare them to the non-chiral densities generated by higher-

mass states in the spectral function. We comment on the places where higher-order effects

are seen to be explicitly important; e.g., in the magnetization density in the molecular

region. We emphasize that the basic framework presented here (space-time picture, dis-

persion representation) is by no means limited to the leading-order approximation and

could be explored in higher-order calculations as well. Higher-order calculations of the

spectral functions of the nucleon form factors have been performed in relativistic [31] and

heavy-baryon chiral EFT [29, 32] and could be adapted for our purposes. This extension,

however, requires new physical considerations regarding the regularization of chiral loops

in coordinate space and will be left to a future study.

2 Transverse charge and magnetization densities

2.1 Definition and interpretation

The transition matrix element of the electromagnetic current between nucleon (proton,

neutron) states with three-momenta p1 and p2 and spin quantum numbers σ1 and σ2 can

be parametrized as

〈p2, σ2|Jµ(x)|p1, σ1〉 = ū2

[
γµF1(t)−

σµν∆ν

2MN
F2(t)

]
u1 e

i∆x, (2.1)

where the nucleon momentum states are normalized according to the relativistic convention,

〈p2|p1〉 = 2p01(2π)
3δ(3)(p2 − p1). Here u1 ≡ u(p1, σ1) and u2 ≡ u(p1, σ1) are the nucleon

bispinors, normalized to ū1u1 = ū2u2 = 2MN , and σµν ≡ 1
2 [γ

µ, γν ]. The 4-momentum

transfer is denoted by

∆ ≡ p2 − p1, (2.2)

and the dependence of the matrix element on the space-time point x follows from transla-

tional invariance. The functions F1 and F2 are known as the Dirac and Pauli form factors

and depend on the invariant momentum transfer,

t ≡ ∆2, (2.3)
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with t < 0 (spacelike momentum transfer) in the physical region for electromagnetic scat-

tering. Equation (2.1) applies to either proton or neutron states. The value of the Dirac

form factor at zero momentum transfer is given by the total charge of the nucleon,

F p
1 (0) = 1 , Fn

1 (0) = 0 ; (2.4)

the value of the Pauli form factor by the anomalous magnetic moment,

F p
2 (0) = κp , Fn

2 (0) = κn ; (2.5)

the empirical values are κp = 1.79 and κn = −1.91. Experimental knowledge of the nucleon

form factors at finite t < 0 is reviewed in ref. [44]; for a discussion of the most recent data

see refs. [45, 46] and references therein. For theoretical analysis it is convenient to consider

the isoscalar and isovector combinations of form factors1

FS,V
1 (t) ≡ 1

2 [F
p
1 (t)± Fn

1 (t)], etc. (2.6)

which are normalized such that

FS,V
1 (0) = 1/2, FS,V

2 (0) = 1
2(κp ± κn). (2.7)

The form factors are Lorentz-invariant functions and can be analyzed independently of

any reference frame. Their space-time interpretation, however, requires choosing a specific

reference frame. In the context of the light-front or partonic description of nucleon structure

it is natural to represent the form factors as the Fourier transform of certain 2-dimensional

spatial densities. Choosing a frame such that the spacelike momentum transfer lies is in

the xy (or transverse) plane,

∆µ ≡ (∆0,∆x,∆y,∆z) = (0,∆T , 0), ∆T = (∆x,∆y), t = −∆2
T (2.8)

and defining a conjugate coordinate variable as2

b ≡ (bx, by) (2.9)

one writes [12, 13]

F1,2(t = −∆2
T ) =

∫
d2b ei∆T b ρ1,2(b). (2.10)

The functions ρ1,2(b) are called the transverse charge and anomalous magnetization den-

sity (or simply “magnetization density,” for short); their precise physical meaning will be

elaborated in the following. Their names refer to the obvious property that the spatial

1In ref. [26] we considered the difference of proton and neutron form factors without a factor 1/2. In

the present article we follow the standard convention for the isoscalar and isovector form factors with the

factor 1/2.
2Because the vector b is defined only in transverse space and does not appear as the transverse component

of a 4-vector, we omit the usual label T denoting transverse vectors.
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integral of the densities, i.e., the Fourier integral eq. (2.10) at ∆T = 0, returns the form

factors at t = 0, and thus the total charge and anomalous magnetic moment of the nucleon,

∫
d2b ρS,V1 (b) = 1

2 , (2.11)

∫
d2b ρS,V2 (b) = 1

2(κp ± κn). (2.12)

Because of rotational invariance in the transverse plane, the densities are functions only of

the modulus b ≡ |b|. The transverse densities can be obtained from the form factor as

ρ1,2(b) =

∫
d2∆

(2π)2
e−i∆T b F1,2(t = −∆2

T ) (2.13)

=

∞∫

0

d∆T

2π
∆T J0(∆T b) F1,2(t = −∆2

T ), (2.14)

where ∆T ≡ |∆T |. In the last step we have performed the integral over the angle between

the transverse vectors, and J0 denotes the Bessel function.

The physical interpretation of the 2-dimensional densities refers to the light-front or

partonic picture of nucleon structure and has been extensively discussed in the literature [9–

13, 15]; here we only summarize the main points. In the light-front picture one considers the

evolution of a relativistic system in light-front time x+ ≡ x0 + x3 = x0 + z, as corresponds

to clocks synchronized by a light-wave traveling through the system in the z-direction

(see figure 1a). Particle states such as the nucleon are characterized by their light-cone

momentum p+ ≡ p0 + pz and transverse momentum pT ≡ (px, py), and p− ≡ p0 − pz plays

the role of the energy, with p− = (p2T +M2
N )/p+. One is generally interested in the “plus”

component of the nucleon current, which possesses a simple interpretation in dynamical

models. In a frame where the momentum transfer to the nucleon is in the transverse

direction,

∆± = 0, ∆T = p2T − p1T 6= 0, (2.15)

the matrix element eq. (2.1) takes the form

〈p+,pT2, λ2| J+(x) |p+,pT1, λ1〉 = ū2

[
γ+F1(t) +

σ+i∆i
T

2MN
F2(t)

]
u1 e

−i∆TxT

(t ≡ −∆2
T ), (2.16)

where now the momentum states are normalized as 〈p+2 ,pT2|p+1 ,pT1〉 = 2p+1 (2π)3δ(p+2 −p+1 )
δ(2)(pT2 − pT1). The polarization states of the initial and final nucleon can be defined in

several ways and are usually chosen as helicity eigenstates, with λ1,2 = ± denoting the

helicities. An explicit representation of the corresponding 4-spinors can be obtained by

applying a Lorentz boost to rest-frame spinors polarized in the z-direction and is given by

u1 ≡ u(p+,p1T , λ1) =

√
2√
p+

(
p+ + γ0MN + γ0γTp1T

) γ−γ+
4

(
χ(λ1)

0

)
, (2.17)
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x+ x0 x3= + = const.

z

..
. .

..
..

.

(a)

z

x

y
(b)

1,2
ρ

b

(b)

Figure 1. (a) Light-front view of a relativistic system. (b) Transverse densities in the nucleon.

The function ρ1(b) describes the spin-independent part of the expectation value of the J+ current in

a nucleon state localized at the transverse origin, eq. (2.25); the function (2MN )−1 (bx/b) ∂ρ2(b)/∂b

the spin-dependent part in a nucleon polarized in the positive y-direction, eq. (2.29).

and similarly for u2 [6].3 Here χ(λ = ±) are rest frame 2-spinors for polarization in

the positive and negative z-direction. The transition matrix element then falls into two

structures, a “spin-independent” one proportional to

δ(λ2, λ1) = χ†(λ2)χ(λ1), (2.18)

which contains the Dirac form factor, and a “spin-dependent” one proportional to the

vector

S(λ2, λ1) ≡ χ†(λ2)(12σ)χ(λ1), (2.19)

which contains the Pauli form factor.

To describe the transverse spatial structure of the nucleon one defines nucleon states in

the transverse coordinate representation [10, 11], corresponding to nucleons with a trans-

verse center-of-momentum localized at given points x1T and x2T , as
4

|x1T 〉 ≡
∫
d2p1T
(2π)2

e−ip1Tx1T |p1T 〉, (2.20)

〈x2T | ≡
∫
d2p2T
(2π)2

eip2Tx2T 〈p2T |, (2.21)

which are normalized such that 〈x2T |x1T 〉 = δ(2)(x2T −x1T ). We now consider the matrix

element of the current at light-front time x+ = 0 and position x− = 0, and a transverse

3The 4-spinors given by eq. (2.17) coincide with those of the Lepage-Brodsky convention as summarized

in appendix B of ref. [8].
4The proper mathematical definition of the transversely localized nucleon states uses wave packets of

finite width and takes the limit of zero width at the end of the calculation. The simplified derivation

presented here, using states “normalized to a delta function,” is legitimate as long as one keeps xT2 6= xT1

until the end of the calculation.
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position xT , between such transversely localized nucleon states with (arbitrary) longitu-

dinal momentum p+. Using eqs. (2.16) and (2.17) it is straightforward to show that the

spin-independent part of the matrix element of J+ is given by

〈p+,x2T , λ2| J+(x± = 0,xT ) |p+,x1T , λ1〉spin-indep.

= [2p+ δ(2)(x2T − x1T )] δ(λ2, λ1)

∫
d2∆

(2π)2
e−i∆T (xT−x1T ) F1(−∆2

T ) (2.22)

= [. . .] δ(λ2, λ1) ρ1(xT − x1T ). (2.23)

The factor in brackets results from the normalization of the nucleon states. One sees that

the function ρ1(b) of eq. (2.10) describes the spin-independent part of the current in the

nucleon, with

b ≡ xT − x1T (2.24)

defined as the displacement from the transverse center-of-momentum of the nucleon. In

short, for a nucleon localized at the origin, x1T = 0, the spin-independent current at

transverse position xT = b is (see figure 1b)

〈J+(b)〉spin-indep. = ρ1(b). (2.25)

Likewise, the spin-dependent part of the matrix element of J+ is given by

〈p+,x2T , λ2| J+(x± = 0,xT ) |p+,x1T , λ1〉spin-dep.

= [. . .] (−i)
∫

d2∆

(2π)2
e−i∆T (xT−x1T ) S(λ2, λ1)

MN
· (ez ×∆T ) F2(−∆2

T ) (2.26)

= [. . .]
S(λ2, λ1)

MN
·
(
ez ×

∂

∂xT

)
ρ2(xT − x1T ), (2.27)

where S(λ2, λ1) is the spin vector of the transition defined in eq. (2.19), and ez the unit

vector in the z-direction. Thus, the “crossed” gradient of the function ρ2(b) of eq. (2.10)

describes the spin-dependent current measured by an observer at a displacement b from

the center-of-momentum of the nucleon. In eq. (2.27) the nucleon polarization states are

characterized by the z-component of the spin in the rest frame, λ1,2, cf. eq. (2.17). If

instead we prepared initial and final nucleon state with definite spin in the y-direction and

the same projection for both, the spin vector in eq. (2.27) would be replaced by

S(λ2, λ1) → Syey (nucleon polarized in y-direction), (2.28)

where Sy = ±1/2 is the spin projection on the y-axis. For a nucleon localized at the origin

and polarized in the y-direction, the spin-dependent current at a transverse position b is

thus (see figure 1b)

〈J+(b)〉spin-dep. = (2Sy)
∂

∂bx

[
ρ2(b)

2MN

]
= (2Sy)

bx

b

∂

∂b

[
ρ2(b)

2MN

]

= (2Sy) cosφ ρ̃2(b), (2.29)
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where cosφ ≡ bx/b is the cosine of the azimuthal angle and

ρ̃2(b) ≡ ∂

∂b

[
ρ2(b)

2MN

]
. (2.30)

Now the term “spin-dependent” can be understood to mean that part of the current which

changes sign when the transverse nucleon polarization is reversed. We shall refer to the

function ρ̃2 as the “spin-dependent current density,” keeping in mind that the actual spin-

dependent current matrix element involves also the polarization (2Sy) and the geometric

factor cosφ. Note that for a given spin orientation the spin-dependent current changes

sign between positive (“right,” when looking at the nucleon from z = +∞) and negative

(“left”) values of bx, as would be the case for a convection current due to rotational motion

around the y-axis. Finally, the total current in a nucleon polarized in the y-direction is

then, in the same short-hand notation as used above,

〈J+(b)〉 = 〈J+(b)〉spin-indep. + 〈J+(b)〉spin-dep. (2.31)

= ρ1(b) + (2Sy) cosφ ρ̃2(b). (2.32)

This expression, together with eq. (2.30), concisely summarizes the physical significance of

the transverse densities introduced as the 2-dimensional Fourier transforms of the invariant

form factors, eq. (2.10). We shall use it to develop a simple mechanical interpretation of

the chiral component of the transverse densities below (see section 3.4). Note that our

discussion of the coordinate-space interpretation of the nucleon form factors F1 and F2,

particularly the spin dependence, closely follows that of the more general GPDs H and

E in ref. [11], and that eq. (2.32) could be obtained by integrating the corresponding b-

dependent parton densities (quarks minus antiquarks, multiplied by the quark charge and

summed over quark flavors) over the parton light-cone momentum fraction.

The light-front interpretation of the nucleon current matrix elements described here

assumes only that the momentum transfer to the nucleon is in the transverse direction,

∆± = 0 and ∆T 6= 0, but does not depend on the value of the nucleon’s longitudinal

momentum p+. As such it is valid for any p+, including the rest frame where p+ =MN . In

section 3.4 we shall use the rest frame to obtain a simple interpretation of the relative order-

of-magnitude of the chiral components of the charge and magnetization densities. Alterna-

tively, one may consider the limit p+ → ∞, where the description sketched here coincides

with the conventional parton picture of nucleon structure (“infinite-momentum frame”).

In the present study we refer to the light-front representation of the transverse densities

only for their interpretation; the actual calculations of the chiral component are carried

out at the level the invariant form factors, without specifying a reference frame. For this

purpose we may think of the transverse densities defined by eq. (2.10) as just a partic-

ular functional transform of the invariant form factors, i.e., an equivalent mathematical

representation of the information contained in these functions. We shall return to the

light-front picture only at the end, when interpreting the results of our calculation. The

power of transverse densities is precisely that they connect the invariant form factors with

the light-front picture of nucleon structure and can be accessed from both sides.

– 13 –
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In dynamical models where the nucleon has a composite structure, the transverse

densities eq. (2.10) can be represented as overlap integrals of the frame-independent light-

cone wave functions of the system. With the momentum transfer chosen such that ∆± = 0

and ∆T 6= 0 the current cannot produce particles but simply “counts” the charge and

current of the constituents in the various configuration of the wave functions. It is possible

to compute the chiral component of transverse densities directly in this formulation, using

light-front time-ordered perturbation theory; this approach will be explored in a subsequent

article [39].

2.2 Dispersion representation

Much insight into the behavior of the transverse densities can be gained by making use of

the analytic properties of the nucleon form factors as functions of the invariant momentum

transfer. The form factors F1,2(t) are analytic functions of t, with singularities (branch

cuts, poles) on the positive real axis. They correspond to processes in which a current with

timelike momentum converts to a hadronic state coupling to the nucleon, which may occur

below the physical threshold for nucleon-antinucleon (NN̄) pair production. The principal

cut in the physical sheet of the form factor starts at the squared mass of the lowest hadronic

state, the two-pion state, t = 4M2
π , and runs to t = +∞. Assuming that the form factors

vanish at |t| → ∞, as expected from the power behavior implied by perturbative QCD

(with logarithmic modifications) and supported by present experimental data, the form

factors satisfy an unsubtracted dispersion relation,

F1,2(t) =

∞∫

4M2
π

dt′

t′ − t

ImF1,2(t
′ + i0)

π
. (2.33)

It expresses the form factors as integrals over their imaginary parts on the principal cut,

also known as the spectral functions. In the region below the NN̄ threshold, t′ < 4M2
N ,

which dominates the integral eq. (2.33) at all values of t of interest, the spectral function

cannot be measured directly in conversion experiments and can only be calculated using

theoretical methods (dispersion theory, chiral EFT) or determined empirically from fits to

form factor data [35, 47]. Even so, this representation of the form factor turns out to be

extremely useful for the theoretical analysis of transverse densities. Substituting eq. (2.33)

in eq. (2.13) and carrying out the Fourier integral, one obtains a dispersion (or spectral)

representation of the transverse densities of the form [26]

ρ1,2(b) =

∞∫

4M2
π

dt

2π
K0(

√
tb)

ImF1,2(t+ i0)

π
, (2.34)

where K0 denotes the modified Bessel function and we have dropped the prime on the

integration variable t. This representation has several interesting mathematical properties.

Because of the exponential decay of the modified Bessel function at large arguments,

K0(
√
tb) ∼

√
π

2

e−
√
tb

(
√
tb)1/2

(
√
tb≫ 1), (2.35)
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the dispersion integral for the density converges exponentially at large t, in contrast to

the power-like convergence of the original integral for the form factor, eq. (2.33).5 Equa-

tion (2.34) thus corresponds to integrating over the spectral function with an exponential

filter of width 1/b applied to the energy
√
t. Significant numerical suppression happens

already inside the range
√
t . 1/b and determines the absolute magnitude of the resulting

density; the important point is that the contribution from larger energies in the integral

are relatively suppressed compared to those inside the range with exponential strength

(see refs. [50, 51] for a detailed discussion). In this sense the transverse distance b acts as

an external parameter that allows one to “select” energies in the range
√
t . 1/b in the

spectral functions of the form factors.

The spectral representation eq. (2.34) is particularly suited to the study of the asymp-

totic behavior of the transverse densities at large distances. A given singularity (pole or

branch point) in the form factors at a squared mass t = µ2, contributing to the imaginary

parts ImF1,2(t+ i0), produces densities which asymptotically decay as

ρ1,2(b)singularity at µ2 ∼ P1,2(b) e
−µb (b→ ∞), (2.36)

where P1,2 are functions with power-like asymptotic behavior.6 The rate of exponential

decay is governed by the position of the singularity alone; the pre-exponential factor P1,2

depends on the strength of the singularity and the variation of the spectral functions over

the relevant range of integration (which may involve other mass scales besides µ) and has

to be determined by detailed calculation. Equation (2.36) expresses the traditional notion

of the range of an “exchange mechanism” in the spatial representation of nucleon structure

through transverse densities.

Here we are interested in the transverse densities in the chiral periphery, at distances

of the order b ∼M−1
π . In the context of the spectral representation eq. (2.34) the densities

at such distances are determined by the behavior of the spectral function near the two-pion

threshold, t = 4M2
π ; more precisely, at masses

t− 4M2
π ∼ fewM2

π . (2.37)

Physically, this corresponds to chiral processes in which the current operator couples to

the nucleon by exchange of two “soft” pions, with momenta |k1,2| ∼ fewMπ in the nucleon

rest frame (details will be given below). The two-pion cut in the nucleon form factor has

isovector quantum numbers and contributes with different sign to the proton and neutron.

5Use of a subtracted dispersion relation in eq. (2.13) would lead to an expression for ρ1,2(b) which

differs from eq. (2.34) only by a term ∝ δ(2)(b). Subtractions therefore have no influence on the dispersion

representation of the transverse density at finite b. In this sense the dispersion representation eq. (2.34) is

similar to the Borel transform used to eliminate polynomial terms in QCD sum rules [48, 49].
6For a pole singularity ImF1,2(t + i0) ∝ δ(t − µ2) the stated behavior follows immediately from the

asymptotic form of the modified Bessel function, eq. (2.35), in the dispersion integral eq. (2.34). For a

branch point singularity of the form ImF1,2(t+ i0) ∝ (t−µ2)νΘ(t−µ2), where Θ denotes the step function

and ν > −1 controls the threshold behavior, one rewrites the dispersion integral with eq. (2.35) as an integral

over the variable
√
t− µ and pulls out the overall exponential factor e−µb. The asymptotic behavior of the

remaining integral, defining the factor P1,2(b), can then be shown to be ∼ (µb)−ν−3/2 [26].
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In our theoretical analysis we therefore focus on the isovector combination of the form

factors and the transverse densities,

ρV (b) ≡ 1
2 [ρ

p(b)− ρn(b)]. (2.38)

In the isoscalar density the chiral contribution starts with three-pion exchange and is

numerically irrelevant at all distances of interest (see refs. [50] for a phenomenological

analysis).

The spectral representation of eq. (2.34) offers many practical advantages for the study

of the chiral component of the transverse densities. First, it relates the chiral component

to the isovector spectral function near threshold, which possesses a rich structure (see

section 2.3) that expresses itself in the densities and can be exhibited in this way. The cal-

culation of the spectral function in chiral EFT is particularly simple and can be performed

very efficiently using t-channel cutting rules. The chiral and heavy-baryon expansions of

the spectral functions have been studied extensively in the literature [23, 29–32], and these

results can directly be imported into the study of transverse densities. Second, the spectral

representation allows us to combine chiral and non-chiral contributions to the transverse

densities in a consistent manner. The latter arise from higher-mass states in the spectral

functions, particularly the ρ meson in the isovector channel. The total spectral function

can be constructed such that the chiral EFT result is used only in the near-threshold region

t − 4M2
π ∼ few M2

π , where the chiral expansion is manifestly valid, and the higher-mass

region is parametrized empirically. In this way the chiral and non-chiral components can

be added without double-counting and compared quantitatively as functions of b.

