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Abstract

source and available at http://vig854.github.io/lichee.

Somatic variants can be used as lineage markers for the phylogenetic reconstruction of cancer evolution. Since
somatic phylogenetics is complicated by sample heterogeneity, novel specialized tree-building methods are required
for cancer phylogeny reconstruction. We present LICHeE (Lineage Inference for Cancer Heterogeneity and Evolution),
a novel method that automates the phylogenetic inference of cancer progression from multiple somatic samples.
LICHeE uses variant allele frequencies of somatic single nucleotide variants obtained by deep sequencing to
reconstruct multi-sample cell lineage trees and infer the subclonal composition of the samples. LICHeE is open

Background

Cancer is driven by the accumulation of somatic muta-
tions that confer fitness advantages to the tumor cells.
Numerous studies have shown tumors to be highly het-
erogeneous, consisting of mixtures of cell subpopulations
with distinct sets of somatic variants (for example see
review papers [1,2]). With the advent of next-generation
sequencing technologies, many large-scale efforts are
underway to catalog the somatic mutational events driv-
ing the progression of cancer [3,4] and infer the phy-
logenetic relationships of tumor subclones. Character-
izing the heterogeneity and inferring tumor phyloge-
nies are key steps for developing targeted cancer thera-
pies [5] and understanding the biology and progression
of cancer.

To reconstruct tumor phylogenies, studies have uti-
lized variant allele frequency (VAF) data of somatic single
nucleotide variants (SSNVs) obtained by whole-genome
[6,7], exome [8], and targeted deep sequencing [6,9]. Clus-
tering of SSNVs based on VAF similarity [10-12] and
detection of copy number aberrations, while account-
ing for variable sample purity [8,13,14], have been used
to differentiate and order groups of mutational events.
While many evolutionary studies of cancer have focused
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on single-sample intra-tumor heterogeneity [15], sev-
eral studies have also compared multiple tumor samples
extracted from a single patient either at different points
in time during cancer progression [16-18] or from differ-
ent regions of the same tumor or its metastases [7,19-23].
In multi-sample approaches, the patterns of SSNV shar-
ing (that is, distinguishing somatic mutations that are
omnipresent, partially shared, or private among the sam-
ples) can serve as phylogenetic markers from which lin-
eage trees are reconstructed [24]. On the basis of the
lineage trees, the evolutionary timing of each muta-
tional event can then be inferred with high confidence
[7,17,19,25].

Most existing multi-sample studies with a relatively
small number of SSNVs infer the tumor phylogenies man-
ually by analyzing SSNV VAFs and presence patterns
across samples [7,22,26]. Several other studies used imple-
mentations of traditional phylogeny reconstruction meth-
ods, such as neighbor joining with Pearson correlation
distances [27], or maximum parsimony [21] on patterns
of somatic mutational sharing across samples. However,
to scale to datasets comprising large numbers of samples
per patient and extract fine-grained SSNV timing infor-
mation, as well as handle sample heterogeneity, which
traditional tree-building techniques are not designed
to do, specialized computational approaches need to
be developed for tumor cell lineage reconstruction.
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Several computational methods have been recently devel-
oped to address this need. The method SubcloneSeeker
[28] takes as input clusters of variant cell prevalence (CP)
estimates and generates all possible subclone structures in
each tumor sample separately. The per-sample solutions
are then trimmed by checking their compatibilities during
a merge step, which reports which sample trees are com-
patible across a given pair of samples. However, the merge
step is currently designed to check compatibilities of two
tumor samples only (for example, relapse/primary tumor
sample pairs that are common in clinical studies) and it
cannot merge the subclone structures of more than two
samples. The method PhyloSub [29] infers tumor phylo-
genies using a Bayesian non-parametric prior over trees
and Markov chain Monte Carlo sampling. It performs rea-
sonably on samples with very few mutations that form
simple (chain) topologies; however, it produces unsatis-
factory results on larger multi-sample datasets, such as
[21] (see Additional file 1 for details). Most recently, Phy-
loWGS [30] was developed for subclonal reconstruction
using whole-genome sequencing datasets. PhyloWGS is
a probabilistic framework based on the earlier develop-
ment of PhyloSub. This new algorithm utilizes both VAFs
of SSN'Vs and the effect of copy number variants (CNVs)
already inferred in regions overlapping with those SSN'Vs.
Finally, CITUP [31] is a combinatorial method that uses
an exact quadratic integer programming formulation to
obtain optimal lineage trees that are in concordance with
the VAF data. CITUP reports higher accuracies when
compared to Phylosub [31]; however, its optimization
problem may be intractable when the lineage tree is arbi-
trarily large.