In the following we use the the spectral representation eq. (2.34) as a tool to calculate

the chiral component of the transverse densities in chiral EFT. It is worth noting that

this representation has many applications beyond this specific purpose. It can be used

to quantify the vector meson contribution in the nucleon’s transverse densities [50], and

to construct the transverse charge density in the pion from precise data of the timelike

form factor obtained in e+e− annihilation experiments [51]. It can also be extended to

other nucleon form factors and corresponding densities, such as the form factors of the

energy-momentum tensor and the “generalized form factors” defined by the moments of

the nucleon GPDs.

2.3 Spectral functions near threshold

The isovector transverse densities in the chiral periphery are determined by the spectral

functions of the nucleon form factors in the vicinity of the two-pion threshold at t =

4M2
π . Before turning to the chiral EFT calculations it is worth reviewing the analytic

structure of the form factor near threshold as it follows from general considerations [33–

35]. In particular, this explains the nature of the subthreshold singularity at t = 4M2
π −

M4
π/M

2
N , which defines the parametric regimes in the analysis of the transverse densities

and determines the convergence of the chiral expansion.

The spectral functions at t = 4M2
π +fewM2

π result from virtual processes in which the

current couples to the nucleon by conversion to a two-pion state of mass
√
t (see figure 2a).
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24
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(b)

Figure 2. (a) Virtual processes generating the two-pion cut in the nucleon form factor. The triangle

denotes the timelike pion form factor, the rectangle the full πN scattering amplitude in the region

t > 4M2
π . (b) Analytic structure of the nucleon form factor in the vicinity of the two-pion threshold

t = 4M2
π . The cross denotes the subthreshold singularity on the unphysical sheet, resulting from

the intermediate nucleon pole in the πN amplitude in the virtual process [see drawing (a)].

The coupling of this system to the nucleon is described by the πN scattering amplitude,

which at t < 0 can be determined in πN scattering experiments but is evaluated here in the

region t > 0. The analytic structure of the πN scattering amplitude implies the existence of

certain singularities on the unphysical sheet of the nucleon form factor, below the principal

cut starting at t = 4M2
π (see figure 2b). They occur because for certain values of t the

invariant mass of the s-channel intermediate state of the πN scattering process can reach

the value of physical baryon masses (specifically, the N and ∆), where the πN scattering

amplitude has a pole. This can be seen most easily in the center-of-mass (or CM) frame of

the t-channel process of production of the two-pion system by the electromagnetic current.

Let p1,2 be the 4-momenta of the initial and final nucleon, and k1,2 those of the two pions.

Introducing the average nucleon and pion 4-momenta and their difference,

P ≡ 1
2(p1 + p2), k ≡ 1

2(k1 + k2), ∆ ≡ p2 − p1 = k2 − k1, (2.39)

we express the individual 4-momenta as p1,2 = P ∓ ∆/2 and k1,2 = k ∓ ∆/2. The mass

shell conditions for the initial and final nucleon 4-momenta imply

P∆ = 0, (2.40)

P 2 = M2
N − t/4, (2.41)

where t = ∆2. The spectral function corresponds to the process of figure 2a with on-shell

external nucleons but values of t > 4M2
π , for which the current can produce a two-pion

state. In this state also the pion 4-momenta are on mass-shell, and in addition to eq. (2.40)

and (2.41) one has the relations

k∆ = 0, (2.42)

k2 = M2
π − t/4. (2.43)
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The t-channel CM frame is defined as the frame in which the 4-momentum of the current,

which is the total 4-momentum of the pion pair, has components

∆µ = (
√
t, 0, 0, 0), (2.44)

where t > 0. Because of eq. (2.40) the average nucleon momentum P in this frame has

only spatial components, and we choose it to point in the z-direction,

Pµ = (0, 0, 0, P z) , (2.45)

where the component P z is determined by eq. (2.41) as

P z =





√
t/4−M2

N =
√
−P 2 t > 4M2

N ,

i
√
M2

N − t/4 = i
√
P 2 t < 4M2

N .
(2.46)

In the near-threshold region t = 4M2
π + fewM2

π we need to use the lower expression, where

the value of P z is imaginary. Note that the sign of the imaginary part of P z in the region

t < 4M2
N follows from the analytic continuation of the expression for t > 4M2

N with the

prescription t → t + i0. In sum, the choice of 4-vectors eqs. (2.44)–(2.46) satisfies the

invariant constraints eqs. (2.40)–(2.41) for any value of t > 0.

Further in the CM frame, eq. (2.42) requires that the average pion 4-momentum k

have components

kµ = (0,k) , (2.47)

and the modulus of the 3-momentum is determined by eq. (2.43) as

|k| =
√
t/4−M2

π ≡ kcm (2.48)

and referred to as the pion CM momentum. Here we assume that t > 4M2
π ; the values of

kcm below threshold are obtained by analytic continuation with t → t + i0. Denoting the

polar angle of the pion momentum by θ, we have

kz = kcm cos θ, kP = −ikcm
√
P 2 cos θ. (2.49)

The two-pion contribution to the spectral functions of the electromagnetic form factors at

t > 4M2
π is now given by the product of the invariant amplitudes for the current → ππ

and the ππ → NN̄ transitions, integrated over the solid angle of the pion CM momentum

k (figure 2a). Because of t-channel angular momentum conservation, the integral over the

solid angle projects the ππ → NN̄ amplitude on the J = 1 partial wave (P wave). The

well-known result is [33–35]

1

π
ImF1,2(t) =

k3cm
π
√
t
F ∗
π (t) Γ1,2(t), (2.50)

where F ∗
π (t) is the (complex-conjugate) pion form factor and Γ1,2(t) the ππ → NN̄ partial

wave amplitude [52].
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Equation (2.50) describes the spectral functions of the form factors, which are real

functions defined in the physical region of the t-channel process, t > 4M2
π . The behavior

of the complex form factors themselves can be studied in a very similar manner, by in-

terpreting eq. (2.50) as the discontinuities of complex functions which can be analytically

continued. The net result is that the singularities of the ππ → NN̄ partial-wave ampli-

tude are “transmitted” to the form factors [33–35]. Specifically, at a given value of t and

cos θ, the squared invariant mass of the s-channel intermediate state in the πN invariant

amplitude is (see figure 2a)

s ≡ (p1 − k1)
2 = (p2 − k2)

2 = (k − P )2

= −k2cm − t/4 + 2ikcm
√
P 2 cos θ +M2

N . (2.51)

The πN invariant amplitude has singularities at the values of s corresponding to physical

intermediate states; in particular the nucleon pole at s = M2
N . Upon integration over

cos θ, it produces branch cut singularities in the partial wave amplitudes Γ1,2(t) on the

unphysical sheet of t. The start of the cut (the position of the branch point) coincides

with the end points of the angular integration and is thus determined by the condition

s(t, cos θ = ±1) =M2
N , or

− k2cm − t/4 = ±2ikcm
√
P 2. (2.52)

Taking the square of both sides, and substituting the expressions eqs. (2.41) and (2.48) for

P 2 and kcm, this becomes

(t/2−M2
π)

2 = −(t− 4M2
π)(M

2
N − t/4), (2.53)

the solution of which is

t = 4M2
π − M4

π

M2
N

≡ tsub. (2.54)

In sum, the form factors as analytic functions of t have a branch cut on the unphysical

sheet, starting at the value given by eq. (2.54), which corresponds to the intermediate

nucleon state in the πN scattering amplitude going on mass shell (see figure 2b) [33–35].

The presence of this subthreshold singularity can be established on general grounds; it can

also be seen explicitly in the relativistic chiral EFT results quoted below.

A point of great importance is that the distance of the subthreshold singularity from

the threshold is small on the scale of M2
π :

tsub − 4M2
π = ǫ2M2

π , (2.55)

where

ǫ ≡ Mπ

MN
. (2.56)

The ratio ǫ is a small parameter in both the chiral and the heavy-baryon limit. The

spectral functions of the isovector form factors thus exhibit structure on two different

scales. Looking at them on the “coarse” scale, t = O(M2
π), one sees them rising from the

threshold at t = 4M2
π and varying on average with a characteristic scale ∼M2

π . Looking at
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the functions near threshold on the “fine” scale, t− 4M2
π = O(ǫ2M2

π), one sees a variation

with characteristic scale ǫ2M2
π , caused by the closeness of the subthreshold singularity.

The presence of a singularity close to the physical threshold affects the convergence

of the chiral expansion of the spectral function near threshold [29–32]. For instance, one

immediately sees that a naive expansion of ImF1,2(t) in powers of the pion CM momentum

kcm would converge only in the parametrically small region t − 4M2
π < ǫ2, or kcm < ǫ/2,

and thus produce unnaturally large expansion coefficients growing like inverse powers of

ǫ. This situation generally requires the use of different expansion schemes in different

parametric regions of t; uniform approximations can be obtained by matching the different

expansions [30].

The nucleon pole in the πN scattering amplitude is special in that it produces a

subthreshold singularity extremely close to the threshold, which strongly influences the

behavior of the spectral function above threshold. Higher mass πN resonances give rise to

further subthreshold singularities of the form factor, which, however, lie farther away from

threshold. Below we consider the ∆ isobar at M∆ = 1.23GeV, which couples strongly to

the πN channel and becomes degenerate with the N in the large-Nc limit of QCD. For

this state the pole condition s =M2
∆ becomes [cf. eq. (2.52)]

− k2cm − t/4−M2
∆ +M2

N = ±2ikcm
√
P 2, (2.57)

whose solution is

t = 4M2
π − (M2

∆ −M2
N +M2

π)
2

M2
∆

≡ tsub,∆ (2.58)

[the expression reduces to eq. (2.54) if one sets M∆ =MN ]. One sees that this subthresh-

old singularity is removed from threshold by a distance in t that does not tend to zero in

the chiral limit Mπ → 0. Numerically, with the physical π,N and ∆ masses, the distance

from threshold is 0.022M2
π for the N and 0.43M2

π (or 20 times larger) for the ∆ singu-

larity, showing clearly the qualitative difference between the N pole and higher-mass πN

resonances.

2.4 Parametric regions of transverse distance

In the context of our dispersion analysis of transverse densities, the “two-scale” struc-

ture of the spectral function near threshold defines the parametric regions of the transverse

distance b at which we aim to compute the densities. Again, it is useful to establish this con-

nection on general grounds, before turning to the actual chiral expansion of the functions.

In the dispersion integral eq. (2.34) the distance b effectively controls the region of t-

channel masses over which the spectral function is integrated. To make this more explicit,

we substitute the asymptotic expression eq. (2.35) for the modified Bessel function; the

differences between the exact function and the asymptotic approximation are not important

for the parametric estimates made here. We obtain

ρ1,2(b) = e−2Mπb

∞∫

4M2
π

dt
e−(

√
t−2Mπ)b

(8π
√
tb)1/2

ImF1,2(t+ i0)

π
. (2.59)
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We have extracted the exponential factor exp(−2Mπb) from the integral, so that the re-

maining integral represents the pre-exponential factor P1,2(b) in the general asymptotic

form eq. (2.36). In eq. (2.59) the exponential function under the integral restricts the

integration to masses
√
t for which

(
√
t− 2Mπ)b = O(1). (2.60)

We can therefore distinguish two parametric regions in b.

(a) In the region

b = O(M−1
π ) (“chiral distances”) (2.61)

the integral of eq. (2.59) extends over masses in the region

√
t− 2Mπ = O(Mπ), or t− 4M2

π = O(M2
π), (2.62)

with no additional restriction to values near threshold. The t-channel pion CM

momenta are of the order

kcm = O(Mπ), (2.63)

which is the domain usually associated with chiral dynamics.

(b) In the region

b = O(ǫ−2M−1
π ) = O(M2

N/M
3
π) (“molecular distances”) (2.64)

[ǫ =Mπ/MN , cf. eq. (2.56)] the integral over masses is restricted to the near-threshold

region √
t− 2Mπ = O(ǫ2Mπ), or t− 4M2

π = O(ǫ2M2
π). (2.65)

The distance of t from threshold is comparable to that of the subthreshold singularity

from threshold, eq. (2.55), so that the behavior of the spectral function is essentially

influenced by the subthreshold singularity. The pion CM momenta are now of the

order

kcm = O(ǫMπ), (2.66)

corresponding to the t-channel system moving non-relativistically with velocity v =

kcm/Mπ = O(ǫ).

We refer to the parametric domain of eq. (2.64) as the molecular region, as the typical

transverse distances between the pion and the initial/final nucleon are much larger than

the Compton wavelength of the pion. At the physical pion and nucleon mass ǫ ≈ 1/7, so

that such distances can numerically be as large as 102 fm. Since the densities decay with an

overall exponential factor of exp(−2Mπb), they are extremely small at such large distances.

The molecular region of the nucleon’s transverse densities is therefore mostly of theoretical

interest. However, the existence of this regime in coordinate space affects the magnitude of

higher b2-weighted moments of the densities, which are proportional to higher derivatives

of the form factors at t = 0, and thus may in principle have observable consequences.
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The parametric classification of distances, eqs. (2.61) and eqs. (2.64), can be established

on general grounds, starting from the scales governing the behavior of the spectral function.

In section 3.3 we show that the invariant chiral EFT result bears out this general structure

and perform the heavy-mass expansion of the densities in the different parametric regions.

We note that the existence of a regime of anomalously large distances ∼ M2
N/M

3
π is not

specific to the isovector transverse charge and magnetization densities but common to all

nucleon observables governed by t-channel exchange of two pions, which are sensitive to

the subthreshold singularities of the πN scattering amplitude. A similar phenomenon has

been observed in the two-pion exchange contribution to the low-energy NN interaction,

where it can be expressed in terms of the large-distance behavior of the 3-dimensional NN

potential [36, 37]; see ref. [38] for a review.

3 Peripheral densities from chiral dynamics

3.1 Two-pion spectral functions

We now want to calculate the chiral component of the transverse densities in the nucleon

within the framework laid out in section 1. We use the leading-order chiral EFT results

for the spectral functions of the form factors to compute the peripheral densities from the

dispersion integral eq. (2.59) and study their properties in the parametric regions identified

in section 2.4. In view of the essential role of analyticity we employ the relativistic formu-

lation of chiral EFT with baryons, which generates amplitudes with the correct analytic

structure in the form of Feynman diagrams with relativistic propagators; the heavy-baryon

limit will be investigated by expanding the explicit expressions obtained in the relativi-

stic formulation.

The spectral functions of the nucleon form factors have been studied extensively both in

the relativistic and the heavy-baryon formulations of chiral EFT [23, 29–32] (see e.g. ref. [32]

for a discussion of the literature), and we can use these results for our purposes. For several

reasons it will be useful to revisit the leading-order relativistic calculation and summarize

the essential steps here. First, the spectral functions can be computed very efficiently using

t-channel cutting rules; this method can easily be extended to ∆ intermediate states (see

section 4) and to form factors of other operators (energy-momentum tensor, GPDmoments)

that will be calculated in a future study. Second, we need the explicit expressions of the

Feynman integrals for the partonic interpretation of our results and future comparison with

the light-front approach. In particular, the physical origin of the contact term in the chiral

EFT result for the spectral function of F1 is best understood at the level of the original

Feynman integrals and was not discussed in this form before. Third, we present a very

compact representation of the leading-order chiral EFT results that can easily be used for

numerical analysis.

In the relativistic formulation of chiral EFT with nucleons [30] the leading-order chiral

Lagrangian is given by L(1)
χ = L(1)

N + L(1)
π , where L(1)

π is the usual chiral Lagrangian of the

pion field, while L(1)
N describes the dynamics of the nucleon field and its coupling to the
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p1

k2 k1

∆

p2

k2 k1

∆

p2 p1l

(a) (b)

Figure 3. The Feynman diagrams describing the leading-order chiral contributions to the two-pion

cut of the isovector nucleon form factor. The dotted line indicates the Cutkosky cut.

pion and is of the form

L(1)
N = ψ̄[i(∂̂ + Γ̂)−MN ]ψ + 1

2gAψ̄ûγ5ψ , (3.1)

Γµ ≡ 1
2 [U

−1/2, ∂µ(U
1/2)], (3.2)

uµ ≡ i U−1/2 (∂µU)U−1/2, (3.3)

U ≡ exp[iπ · τ/Fπ], U±1/2 = exp[±iπ · τ/(2Fπ)], (3.4)

where ∂̂ ≡ ∂µγ
µ etc. Here ψ is the Dirac field of the nucleon, and πa(a = 1, 2, 3) the chiral

pion field. In eq. (3.1) gA denotes the nucleon axial vector coupling and Fπ the pion decay

constant; at leading order these parameters are taken at their physical (tree-level) values

gA = 1.26 and Fπ = 93MeV. In the calculation of the leading-order isovector spectral

functions one needs the pion-nucleon coupling to second order in the pion field. Expanding

eq. (3.1) in powers of the pion field one obtains

L(1)
N = ψ̄(i∂̂ −MN )ψ − gA

2Fπ
ψ̄γµγ5τ

aψ ∂µπ
a − 1

4F 2
π

ψ̄γµτ
aψ ǫabcπb∂µπ

c. (3.5)

The second term on the right-hand side of eq. (3.5) describes a Yukawa-type πNN coupling

(three-point vertex). We note that the axial vector coupling used here is equivalent to the

conventional pseudoscalar πNN coupling for on-shell nucleons; namely

− gA
2Fπ

ū2i∆̂γ5τ
au1 =

gAMN

Fπ
ū2iγ5τ

au1 ≡ gπNN ū2iγ5τ
au1 (3.6)

between nucleon spinors u1 ≡ u(p1) and ū2 ≡ ū(p2) with ∆ = p2−p1. The identification of

the pseudoscalar coupling constant of eq. (3.6) is precisely the Goldberger-Treiman relation

for the nucleon’s axial current matrix element. The third term in eq. (3.5) describes a local

ππNN coupling (four-point vertex). Its appearance is due to the specific representation of

the nucleon fields adopted in eq. (3.1), and the coupling constant is fixed by chiral symmetry

and does not involve any free parameter. The vertex couples the isovector-vector current

of the nucleon field to that of the pion field.

The calculation of the spectral functions starts from the matrix element of the electro-

magnetic current between nucleon states. In general the electromagnetic current operator

of the effective chiral theory consists of the currents of the pion and nucleon fields and con-

tributions resulting from their pointlike interactions. We are interested only in the spectral
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functions of the isovector form factors in the region t = 4M2
π + few M2

π , which results

from processes in which the current couples to the nucleon through two-pion exchange. In

leading order these are given by the two Feynman diagrams of figure 3, where the current

is the leading-order isovector current of the pion field,

Jµ, (1)
π = ǫ3abπa∂µπb. (3.7)

Other diagrams appearing at the same order only contribute to the two-nucleon cut of the

spectral function [which gives a short-distance contribution to the density at b = O(M−1
N )]

or modify the real part of the nucleon vertex function current, but do not contribute

to the two-pion cut; this simplification is a major advantage of the dispersive approach.

The contributions to the isovector current matrix element resulting from the diagrams of

figure 3 can be computed using standard rules of Lorentz-invariant perturbation theory,

and one obtains

〈N2| Jµ(0) |N1〉ππ cut

=
ig2A
F 2
π

∫
d4k

(2π)4
[ū2k̂2γ5(l̂ +MN )k̂1γ5u1] k

µ

(k21 −M2
π + i0)(k22 −M2

π + i0)(l2 −M2
N + i0)

(3.8)

+
i

F 2
π

∫
d4k

(2π)4
(ū2k̂u1) k

µ

(k21 −M2
π + i0)(k22 −M2

π + i0)
. (3.9)

The label “ππ cut” indicates that we retain only the diagrams contributing to the two-pion

cut. The first integral, eq. (3.8), results from diagram figure 3a with the πNN three-point

vertex; the second, eq. (3.9), from diagram figure 3b with the ππNN four-point vertex (or

contact term). In both diagrams the pion 4-momenta are decomposed as

k1,2 = k ∓∆/2, (3.10)

and the average momentum k was chosen as integration variable. In eq. (3.9) we have

dropped terms in the integrand which integrate to zero because of the symmetry of the

integrand with respect to reflections k → −k. In eq. (3.8)

l ≡ p1 − k1 = p2 − k2 = P − k (3.11)

is the 4-momentum of the intermediate nucleon, with P = (p1 + p2)/2 the average nucleon

momentum. The expression of this diagram can be simplified further. Namely, the integral

in eq. (3.8) contains a term in which the pole of the intermediate nucleon propagator

cancels, and which is of the same structure as the integral of eq. (3.9). Making use of the

anticommutation relations between the gamma matrices and the Dirac equation for the

nucleon spinors, one can rewrite the bilinear form in eq. (3.8) as

ū2k̂2γ5(l̂ +MN )k̂1γ5u1 = ū2

[
−2MN (l2 −M2

N )− (l2 −M2
N )k̂ − 4M2

N k̂
]
u1. (3.12)

The first term in the bracket on the right-hand side integrates to zero because the integrand

is antisymmetric under k → −k, and can be dropped. The second term leads to an integral
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of the same form as eq. (3.9) and can be combined with eq. (3.9), effectively changing the

coefficient of the contact term resulting from diagram figure 3b as

1

F 2
π

→ 1− g2A
F 2
π

. (3.13)

The appearance of the combination 1− g2A here is not accidental but has a deeper physical

meaning, as is explained in section 3.5. The third term in eq. (3.12) represents the genuine

“non-contact” contribution from the diagram figure 3a, corresponding to an intermediate

state with a propagating nucleon.

The tensor integrals in eq. (3.8) and (3.9) can be reduced to scalar integrals with the

help of standard projection formulas. Using the Dirac equation to convert the resulting

bilinear forms ū2 . . . u1 to those of the right-hand side of eq. (2.1), one obtains the chiral

contribution to the isovector Dirac and Pauli form factors in terms of invariant integrals as

F V
1 (t)ππ cut =

4M2
Ng

2
A

F 2
π

I1(t) +
1− g2A
F 2
π

Icont(t), (3.14)

F V
2 (t)ππ cut =

4M2
Ng

2
A

F 2
π

I2(t), (3.15)

where

I1,2 ≡ −i
∫

d4k

(2π)4
N1,2

(k21 −M2
π + i0)(k22 −M2

π + i0)(l2 −M2
N + i0)

, (3.16)

Icont ≡ i

∫
d4k

(2π)4
Ncont

(k21 −M2
π + i0)(k22 −M2

π + i0)
, (3.17)

N1 ≡ 1

P 2

{
− t

8

[
k2 − (k∆)2

∆2

]
+

(
M2

N +
t

8

)
(kP )2

P 2

}
, (3.18)

N2 ≡ −1

2

[
−k2 + 3

(kP )2

P 2
+

(k∆)2

∆2

]
M2

N

P 2
, (3.19)

Ncont ≡
1

3

[
k2 − (k∆)2

∆2

]
. (3.20)

For the spectral functions we need only the imaginary part of the invariant integrals

eqs. (3.17) and eqs. (3.16) above the two-pion threshold t > 4M2
π . The imaginary part

can be computed very efficiently using the t-channel cutting rule given in appendix A. We

go to the t-channel CM frame described in section 2.3, where the external 4-momenta have

components [cf. eqs. (2.44)–(2.46)]

∆µ = (
√
t, 0, 0, 0), Pµ = (0, 0, 0, i

√
P 2). (3.21)

The on-shell constraints eq. (A.5) restrict the integration momentum in this frame to

kµ = (0,k), |k| = kcm, (3.22)
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where kcm is defined in eq. (2.48). It is straightforward to express the invariants in

eqs. (3.17) and (3.16) in terms of these vector components; specifically, the intermediate

nucleon denominator in eq. (3.16) becomes [cf. eq. (2.51)]

l2 −M2
N = −A+ iB cos θ, (3.23)

A ≡ t/2−M2
π , (3.24)

B ≡ 2kcm
√
P 2. (3.25)

Applying eq. (A.10) the imaginary parts then become elementary phase space integrals

over the polar angle of the pion t-channel CM momentum, cos θ. Performing the integrals,

one readily obtains7

1

π
ImF V

1 (t) =
M2

Ng
2
AA

2

(4πFπ)2(P 2)5/2
√
t

[
− t

8
x2 arctanx+

(
M2

N +
t

8

)
(x− arctanx)

]
(3.26)

+
2(1− g2A)k

3
cm

3(4πFπ)2
√
t
, (3.27)

1

π
ImF V

2 (t) =
M4

Ng
2
AA

2

2(4πFπ)2(P 2)5/2
√
t

[
x2 arctanx− 3(x− arctanx)

]
, (3.28)

x ≡ x(t) ≡ B

A
=

2
√
t/4−M2

π

√
M2

N − t/4

t/2−M2
π

(3.29)

[
kcm =

√
t/4−M2

π , P
2 = M2

N − t/4, A = t/2−M2
π , B = 2kcm

√
P 2
]
.

Equations (3.26)–(3.29) represent the leading-order result for the isovector spectral func-

tions of the nucleon’s Dirac and Pauli form factor in relativistic chiral EFT [23, 29, 31, 32]

and are our starting point for the study of the chiral component of the transverse charge and

magnetization densities. Despite their compact form the expressions of eqs. (3.26)–(3.29)

contain very rich structure, which will be exhibited in the following.

The leading-order chiral result for the spectral functions eqs. (3.26)–(3.29) embodies

the general analytic structure of the form factors near threshold described in section 2.3.

First, one sees that the subthreshold singularity eq. (2.54) is encoded in the inverse tangent

function; it has branch point singularities at complex values of the argument

x = ±i, (3.30)

which correspond to the value of t given by eq. (2.54). The presence of these singularities

restricts the power series expansion of the function in x around x = 0 to the region |x| < 1.

Second, we note that the expressions in eqs. (3.26)–(3.29) are not singular at t = 4M2
N ;

the inverse powers of
√
P 2 =

√
M2

N − t/4 appearing in the prefactors are compensated by

7For brevity we omit the infinitesimal imaginary part of the argument t when quoting explicit expressions

of the spectral function and write ImF (t) ≡ ImF (t+ i0). This convention will be applied throughout the

following text and figures.
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Figure 4. Leading-order spectral functions of the nucleon’s isovector Dirac and Pauli form factors,

ImFV
1,2(t)/π, eqs. (3.26)–(3.29). The variable t is given in units ofM2

π . Panel (a) shows the functions

over the entire chiral region t ∼ fewM2
π , panel (b) the behavior in the near-threshold region. Solid

lines: F1, intermediate nucleon part, eq. (3.26). Dotted lines: F1, contact term, eq. (3.27). Dashed

lines: F2, eq. (3.28).

the vanishing of the expressions in the brackets for x → 0. Physically this is obvious, as

the chiral contribution given by diagrams figure 3a and b does not know about the NN̄

production threshold.
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Figure 5. Integrand of the dispersion integral for the isovector transverse charge density, eq. (2.59)

[with the overall exponential factor exp(−2Mπb) extracted], for various values of b.

The numerical results for the chiral spectral functions is shown in figure 4a and b. Panel

(a) shows the functions over the entire chiral region t ∼ fewM2
π , panel (b) the behavior

in the near-threshold region. Several features are worth noting. First, figure 4a shows

that most of the spectral function in the chiral region comes from the intermediate nucleon

part of diagram figure 3a, eq. (3.26); the combined contact term resulting from diagram

figure 3b and the non-propagating part of figure 3a, eq. (3.27), accounts only for < 10% in

the region shown here. Second, at non-exceptional values t ∼ fewM2
π the spectral function

of the Pauli form factor ImF2(t) is several times larger than that of the Dirac form factor

ImF1(t) (see figure 4a). However, at values of t close to threshold the pattern reverses, and

ImF2(t) vanishes faster than ImF1(t) (see figure 4b). Third, in the near-threshold region

both spectral functions show a rapid change of behavior over a range t−4M2
π ≪M2

π . This

can be traced back to the “unnaturally small” scale M4
π/M

2
N present in the distance of the

subthreshold singularity from threshold, eq. (2.55), and will be investigated further in the

context of the heavy-baryon expansion in section 3.3.

3.2 Chiral component of transverse densities

Using the leading-order result for the two-pion spectral functions eqs. (3.26)–(3.29) we

can now calculate the chiral component of the transverse densities with the help of the

dispersion representation eq. (2.34). Before computing the integral we first want study the

numerical distribution of strength in the integrand and how it varies when changing the

distance b. Figure 5 shows the integrand of eq. (2.59), defining the pre-exponential factor

in the charge density ρ1(b), for several values of b in the chiral region b ∼ fewMπ. One

clearly sees the exponential suppression of large masses
√
t. At b = 1M−1

π the integral still

extends over a broad region of t including values up to ∼ 50M2
π ≈ 1GeV2 where the chiral
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expansion can not be trusted. At b = 2M−1
π the region of integration has shrunk to values

. 20M2
π ; at b = 4M−1

π it shrinks further to values . 10M2
π . This shows quantitatively how

the transverse distance b determines the range of masses over which the spectral function

is integrated. Similar distributions are found in the integral for the magnetization density

ρ2. We conclude that the chiral components of the transverse densities can reliably be

calculated starting from b & 2M−1
π ≈ 3 fm. Note that this corresponds to rather large

distances on the hadronic scale.

The chiral components of the isovector charge and magnetization densities obtained

from the dispersion integral are shown in figure 6 as functions of b. Figure 6a shows the full

densities, figure 6b the dependence on b after extracting the exponential factor exp(−2Mπb),

i.e., the pre-exponential factors P1,2(b) in the general asymptotic expression eq. (2.36). One

sees that the densities drop very rapidly with increasing b. The decrease is substantially

faster than the exponential fall-off ∼ exp(−2Mπb) required by the position of the two-

pion threshold (see figure 6b). This behavior is due to the non-trivial structure of the

πN scattering amplitude near threshold, particularly the subthreshold nucleon singularity,

which brings in an additional scale in the form of the distance M4
π/M

2
N , eq. (2.54).

In our numerical study of the chiral periphery here we have used the leading-order

chiral result for the spectral functions as given by eqs. (3.26)–(3.29). It is known that next-

to-leading order corrections increase the magnitude of the spectral functions by . 40% in

the near-threshold region t < 10M2
π [32]. These corrections could easily be incorporated in

our numerical analysis but would not change our overall conclusions. In the following study

of general properties of the large-b densities (heavy-baryon expansion, large-b asymptotics)

we shall continue to use the leading-order approximation, where the spectral functions are

given by the compact expressions eqs. (3.26)–(3.29), and simple analytic formulae for the

densities can be obtained.

3.3 Heavy-baryon expansion

We now consider the heavy-baryon expansion of the chiral component of the nucleon’s

transverse densities. This expansion is interesting from a theoretical point of view, as it

separates the unrelated physical scales of the nucleon and pion mass and simplifies the

interpretation of the expressions. It is also interesting as a practical tool, as it provides us

with analytic approximations to the densities that may be used for numerical evaluation.

In the context of our study of transverse densities we understand the heavy-baryon

limit as the limit MN → ∞ at fixed pion mass Mπ and a fixed value of the cutoff mass

scale. Physically, this corresponds to the situation that the basic range of the chiral fields

carrying charge and magnetization remains fixed, while the source producing them becomes

heavy. We investigate this regime by taking the heavy-baryon limit of the leading-order

relativistic chiral EFT results for the spectral functions and the resulting densities; how the

resulting densities could be reproduced or improved in a suitable variant of heavy-baryon

chiral EFT remains an interesting problem for further study.

The behavior of the spectral function near threshold is dominated by the subthreshold

singularity at a distance M4
π/M

2
N = ǫ2M2

π from the threshold, eq. (2.55). As shown in

section 2.4, this distance defines two parametric regimes in t > 4M2
π , which are sampled in
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Figure 6. Leading-order chiral components of the nucleon’s isovector transverse charge and magne-

tization densities ρV1,2(b), as functions of b. Plot (a) shows the true densities, plot (b) the dependence

on b after extracting the exponential factor exp(−2Mπb) [the functions shown in this plot are the

pre-exponential factors P1,2(b) in the general asymptotic expression eq. (2.36)]. The distance b is

given in units of M−1
π , the densities in units of M2

π .

the dispersion integral for the density in different parametric regions of b. The heavy-baryon

limit corresponds to the situation that the subthreshold singularity approaches the physical

threshold, ǫ→ 0. This clearly has different implications in the different parametric regions

of t (or b), and we have to consider the heavy-baryon limit separately in the two regions.
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Chiral region. In the region of distances b = O(M−1
π ) the dispersion integral extends

over values of t for which t − 4M2
π = O(M2

π), or kcm = O(Mπ). We thus need to carry

out the heavy-mass expansion of the spectral function for such non-exceptional values of t.

The presence of the subthreshold singularity implies that this expansion is non-uniform and

diverges near threshold. In the chiral result eqs. (3.26)–(3.29) the heavy-baryon expansion

in this region of t corresponds to the limit

x =
2kcm

√
P 2

A
=

2
√
t/4−M2

π

√
M2

N − t/4

t/2−M2
π

→ ∞, (3.31)

and we can simplify the expressions by substituting the asymptotic series for the inverse

tangent function,

arctanx =
π

2
− 1

x
+

1

3x3
+O

(
1

x5

)
(x→ ∞). (3.32)

This formally results in a series in inverse powers of MN . However, these are accompanied

by inverse powers of the CM momentum kcm =
√
t/4−M2

π , which vanishes at threshold.

It causes the series to diverge near threshold, as expected. To get approximations to

the densities we perform the expansion up to the last order at which the terms are still

integrable over t in the dispersion integral eq. (2.34), namely terms with inverse powers

k−1
cm. Furthermore, when expanding eqs. (3.26)–(3.29) in inverse powers of MN , we must

also expand the factors
√
P 2 =

√
M2

N − t/4 in powers of t/M2
N and consistently take into

account the factors of t and M2
N in the expressions. In this way we obtain

1

π
ImF V

1 (t) =
g2A

(4πFπ)2
√
t

[
2Akcm − π(2A2 + k2cmt)

4MN
+
A(A2 + 3k2cmt)

2M2
Nkcm

− 3πt(4A2 + k2cmt)

32M3
N

+O

(
M4

π

M4
N

)]

+
2(1− g2A)k

3
cm

3(4πFπ)2
√
t
, (3.33)

1

π
ImF V

2 (t) =
g2A

(4πFπ)2
√
t

[
πMNk

2
cm − 4Akcm +

3π(2A2 + k2cmt)

8MN
− 2A(A2 + 3k2cmt)

3M2
Nkcm

+
15πt(4A2 + k2cmt)

128M3
N

+O

(
M4

π

M4
N

)]
(3.34)

[
t = O(M2

π), A = t/2−M2
π = O(M2

π), kcm =
√
t/4−M2

π = O(Mπ)
]
.

In both expressions the terms O(M4
π/M

4
N ) involve inverse powers k−3

cm, which are no longer

integrable over t. In the Dirac spectral function the “useful” part of the series consists of

four terms; in the Pauli spectral function it consists of five terms. The results eqs. (3.33)
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and (3.34) show several interesting features. First, one sees that in the chiral region the

Pauli spectral function is parametrically larger than the Dirac one,

ImF V
2 (t)

ImF V
1 (t)

= O

(
MN

Mπ

)
[t = O(M2

π)]. (3.35)

This enhancement carries over to the densities and implies that

ρV2 (b)

ρV1 (b)
= O

(
MN

Mπ

)
[b = O(M−1

π )]. (3.36)

The physical interpretation of this finding will be discussed in section 3.4. Second, we see

that the successive terms in the series in 1/MN have alternating sign. This is a necessary

consequence of the fact that these terms involve positive powers of t (or kcm), which causes

them to grow rapidly at large t, while the spectral functions themselves grow only very

modestly with increasing t (see figure 4a). There are thus large cancellations between

successive terms at larger values of t, limiting the usefulness of the series as a numerical

approximation.

The numerical convergence of the heavy-baryon expansion of the leading-order chiral

component of the spectral functions is shown in figure 7a and b. The thick solid lines

show the full expressions eqs. (3.26)–(3.29); the broken lines show the series of eqs. (3.33)

and (3.34), summed up to (and including) terms of the oder indicated by the labels above

or below the curves. One sees that the alternating signs of the successive terms cause

the series to converge slowly. With the 4 terms up to order M−3
N the Dirac spectral

function is approximated with an accuracy of ∼ 15% over the range t < 20M2
π , excluding

the near-threshold region where the series diverges (see figure 7a). The Pauli spectral

function is approximated by ∼ 10% by the 5 terms up to order M−3
N over the same region

(see figure 7b).

The heavy-baryon expansion of the transverse densities in the chiral region b = O(M−1
π )

is obtained by substituting the series eqs. (3.33) and (3.34) into the dispersion integral

eq. (2.34). Thanks to the exponential convergence of the integral at large t the series for

the spectral function can be integrated over t term-by-term; the only restriction comes

from the divergence of the expansion near threshold t = 4M2
π , which limits the order of the

expansion in 1/MN , as explained above. The resulting contributions to the density can be

expressed in terms of standard integrals over the modified Bessel function and computed

analytically (see appendix B). The quality of the numerical approximation to the densities

is shown in figure 7c and d. The plots show the relative accuracy of the approximation;

i.e., the ratio of the heavy-baryon expansion of the density (up to a given order) to the

full result obtained by integrating the unexpanded expressions eqs. (3.26)–(3.29). With the

maximum number of terms up to orderM−3
N an approximation of < 20% (< 15%) accuracy

is achieved for ρ1 (ρ2) at all distances b > 1M−1
π ; the accuracy improves significantly at

distances b ∼ 2–3M−1
π . Note that the heavy-baryon expansion breaks down both at small

b, because of the increasing sensitivity to large t, where the expansion for the spectral

function converges poorly; and at large b, where values of t close to threshold t = 4M2
π

become important (see below). Still, it provides a very decent numerical approximation to

the density over most of the practically relevant range of distances b = fewM−1
π .
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Figure 7. (a, c) Heavy-baryon expansion of the leading-order isovector Dirac and Pauli spectral

functions, ImFV
1,2(t)/π, in the chiral region t = O(M2

π), eqs. (3.33) and (3.34). The thick solid lines

show the full unexpanded expressions, eqs. (3.26)–(3.29). The broken lines show the heavy-baryon

series of eqs. (3.33) and (3.34), summed up to (and including) terms of the oder indicated by the

labels above or below the curves. Starting from order M−2

N the heavy-baryon series diverges near

the threshold t = 4M2
π ; the details of the near-threshold behavior are not visible on the scale at

which the functions are plotted here. (b, d) Heavy-baryon expansion of the leading-order isovector

transverse charge and magnetization densities, ρV1,2(b), in the chiral region b = O(M−1
π ). The plots

show the ratio of the densities obtained with the heavy-baryon expansion of given order, eqs. (3.33)

and (3.34), to those obtained from the full expressions, eqs. (3.26)–(3.29).

Molecular region. In the region of anomalously large distances b = O(ǫ−2M−1
π ) the

dispersion integral extends over the near-threshold region t − 4M2
π = O(ǫ2M2

π), or kcm =

O(ǫMπ) [ǫ = Mπ/MN , cf. eq. (2.56)]. In this region the spectral function is under the

influence of the subthreshold singularity at a distance ǫ2M2
π from threshold and exhibits a
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non-trivial variation over the relevant t-range. In the heavy-baryon limit

ǫ→ 0, (3.37)

so that the width of the relevant t-range becomes small. When carrying out the heavy-

baryon expansion we must distinguish between “slow” functions of t, which vary only over

the range t−4M2
π ∼M2

π , and “fast” functions, which exhibit a variation of order unity over

the range t − 4M2
π ∼ ǫM2

π : the former can be expanded around the threshold, t = 4M2
π ,

while the latter must be retained as live functions in the dispersion integral. In this sense

we can replace in eqs. (3.26)–(3.29) the slow functions as

P 2 =
√
M2

N − t/4 → MN , (3.38)

√
t → 2Mπ, (3.39)

t/2−M2
π → M2

π , (3.40)

while x ≡ x(t) is a fast function and becomes

x(t) → 2kcm
ǫMπ

≡ x0(t) [t− 4M2
π = O(ǫ2M2

π), kcm = O(ǫMπ)]. (3.41)

Note that x0 = O(1) in the region considered here. To leading order in ǫ the spectral

functions then become

1

π
ImF V

1 (t) =
g2AM

2
π ǫ

2(4πFπ)2
(x0 − arctanx0), (3.42)

1

π
ImF V

2 (t) =
g2AM

2
π ǫ

4(4πFπ)2
[
(x20 + 3) arctanx0 − 3x0

]
, (3.43)

where x0 ≡ x0(t). The contact term in the Dirac spectral function, eq. (3.27), is of order ǫ3

and can be neglected in this region. Note that the Dirac and Pauli spectral functions are of

the same parametric order in the near-threshold region considered here; in contrast to their

behavior in the chiral region t−4M2
π = O(M2

π), eq. (3.35), where the Pauli spectral function

is parametrically larger. This implies that at distances b = O(ǫ−2M−1
π ) the densities ρ1(b)

and ρ2(b) are of the same order and will be discussed further in section 3.4.

When calculating the dispersion integral for the densities, eq. (2.34), we note that the

region of molecular distances b = O(ǫ−2M−1
π ) corresponds to values

√
tb = O(ǫ−2), (3.44)

where the modified Bessel function can be replaced by its leading asymptotic form for

large arguments, eq. (2.35); higher inverse powers of
√
tb in the pre-exponential factor

of the modified Bessel function would give rise to higher powers of ǫ upon integration

over t. Furthermore, in leading order in ǫ we can replace the slowly varying function
√
t

outside of the the exponential by its value at threshold, 2Mπ (in the exponent, where
√
t

is multiplied by b, we have to retain it as is). It is convenient to use the CM momentum
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kcm as integration variable, in terms of which t = 4k2cm +M2
π . In leading order of ǫ the

dispersion integral eq. (2.34) then becomes

ρ1,2(b) =
1√

16πMπb

∞∫

4M2
π

dt e−
√
tb [1 +O(ǫ)] . . . (3.45)

=
2√
πMπb

∞∫

0

dkcm kcm exp

[
−2Mπb

(
1 +

k2cm
M2

π

)1/2
]
. . . (3.46)

=
2√
πMπb

∞∫

0

dkcm kcm exp

[
−2Mπb−

bk2cm
Mπ

+O(ǫ2)

]
. . . , (3.47)

where the ellipsis . . . stands for the simplified spectral densities eqs. (3.42) and (3.43), and

we have schematically indicated higher-order terms in ǫ that were subsequently neglected.