In this work, we introduce LICHeE (Lineage Infer-
ence for Cancer Heterogeneity and Evolution), a novel
computational method for the reconstruction of multi-
sample tumor phylogenies and tumor subclone decom-
position from targeted deep-sequencing SSNV datasets.
Given SSNV VAFs from multiple samples, LICHeE finds
the set of lineage trees that are consistent with the
SSNV presence patterns and VAFs within each sam-
ple and are valid under the cell division process. Given
each such tree, LICHeE provides estimates of the sub-
clonal mixtures of the samples by inferring sample het-
erogeneity simultaneously with phylogenetic cell lineage
tree reconstruction. LICHeE is able to search for lin-
eage trees very efficiently by incorporating the SSNVs
into an evolutionary constraint network that embeds all
such trees and applying VAF constraints to reduce the
search space. LICHeE runs in only a few seconds given
hundreds of input SSNVs and does not require data
preprocessing.

We demonstrate that LICHeE is highly effective in
reconstructing the lineage trees and sample heterogene-
ity by evaluating it on simulated trees of heterogeneous
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cancer cell lineage evolution, as well as on three recently
published ultra-deep-sequencing multi-sample datasets
of clear cell renal cell carcinoma (ccRCC) by Gerlinger
et al. [21], high-grade serous ovarian cancer (HGSC)
by Bashashati et al. [27], and breast cancer xenoen-
graftment in immunodeficient mice by Eirew et al. [32],
for which single-cell validation results are also available.
LICHeE found unique trees for each ccRCC patient and
for all except one patient (for which multiple valid trees
were found) of the HGSC study. For the ccRCC dataset,
LICHeE trees were nearly identical to the published trees,
which are the result of a multi-step thorough analy-
sis of the data, involving SSNV calling, clustering, and
tree-building using maximum parsimony. For the HGSC
dataset, LICHeE improved on the results reported by
the study, producing trees with better support from the
data. LICHeE also revealed additional heterogeneity in the
samples of both studies. In particular, LICHeE identified
subclones in one more sample of the ccRCC study (in
addition to the reported six samples) and three samples
of the HGSC study, all supported by the data. Finally, the
trees reconstructed by LICHeE on the xenoengraftment
dataset can be highly validated by the single-cell analysis
presented in the paper. LICHeE is open source and freely
distributed at [33], and includes an intuitive graphical user
interface (GUI) that may aid users in performing quality
control on the output trees as well as interpreting the trees
biologically.

Results and discussion

Overview of the multi-sample cancer phylogeny inference
method, LICHeE

LICHeE is a method designed to reconstruct cancer cell
lineages using SSNVs from multiple related normal and
tumor samples of individual cancer patients, allowing for
heterogeneity within each sample. Given a set of validated
deeply sequenced SSN'Vs, LICHeE uses the presence pat-
terns of SSN'Vs across samples and their VAFs as lineage
markers by relying on the perfect phylogeny model [34].
This model assumes that mutations do not recur inde-
pendently in different cells; hence, cells sharing the same
mutation must have inherited it from a common ancestral
cell. This assumption can be used to derive the following
SSNV ordering constraints. Firstly, (1) a mutation present
in a given set of samples cannot be a successor of a muta-
tion that is present in a smaller subset of these samples,
since it could not have arisen independently by chance
in the additional samples. Similarly, (2) a given mutation
cannot have a VAF higher than that of its predecessor
mutation (except due to CNVs), since all cells containing
this mutation will also contain the predecessor. Finally,
(3) the sum of the VAFs of mutations disjointly present
in distinct subclones cannot exceed the VAF of a com-
mon predecessor mutation present in these subclones,
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since the subclones with the descendent mutations must
contain the parent mutations (this constraint is formally
defined in ‘Materials and methods’). These constraints
provide key information about the topology of the true
cell lineage tree and are leveraged by LICHeE to define the
search space of the possible underlying lineage trees and
evaluate the validity of the resulting topologies. The final
goal of LICHEeE is to find phylogenetic trees encoding an
evolutionary ordering of the input SSNVs that does not
violate any of these three constraints.

At a high level, the LICHeE algorithm can be bro-
ken down into the following main steps (Figure 1). First,
LICHeE partitions SSNVs into groups based on their
occurrence in each sample, such that each group stores
all the mutations that were called in the same subset of
samples. To separate subclone lineages, the SSNV mem-
bers of each resulting group are then further clustered
based on their VAFs, such that SSN'Vs with similar VAFs
across samples are clustered together. The final lineage
tree needs to provide a valid ordering of these resulting
SSNV clusters (that is, an ordering that does not violate
the three constrains defined above). To find such a tree,
we construct an evolutionary constraint network, which
encodes whether a given cluster of SSN'Vs could have pre-
ceded another, for each pair of clusters. More specifically,
this network is a directed acyclic graph (DAG) that has
SSNV clusters as its nodes and whose edges encode possi-
ble predecessor relationships among the nodes’ mutations
(that is, an edge denotes that the mutations of a given
pair of clusters satisfy ordering constraints (1) and (2)).
This network greatly reduces the search space of pos-
sible valid trees and allows us to formulate the task of
inferring such trees as a search for spanning trees of the
network that satisfy constraint (3) (within a given error
margin), which ensures that the reconstructed trees are
composed of parent—daughter edges that exhibit somatic
VAF consistency with the cell lineage expansion. If mul-
tiple valid lineage trees are found during the search, the
trees are ranked based on how well they support the clus-
ter VAF data, the top-ranking tree minimizing the use
of the permitted error margin (see ‘Materials and meth-
ods’ for details). Finally, as shown in Figure 1, the leaves
of the resulting trees are the individual samples (added
post-search), whose composition can be reconstructed
by tracing back their respective subclone cell lineages in
the tree. We detail each of these steps in ‘Materials and
methods!

Since finding true SSNV groups is a crucial step of the
algorithm, it is important to minimize false positive and
false negative SSNV calls across samples. However, accu-
rately detecting SSNVs in each sample is a challenging
task due to high levels of noise in the data, which can
come from various sources, such as sequencing errors,
systematic amplification bias, mapping errors, and sample
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impurities. Multiple techniques have been developed to
address this problem to date [35-39], many employing
a Bayesian approach to model the distributions of noise
and true genotypes in matched-normal samples. LICHeE
can work with variant calls produced for each sample
by any specialized existing method. However, it does not
require the users to preprocess the data using these tools,
since it provides its own heuristic mechanism to call
SSNVs using the multi-sample VAF data. At a high level,
it first finds SSNVs that can be called reliably in each
sample using two hard thresholds Tpresent and Tapsents
above and below which, respectively, the SSNVs are con-
sidered robustly present or absent. Then, assuming that
the presence patterns of such SSNVs capture most of the
topology of the true underlying evolutionary tree, it uses
this inferred tree to inform the group assignment of the
SSNVs whose VAF falls in between the thresholds (the
‘greyzone’).

Currently LICHeE does not automatically detect or
incorporate the CNVs explicitly into the model, although
the method can still find valid phylogenies even in the
presence of SSN'Vs within such regions (for example, each
patient in the ccRCC dataset had numerous variants from
CNV regions). To address this limitation, LICHeE also
accepts CP values instead of VAFs, which can be com-
puted by several recently developed tools, such as PyClone
[12], ABSOLUTE [8], and ASCAT [40], and account for
CNVs, loss of heterozygosity (LOH) status, and sample
purity. The same algorithmic steps can then be directly
applied to CP values of each variant. It can be easily seen
that the three perfect phylogeny ordering constraints still
hold for CP values and can be used to search for the under-
lying lineage tree. Furthermore, to support outputs of
specialized clustering approaches (for example, PyClone
[12]), LICHEE also accepts already computed clusters of
mutations (with given CP and VAF-based centroid val-
ues) and uses these clusters as nodes of the phylogenetic
constraint network.