In the last step we have expanded the square root in the exponent in powers of kcm/Mπ and

retained only the first two terms; the next term ∼ bk4cm would be of order ǫ2 and modify

the pre-exponential factor in the same way as the other terms neglected previously. Our

reasoning here follows the logic of the saddle point approximation for exponential integrals

with a large parameter in the exponent. The resulting Gaussian integral over the CM

momentum is readily computed, and we obtain

ρ1(b) =
g2AM

4
π e

−2Mπb

2 (4πFπ)2 (Mπb)2

[
1− eλ λ1/2 Γ(12 , λ)

]
, (3.48)

ρ2(b) =
g2AM

4
π e

−2Mπb

2 (4πFπ)2 (Mπb)2

[(
1

2λ
+ 1

)
eλ λ1/2 Γ(12 , λ)− 1

]
(3.49)

[
λ ≡ ǫ2Mπb/4 = O(1), b = O(ǫ−2M−1

π )
]
. (3.50)

Here Γ(12 , λ) denotes the incomplete Gamma function. Equations (3.48) and (3.49) describe

the transverse charge and magnetization densities at molecular distances b = O(ǫ−2M−1
π )

to leading order in ǫ and have several noteworthy properties. First, since the densities are

functions of the variable λ = ǫ2Mπb/4 = M3
πb/(4M

2
N ), one sees explicitly that the limit

b → ∞ and the heavy-baryon expansion MN ≫ Mπ do not commute, as noted already

in the general parametric analysis of section 2.4. Second, substituting the asymptotic

expansion of the incomplete Gamma function,

eλ λ1/2 Γ(12 , λ) ∼ 1− 1

2λ
+

3

4λ2
+O(λ−3), (3.51)

we obtain the asymptotic behavior of the leading-order chiral component of the charge and

magnetization densities at large b as

ρ1(b) ∼ g2AM
2
NM

2
π

(4πFπ)2(Mπb)3
e−2Mπb, (3.52)

ρ2(b) ∼ 4g2AM
4
N

(4πFπ)2(Mπb)4
e−2Mπb. (3.53)
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The spin-dependent current density eq. (2.30) at this accuracy is obtained by differentiating

only the fast-varying exponential factor,

ρ̃2(b) =
1

2MN

∂ρ2
∂b

∼ − 4g2AM
3
NMπ

(4πFπ)2(Mπb)4
e−2Mπb. (3.54)

Equations (3.52)–(3.54) are the asymptotic densities one would obtain by direct expansion

of the spectral functions eqs. (3.26)–(3.29) at threshold in powers of the CM momentum

kcm,
8

1

π
ImF V

1 (t) ∼ 4g2AM
2
N k3cm

3(4πFπ)2M3
π

, (3.55)

1

π
ImF V

2 (t) ∼ 32g2AM
4
N k5cm

15(4πFπ)2M7
π

(t→ 4M2
π). (3.56)

It is curious to note that this leading asymptotic form would approximate the density only

in the region λ≫ 1, which corresponds to distances

b≫ 4

ǫ2Mπ
=

4M2
N

M3
π

≈ 250 fm. (3.57)

This shows how misleading it would be to infer the asymptotic behavior of the density

from just the leading threshold behavior of the spectral function. We stress again that all

densities discussed here are exponentially suppressed by the factor exp(−2Mπb), and that

their behavior in the molecular region is mainly of mathematical interest.

Our study of the molecular region here is limited to inspection of the leading-order

chiral EFT results. We do not claim that eqs. (3.52) and (3.53) represent the “true” asymp-

totic behavior of the transverse densities. In fact, it is known that higher-order corrections

to the Pauli spectral function in relativistic chiral EFT change its power behavior near

threshold to (in our notation) [31]

1

π
ImF V

2 (t) ∼ 4MN c4 k
3
cm

3(4πFπ)2Mπ
(t→ 4M2

π), (3.58)

where c4 ≈ 3.4GeV−1 is a low-energy constant in the second-order relativistic chiral La-

grangian, whose value is determined from πN scattering data [53]. This is qualitatively

different from the k5cm behavior of the leading-order result, eq. (3.56). It indicates that the

chiral expansion converges non-uniformly at molecular distances. Whether a resummation

of the chiral expansion is necessary to get the true asymptotic behavior of the densities in

this parametric region is an interesting question that merits further study. A resumma-

tion of the logarithmic terms of the chiral expansion was performed in refs. [54–56] and

shown to qualitatively change the large-b behavior of the pion GPD at small x compared

to fixed-order calculations (see the discussion in section 7 below); how this resummation

would affect the x-integrated transverse densities in the molecular region is presently not

8The contact term in the Dirac spectral function, eq. (3.27), gives a term of the same form as eq. (3.52),

but with a coefficient that is suppressed by a factor ǫ2 =M2
π/M

2
N .
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known to us. We emphasize that the existence of the molecular regime as such follows from

the general analytic structure of the form factor near threshold (see section 2.4) and is not

conditional on the convergence of the chiral expansion. Note also that the convergence

issue discussed here affects only the molecular region; in the chiral region the effect of

higher-order corrections the spectral functions is only quantitative [32], and it is legitimate

to use the leading-order approximation to study the densities.

Uniform approximation. The spectral functions obtained from leading-order relativis-

tic chiral EFT, eqs. (3.26)–(3.29), embody the full analytic structure of the form factor

near the two-pion threshold, as governed by the two scales M2
π and ǫ2M2

π . While a sys-

tematic expansion in ǫ can be performed in the chiral region of t (see above), it converges

non-uniformly and is of limited value for practical purposes. Following general arguments

presented in ref. [30], a more useful uniform approximation to the spectral functions can be

obtained by neglecting in eqs. (3.26)–(3.29) terms of order t/M2
N , while leaving the position

of the subthreshold singularity unchanged. This amounts to replacing

√
P 2 =

√
M2

N − t/4 →MN (3.59)

and dropping the terms with factors t/M2
N in eq. (3.26). With these simplifications the

spectral functions become

1

π
ImF V

1 (t) =
g2A(t/2−M2

π)
2

(4πFπ)2MN

√
t
(x1 − arctanx1) +

2(1− g2A)k
3
cm

3(4πFπ)2
√
t
, (3.60)

1

π
ImF V

2 (t) =
g2A(t/2−M2

π)
2

2(4πFπ)2MN

√
t

[
(x21 + 3) arctanx1 − 3x1

]
, (3.61)

x1 ≡ x1(t) ≡
2MNkcm
t/2−M2

π

=
2MN

√
t/4−M2

π

t/2−M2
π

. (3.62)

Equations (3.60)–(3.62) approximate the full leading-order expressions eqs. (3.26)–(3.29)

with an accuracy of < 15% for all 4M2
π < t < 20M2

π , while fully preserving the ana-

lytic structure near threshold. They summarize in compact form the entire information

contained in the leading-order chiral component of the isovector spectral functions. The

uniform approximation to the Dirac spectral function, eqs. (3.60) and (3.62), was used in the

numerical studies of the chiral component of the transverse charge density in refs. [26, 50].

3.4 Charge vs. magnetization density

So far we studied the chiral components of the transverse charge and anomalous magneti-

zation densities, ρ1(b) and ρ2(b). It is interesting to explore what these results imply for the

spin-independent and -dependent nucleon matrix elements of the plus component of the vec-

tor current operator, whose relation to the transverse densities is described in section 2.1.

This excursion leads us to an interesting positivity property of the chiral component of

the transverse densities. It also suggests that the main results of our dispersion-based
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calculation of the peripheral transverse densities can be understood in a simple quantum-

mechanical picture of πN configurations in the nucleon’s light-cone wave function in the

rest frame. The details of this picture will be presented in a subsequent article, where we

study the chiral processes in time-ordered perturbation theory [39].

Following section 2.1, the expectation values of the light-cone plus component of the

vector current, in a nucleon state polarized transversely along the y-axis, are

〈J+(b)〉spin-indep. = ρ1(b), (3.63)

〈J+(b)〉spin-dep. = (2Sy) cosφ ρ̃2(b), (3.64)

where ρ̃2 is defined in eq. (2.30). The relative magnitude of the densities ρ1 and ρ̃2 in the

heavy-baryon expansion can be inferred from our earlier result for ρ1 and ρ2, eq. (3.36). To

get the scaling behavior of ρ̃2, we use that in the heavy-baryon expansion the nucleon mass

is factored out, so that the b-dependence is governed by the scale Mπ only [cf. eqs. (B.12)

and (B.13)], and the derivative ∂/∂b in eq. (2.30) effectively counts as Mπ. We obtain

ρ̃V2 (b)

ρV1 (b)
= O

(
M0

π

M0
N

)
≡ O(1) [b = O(M−1

π )]. (3.65)

Thus the spin-independent and -dependent parts of the current expectation value are of the

same order in the chiral expansion at non-exceptional angles. It therefore seems natural to

focus on the function ρ̃2 rather than ρ2 when discussing the chiral periphery.

The numerical results for the densities ρ1(b) and ρ̃2(b), obtained from the leading-order

chiral EFT result for the two-pion spectral functions, are compared in figure 8a. One sees

that at all distances the chiral spin-dependent current density ρ̃V2 (b) is smaller in absolute

value than the spin-independent density ρV1 (b),

|ρ̃V2 (b)| ≤ ρV1 (b). (3.66)

At smaller (but parametrically still “chiral”) distances b . 2M−1
π they become practically

equal in absolute value. The inequality eq. (3.66) implies that the chiral result for the

total expectation value of the plus component of the isovector current, given by the sum

of eqs. (3.63) and (3.64) [cf. eq. (2.32)], is positive

〈J+(b)〉 = ρV1 (b) + (2Sy) cosφ ρ̃V2 (b) ≥ 0. (3.67)

We stress that eqs. (3.66) and (3.67) are numerical statements based on inspection of the

leading-order chiral results, and that we cannot claim that they hold under more general

circumstances.

The two observations, eqs. (3.65) and (3.67), can be explained in a simple quantum-

mechanical picture of peripheral nucleon structure. Consider a nucleon with transverse

spin Sy = +1/2 in the rest frame. The chiral component of the transverse densities at

distances b = O(M−1
π ) arises from virtual processes in which the nucleon fluctuates into

a πN system through the effective chiral interactions. Because pion emission flips the

nucleon spin, the relevant configurations in the wave function have the pion moving with

– 38 –



J
H
E
P
0
1
(
2
0
1
4
)
0
9
2

10-5

10-4

10-3

10-2

10-1

1

 0  2  4  6  8  10

ρV 1,
 2

 (
b)

  ×
 e

xp
 (

2 
M

πb
) 

 [
M

π2 ]

b  [Mπ
−1]

ρ1
~ρ2

(a)

z

x
y

v ~ 1

L = 1

(b)

Figure 8. (a) Comparison of the leading-order chiral component of the nucleon’s isovector spin-

independent current density ρV1 (b) (solid line) and spin-dependent current density ρ̃V2 (b) (dashed

line). The plot shows the densities with the exponential factor exp(−2Mπb) extracted [the functions

plotted correspond to the pre-exponential factor in eq. (2.36)]. The distance b is given in units of

M−1
π , the densities in units of M2

π . (b) Mechanical picture explaining the relation of the peripheral

densities (details see text). The nucleon state is polarized along the y-axis with Sy = +1/2.

The peripheral densities are generated by components of the light-cone wave function involving a

peripheral pion with L = 1. At distances b = O(M−1
π ) the velocity of the pion is v = O(1), and the

current and charge density are of the same order.

orbital angular momentum L = 1 (see figure 8b). The momentum of the peripheral pion

is kπ = O(Mπ), whence its velocity is v = kπ/Mπ = O(1); i.e., the motion of the pion

is essentially relativistic. Since the πN interaction is pointlike on the scale M−1
π , we can

regard the peripheral πN system as non-interacting, and use this simple model to infer

the expectation value of the current operator, including its light-cone component J+. The

spin-independent part of J+ is given by the charge density J0 in the rest frame, the spin-

dependent part by the current density Jz. By simple geometry (see figure 8b) the ratio of

current to charge density in the system is given by the pion velocity, and one obtains

|〈J+(b)〉spin-dep.|
〈J+(b)〉spin-indep.

=
|Jz|
J0

= v = O(1) [b = O(M−1
π )], (3.68)

which naturally explains eq. (3.65). The positivity condition eq. (3.67) can be accounted

for in a similar manner. To the extent that the peripheral πN system can be regarded as

non-interacting, the current at b = O(M−1
π ) should be proportional to the current produced

by a free charged pion with four-momentum k, which is

〈π(k)|J+|π(k)〉 = 2k+ > 0, (3.69)
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where the last relation is obtained because k0 =
√
(kz)2 + k2

T +M2
π ≥ |kz| for a free

particle. We emphasize that the mechanical picture presented here is just a heuristic

tool, and that several aspects (role of relativity, non-interaction in the periphery) need

to be clarified. A rigorous particle-based interpretation of the peripheral densities can

be developed in the context of a time-ordered description of chiral processes and will be

described elsewhere [39].

In the molecular region, b = O(M2
N/M

3
π), the asymptotic behavior of the densities ρ1

and ρ2 is described by eqs. (3.48) and (3.49). One can easily see that this implies that the

current matrix elements behave as

ρ̃V2 (b)

ρV1 (b)
= O

(
Mπ

MN

)
[b = O(M2

N/M
3
π)]; (3.70)

see also eqs. (3.52) and (3.54). In this parametric region the spin-dependent part of the

current matrix element is suppressed relative to the spin-independent one. The numerical

results of figure 8a show that the ratio of the densities indeed decreases at distances b ≫
M−1

π . This behavior again can be understood in the mechanical picture of figure 8b.

The analysis of section 2.4 shows that in this region of distances the pion velocity becomes

parametrically small, v = O(Mπ/MN ), cf. eq. (2.66); using this result in the model estimate

eq. (3.68) one obtains exactly the parametric suppression eq. (3.70).9

3.5 Contact terms and pseudoscalar πN coupling

The presence of a ππNN contact term in the leading-order chiral EFT results for the

isovector Dirac spectral function and transverse charge density is a matter that merits

separate discussion. In fact, the compact expressions obtained in section 3.2 shed new

light on the physical interpretation of this structure.

The pion-nucleon contact couplings in the chiral Lagrangian eq. (3.1) encode the effect

of internal structure of the nucleon which is not resolved by pions with moment k = O(Mπ).

In the isovector Dirac spectral function, the ππNN contact term in the Lagrangian, ex-

hibited explicitly in eq. (3.5), induces a chiral process in which the two pions couple to the

nucleon locally on the scale O(M−1
π ), described by diagram figure 3b. A local contribution

of the same structure arises also from diagram figure 3a, as a term in which the numerator

cancels the pole of the intermediate nucleon propagator. This results in a net contact term

with coefficient [cf. eq. (3.13)]
1− g2A
F 2
π

(3.71)

in the Dirac spectral function and transverse charge density. The appearance of the com-

bination 1− g2A here is very natural. For a pointlike (i.e., structureless) Dirac fermion the

axial coupling is unity, gA = 1, as can be seen trivially by computing the matrix element

9The molecular region corresponds to the extreme classically-forbidden range of motion of the peripheral

pion in the nucleon, as can be seen by the exponential suppression of the probability. A proper quantum-

mechanical treatment of the motion in this region can be developed using light-front wave functions [39].

It is interesting that the classical picture provides correct parametric estimates even though the motion is

essentially quantum-mechanical.
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of the axial vector current between free-particle states. The combination eq. (3.71) thus

vanishes for a pointlike particle and reflects the “compositeness” of the nucleon. It would

be interesting to explore the connection between gA > 1 and the ππNN contact coupling

at a more microscopic level. For example, using a composite model of nucleon structure,

with pions coupling to quarks, one might be able to demonstrate explicitly that both effects

arise from the same underlying dynamics.10

The presence of contact terms in the chiral Lagrangian is closely related to the form

of the basic πNN coupling adopted in formulating the effective dynamics. The ππNN

contact term of eq. (3.5) is specific to the axial vector form of the πNN coupling. It is

well-known that for on-shell nucleons this form is equivalent to the pseudoscalar form of the

πNN coupling, cf. eq. (3.6), if one identifies gπNN =MNgA/Fπ. [More generally, the axial-

vector chiral Lagrangian eq. (3.5), including the ππNN contact term, can be obtained from

a pseudoscalar Langrangian by performing a chiral rotation of the nucleon fields with the

matrices U±1/2, eq. (3.4). The contact arises from the chiral rotation of the pseudoscalar

kinetic term and therefore carries the universal coefficient ∼ 1/F 2
π .] It is interesting to note

that we get the same result for the intermediate nucleon (or “non-contact”) part of the

isovector Dirac spectral function, eq. (3.26), with the pseudoscalar and axial vector forms

of the πNN couplings [26]. This part arises from the triangle graph figure 3a with the

intermediate nucleon propagator, after separating out the off-shell terms in the numerator

[keeping only the third term in eq. (3.12)], and one can verify by explicit calculation that the

result is the same as what one obtains with a pseudoscalar coupling given by eq. (3.6). It

shows that the difference between the pseudoscalar and axial vector couplings is effectively

contained in the “net” ππNN contact term in the final result, eq. (3.27), which is again

consistent with this term being proportional to 1− g2A and reflecting the compositeness of

the nucleon.

In the light-front formulation of chiral processes the contact terms summarize the

contributions from quasi-zero modes, in which the pion field carries a vanishing fraction of

the nucleon’s plus momentum [26]. This can be shown explicitly by following the space-

time-evolution of the chiral processes in time-ordered perturbation theory [39]. It is also

known that in time-ordered perturbation theory the different forms of the πN coupling give

apparently different results, as this formulation of relativistic dynamics does not conserve

four-momentum in intermediate states [57, 58]. Our findings suggest that there is a natural

connection between the two observations.

10The finding that the net ππNN contact term is proportional to 1− g2A, and thus to the compositeness

of the nucleon, also resolves a more general issue that arises when using Dirac fermions to describe particles

with internal structure, as done in relativistic chiral EFT. It has been argued that light-front time-ordered

perturbation theory with Dirac fermions would give rise to Z-graphs (i.e., graphs with anNNN̄ intermediate

state), which should not contribute on physical grounds because they are strongly suppressed by the pion-

nucleon form factor (S. Brodsky, private communication). Our results show that the explicit contact term

in the chiral Lagrangian cancels most of this contribution, to the effect that the net result is proportional

to 1 − g2A, which reflects the composite nucleon structure, as it should be. It shows how chiral invariance

naturally arranges for the cancellation of contributions from high-mass intermediate states unrelated to

true internal nucleon structure.
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4 Delta isobar and large-Nc limit

4.1 Peripheral densities from ∆ excitation

We now want to study the role of ∆ isobar excitation in the nucleon’s peripheral transverse

charge and magnetization densities. While going beyond the domain of strictly chiral

dynamics, inclusion of the ∆ is important for practical as well as theoretical reasons. First,

the πN∆ coupling is large, andN → π∆ transitions contribute significantly to the isovector

spectral functions at t − 4M2
π ∼ fewM2

π and the transverse densities at b ∼ fewM−1
π .

Second, with the ∆ we can see explicitly how the analytic structure of the form factor near

the two-pion threshold changes in the case of a “heavy” intermediate state, and how the

mass splitting affects the subthreshold singularity that plays such an important role in the

amplitude with the nucleon intermediate state. Third, and most important, inclusion of

the ∆ is required to ensure the proper scaling behavior of the peripheral densities in the

large-Nc limit of QCD.

The N∆ mass splitting M∆ −MN = 0.29GeV represents a “non-chiral” mass scale

that is numerically comparable to the pion mass Mπ = 0.14GeV. Several schemes for

extending chiral EFT to include ∆ degrees of freedom have been proposed, putting the

N∆ mass splitting in some parametric relation to the pion mass; see ref. [59] for a review.

Our objectives here are very specific and can be addressed without a fully developed EFT

of the ∆. We want to estimate the contribution of intermediate ∆ states in the two-pion

cut of the isovector spectral function and the peripheral densities in a way that is consistent

with the leading-order relativistic chiral EFT treatment of the nucleon of section 3, and

verify that the total result obeys the proper Nc-scaling. To this end we introduce the ∆

as a relativistic point particle, with an empirical πN∆ coupling, and treat the N∆ mass

splitting as a free parameter, with no defined relation to Mπ; later we let the masses and

couplings scale according to their large-Nc behavior.