We evaluated LICHeE on three recently published
ultra-deep-sequencing multi-sample datasets of ccRCC
by Gerlinger et al. [21], HGSC by Bashashati et al. [27],
and breast cancer xenoengraftment by Eirew et al. [32],
as well as on simulated trees of heterogeneous cancer
cell lineage evolution. On the ccRCC dataset, LICHeE
constructs near-identical trees to the trees published in
the study. We show that the interesting difference in the
topology of one tree arises due to potential heterogeneity
of a sample that cannot be discovered using the tradi-
tional maximum parsimony approach and analyze when
this approach can fail to detect existing sample subclones.
For each patient, LICHeE finds a unique valid tree. On
the HGSC datasets we show that the trees generated by
LICHeE are better supported by the data and demonstrate
why applying neighbor joining with Pearson correlation
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Figure 1 LICHeE method overview. (a) Toy example of five samples (lymph control and four tumor samples S1 to S4) with one germ-line single
nucleotide variant (SNV) and four SSNVs, each associated with a binary sample profile. (b) SSNVs are partitioned into groups based on their binary
profile (displayed groups contain other SSNVs with varying VAFs). (¢) SSNV groups are clustered based on their VAFs. (d) The clusters of each SSNV
group are incorporated into an evolutionary constraint network. An edge is placed between a parent node and child node if, for each sample, the
VAF of the parent is greater than or equal to that of the child node. For example, this constraint is violated for the green 01110 node and node
00110. (e) The lineage tree is constructed from the constraint network. The leaves of the tree are the individual samples. The horizontal line
subdivisions in a sample indicate mixed lineages, separating the different subpopulations of cells in the sample. The colors in each subdivision
describe the mutation groups that the cells in this subpopulation have. Consider the orange node 01110, which denotes SSNVs of class 01110.
Those SSNVs are found in samples 1, 2, and 3. After an ancestral cell division, the daughter cells’ lineages accumulated SSNVs too (01110, green;
00110) that are now present in their descendent samples or subclones. About 20% of sample 1 are cells that come from the orange and green
lineages, and about 40% come from the blue lineage. Samples 1, 2, and 3 grew from two or more subclones, whereas sample 4 only grew from one
subclone. SNV, single nucleotide variant; SSNV, somatic single nucleotide variant; VAF, variant allele frequency.




Popic et al. Genome Biology (2015) 16:91

distance metric, used by the study, might not be suitable
for cancer datasets. LICHeE finds a unique valid tree for
all patients except Case 5. Finally, we show that the trees
inferred by LICHeE on the xenoengraftment dataset are
consistent with the single-cell analysis done by the study.
On each patient dataset LICHeE takes only a few seconds
to run.

Lineage tree reconstruction on clear cell renal cell
carcinoma data

The ccRCC study by Gerlinger et al. [21] validated
602 non-synonymous nucleotide substitutions and indels
from multiple samples of eight individuals. It used VAF-
based clustering of each sample to detect subclones prior
to determining the variant presence patterns used in
tree reconstruction. The phylogenetic trees were then
reconstructed using maximum parsimony, revealing a
branched pattern of ccRCC evolution in all tumors.
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Figure 2 juxtaposes the trees produced by LICHeE with
the trees presented by Gerlinger et al. [21] (for details
regarding the parameters used by LICHeE and the
ccRCC dataset see Additional file 2). We can see that
the trees generated by LICHEeE are topologically identi-
cal (consisting of the same branches) to the published
trees for patients EV005, EV007, RMH002, RMHO008,
and RK26. Furthermore, LICHeE identified subclones in
all the samples reported to be heterogeneous by the
study. In particular, it identified the following regions
as a mixture of two subclones: EV005 R6 (with fre-
quencies of 0.29 and 0.04), EV007 R3 (0.15 and 0.03),
EV007 R9 (0.21 and 0.03), RMH008 R4 (0.19 and 0.14),
RMHO008 R6 (0.21 and 0.15), and RK26 R5 (0.15 and
0.03). These subclones correspond to the dominant (dom)
and minor (min) shown in the published trees. Evi-
dence supporting each subclone can be analyzed using the
presented trees.
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Figure 2 Comparison of lineage trees for eight ccRCC patients. Phylogenetic trees obtained with LICHeE (on the left) are contrasted with the trees
published in [21] for each patient in the study. ccRCC, clear-cell renal cell carcinoma; dom, dominant; min, minor; GL, germ line; SSNV, somatic single
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The trees generated for patients EV003 and EV006
also highly match the published results. For EV006, the
LICHeE-generated tree does not contain the following
two partially shared groups: (R2, LN1a, and LN1b) and
(R3, R1, R4, R7, R15). For the first group we find no evi-
dence in the data: no SSNVs are shared in these three
samples and absent from the others. We do find one muta-
tion that supports the second group. Because, by default,
LICHeE eliminates nodes that have evidence from only
one SSNV, this group is not shown in our tree.

The RMHO004 dataset contains three partially overlap-
ping groups: (R3, VT, R10, R4, R2), (R3, VT, R10, R4,
R8), and (R10, R4, R2, R8). These groups represent sep-
arate branches where their lowest common ancestor is
the group with mutations present across all samples: (R3,
VT, R10, R4, R2, R8). However, the VAF of this parent
group in sample R10 is 0.34, while the average VAF across
each of the three groups is 0.32, 0.27, and 0.21, respec-
tively. Therefore, no more than one of these groups can
be a descendant of the parent group, without violating
the VAF phylogenetic constraint. To generate a valid tree,
the two least populated conflicting branches among the
three are removed from the dataset. Similarly, these two
groups are ignored by the maximum parsimony algorithm
and are not present in the published tree. The difference
between our tree and the published one comes from the
mixed lineage we observe in sample R4. Due to the VAF
of 0.17 of the group of R4 private mutations, the pri-
vate group is not a descendant of the group shared by
R4 and R2 since the average VAF of that node is 0.06,
which is too small to be a parent to 0.17. Therefore, our
method suggests two different subclones in R4. Since the
group (R2, R4) is small (total of three mutations) and
has a low frequency in R4, the evidence of the two sub-
clones cannot be considered very strong; however, it does
constitute a signal in the data for the R4 mixed lineage
possibility.

While the ccRCC study does perform VAF clustering
of each sample to find subclones at the onset, it runs the
phylogenetic reconstruction using the presence pattern
profiles only. On the other hand, our tree reconstruction
with LICHeE applies the VAF constraint to the resulting
tree topologies and clusters SSN'Vs in each group based
on their VAFs across all the samples. For patient RMH004,
applying the VAF constraint reveals additional sample het-
erogeneity, for which we produced a potentially improved
tree compared to the tree reported using maximum par-
simony. It can also be shown that clustering across all the
samples rather than each sample individually, is a more
appropriate approach for revealing the heterogeneity in
the data. For example, if two subclones occur with high
and low VAFs in one sample but are uniform in another
sample, single-sample clustering will detect them only
in the sample where they differ. For example, if the two
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subclones in samples R3 and R9 of patient EV007 (dis-
cussed above) had highly similar VAFs in these samples,
clustering would not be able to differentiate the subclones.
On the other hand, LICHeE would still be able to detect
the mixed lineages in the two samples due to the presence
of groups (R1, R2, R3, R5, R6, R7, R9) and (R3, R4, R9)
in the data, which must form divergent branches in the
lineage tree.

Lineage tree reconstruction on high-grade serous ovarian
cancer data
We further evaluated LICHeE on the HGSC dataset from
the study by Bashashati et al. [27]. This study validated 340
somatic mutations from 19 tumor samples of six patients.
It used neighbor joining with Pearson correlation dis-
tances (computed on the binary sample presence patterns)
to infer lineage trees. The trees generated by LICHeE jux-
taposed with those presented in the paper are shown in
Figure 3 (for details regarding the parameters used by
LICHeE and the HGSC dataset see Additional file 3). In
four out of six cases (Cases 2, 3, 4, and 6), the possible tree
topologies are very simple and the trees produced by the
two methods are unsurprisingly highly similar. Below we
discuss the difference between the two remaining trees.

For Case 1, the tree reported in the paper suggests
that sample d diverged first, followed by c. This suggests
that there should be a group of mutations shared exclu-
sively between samples a and b and another group shared
between samples a, b, and c. However, examining the
dataset VAF values, as well as the results of the binomial
test determining SSNV presence in the samples used by
this study, we found no evidence for these two groups. On
the other hand, the tree produced by LICHeE suggests the
presence of mutations shared by samples a, b, and d only,
which we found both in the results of the study’s binomial
test and by applying the LICHeE hard threshold caller.