The spin-3/2 field of the ∆ can be constructed by applying constraints to a four-vector

bispinor field (Rarita-Schwinger formalism) [60]. Its Green function with four-momentum

l is
Rµν(l)

l2 −M2
∆ + i0

, (4.1)

where the projector is explicitly given by

Rµν(l) ≡ (l̂ +M∆)

[
−gµν +

1

3
γµγν +

2

3M2
∆

lµlν −
1

3M∆
(lµγν − γµlν)

]
(4.2)

= (l̂ +M∆)

(
−gµν +

lµlν
M2

∆

)
− 1

3

(
γµ +

lµ
M∆

)
(l̂ −M∆)

(
γν +

lν
M∆

)
(4.3)

and obeys the constraints

lµRµν

Rµν lν

(l̂ −M∆)Rµν

Rµν(l̂ −M∆)





∝ (l2 −M2
∆), (4.4)
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Figure 9. Contribution of ∆ isobar excitation to the two-pion cut of the isovector nucleon form

factor. The labeling of the 4-momenta is the same as for the intermediate N diagram of figure 3a.

implying that in the corresponding contractions the pole of the Green function is canceled.

The πN∆ interaction is described by the Lagrangian

LπN∆ =
igπN∆√
2MN

(
ψ̄p ∂µπ

− Ψµ
∆++ +

√
2

3
ψ̄p ∂µπ

0 Ψµ
∆+ +

1√
3
ψ̄p ∂µπ

+ Ψµ
∆0

+ ψ̄n ∂µπ
+ Ψµ

∆− +

√
2

3
ψ̄n ∂µπ

0 Ψµ
∆0 +

1√
3
ψ̄n ∂µπ

− Ψµ
∆+

)
+ h.c., (4.5)

where ψp,n are the proton and neutron fields and Ψµ
∆++ etc. the ∆ fields. The relative

coefficients of the terms in eq. (4.5) are dictated by isospin invariance. Our definition of

the coupling constant gπN∆ corresponds to that of ref. [61] (see refs. [27, 28] for comparison

with other conventions), and the empirical value of the coupling is gπN∆ = 20.22. It is worth

noting that, in an approach where one formally imposes chiral invariance on the Lagrangian

including the ∆ [59], the structure of eq. (4.5) emerges as the first-order expansion in the

pion field of the nonlinear chirally invariant πN∆ Lagrangian, in a similar manner as

eq. (3.5) emerges from eq. (3.1). In this sense our treatment is consistent with the broader

interpretation of chiral invariance adopted in that approach.

The introduction of the ∆ into the effective Lagrangian can in principle result in, or

require, the addition of new ππNN contact terms, e.g. a term of the same form as that in

eq. (3.5), which contributes to the spectral function of the Dirac form factor. The physical

meaning and implications of such terms will be discussed in detail at the end of this section,

referring to the explicit results of our calculation. We cannot determine the coefficients

of these terms from first principles and shall treat them as a theoretical uncertainty; this

treatment will be justified by the observation that the Nc-scaling relations are obtained

without introducing such contact terms (see section 4.3).11

With the coupling eq. (4.5) and the Green function eq. (4.1) it is straightforward

to calculate the contribution of N → ∆ transitions to the two-pion cut of the isovector

11Closely related to the contact terms is the issue of the off-shell dependence of the πN∆ vertex of

eq. (4.5). The most general structure of the πN∆ vertex (as obtained from the formal requirement of

invariance under point transformations [62]) is LπN∆ ∼ ψ ∂µπ (gµν + zγµγν)Ψ, where z is known as the

off-shell parameter [59]. Because the projector in the Rarita-Schwinger Green function, eq. (4.2), satisfies

γµRµν(l) ∝ (l2 −M2
∆) and Rµν(l)γ

ν ∝ (l2 −M2
∆), the effect of the off-shell term ∝ z in our subsequent

calculation of form factors is the same as that of a contact term in the Lagrangian and does not require

separate discussion. In this sense the results obtained wit the “on-shell” coupling eq. (4.5), modified by the

uncertainty resulting from contact terms, represent the general case and are sufficient for our purposes.
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spectral functions. The calculation closely follows that for the intermediate nucleon state

in section 3.1, and we outline only the main steps. The ∆ contribution to the isovector

current matrix element, as given by diagram figure 9, is

〈N2|Jµ(0)|N1〉ππ cut

= −2ig2πN∆

3M2
N

∫
d4k

(2π)4
[ū2 k2αRαβ(l)k1β u1] k

µ

(k22 −M2
π + i0)(k21 −M2

π + i0)(l2 −M2
∆ + i0)

, (4.6)

where again u1,2 are the external nucleon bispinors and the labeling of the 4-momenta

is the same as in the case of the intermediate nucleon diagram figure 3a, eq. (3.8). The

bilinear form in the numerator contains terms which vanish at s ≡ l2 = M2
∆ and result

in integrals of the same form as that obtained from the ππNN contact term, eq. (3.9).

Making extensive use of the constraints eq. (4.4) [the result of the particular contractions

has to be determined from eqs. (4.2) or (4.3)], the kinematic relations between the different

momentum 4-vectors, and the Dirac equation for the external nucleon spinors, we write

the bilinear form as

ū2 k2αRαβ(l)k1β u1 = ū2(F +G k̂)u1 + (s−M2
∆)ū2Roffu1. (4.7)

The first term on the right-hand side remains non-zero on the baryon mass-shell. Here F

and G denote scalar functions of the invariants t and k21,2 = (k ∓∆/2)2,

F (t, k21, k
2
2)

G(t, k21, k
2
2)





≡
[
t

2
−M2

N +
(M2

∆ +M2
N − k22)(M

2
∆ +M2

N − k21)

4M2
∆

]
×





(M∆ +MN )

(−1)





+
1

3

(
MN +

M2
∆ +M2

N − k22
2M∆

)(
MN +

M2
∆ +M2

N − k21
2M∆

)
×





(M∆ −MN )

1



 . (4.8)

Note that the functions are symmetric with respect to both k → −k and ∆ → −∆. The

second term in eq. (4.7) is an off-shell piece, with

Roff ≡ 1

3M2
∆

[
M2

∆ −M2
N +MNM∆ +M2

π +
1

4
(s−M2

∆)

]
(MN +M∆ − k̂)

+
(s−M2

∆)

12M2
∆

(MN −M∆ − k̂), (4.9)

where s = l2 = (P − k)2. After inserting the decomposition eq. (4.7) into eq. (4.6),

the tensor integrals are reduced to scalar integrals with the help of standard projection

formulas, making use of the symmetries of the integrand. The resulting bilinear forms

ū2 . . . u1 are then converted to those of the right-hand side of eq. (2.1) using the Dirac
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equation for the nucleon spinors. In this way we obtain the ∆ contribution to the isovector

Dirac and Pauli form factors in terms of invariant integrals as

F V
1 (t)ππ cut =

2g2πN∆

3M2
N

[I∆1(t) + I∆1cont(t)] , (4.10)

F V
2 (t)ππ cut =

2g2πN∆

3M2
N

[I∆2(t) + I∆2cont(t)] , (4.11)

I∆1,∆2 ≡ −i
∫

d4k

(2π)4
N∆1,∆2

(k22 −M2
π + i0)(k21 −M2

π + i0)(l2 −M2
∆ + i0)

, (4.12)

N∆1 =
kP

P 2
MN F +

1

P 2

{
− t

8

[
k2 − (k∆)2

∆2

]
+

(
M2

N +
t

8

)
(kP )2

P 2

}
G, (4.13)

N∆2 = −kP
P 2

MN F − M2
N

P 2

[
−k2 + 3

(kP )2

P 2
+

(k∆)2

∆2

]
G

2
, (4.14)

I∆1 cont, ∆2cont = −i
∫

d4k

(2π)4
N∆1cont, ∆2cont

(k22 −M2
π + i0)(k21 −M2

π + i0)
, (4.15)

N∆1cont =
1

3M2
∆

[
k2 − (k∆)2

∆2

] [
−k

2

2
− 1

6
(MN +M∆)

2 − t

24

]
, (4.16)

N∆2cont =
M2

N

9M2
∆

[
k2 − (k∆)2

∆2

]
. (4.17)

The imaginary part on the two-pion cut can now be computed using the t-channel cutting

rule of appendix A in the same way as in the intermediate nucleon case. The virtuality of

the intermediate ∆ is

l2 −M2
∆ = −A∆ + iB cos θ, (4.18)

A∆ ≡ t/2−M2
π +M2

∆ −M2
N , (4.19)

B ≡ 2kcm
√
P 2. (4.20)

We obtain the spectral functions as

1

π
ImF V

1 (t) =
g2πN∆

24π2M2
N

√
P 2

√
t

{
−A∆MNF

2P 2
(x∆ − arctanx∆)

+
A2

∆G

4(P 2)2

[
− t

8
x2∆ arctanx∆ +

(
M2

N +
t

8

)
(x∆ − arctanx∆)

]}
(4.21)

+
g2πN∆k

3
cm

36π2M2
NM

2
∆

√
t

[
−k

2
cm

2
+

1

6
(MN +M∆)

2 +
t

24

]
, (4.22)
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1

π
ImF V

2 (t) =
g2πN∆

24π2M2
N

√
P 2

√
t

{
MNA∆F

2P 2
(x∆ − arctanx∆)

+
M2

NA
2
∆G

8(P 2)2
[
(x2∆ + 3) arctanx∆ − 3x∆

]}
(4.23)

− g2πN∆k
3
cm

108π2M2
∆

√
t
, (4.24)

x∆ ≡ B

A∆
=

2
√
t/4−M2

π

√
M2

N − t/4

t/2−M2
π +M2

∆ −M2
N

, (4.25)

where F and G now denote the functions of eq. (4.8) on the pion mass shell,

F ≡ F (t, k21 =M2
π , k

2
2 =M2

π)

=

[
t

2
−M2

N +
(M2

∆ +M2
N −M2

π)
2

4M2
∆

]
(MN +M∆)

− 1

3

(
MN +

M2
∆ +M2

N −M2
π

2M∆

)2

(MN −M∆), (4.26)

G ≡ G(t, k21 =M2
π , k

2
2 =M2

π)

= −
[
t

2
−M2

N +
(M2

∆ +M2
N −M2

π)
2

4M2
∆

]

+
1

3

(
MN +

M2
∆ +M2

N −M2
π

2M∆

)2

. (4.27)

For further analysis it will be convenient to quote simplified expressions according to

the uniform approximation, eqs. (3.60)–(3.62), in which we neglect terms t/M2
N without

altering the analytic structure near threshold. In the contact term eq. (4.22) we can also

neglect terms of order t/M2
N,∆ and M2

π/M
2
N,∆. With these approximations we obtain

1

π
ImF V

1 (t) =
g2πN∆A∆(−2MNF +A∆G)

96π2M5
N

√
t

(x∆1 − arctanx∆1) (4.28)

+
g2πN∆(MN +M∆)

2k3cm
216π2M2

NM
2
∆

√
t

, (4.29)

1

π
ImF V

2 (t) =
g2πN∆A∆

192π2M5
N

√
t
[(4MNF − 3A∆G) (x∆1 − arctanx∆1)

+ A∆Gx
2
∆1 arctanx∆1

]
(4.30)

− g2πN∆k
3
cm

108π2M2
∆

√
t
, (4.31)
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Figure 10. Comparison of chiral and ∆ contributions to the spectral functions of the isovector

Dirac form factor ImFV
1 (t)/π [panel (a)] and Pauli form factor ImFV

2 (t)/π [panel (b)]. Solid

lines: chiral component, intermediate N , eq. (3.26). Dotted line: chiral component, contact term

eq. (3.27) [in the Pauli form factor in plot (b) this term is absent]. Dashed lines: contribution from

intermediate ∆, eq. (4.21). Dashed-dotted lines: ∆ contact term.

x∆1 ≡ x∆1(t) ≡
2MNkcm
A∆

=
2MN

√
t/4−M2

π

t/2−M2
π +M2

∆ −M2
N

. (4.32)

Equations (4.28)–(4.32) provide a compact and completely adequate representation of the

two-pion spectral functions resulting from ∆ intermediate states.
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The numerical results for the two-pion isovector spectral functions resulting from ∆

intermediate states, eqs. (4.21)–(4.27), are shown in figure 10, together with those from

N intermediate states, eqs. (3.26)–(3.29). Several features are worth noting. First, in

the Dirac spectral function in figure 10a the N and ∆ contributions have opposite sign,

both in the contact and non-contact terms, such that they partly cancel each other. In

the Pauli spectral function in figure 10b, in contrast, the N and ∆ contributions have the

same sign. Both findings can naturally be explained in the large-Nc limit of QCD, where

model-independent relations between the N and ∆ spectral functions can be derived (see

section 4.3). Second, the ∆ contributions do not show the strong rise near threshold

observed in the intermediate N contributions to the Dirac and Pauli spectral functions.

This is because in the intermediate ∆ case the subthreshold singularity is removed from

threshold by a much larger distance, see eq. (2.58). It implies that the transverse densities at

large distances are dominated by the contribution from intermediate N states, as expected.

A comment is in order regarding the interpretation of the contact terms in the ∆

contribution to the Dirac spectral function. Equation (4.22) represents the contact term

as it comes out of the diagram of figure 9. It is seen from figure 10a that numerically

this term is considerably larger than the net contact term in the chiral EFT result with

nucleons only, eq. (3.27). The latter is the sum of the explicit contact term in the chiral

Lagrangian entering in diagram figure 3b, and the “non-propagating” piece of the diagram

of figure 3a, with substantial cancellations between the two, cf. eq. (3.13). From a physical

point of view, inclusion of the ∆ as an explicit degree of freedom in the chiral Lagrangian

amounts to a change of the short-distance structure of the nucleon, which could manifest

itself in the appearance of a “new” ππNN contact term, or, effectively, a renormalization

of the old contact term in the chiral Lagrangian. Unlike the case of the Lagrangian with

N only, the strength of this new contact term is not fixed by chiral symmetry, and we

presently have no way to constrain it theoretically. It is likely that this new contact term

would partly cancel the contact term coming out of the ∆ diagram of figure 9. Because

we cannot determine the coefficient of the total contact term from general principles, and

because the ∆ effects are altogether rather unimportant at large distances, we shall treat

the ∆ contact term in the Dirac spectral function as a theoretical uncertainty (see below).

A contact term is also found in the ∆ contribution to the Pauli spectral function,

eq. (4.24). However, its contribution is extremely small, see figure 10b, and we shall

neglect the theoretical uncertainty associated with it. Note that in this channel there is no

contact term in the chiral EFT result with nucleons only, eq. (3.28).

Using the results for the spectral functions we can now calculate the peripheral trans-

verse densities resulting from ∆ intermediate states. Figure 11a summarizes the numerical

effect of the ∆ on the transverse charge density. The solid line shows the chiral compo-

nent with intermediate N states only (see figure 6a). The dotted lines show the density

after adding the ∆ contribution. The upper curve is obtained when including the contact

term eq. (4.22) with twice its actual strength, the lower curve when setting it to zero,

as would correspond to complete cancellation by an explicit new ππNN contact term in

the Lagrangian (cf. the discussion of the theoretical uncertainty above). One sees that at

b . 1M−1
π there are very substantial cancellations between the N and ∆ contributions,
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Figure 11. Effect of ∆ excitation on the peripheral isovector transverse charge and magnetiza-

tion densities of the nucleon. The plots shows the densities ρV1,2(b) with the exponential factor

exp(−2Mπb) extracted (cf. figure 6b). The distance b is given in units of M−1
π , the densities in

units ofM2
π . (a) Transverse charge density ρ1(b). Solid line: chiral component from intermediate N

states and the N contact term, eqs. (3.26) and eqs. (3.27). Dotted lines: sum of chiral component

(solid line) and ∆ contribution, eqs. (4.22)–(4.21). The two curves show the results obtained with

the ∆ contact term, eq. (4.22), multiplied by 0 and 2, respectively; their difference is an estimate

of the theoretical uncertainty (details see text). (b) Transverse magnetization density ρ2(b). Solid

line: chiral component from intermediate N states, eq. (3.28). Dotted line: sum of chiral and ∆

contributions, eqs. (4.24)–(4.23). The uncertainty resulting from the ∆ contact term is negligible

on the scale of the plot and not shown on the figure.
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causing the total two-pion isovector density from intermediate N and ∆ to become nega-

tive at small b. [Note that the physical density at such small values of b is dominated by

vector meson singularity of the spectral function (see section 5), and that figure 11a is only

intended to illustrate the relative magnitude of the calculated N and ∆ contributions.] At

distances b & 2M−1
π the ∆ contribution becomes a small correction of ∼ 20%, as expected

from a “heavy” degree of freedom. The theoretical uncertainty associated with the inclu-

sion of the ∆ therefore does not affect our numerical estimates of the chiral component of

the transverse charge density.

Figure 11b shows the effect of the ∆ on the transverse magnetization density. At

distances b & 2M−1
π the ∆ increases the intermediate N result by ∼ 20%. One sees that

the effect of the ∆ has opposite sign in the charge and magnetization densities, as already

noted in relation to the spectral functions. This pattern is naturally explained by the

relations between the intermediate N and ∆ contributions emerging in the large-Nc limit

of QCD.

4.2 Transverse densities in large-Nc QCD

The limit of a large number of colors in QCD, Nc → ∞, is a powerful theoretical tool for

studying properties of mesons and baryons and relating them to the microscopic theory of

strong interactions. While even in the large-Nc limit QCD remains a complex dynamical

system that cannot be solved exactly, the scaling behavior of meson and baryon proper-

ties with Nc can be established on general grounds and provides constraints for EFTs or

phenomenological models. In this subsection we want to establish the Nc-scaling behavior

of the transverse charge and magnetization densities on general grounds. In the follow-

ing subsection we then show that the two-pion components of the peripheral charge and

magnetization densities obey these general scaling laws and discuss the essential role of ∆

isobar excitation in bringing about this result.

The Nc-scaling of meson and baryon masses in QCD, their interactions, and vari-

ous current matrix elements, can be established using the classic techniques described in

ref. [40]. It is found that the low-lying meson and baryon masses [i.e., with spin and isospin

of O(N0
c )] scale as

Mmeson = O(N0
c ), Mbaryon = O(Nc), (4.33)

while their basic hadronic sizes scale as

Rmeson, Rbaryon = O(N0
c ). (4.34)

Baryons in large-Nc QCD thus are heavy systems of fixed spatial size. Their overall mo-

mentum and spin-isospin degrees of freedom can be described as the classical motion of a

heavy body characterized by a mass and moment of inertia of order O(Nc). In particular,

the N and ∆ are obtained as rotational states with S = T = 1/2 and S = T = 3/2,

and their mass splitting is M∆ −MN = O(N−1
c ). This description can be extended to

transition matrix elements of current operators, which generally involve new parameters

characterizing the internal structure of the classical rotor, and has been formalized using

group-theoretical methods [41, 42].
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Turning to the transverse charge and magnetization densities, we are interested in their

general Nc-scaling behavior at non-exceptional distances of the order

b = O(N0
c ), (4.35)

i.e., distances of the same order as the basic hadronic size of the large-Nc nucleon, eq. (4.34).

[Below we shall see that the chiral component is contained in this parametric region, as

it involves distances of the order b = O(M−1
π ) and the pion mass scales as Mπ = O(N0

c ).]

For such distances the Nc-scaling behavior of the density can be inferred from that of

the corresponding total charge, given by the integral of the density over b. The isovector

densities are normalized, respectively, to the total isovector charge and anomalous magnetic

moment of the nucleon, which scale as

∫
d2b ρV1 (b) =

1

2
= O(N0

c ), (4.36)

∫
d2b

ρV2 (b)

MN
=
κp − κn
2MN

= O(Nc). (4.37)

Here we assume that the large-Nc limit is taken at fixed spin and isospin of the baryon

states, {S, T} = O(N0
c ), which is the domain usually considered in large-Nc phenomenol-

ogy.12 The scaling behavior of the isospin difference eq. (4.36) is immediately obvious. The

scaling behavior of the isovector anomalous magnetic moment, eq. (4.37), can be estab-

lished in various ways, e.g., by explicitly constructing the spin-flavor wave functions of the

nonrelativistic quark model at large Nc [63, 64]. It is important to realize that the Nc scal-

ing thus obtained applies to the dimensionful isovector magnetic moment of the nucleon,

while the dimensionless quantity κp − κn measures the isovector anomalous magnetic mo-

ment in units of the nuclear magneton e/(2MN ); one therefore needs to explicitly include

the factors 1/MN = O(N−1
c ) in the Nc scaling relation, as done in eq. (4.37). Because the

range of the b-integration remains stable in the large-Nc limit, the scaling behavior of the

densities follows that of the charges, and we conclude that

ρV1 (b) = O(N0
c ),

ρV2 (b)

MN
= O(Nc) [b = O(N0

c )]. (4.38)

Equation (4.38) represents the general scaling behavior of the isovector densities at non-

exceptional distances in large-Nc QCD. One sees that the physical isovector magnetization

density (including the factor 1/MN ) is parametrically larger than the isovector charge den-

sity. This is a consequence of the spin-flavor symmetry of the large-Nc nucleon, which im-

plies that the spin-dependent matrix elements of isovector quark operators are larger than

the spin-independent ones by one order inNc, and represents a general pattern that is found

also in matrix elements of other operators. We note that the Nc-scaling relations eq. (4.38)

for the transverse densities could also be obtained from the more general scaling relations

12One can also consider the large-Nc limit for baryon states whose spin and isospin scales as {S, T} =

O(Nc), which is a different parametric regime and leads to different scaling relations for current matrix

elements. In the chiral soliton picture of large-Nc baryons such states correspond to high-lying rotational

excitations with angular momentum O(Nc) and with angular velocity O(N0
c ).
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for the isovector nucleon GPDs Hu−d(x, ξ, t) and Eu−d(x, ξ, t) described in ref. [65], by

integrating the latter over the quark momentum fraction x = O(N−1
c ), setting ξ = 0, and

performing the transverse Fourier transform as in eq. (2.13) with t = −∆2
T = O(N0

c ).

4.3 Two-pion component in large-Nc limit

We now want to examine the Nc-scaling of the two-pion component of the transverse

densities calculated in sections 3.1 and 4.1. This exercise explains the interplay between

the N and ∆ contributions observed in section 4.1 and provides a powerful check on the

calculations. More generally, it shows that the two-pion component calculated using EFT

methods obeys the large-Nc scaling laws required by QCD.

Some general comments are in order regarding the compatibility of the large-Nc limit

of QCD with our identification of the chiral component based on the spatial picture of

nucleon structure. First, in our approach we are interested in the transverse densities at

distances b ∼ M−1
π , where M−1

π is assumed to be parametrically large compared to the

nucleon’s non-chiral size but we do not actually take the limit Mπ → 0. Since the pion

mass scales as Mπ = O(N0
c ) this region of distances remains stable in the large-Nc limit,

b ∼M−1
π = O(N0

c ), (4.39)

as does the nucleon’s non-chiral hadronic size, eq. (4.34). As a result, the basic proportion

of the non-chiral and chiral regions of nucleon structure does not change in the large-

Nc limit, and the latter is naturally compatible with our spatial picture. Second, in the

large-Nc limit both the N and the ∆ become heavy, so that this limit corresponds to the

heavy-baryon expansion of the densities. All the findings of section 3.3, in particular the

various consequences of the vanishing distance of the subthreshold singularity from the

physical threshold, can be carried over to the discussion of the large-Nc limit.

Using the explicit expressions for the leading-order chiral EFT result for the two-pion

spectral functions eqs. (3.26)–(3.29), we can determine the Nc-scaling of the corresponding

components of the transverse densities. With the general scaling relations for the couplings

gA = O(Nc), Fπ = O(N1/2
c ), (4.40)

and the masses, eq. (4.33), we find that for t = O(M2
π) = O(N0

c ) the spectral functions

scale as

ImF V
1 (t)N = O(Nc), (4.41)

ImF V
2 (t)N
MN

= O(Nc) [t = O(N0
c )]. (4.42)

The subscript N here indicates that these are the results obtained from the chiral EFT

with nucleons only (including the contributions from intermediate N states and the contact

term) and distinguishes them from the ∆ contribution considered below. In the dispersion

integral eq. (2.34) this implies that

ρV1 (b)N = O(Nc), (4.43)

ρV2 (b)N
MN

= O(Nc) [b = O(N0
c )]. (4.44)
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These results can also be obtained directly from the heavy-baryon expansion of the densities

in the chiral region b = O(M−1
π ), eqs. (B.12) and (B.13), as in this region the heavy-

baryon limit MN ≫ Mπ effectively coincides with the large-Nc limit. We now discuss the

implications of eq. (4.43) and (4.44), and the effect of including ∆ intermediate states,

separately for the charge and magnetization densities.

Charge density. In the transverse charge density the chiral component from nucleons

only, eq. (4.43), is larger by a power of Nc than what is allowed by the general Nc scaling

relation eq. (4.38). It shows that the chiral component from nucleons alone as an ap-

proximation to the peripheral isovector transverse densities would not be consistent with

the large-Nc limit of QCD. However, in section 2 we argued on general grounds that the

large-distance behavior of the isovector densities in the region b = O(M−1
π ) is governed by

the two-pion spectral function near threshold, which should be true even in large-Nc QCD.

The paradox is resolved when one includes the ∆ contribution to the two-pion spectral

function. In the large-Nc limit the N and ∆ are degenerate,

MN ,M∆ = O(Nc), M∆ −MN = O(N−1
c ), (4.45)

and the πNN and πN∆ coupling constants are related as [cf. eq. (3.6)]

gπN∆ =
3

2
gπNN , gπNN ≡ gAMN

Fπ
. (4.46)

Using these relations it is easy to see that for t = O(N0
c ) the N and ∆ two-pion spectral

functions given by eqs. (3.60)–(3.62) and eqs. (4.29)–(4.32) become equal and opposite at

O(Nc),

ImF V
1 (t)∆ = −ImF V

1 (t)N +O(N0
c ) [t = O(N0

c )]. (4.47)

The same applies to the corresponding transverse densities,

ρV1 (b)N = −ρV1 (b)∆ +O(N0
c ) [b = O(N0

c )], (4.48)

so that adding the N and ∆ contribution we obtain

ρV1 (b)N + ρV1 (b)∆ = O(N0
c ) [b = O(N0

c )], (4.49)

which is consistent with the general Nc scaling of the transverse densities, eq. (4.38). Thus,

we see that the inclusion of the ∆ cancels the leading O(Nc) part of the N contribution

and restores the proper Nc scaling of the two-pion component of the transverse densities.

Two circumstances are important in bringing about the remarkable result of eq. (4.47).

First, the large-Nc limit corresponds to the heavy-baryon limit of the spectral functions,

in which the results for both intermediate N and ∆ are given by the leading terms in the

MN/Mπ and M∆/Mπ expansion, respectively, which are not sensitive to the position of

the subthreshold singularities. [These are the x1 term in eq. (3.60), and the x1,∆ term in

eq. (4.28); only the arctan terms in these expressions contain the subthreshold singularity.]
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We recall that the distances of the subthreshold singularities from the threshold, given by

eqs. (2.54) and (2.58), are

N : tsub − 4M2
π =

M4
π

M2
N

= O(N−2
c ),

∆ : tsub,∆ − 4M2
π =

(M2
∆ −M2

N +M2
π)

2

M2
∆

= O(N−2
c ).

(4.50)

They are of order O(N−2
c ) for both N and ∆. However, their magnitude (i.e., the coefficient

of N−2
c in the scaling law) is different for N and ∆, because the term M2

∆ − M2
N =

(M∆−MN )(M∆+MN ) = O(N0
c ) in the ∆ expression is of the same order asM2

π = O(N0
c ).

Thus, the subthreshold branch points for theN and ∆ approach the threshold with different

speed as Nc → ∞. The higher-order terms in the large-Nc expansion of the N and ∆

spectral functions are sensitive to this speed will in general not show a simple relation in

the large-Nc limit; rather, their relation will depend on the ratioM2
π/(M

2
∆−M2

N ) = O(N0
c ) ,

which remains non-trivial in the large-Nc limit.

Second, also the contact terms resulting from the graphs with intermediate N and

∆ states become equal and opposite. Here it is important that in the large-Nc limit the

explicit contact term in the chiral Lagrangian can be neglected compared to the contact

term resulting from the N triangle graph, cf. eq. (3.13), because the former has coefficient

1 = O(N0
c ) while the latter has g2A = O(N2

c ). It is the g
2
A term from the N triangle graph,

eq. (3.27), which is matched by the corresponding term from the ∆ graph, eq. (4.22); there

is no explicit Lagrangian contact term in the ∆ case. Incidentally, this argument shows

that introduction of an explicit “new” ππNN contact term together with the ∆ is not

required by the large-Nc limit, supporting our treatment of this term in section 4.1.

Magnetization density. In the transverse magnetization density the two-pion compo-

nent obtained with intermediate N only, eq. (4.44), shows the Nc-scaling behavior expected

on general grounds, eq. (4.38). The situation is thus very different from the charge den-

sity, and cancellation between N and ∆ is not required to ensure the correct Nc scaling of

the magnetization density. Indeed, we see that the chiral dynamics exploits this freedom

and produces N and ∆ contributions in a non-trivial ratio. Using the Nc-scaling rela-

tions for the couplings and masses as above, and the expressions for the spectral functions

eqs. (3.61)–(3.62) and eqs. (4.30)–(4.32), it is straightforward to show that in the large-Nc

limit

ImF V
2 (t)∆
MN

=
1

2

ImF V
2 (t)N
MN

+O(N0
c ) [t = O(N0

c )], (4.51)

and thus

ρV2 (b)∆
MN

=
1

2

ρV2 (b)N
MN

+O(N0
c ) [b = O(N0

c )]. (4.52)

Combining the N and ∆ contributions one gets a density that is 3/2 times the original

density from N only,

ρV2 (b)N + ρV2 (b)∆
MN

=
3

2

ρV2 (b)N
MN

+O(N0
c ) [b = O(N0

c )]. (4.53)
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Such an enhancement by a factor of 3/2 from including the ∆ is typically found in the chiral

component of matrix elements of isovector-vector operators; for example, the same factor

was obtained for the chiral divergence of the 3-dimensional isovector magnetic radius of

the nucleon [66]; see ref. [43] for a review. It can also be seen by comparing the chiral EFT

predictions for the leading non-analytic dependence of nucleon matrix elements in the limit

Mπ → 0 with those of chiral soliton models, which naturally include the contributions from

intermediate ∆ states.13 It appears very natural that our result for the two-pion component

of the nucleon’s peripheral transverse magnetization density follow the same pattern.

In sum, we find that the two-pion components of the nucleon’s isovector transverse

charge and magnetization densities obey the general large-Nc scaling behavior when the

contributions from intermediate ∆ states are included. In the charge density the ∆ is

“required” to cancel the wrong leading term in the intermediate N result and restore the

proper Nc-scaling; in the magnetization density it is “optional” and results in a factor

3/2 enhancement in the large-Nc limit. These theoretical results explain the numerical

relation between N and ∆ contributions observed in section 4.1 (see figure 10a and b,

and figure 11a and b). More importantly, our findings allow us to place the chiral EFT

approach to peripheral nucleon structure firmly in the context of large-Nc QCD.

A more formal approach to combining the 1/Nc and chiral expansions in nucleon

structure was proposed recently in ref. [67] and applied to static nucleon properties. If this

approach could be extended to the near-threshold spectral functions, it could be used to

study peripheral transverse nucleon structure with the help of the dispersion representation

described in section 2.2.

5 Spatial region of chiral dynamics

5.1 Spectral functions from vector mesons

The chiral EFT methods described in section 3 allow us to calculate the transverse densities

in the nucleon at distances of the parametric order b = O(M−1
π ), i.e., distances that scale as

const×M−1
π when the pion mass is considered small compared to the non-chiral mass scales.

An important question is at what numerical values of b the chiral component dominates the

non-chiral contributions and thus represents a good approximation to the overall peripheral

densities in the nucleon. In the space-time picture in the nucleon rest frame of section 3.4,

this defines the region of distances where one can truly think of the system as a “bare”

nucleon and a peripheral pion, outside of the range of interaction defined by the intrinsic

(or non-chiral) size of the bare nucleon. In the context of scattering processes, it defines

the region of impact parameters where the probe interacts predominantly with the chiral

component of the nucleon.

The dispersion representation of the transverse densities described in section 2.2,

eq. (2.34), allows us to answer this question in a natural way (see figure 12). The “chi-

ral” component of the isovector transverse densities results from the near-threshold region

t = 4M2
π + fewM2

π , where the spectral functions are governed by chiral dynamics and are

13The equivalence of the chiral soliton model and two-pion exchange with intermediate N and ∆ in the

case of isoscalar peripheral partonic structure is discussed in ref. [27].
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Figure 12. Chiral and non-chiral contributions to the spectral functions of the isovector nucleon

form factors. In the near-threshold region t−4M2
π ∼ fewM2

π the spectral functions are governed by

chiral dynamics and approximated by the chiral EFT results eqs. (3.26)–(3.29). In the region t .

1GeV2 they are dominated by the ρ meson resonance and approximated by the pole form eqs. (5.1)

and (5.2). High-mass states at t > 1GeV give negligible contribution to peripheral densities.

well approximated by the chiral EFT expressions eqs. (3.26)–(3.29). “Non-chiral” densities

are generated by higher-mass states in the spectral function, which include the prominent

ρ meson resonance in the two-pion channel [35] and a continuum of higher-mass hadronic

states [47]. By comparing the “chiral” and “non-chiral” densities defined in this sense we

can quantify at what peripheral distances the chiral component becomes numerically dom-

inant and in this way identify the spatial region where the overall densities are governed

by chiral dynamics. Note that the dispersion representation enables us to perform this

comparison model-independently and without without double-counting.

The non-chiral isovector transverse densities at distances b & 1 fm are overwhelmingly

due to the ρ resonance in the two-pion channel [50]. States with masses t > 1GeV2 in

the spectral function play a direct role only at small distances b < 0.5 fm, which we are

not interested in here. For the purpose of our comparison between chiral and non-chiral

densities in the nucleon’s periphery it will be sufficient to consider only the non-chiral

density generated by the ρ meson mass region of the spectral function. We parametrize the

distribution of strength in this region by a simple pole at the ρ meson massMρ = 0.77GeV,

1

π
ImF V

1 (t)ρ = c1ρM
2
ρ δ(t−M2

ρ ), (5.1)

1

π
ImF V

2 (t)ρ = c2ρM
2
ρ δ(t−M2

ρ ), (5.2)

where c1ρ and c2ρ are parameters determined by empirical information. In the Dirac

spectral function eq. (5.1), the vector meson dominance (or VMD) model, in which the

entire isovector charge of the nucleon is carried by ρ meson exchange, F V
1 (0)ρ = 1/2,

would correspond to

c1ρ =
1

2
(VMD). (5.3)

A more realistic value is obtained using the empirical ρNN coupling from meson exchange

parametrizations of the NN interaction, gρNN = 3.25 [68, 69], and the ρ meson coupling

to the electromagnetic current, fρ = 5.01, as extracted from the ρ → e+e− partial decay

width Γ(ρ → e+e−) = (αMρ/3)(e/fρ)
2 = 6.9 keV [70], where α = e2/(4π) ≈ 1/137 is the

fine structure constant,

c1ρ = gρNN/fρ = 0.65 (empirical couplings). (5.4)
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This value is ∼ 30% larger than the simple VMD result, eq. (5.3). The explanation is that

in the full spectral function the “excess” isovector charge from ρ exchange is compensated

by a negative contribution from other states above ∼ 1GeV2. This is related to the

1/t2 asymptotic power behavior of the spacelike form factor in QCD for |t| → ∞ (up to

logarithmic corrections), which requires vanishing of the coefficient of 1/t in the asymptotic

series, or
∞∫

4M2
π

dt Im F V
1,2(t) = 0, (5.5)

and is consistently seen in empirical fits to nucleon form factor data [47]. It can also be

demonstrated in a two-pole model of the spectral density, in which the strength of the

higher-mass states above the ρ is parametrized by a second pole with negative residue such

that eq. (5.5) is satisfied; if the mass of that second pole is taken to be that of the first

ρ′ resonance established in e+e− annihilation experiments, Mρ′ = 1.47GeV, one obtains

c1ρ = 1
2M

2
ρ′/(M

2
ρ′ −M2

ρ ) = 0.70, in reasonable agreement with eq. (5.4). We shall use the

empirical value eq. (5.4) in our numerical estimates below.

The parameter c2ρ in eq. (5.2) determines the strength of the Pauli spectral function

in the ρ mass region. In the simple VMD model (or the two-pole extension) it would be

fixed by the isovector anomalous magnetic moment, namely

c2ρ/c1ρ = κp − κn = 3.7 (VMD). (5.6)

In meson exchange phenomenology the ratio eq. (5.6) is directly given by the ratio of the

helicity-flip and non-flip ρNN couplings. The value obtained with the empirical couplings

used in the parametrization of the NN interaction [68, 69] is substantially larger,

c2ρ/c1ρ = 6.1 (empirical couplings). (5.7)

Inspection of the full dispersion-theoretical result for the low-mass spectral functions [71]

shows that the ratio ImF V
2 (t)/ImF V

1 (t) varies over the region t ≤ 1GeV2, roughly in the

range between the values of eqs. (5.6) and (5.7), and particularly fast near the ρ resonance

mass. With the simple parametrization eq. (5.2) we are clearly not able to express such

details. Rather, we shall use eq. (5.2) with the empirical value of the couplings eq. (5.7)

and treat the discrepancy between the values of eqs. (5.6) and (5.7) as a measure of the

theoretical uncertainty of our parametrization. For the numerical estimates performed in

the following this turns out to be fully sufficient.

5.2 Chiral vs. nonchiral densities

With the higher-mass spectral functions parametrized by eqs. (5.1) and (5.2), and the

parameters given by eq. (5.4) and (5.7), we can now quantitatively compare the “chiral”

and “non-chiral” components of the nucleon’s peripheral transverse densities in the sense

specified above. The transverse densities generated by the ρ-pole spectral functions of

eqs. (5.1) and (5.2) via the dispersion integral eq. (2.34) are

ρV1,2(b)ρ = c1ρ, 2ρM
2
ρ

K0(Mρb)

2π
∼ c1ρ, 2ρM

2
ρ

e−Mρb

√
8πMρb

(b→ ∞). (5.8)
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The asymptotic form given by the last expression describes the exact density with an

accuracy better than 10% already for Mρb > 1 and can be used for calculational purposes.

In figure 13 we compare the “chiral” component of the densities obtained from the chiral

EFT spectral functions, eqs. (3.26)–(3.29), with the “non-chiral” densities from the ρmeson

pole parametrization, eq. (5.8). For clarity we plot here the chiral two-pion densities

without the intermediate ∆ contribution; the latter is numerically small at large b (see

figure 11) and does not substantially affect our conclusions. Figure 13 shows that in

the limit b → ∞ the chiral components of the charge and magnetization density indeed

dominate, because their exponential fall-off is governed by the scale 2Mπ rather than Mρ

(the deviations from exponential behavior due to the pre-exponential factor of the chiral

component were discussed in section 3.2; see figure 6). However, the numerical values of b

required for the chiral component to become substantially larger than the non-chiral one

are surprisingly large. In both the charge and the magnetization density one has to go to

b & 2M−1
π for the chiral charge density to become 3–4 times larger than the one from the ρ

pole parametrizations. It is only at these distances that the theoretical expectation based

on exponential asymptotics is borne out by the actual numerical values of the densities.

Some remarks are in order regarding the aim and significance of the numerical stud-

ies done here. First, the purpose of the numerical comparison of the chiral component

with the ρ pole parametrization in figure 13 is only to determine at what distances the

chiral component becomes numerically dominant. This is to be understood in the sense

of large-b asymptotics: we compare the result of the “theoretically leading” singularity at

t ∼ 4M2
π with a model of the “theoretically subleading” higher-mass singularities, sum-

marized by a pole at t = M2
ρ . We do not advocate to add the chiral component and

the ρ pole and construct in this way a model of the full spectral functions. Excellent

dispersion-theoretical parametrizations of the full spectral functions are available which

serve that purpose [47, 71, 72]. These parametrizations are fully consistent with the chi-

ral EFT results at t . 10M2
π (where the chiral expansion converges) and embed them

in an interpolating description that extends up to t ∼ 1GeV2. A spectral analysis of

the transverse charge density based on the full spectral function [50] arrives at practi-

cally the same conclusion regarding the region of distances associated with the “chiral”

component as the estimate presented here. Second, for the stated purpose we only need

to compare the “chiral” and “non-chiral” densities on a logarithmic scale, as shown in

figure 13, and roughly determine at what distances the chiral component becomes dom-

inant. For this purpose the simple parametrizations of the non-chiral density described

in section 5.1 are fully adequate, and the uncertainties in the parameters do not affect

our conclusions [see figure 13b for the magnetization density obtained with the parameters

of eqs. (5.6) and (5.7), which differ by a factor 1.6]. Likewise, it was shown in ref. [50]

that account of the finite width of the ρ meson resonance increases the peripheral densities

generated by the ρ only moderately in the region of interest (by ∼ 40% at b = 2 fm) and

does not substantially change our conclusions regarding the region of dominance of the

chiral component.

The results of figure 13 have interesting implications for our general understanding of

nucleon structure. First, they invalidate the naive picture of the nucleon’s spatial structure
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Figure 13. Comparison of the chiral component of the transverse charge and magnetization

densities from eqs. (3.26)–(3.29) (cf. figure 6) with the non-chiral densities parametrized by a ρ-

meson pole, eq. (5.8). (a) Charge density ρ1(b). The coefficient of the ρ pole parametrization is

given by eq. (5.4). (b) Magnetization density ρ2(b). The two curves for the ρ pole parametrization

correspond to the coefficients of eqs. (5.6) and (5.7) and reflect the uncertainty of the empirical

parametrization.

as a “core” of size ∼ 1 fm surrounded by a “pion cloud” generated by chiral dynamics.

The numerical results show that the density associated with the ρ meson region of the

spectral function, which is not associated with chiral dynamics, dominates up to much
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larger distances, and that one has to go to b & 2M−1
π ∼ 3 fm to clearly see the component

due to chiral dynamics. Only at such transverse distances can one think of the relevant

configurations in the nucleon’s light-cone wave function (see sections 2.1 and 3.4) as a

nucleon-like core and a peripheral pion interacting through the physical πN coupling.

Second, dominance of the chiral component starts at roughly the same distances b & 2M−1
π

in the charge and magnetization densities. Again, this runs counter to the expectation

that the “pion cloud” should be more prominent in the magnetization density (see also

section 3.4). In absolute terms the chiral component is indeed larger in ρ2(b) than in

ρ1(b), but the same is true for the non-chiral density parametrized by the ρ pole, so that

the proportion remains roughly the same. Note that this conclusion changes when taking

into account the ∆ contribution, as it diminishes the change density and enhances the

magnetization density (see section 4); however, with the ∆ one is leaving the domain of

strict chiral dynamics, so that the comparison with the “non-chiral” density modeled by

the ρ pole becomes less meaningful.

Our findings do not imply that chiral dynamics plays no role in transverse nucleon

structure at b . 2M−1
π . We only find that as such distances the behavior of the transverse

densities will always be essentially influenced by the nucleon’s “intrinsic” size, i.e., a dis-

tance scale other than M−1
π , represented by the ρ meson mass in the example discussed

here. It is only at larger distances that the densities lose the memory of this intrinsic size of

the nucleon and the latter can be thought of as a structureless source coupling to soft pions.

Chiral symmetry still plays an important role in nucleon structure at smaller distances,

as a constraint on the long-distance behavior of the overall effective dynamics. Dynamical

models have been formulated which “interpolate” between the universal chiral dynamics

at distances M−1
π , summarized by the chiral Lagrangian, and dynamics at shorter distance

scales giving rise to the nucleon’s non-chiral intrinsic size. One such class of models is

the skyrmion, which describes the nucleon as a soliton of a non-linear chiral Lagrangian

coupled to vector meson fields (or, equivalently, a Lagrangian with higher-derivative terms

resulting from integrating out the vector mesons); here the intrinsic size of the nucleon

is determined by the vector meson mass and the inherent non-linearity of the dynamics;

see refs. [73, 74] for a review. Another example is the chiral quark-soliton model [75, 76],

which uses constituent quarks coupled to the pion field as effective degrees of freedom; here

the short-distance scale governing the intrinsic size of the nucleon is the constituent quark

mass. Both models are explicit realizations of the generic soliton picture of baryons in the

large-Nc limit of QCD [40] and therefore include the equivalent of ∆ intermediate states

in chiral processes. They give rise to a successful phenomenology of nucleon form factors

at intermediate momentum transfers |t| . 1GeV2 (see refs. [74, 77] for reviews), which

testifies to the proper implementation of the nucleon’s non-chiral intrinsic size. They can

therefore be used to model the nucleon’s transverse densities over a wide range of distances

b & 0.3 fm in a manner that matches with chiral dynamics at large distances b & 3 fm

(including intermediate ∆).
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6 Moments and chiral divergences

6.1 Moments of transverse densities

In traditional applications of chiral EFT one studies the dependence of nucleon observables

such as the vector and axial charges, charge radii, etc., on the pion mass in the limit

Mπ → 0. Of particular interest is the leading non-analytic behavior of these quantities

(“chiral singularities”), which can be traced back to universal characteristics of the effective

chiral dynamics. In the context of the spatial representation of nucleon structure (see

section 2.1) these quantities appear as weighted integrals of the transverse densities over

b. To conclude our study we want to show how the chiral components of the transverse

charge and magnetization densities at distances b = O(M−1
π ) computed in section 3 are

related to the well-known chiral singularities in the nucleon charge and magnetic radii.

This serves as a further test of the formalism developed here and offers new insights into

the spatial support of the chiral divergences. More generally, it explains the connection

between the traditional usage of chiral EFT for bulk quantities and the spatial picture of

nucleon structure employed here.

For theoretical analysis it is convenient to consider “truncated” moments of the trans-

verse charge and magnetization densities, defined as

M1,2(n, b0) ≡
∫
d2bΘ(b > b0) b

2n ρ1,2(b) (n = 0, 1, 2, . . .). (6.1)

The theta function restricts the integration to distances b > b0. For b0 = 0 the truncated

moments coincide with the usual moments of the densities. In particular, the moments

with n = 0 reproduce the form factors at t = 0,

M1(n = 0, b0 = 0) = F1(t = 0), M2(n = 0, b0 = 0) = F2(t = 0); (6.2)

their values for the isoscalar and isovector combinations in our convention are given in

eq. (2.7). More generally, for any integer n ≥ 0 the moment with b0 = 0 is proportional to

the n’th derivative of the form factor at t = 0,

M1,2(n, b0 = 0) = 22nn!
dnF1,2

dtn
(t = 0). (6.3)

The coefficient can be determined by repeated differentiation of the Fourier representation

of the form factor, eq. (2.10), with respect to the vector∆T , or more elegantly by comparing

the dispersion integral for the moments given below, eq. (6.6), with the dispersion integral

for the derivatives of the form factor obtained by differentiation of eq. (2.33) with respect

to t. The normalized averages of powers of b2 over the transverse densities are obtained as

〈b2n〉1,2 ≡
∫
d2b b2n ρ1,2(b)∫
d2b ρ1,2(b)

=
M1,2(n, b0 = 0)

M1,2(0, b0 = 0)
(6.4)

(with the explicit normalization factor in the denominator, the expressions are valid for

any normalization convention of the form factors).
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The analytic properties of the form factor guarantee that the transverse densities

decay exponentially at b→ ∞; in the case of the isovector densities the exponential decay

is ∼ exp(−2Mπb) (cf. section 2.2). The b-integral in eq. (6.1) therefore converges for any

n ≥ 0, and the series of moments provides an alternative representation of the information

contained in the transverse densities. This can also be deduced from the fact that the form

factor is analytic near t = 0, and that the the moments are proportional to its derivatives,

cf. eq. (6.3).

From the dispersion representation of the transverse densities, eq. (2.34), we can now

derive a dispersion representation of the truncated moments defined by eq. (6.1). Multi-

plying eq. (2.34) by b2n and integrating over b we obtain

M1,2(n, b0) =

∞∫

4M2
π

dt




∞∫

b0

db b2n+1 K0(
√
tb)


 ImF1,2(t+ i0)

π
(6.5)

= 22n(n!)2
∞∫

4M2
π

dt

tn+1
R(n,

√
tb0)

ImF1,2(t+ i0)

π
. (6.6)

The function R introduced in the last step is defined as the dimensionless integral (here

z ≡
√
tb and z0 ≡

√
tb0)

R(n, z0) ≡
1

22n(n!)2

∫ ∞

z0

dz z2n+1K0(z) (6.7)

and has the properties that, for any n ≥ 0, it is normalized to unity at zero argument and

vanishes exponentially at large values

R(n, 0) = 1, (6.8)

R(n, z0) ∼
√
π

2
z
2n+1/2
0 e−z0 (z0 → ∞). (6.9)

It thus acts as an ultraviolet cutoff in the dispersion integral for the truncated moment,

eq. (6.6), which has no effect on masses
√
t ≪ 1/b0 but exponentially suppresses the con-

tributions from masses
√
t ≫ 1/b0. Note that for b0 = 0 the function R in eq. (6.6) is

identically equal to unity, and the dispersion integral reverts to that for the usual moments

(or, up to a factor, the derivatives of the form factor), where large masses are not sup-

pressed. Thus we see that the elimination of small transverse distances in the truncated

moments eq. (6.1) implements a very natural ultraviolet cutoff in the dispersion integral

and renders it exponentially convergent for all n. In a sense, the truncated moments

eq. (6.1) can be regarded as a coordinate-space based regularization of the derivatives of

the form factor.

6.2 Chiral divergence of moments

We now want to demonstrate that the chiral component of the isovector charge and mag-

netization densities at b ∼ M−1
π , derived in section 3.2, reproduces the well-known chiral
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divergences of the nucleon’s isovector charge and magnetic radius. This will establish the

connection between our spatial identification of the nucleon’s chiral component and the

pion mass dependence of traditional chiral EFT and reveal what physical distances are

involved in the chiral divergences of these quantities.

To this end we consider the truncated n = 1 moments of the isovector charge and

magnetization densities,

MV
1,2(1, b0) =

∫
d2b Θ(b > b0) b

2 ρV1,2(b), (6.10)

which for b0 = 0 are, up to a factor, equal to the first derivatives of the form factors,

MV
1,2(1, b0 = 0) = 4

dF V
1,2

dt
(t = 0). (6.11)

Their dispersion representation is provided by eq. (6.6). Changing the integration variable

to the dimensionless variable u ≡
√
t/(2Mπ), such that the threshold t = 4M2

π corresponds

to u = 1, cf. eq. (B.1), the dispersion integral becomes

MV
1,2(1, b0) =

2

M2
π

∞∫

1

du

u3
R(1, 2Mπb0u)

ImF V
1,2(t)

π
(t = 4M2

πu
2), (6.12)

where the kernel R is defined in eq. (6.9). We want to evaluate this integral with the leading-

order chiral result for the isovector spectral functions at t = O(M2
π) quoted in section 3.2,

and extract the leading asymptotic behavior of the truncated moment at Mπ → 0. The

cutoff b0 in the moment is regarded as a non-chiral scale, i.e., it is not of order O(M−1
π )

and remains finite in the limit Mπ → 0. The leading chiral singularities of the moments

can be obtained from the leading term in the the heavy-baryon expansion of the spectral

functions derived in appendix B, eqs. (B.3) and (B.4); one can easily show that higher-order

terms in the heavy-baryon expansion of the spectral function do not modify the leading

asymptotic behavior for Mπ → 0. In leading order of Mπ/MN the explicit expressions

given by eqs. (B.3) and (B.4) are (combining the intermediate nucleon and contact terms

in the Dirac spectral function)

1

π
ImF V

1 (t) =
M2

π

(4πFπ)2

√
u2 − 1

u

[
5g2A + 1

3
(u2 − 1) + 2g2A

]
+O

(
M3

π

MN

)
, (6.13)

1

π
ImF V

2 (t) =
πg2AMπMN

(4πFπ)2
u2 − 1

u
+O(M2

π) (t = 4M2
πu

2). (6.14)

In the representation of eq. (6.12) the chiral singularities of the moments arise from the

u → ∞ region of the integral, where the behavior of the integrand depends on both the

spectral functions and the cutoff R. This behavior needs to be discussed separately for the

moment of the charge and magnetization density.

Moment of charge density (“charge radius”). The spectral function of the isovector

Dirac form factor in leading-order heavy-baryon expansion, eq. (6.13), behaves at large u as

1

π
ImF V

1 (t) ∼ M2
π

(4πFπ)2
5g2A + 1

3
u2 (u→ ∞, t = 4M2

πu
2). (6.15)
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The integrand in eq. (6.12), excluding the factor R, effectively behaves as u−1 at large u.

The integral thus has a would-be logarithmic divergence that is regulated by the function

R, which restricts the integration to values u . 1/(Mπb0). The truncated moment of the

transverse charge density acquires a logarithmic chiral singularity of the form

MV
1 (1, b0) ∼

2(5g2A + 1)

3(4πFπ)2
log(Mπb0) +O(M0

π). (6.16)

That the argument of the logarithm of the truncated moment involves the combination

Mπb0 shows explicitly that the minimum transverse distance b0 plays the role of an ultravi-

olet cutoff here. The coefficient of the chiral logarithm of the truncated moment, eq. (6.16),

agrees with the well-known chiral logarithm of the nucleon charge radius obtained in stan-

dard chiral EFT calculations of the nucleon form factors with other regularization schemes,

such as dimensional regularization [23, 24, 31].

It is natural to ask what physical distances are responsible for the chiral logarithm of

the charge radius within our spatial picture. This question can be answered by considering

the case that 1/Mπ is very much larger than b0, while b0 itself is of the order of the nucleon’s

non-chiral size. In this case there is a broad range of distances b0 ≪ b ≪ 1/Mπ. The

chiral logarithm is the result of the integration over this broad range. That the coefficient

of the logarithm is the same as that obtained with other regularization schemes shows

that the approximations made in calculating the transverse charge density at large b are

sufficiently accurate to permit integration down to b ∼ b0 with logarithmic accuracy. The

picture sketched here follows the general pattern by which “large logarithms” in quantum

field theory arise from integrating over modes with wavelengths in a range limited by two

widely different scales.

Moment of magnetization density (“magnetic radius”). The spectral function of

the isovector Pauli form factor in the leading-order heavy-baryon expansion, eq. (6.14),

behaves as u in the limit u → ∞. The integrand in eq. (6.12) (excluding the factor R)

therefore drops as u−2 at large u, and the integral converges without the ultraviolet cutoff

by the function R. The leading power behavior of the moment inMπ is obtained by simply

setting Mπ = 0 in the integral, whence the function R becomes unity,

MV
2 (1, b0) ∼ πg2AMN

(4πFπ)2Mπ

∞∫

1

du
u2 − 1

u4
+O(M0

π) (6.17)

=
2πg2AMN

3(4πFπ)2Mπ
+O(M0

π). (6.18)

The b2-moment of the transverse magnetization density diverges as M−1
π in the chiral

limit. This result agrees in power and coefficient with the well-known chiral divergence of

the slope of the isovector Pauli form factor (or the nucleon’s isovector magnetic radius)

obtained in standard chiral EFT [23, 24, 31].

The power-like chiral singularity of the truncated b2-moment of the transverse magne-

tization density, eq. (6.18), does not depend on the value of the short-distance cutoff b0. It
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shows that this chiral singularity really arises from the integration over distances b ∼M−1
π .

The situation is different from the moment of the charge density, where integration over a

broad range b0 ≪ b ≪ M−1
π , extending down to non-chiral distances, is required to bring

about the logarithmic singularity. In this sense, the power-like divergence of the magneti-

zation density moment represents a purer chiral long-distance effect than the logarithmic

divergence of the charge density moment.

In sum, our investigation confirms that the b2-weighted moments of the chiral compo-

nent of the transverse charge and magnetization density reproduce the well-known chiral

singularities of the isovector charge and magnetic radius in the limit Mπ → 0. It shows

that the approximations made in our calculation of the peripheral densities in chiral EFT

are sufficient to permit integration over b with the necessary accuracy. In the logarithmic

singularity of the charge density moment there is (necessarily) a residual dependence on

the short-distance cutoff b0, while the power-like singularity of the magnetization density

moment is completely independent of b0 and represents a pure large-distance effect. In

higher moments of the densities (b4, b6 etc.) short-distance contributions are even more

suppressed; these moments exhibit power-like divergences that can likewise be obtained by

integrating the chiral result for the peripheral densities at b ∼M−1
π .

A comment is in order regarding the n = 0 truncated moment of the densities, which

gives the total isovector charge and anomalous magnetic moment located at transverse

distances b > b0,

MV
1,2(0, b0) =

∫
d2b Θ(b > b0) ρ

V
1,2(b). (6.19)

As there is no factor b2, contributions from short distances are not suppressed in this

integral. We therefore cannot evaluate the moment eq. (6.19) using only the peripheral

densities at b = O(M−1
π ) computed in section 3.2 [more precisely, we could do so only for

b0 = O(M−1
π ), which would not be interesting]. To calculate the Mπ dependence of the

moment eq. (6.19) we would need also the chiral contributions to the transverse densities

at “non-chiral” distances. The latter arise from chiral EFT processes in which the current

operator couples to the nucleon field. Those diagrams could also be computed within

our dispersion approach and give either contributions to the density at finite distances

b ∼ O(M−1
N ) (the loop diagram with a two-nucleon cut in the t-channel) or delta functions

δ(2)(b) (loop diagrams with no t-channel cut). Such a calculation could show in what

sense, and with what accuracy, the chiral EFT result approximates the empirical central

(non-peripheral) charge and magnetization densities in the nucleon, which are known to be

dominated by the ρ meson region of the spectral exchange over a wide region of distances;

see ref. [50] and section 5. In the present work the focus is on peripheral densities, and we

leave this exercise to a future study.

7 Summary and outlook

7.1 Specific results

In this work we have studied the transverse charge and magnetization densities in the

nucleon’s chiral periphery using methods of dispersion analysis and chiral EFT. Our inves-
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tigation has provided many new insights into the behavior of the transverse densities and

the merits of the theoretical methods employed in their calculation. In the following we

summarize the specific results for the transverse densities, the methodological aspects of

broader relevance, and possible experimental tests of the structures found here. We also

discuss possible future extensions and applications of the methods developed here.

Our study has produced the following specific results regarding the structure of the

nucleon’s peripheral transverse charge and magnetization densities:

• Exponential vs. pre-exponential dependence. The transverse densities show a very

strong b-dependence beyond the exponential fall-off ∼ exp(−2Mπb) required by the

position of the two-pion threshold. It reflects the non-trivial structure of the πN

scattering amplitude near threshold, particularly the subthreshold nucleon singular-

ity, which brings in the small parameter ǫ =Mπ/MN .

• Charge vs. magnetization density. In the chiral region b = O(M−1
π ) the spin-indepen-

dent and -dependent components of the 4-vector current density, ρV1 (b) and ρ̃
V
2 (b), are

of the same order in the chiral expansion. A mechanical explanation can be provided

in the rest frame, where a peripheral pion in the nucleon’s light-cone wave function at

distances O(M−1
π ) has velocity v = O(1) and generates charge and current densities

of the same order. In the region of molecular distances b = O(M2
N/M

3
π) the pion

velocity is v = O(Mπ/MN ), and the current density is suppressed compared to the

charge density.

• Role of ∆ excitation. The inclusion of intermediate ∆ isobars in the πN amplitude

diminishes the peripheral charge density but enhances the magnetization density.

The pattern is explained by the large-Nc limit of QCD, which requires that the N

and ∆ contributions to the charge density cancel in leading order of N−1
c , while in

the magnetization density they add to give 3/2 times the N result.

• Spatial region of chiral component. The chiral component of the charge and magneti-

zation densities becomes numerically dominant only at very large transverse distances

b & 2M−1
π . At smaller distances the densities are generated mostly by the ρ mass

region of the spectral functions. The spatial representation of nucleon structure af-

forded by the transverse densities gives a precise meaning to the notion of the “pion

cloud.”

• Spatial support of chiral divergences. The integrals of the chiral long-distance com-

ponent of the densities reproduce the well-known chiral divergences of the isovector

charge and magnetic radii in the limit Mπ → 0. The chiral logarithm of the charge

radius results from the integral over a broad range of distances b0 ≪ b ≪ 1/Mπ,

while the power-like divergence of the magnetic radius results from b ∼M−1
π .

The calculations reported here could easily be extended to study other elements of the

nucleon’s transverse structure. One obvious extension are the nucleon’s transverse axial

and pseudoscalar charge densities, which are the Fourier transforms of the form factors of
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the axial current operator (or, equivalently, the x-integrals of the axial vector-type GPDs

H̃ and Ẽ [65]). Of particular interest is that the spectral function of the pseudoscalar form

factor contains a pion pole at t = M2
π , so that the corresponding density should represent

the longest-range transverse structure accessible through matrix elements of local current

operators. Another extension are the transverse densities corresponding to the form factors

of the nucleon’s energy-momentum tensor [78–80], which describe the spatial distributions

of matter, momentum, and stress (or forces) in the nucleon. The study of the peripheral

chiral component of these densities would be of fundamental interest and possibly offer

a new perspective on the partonic interpretation of orbital angular momentum in the

nucleon’s periphery. Last, the methods described here could be extended to study the

spatial structure of higher x-moments of the nucleon GPDs in the chiral region and perhaps

provide new insight into their chiral extrapolation properties.

7.2 Methodological aspects

Usefulness of spatial representation. The spatial representation of nucleon structure

in the light-front formulation offers a natural framework for identifying and calculating the

chiral component of nucleon structure. The transverse distance b acts as a natural param-

eter for the chiral expansion, and the expansion of the peripheral densities at b = O(M−1
π )

provides much more theoretical control than that of the total charges. The formulation

also allows one to combine chiral and non-chiral contributions in a consistent fashion. Even

the inclusion of ∆ intermediate states with the additional scale M∆ −MN and the imple-

mentation of the large-Nc limit of QCD can be accomplished easily when focusing on the

peripheral b-dependent densities. When developed further, the transverse spatial repre-

sentation could become a valuable tool for the interpretation of chiral EFT calculations of

nucleon structure. Its role can be compared to that of the coordinate-space potential in

summarizing the properties of the low-energy NN interaction in chiral EFT [38].

Invariant vs. time-ordered formulation of chiral EFT. In the present work we have

used the dispersion representation of the transverse densities to study their behavior in the

chiral periphery b = O(M−1
π ). This has allowed us to employ chiral EFT in its Lorentz-

invariant relativistic formulation to describe the spectral functions of the form factors —

an efficient and safe approach, particularly when higher-spin particles such as the ∆ are

involved. In this way the “transverse” context is hidden in the structure of the kernel of the

dispersion integral, while the calculations are performed in invariant perturbation theory.

Alternatively, one could study the chiral processes in peripheral transverse nucleon struc-

ture directly in time-ordered perturbation theory, where they take the form of emission

and absorption of soft pions by the nucleon [momentum k = O(Mπ) in the nucleon rest

frame]. This can be done using either the infinite-momentum frame, where one considers

a nucleon moving with momentum P ≫ R−1 (R represents the non-chiral nucleon size), or

light-front time-ordered perturbation theory, where one studies the time evolution of the

chiral πN system in x+ = x0 + z. (In both formulations a careful limiting procedure is

required to correctly account for the ππNN contact terms representing the effect of high-

mass intermediate states on nucleon structure.) The time-ordered formulation obtained in
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this way offers many interesting new insights. The nucleon in chiral EFT is characterized

by a light-front wave function with πN, ππN etc components, which is calculable from the

chiral Lagrangian and provides a particle-based first-quantized description of chiral nucleon

structure (Fock expansion). It gives a precise meaning to the orbital angular momentum

of the chiral πN configuration and allows one to make contact with the non-relativistic

Schrödinger wave function description. The calculation of the peripheral densities in the

“time-ordered” formulation, and the demonstration of its equivalence with the “invariant”

formulation based on dispersion relations, will be the subject of a subsequent article [39].

Several aspects of nucleon structure at zero momentum transfer (self-energies, pion mo-

mentum distribution, electromagnetic couplings) in light-front chiral dynamics have been

studied in refs. [57, 58, 81]. Other recent work has focused on expressing the consequences

of dynamical chiral symmetry breaking in the light-front formulation of QCD at a more

abstract level [82].

Longitudinal structure and resummation. In the study reported here we have fo-

cused on the transverse charge and magnetization densities, which are integrals of the

nucleon GPDs over x. The chiral component was identified only through the transverse

distance b = O(M−1
π ), and the leading-order chiral EFT result was used to evaluate the

densities. Much more structure becomes available, of course, when one considers the chiral

component of the GPDs as a function of both longitudinal momentum and transverse dis-

tance. The longitudinal properties of the chiral expansion were studied extensively for the

pion, where it was shown that the fixed-order chiral expansion breaks down at pion light-

cone momentum fractions of the order y = O[M2
π/(4πFπ)

2], and an all-order resummation

was proposed for this regime [54, 55]. It was shown that the transverse radius of the pion

grows with decreasing y as a result of chiral dynamics, and that this “inflation” is consistent

with the well-known chiral divergence of the pion charge radius [56]. What these findings

imply for the nucleon GPDs and transverse densities deserves further study. Generally, the

leading-order chiral component of the nucleon corresponds to pion light-cone momentum

fractions of the order y = O(Mπ/MN ) [27, 28], and the integral of the pion distributions

over this parametric domain reproduces the leading-order transverse densities described

in the work here [26] (for a discussion of the role of y = 0 modes see the quoted article).

Interesting questions are how much a regime of exceptionally small “chiral” momentum

fractions (i.e., parametrically smaller than the natural value Mπ/MN ) would contribute to

the y-integral of the transverse densities; how such a chiral contribution to the densities

could be reconciled with known chiral behavior of the spectral functions near threshold, to

which they are related by a dispersion relation; and how the subthreshold singularity and

the “molecular regime” described in section 2.4 would manifest themselves in that formu-

lation. The y-dependence of the chiral component of nucleon GPDs was recently studied

heavy-baryon chiral EFT [83]. A discussion of the relevance of chiral resummation in the

nucleon’s partonic structure from a phenomenological perspective can be found in ref. [28].

Importance of analyticity. Analyticity plays a central role in the study of peripheral

nucleon structure. The peripheral densities are the dispersive image of the spectral func-

tions of the form factors near threshold and embody their full complexity. In fact, the
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b-representation is the mathematically cleanest way of displaying the analytic structure

of the form factors [50] and might well have been invented for that purpose had it not

been known for its physical meaning. The relativistic formulation of chiral EFT produces

amplitudes with the correct analytic properties and can safely be used to study peripheral

nucleon structure. Heavy-baryon formulations can be employed to the extent that their

results can be represented as approximations to the spectral functions of the form factors

with an analytic structure based on exact kinematics [29, 32]. While we have used chiral

EFT to obtain explicit approximations to the peripheral densities, many of the results pre-

sented here could be obtained in a more general amplitude analysis based on analyticity

and dispersion relations. The properties of the chiral component of the densities studied

in section 3 could be deduced from the two-pion cut of the form factor using the general

πN scattering amplitude and its analytic properties. Likewise, the ρ meson contribution

to the densities computed in section 5 could be obtained from a dispersion analysis of the

isovector spectral function, using elastic unitarity below the 4π threshold [72]. It would

be interesting to extend this general amplitude analysis to other elements of peripheral

nucleon structure, e.g. the nucleon’s x-dependent parton densities at b = O(M−1
π ).

7.3 Experimental tests

To conclude our discussion we briefly want to comment on observable effects and possible

experimental tests of the structures described here. The aim of the present study has

been to calculate the peripheral transverse charge and magnetization densities in chiral

EFT and understand their mechanical properties. The chiral large-distance components of

the densities described here represent model-independent elements of the nucleon’s light-

front (or partonic) structure. They could be implemented as constraints (limiting cases)

in empirical parametrizations of the nucleon’s transverse densities. Using the methods

developed in refs. [27, 28], this approach could easily be extended to the x-dependent

peripheral transverse densities of quarks, antiquarks and gluons in the nucleon (GPDs).

Chiral component in empirical densities. An obvious question is whether the chiral

component of the transverse densities could be “seen” in empirical b-dependent densities

extracted from form nucleon factor data. A detailed study of this complex problem remains

beyond the scope of the present article, and we limit ourselves to a few comments here.

The results of section 5 show that the chiral components dominate the overall charge

and magnetization densities only at very large distances b & 2M−1
π ≈ 3 fm. To probe

the chiral component directly one therefore has to extract the empirical densities at such

large distances, where they are exponentially small. This is possible only with form factor

parametrizations that respect the exact analytic structure of the form factor in the complex

t-plane (principal cut starting at 4M2
π , absence of spurious singularities), as are provided

by dispersion fits [47]. Form factor parametrizations based on rational approximations [16,

17, 45] generally produce singularities at unphysical complex values of t and are principally

not adequate for extracting densities in the region of their leading exponential fall-off; cf.

the discussion in ref. [50]. It follows that traditional dispersion-type fits to form factors are

the only mathematically reliable method to extract the peripheral densities and identify the
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chiral component. Moreover, the dispersion-theoretical spectral functions of refs. [35, 47]

incorporate the full chiral structure of the form factor near the threshold (see section 2.3) as

obtained also in chiral EFT and expressed in the peripheral densities described here. There

is thus no need to fundamentally change these parametrizations in order to “see” the chiral

component of the densities. Efforts should rather concentrate on studying the sensitivity of

the form factor data to small variations of the spectral functions near threshold, consistent

with their overall analytic structure; such variations will in turn change the peripheral

transverse densities and thus establish their sensitivity to the form factor data. Based on

the results of ref. [50] we expect that present experimental uncertainties in the form factor

data are much larger than the theoretical uncertainty with which the spectral functions

near threshold can be calculated using dispersion theory or chiral EFT.

Higher derivatives of form factors. The chiral components do reveal themselves

clearly in the b2n-weighted moments of the transverse densities with n ≥ 2, which gov-

ern the n’th derivatives of the form factors at t = 0; cf. eq. (6.3). The estimate of ref. [26]

shows that the b2-weighted integral of the chiral component of the transverse charge density

[over the range b > b0 = 2M−1
ρ ≈ 0.4M−1

π ] gives ∼ 20% of the experimental value 〈b2〉1,exp
extracted from the Dirac form factor slope. The b4-weighted integral calculated with the

chiral component is ∼ 1.5×〈b2〉21,exp; i.e., the contribution of the chiral component alone is

as large as the “natural” expectation for this moment based on the empirical charge radius.

This suggests that the chiral components should manifest themselves in an “unnatural”

behavior of the second and higher derivatives of the isovector form factors F V
1,2(t) at t = 0.

Such behavior could be tested experimentally by comparing fits to low-|t| spacelike form fac-

tor data with the slope (first derivative) obtained from the proton charge radius measured

in atomic physics experiments. Again it is necessary to use dispersion-based parametriza-

tions of the form factors with the correct analytic properties, as the collective behavior of

higher derivatives at t = 0 is sensitive to the singularities of the form factor in the complex

plane (this is equivalent to the statement that the peripheral densities are sensitive to the

singularities). A recent dispersion fit [84], which updates ref. [47] and incorporates new

form factor data, found that the charge form factor consistently extrapolates to the charge

radius obtained in atomic physics experiments. As already noted, the spectral functions

used in this dispersion fit incorporate the full chiral structure of the form factor near the

threshold, which generates the peripheral transverse densities discussed here. With precise

form factor data at |t| . 10−2GeV2 (see ref. [46] for a recent update) one might be able to

observe the predicted unnatural higher derivatives and in this way conclusively establish

the presence of the chiral component in the nucleon electromagnetic form factors. However,

such measurements are extremely challenging, as the relevant observable is not the cross

section itself but its small deviation from the value at t = 0.

Peripheral high-energy processes. More direct experimental tests of the nucleon’s

chiral component are possible through measurements of peripheral processes in high-energy

eN, πN or NN scattering. In scattering at moderately large center-of-mass energies W &

10GeV and impact parameters ∼ fewM−1
π certain final states are predominantly produced

by scattering from a peripheral pion in the nucleon’s light-cone wave function, while the
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nucleon-like system at the center remains a spectator. The amplitude for such reactions

can be expressed in terms of the light-cone wave functions of the peripheral πN system,

which are calculable from the chiral Lagrangian [39], and the pertinent short-distance

structure of the pion probed in the high-energy subprocess. The challenge lies in selecting

final states where the probability for scattering on a peripheral pion is maximal while

other competing mechanisms are suppressed. One possibility are exclusive processes in

which a pion is observed in the final state with a moderately large transverse momentum

pT,π ∼ 1–2GeV, while the forward nucleon emerges with a small pT,N . 100MeV. In

eN scattering this could be realized with hard exclusive processes such as vector meson

production γ∗N → V + π +N and deeply-virtual Compton scattering γ∗N → γ + π +N ,

in which the γ∗π subprocess probes the GPDs of the peripheral pion [27, 85]. Because the

typical light-cone momentum fractions of peripheral pions in the nucleon are y ∼Mπ/MN ∼
0.1, one needs to measure at values of the Bjorken variable x ≪ 0.1 to enable peripheral

scattering [27, 28]. Such processes could be measured at a future Electron-Ion Collider with

appropriate forward detection capabilities [86, 87]. In πN orNN scattering one could select

processes in which the incoming hadron scatters with a large momentum transfer from a

peripheral pion, which is then observed in the final state. Generally, processes in which the

participating peripheral pion is “knocked out” and identified in the final state offer much

better prospects for probing the chiral component than purely elastic scattering, where the

only option is to reconstruct the transverse densities at very large b.
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A Cutting rule for t-channel discontinuity

In the dispersion approach to the chiral contribution to the spectral functions of the nucleon

form factors near threshold one needs to calculate the imaginary part of Feynman integrals

resulting from processes of the type of figure 3 and figure 9, describing two-particle exchange

in the t-channel. This can be done very efficiently using a modified version of the Cutkosky

rules (see ref. [60] for an introduction). Consider a Feynman integral of the form

I(t) ≡ −i
∫

d4k

(2π)4
Φ(k, . . .)

(k22 −M2
π + i0)(k21 −M2

π + i0)
, (A.1)

where k1,2 ≡ k ∓ ∆/2, t ≡ ∆2, and the function Φ generally depends on the integration

variable k as well as other external 4-vectors. The integral has a cut for t > 4M2
π , and we

aim to evaluate the discontinuity

∆I(t) ≡ I(t+ i0)− I(t− i0) = 2i Im I(t+ i0). (A.2)
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We assume that the function Φ has no singularities in the region of t considered here, so

that the discontinuity is entirely due to the pion propagators in eq. (A.1). To calculate it,

we go to the t-channel CM frame, eq. (2.44), where

∆µ = (
√
t,0), (A.3)

and apply the Cutkosky rules in analogy to the calculation of s-channel two-particle cuts.

Replacing the propagators by delta functions,

1

k21,2 −M2
π + i0

→ −2πi δ(k21,2 −M2
π), (A.4)

we obtain the constraints

k21,2 −M2
π = (k0 ∓

√
t/2)2 − k2 −M2

π = 0, (A.5)

whose solution for t > 4M2
π is [cf. eq. (2.48)]

k0 = 0, (A.6)

|k| =
√
t/4−M2

π = kcm. (A.7)

Including the Jacobian factors, the product of delta functions in the integral becomes

δ(k21 −M2
π) δ(k

2
2 −M2

π) =
δ(k0) δ(|k| − kcm)

4
√
tkcm

. (A.8)

We thus obtain the discontinuity and the imaginary part as

1

π
Im I(t+ i0) =

∆I

2πi
=

kcm

32π3
√
t

∫
dΩ Φ(k, . . .)k0=0,|k|=kcm , (A.9)

where Ω denotes the solid angle of k in the t-channel CM frame. The actual form of the

integrand is determined by the external vectors on which the function Φ depends in the

given case. The components of these external vectors also have to be analytically continued

to the t-channel CM frame, in such a way as to preserve the values of the other invariants

besides t on which the integral depends, and may take imaginary values in this frame. In

the case that Φ depends only on a single external vector that is chosen to point in the

3-direction, the integrand in eq. (A.9) becomes independent of the azimuthal angle of k,

and the integral reduces to

1

π
Im I(t+ i0) =

kcm

16π2
√
t

∫ 1

−1
d cos θ Φ(k, . . .)k0=0,|k|=kcm , (A.10)

where θ is the polar angle of k.

B Dispersion integral in heavy-baryon expansion

With the heavy-baryon expansion of the spectral functions in the chiral region, eqs. (3.33)

and (3.34), the dispersion integrals for the transverse densities can be evaluated analytically.
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In this appendix we present the relevant formulas and results. In the region of distances

b = O(M−1
π ) one has t − 4M2

π = O(M2
π) and kcm = O(Mπ). It is convenient to introduce

dimensionless scaling variables for
√
t and the CM momentum as

u ≡
√
t/(2Mπ), (B.1)

κ ≡ kcm/Mπ =
√
u2 − 1, (B.2)

so that the threshold t = 4M2
π corresponds to u = 1. The result of the heavy-baryon

expansion of the spectral functions, eqs. (3.33) and (3.34), can then be stated as

1

π
ImF V

1 (u) =
g2AM

2
π

(4πFπ)2 u

[
f0(u)−

πǫ

4
f1(u) +

ǫ2

4
f2(u)−

3πǫ3

4
f3(u) +O(ǫ4)

]

+
(1− g2A)M

2
π

(4πFπ)2 u

fcont(u)

3
, (B.3)

1

π
ImF V

2 (u) =
g2AM

2
π

(4πFπ)2 u

[
π

2ǫ
f−1(u)− 2f0(u) +

3πǫ

8
f1(u)−

ǫ2

3
f2(u)

+
15πǫ3

16
f3(u) +O(ǫ4)

]
, (B.4)

where ǫ = Mπ/MN , cf. eq. (2.56), and fcont(u) and fn(u) denote rational functions of the

dimensionless CM momentum,

fcont ≡ κ3, (B.5)

f0 ≡ κ+ 2κ3, (B.6)

f2 ≡ κ−1 + 18κ+ 48κ3 + 32κ5; (B.7)

f−1 ≡ κ2, (B.8)

f1 ≡ 1 + 6κ2 + 6κ4, (B.9)

f3 ≡ 1 + 6κ2 + 10κ4 + 5κ6. (B.10)

In terms of the dimensionless variable u the dispersion integral for the density, eq. (2.34),

now becomes

ρ1,2(b) =
4M2

π

π

∞∫

1

duu K0(2βu)
ImF1,2(u)

π
(β ≡Mπb). (B.11)

Substituting the expansion eqs. (B.3) and (B.4), the result can be expressed as

ρV1 (b) =
(1− g2A)M

4
π

(4πFπ)2
4Rcont(β)

3π

+
g2AM

4
π

(4πFπ)2

[
4

π
R0(β)− ǫR1(β) +

ǫ2

π
R2(β)− 3ǫ3R3(β) +O(ǫ4)

]
, (B.12)

– 73 –



J
H
E
P
0
1
(
2
0
1
4
)
0
9
2

ρV2 (b) =
g2AM

4
π

(4πFπ)2

[
2

ǫ
R−1(β)−

8

π
R0(β) +

3ǫ

2
R1(β)−

4ǫ2

3π
R2(β)

+
15ǫ3

4
R3(β) +O(ǫ4)

]
, (B.13)

where Rcont(β) and Rn(β) denote the basic integrals

Rcont(β) ≡
∞∫

1

du K0(2βu) fcont(u), (B.14)

Rn(β) ≡
∞∫

1

du K0(2βu) fn(u). (B.15)

The integrand in Rcont, R0 and R2 involves odd powers of κ and has a branch cut singularity

at u = 1. These integrals can be reduced to standard integrals of the type

∞∫

1

du K0(2βu) (u
2 − 1)m/2 =

∞∫

0

dv K0(2β cosh v) (sinh v)
m+1 (m = −1, 1, 3, . . .),

(B.16)

which can be expressed in closed form in terms of products of modified Bessel functions.

We obtain

Rcont =
1

16

{
[K2(β)]

2 − 4[K1(β)]
2 + 3[K0(β)]

2
}
, (B.17)

R0 =
1

8

{
[K2(β)]

2 − 2[K1(β)]
2 + [K0(β)]

2
}
, (B.18)

R2 =
1

2
[K3(β)]

2. (B.19)

Asymptotic expansions of the integrals for large argument β can be obtained by substituting

the known asymptotic expansion of the modified Bessel functions,

Rcont =
3πe−2β

16β3

(
1 +

1

4β

)
, (B.20)

R0 =
πe−2β

8β2

(
1 +

11

4β
+

33

32β2

)
, (B.21)

R2 =
πe−2β

4β

(
1 +

35

4β
+

1085

32β2
+

9135

128β3
+

166635

2048β4
+

336105

8192β5

)
. (B.22)

The expressions here quote the asymptotic expansion to the order which, respectively,

gives the best numerical approximation at β = 1. In the region β > 1 the series eq. (B.20)

describes Rcont with an accuracy of < 7%; eq. (B.21) describes R0 with an accuracy of

< 3%, and eq. (B.22) describes R2 with an accuracy of < 1%. As can be seen from the

magnitude of the coefficients, the series differ widely in their convergence properties at

fixed β, and care is required when using them for numerical evaluation; it is necessary to
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include the inverse power terms exactly as quoted here to obtain an approximation with

the stated accuracy.

In the integrals R−1, R1 and R3 the integrand involves even powers of the CM mo-

mentum, cf. eqs. (B.8)–(B.9); it is therefore polynomial in u and not singular at u = 1.

These integrals cannot be expressed in closed form in terms of Bessel functions. However,

excellent approximations can be obtained by substituting the modified Bessel function K0

under the integral eq. (B.15) by its asymptotic expansion for large argument u,

K0(2βu) =

√
π e−2βu

2(βu)1/2

(
1− 1

16βu
+ . . .

)
. (B.23)

The approximation is justified because we are interested in values β & 1 and the functions

fn(u) (n = −1, 1, 3) emphasize large values u ≫ 1 in the integral, where the expansion

converges very fast. With the substitution u = w2 the integral then becomes an incomplete

Gaussian integral, which can be expressed in terms of the error function. Keeping the first

two terms of the expansion eq. (B.23) we obtain

R−1 =
π erfc

[
(2β)1/2

]
√
2β

(
−5

8
+

11

128β2

)

+

√
π e−2β

β3/2

(
5

16
+

11

64β

)
, (B.24)

R1 =
π erfc

[
(2β)1/2

]
√
2β

(
5

8
− 33

64β2
+

1215

1024β4

)

+

√
π e−2β

β3/2

(
− 1

16
+

3

2β
+

405

128β2
+

1215

512β3

)
, (B.25)

R3 =
π erfc

[
(2β)1/2

]
√
2β

(
11

128β2
− 2025

2048β4
+

203175

32768β6

)
,

+

√
π e−2β

β3/2

(
1

4
+

91

64β
+

315

64β2
+

45

4β3
+

67725

4096β4
+

203175

16384β5

)
. (B.26)

These expressions approximate the exact integrals with an accuracy far better than 1% at

all β > 1. When substituting the asymptotic expansion of the error function complement,

erfc[(2β)1/2] ∼ e−2β

√
2πβ

(
1− 1

4β
+ . . .

)
, (B.27)

eqs. (B.24)–(B.26) reproduce the leading asymptotic behavior of the integrals at large β,

R−1 ∼
√
π e−2β

4β5/2
, R1,3 ∼

√
π e−2β

4β3/2
(β → ∞). (B.28)

Higher powers in the asymptotic expansion of R−1, R1 and R3 at large β could be calculated

by expanding the K0 function in the integral to higher order, cf. eq. (B.23); however, the

resulting series are poorly convergent for β ∼ 1. For numerical evaluation it is better
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to use the full expressions in terms of the error function, eqs. (B.24)–(B.26), than the

asymptotic series.

In sum, evaluating eqs. (B.12) and (B.13) with the integrals given in eqs. (B.17)–(B.19)

and eqs. (B.24)–(B.26) one readily obtains the numerical values of the transverse charge

and magnetization densities in the heavy-baryon expansion at all distances of practical

interest β = Mπb & 1. The accuracy of the heavy-baryon expansion as an approximation

to the full leading-order chiral component is discussed in section 3.3 (see figure 7). We

note that the methods presented here can be applied also to integrals appearing in the

heavy-baryon expansion of other transverse densities, such as the matter and momentum

densities (form factors of the energy-momentum tensor) or the x-moments of generalized

parton distributions (generalized form factors).
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