For Case 5, the study reports an early divergence of sam-
ple c. This suggests that there should be mutations shared
between all the samples except c. We have confirmed
that no such mutational profile exists in the data. On the
other hand, the data shows the presence of mutations that
exist in samples a, b, ¢, e, and f but not in d that cannot
be supported by the reported tree. The reason why the
neighbor-joining algorithm of the study chose sample c as
the first diverging branch of the tree must be because of
the large presence of private mutations in sample ¢, which
led to a low Pearson correlation (and hence a greater dis-
tance) with the profiles of other samples. This shows that
using the Pearson correlation metric is not suitable for this
data. Furthermore, directly applying traditional phylogeny
reconstruction techniques (for example, neighbor joining)
cannot reveal sample heterogeneity.

The tree produced by LICHeE for Case 5, reveals mixed
lineages in samples b, e, and f. Interestingly, LICHeE
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Figure 3 Comparison of lineage trees for HGSC Cases 1 to 6. Phylogenetic trees obtained with LICHeE (a) are contrasted with the trees published in
[27] (b) for each patient in the study. GL, germ line; HGSC, high-grade serous ovarian cancer; SSNV, somatic single nucleotide variant.

detects two clusters in group (a, b, ¢, e, f) with mean
VAFs of [0.29, 0.34 0.3, 0.19, 0.4] and [0.17, 0.14, 0.13, 0.1,
0.13], respectively. The two subclones in each sample are
then produced by the divergence of the higher VAF clus-
ter into two branches: one branch containing the lower
VAF cluster and the other branch containing the group of
mutations (e, f, b). While the presence of group (e, f, b) is
weak (supported by three mutations only), the presence
of group (b, f) is substantial (supported by 14 mutations)
and provides strong evidence for the mixed lineage of b
and f. Furthermore, due to the presence of group (a, b),
the group (b, f) cannot be assigned as a child of the low
VAF cluster (a, b, ¢, e, f) without violating the VAF phy-
logenetic constraint. However, since there are only three
mutations in group (a, b), eliminating this group may be
a reasonable alternative reconstruction. Therefore, multi-
ple topologies are possible in this scenario, each supported
by varying degrees of evidence. LICHeE presents the tree
that best fits the data given input parameters of expected
noise level and minimum mutational support needed for a
node. Using LICHeE with different parameters and inter-
acting with the trees can allow users to explore other
evidence existing in the data. It is important to point out
that, as opposed to the results of the neighbor-joining
algorithm that produces trees with lack of evidential sup-
port in some branches, each branch in a tree reported by

LICHeE reflects the presence of the corresponding SSNV
groups in the data.

Lineage tree reconstruction on xenoengraftment data

The study by Eirew et al. [32] used deep-genome and
single-cell sequencing to evaluate the clonal dynamics of
xenoengraftment of breast cancer tissue into immunod-
eficient mice. The study applied PyClone [12] to infer
mutational clusters representing clonal genotypes and
then validated these results using single-cell analysis of
two cases, SA494 and SA501. The study used Bayesian
phylogenetic inference to reconstruct the evolutionary
relationships between the single-cell nuclei. We applied
LICHeE to the deep-sequencing VAF data of this study.
We then compared the results of LICHEeE to the single-cell
phylogenetic trees and clonal genotypes for both SA494
and SA501.

Single-cell phylogenetic inference of SA501 passages X1,
X2, and X4 reveals an ancestral genotype that branched
into two sibling clades A and B. Sequential acquisition of
additional mutations in clade B then gave rise to geno-
types C, D, and E. Samples X1 and X2 were found to be
a mixture of clones with genotypes A, B, C, and D, while,
sample X4 was found to be dominated by genotype E and
did not contain clones with genotype A (see Figure Two in
[32]). As can be seen in Figure 4a, the tree reconstructed
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501X1 501X2 501X4

Figure 4 LICHeE reconstruction on breast cancer xenoengraftment
data [32]. (a) Lineage tree generated by LICHeE (on left) is juxtaposed
with the phylogeny derived from single-cell data in the study (on

right) for SA501. (b) Lineage tree generated by LICHeE for SA494.

by LICHeE mirrors the phylogeny and sample composi-
tions revealed by the study. In particular, it presents the
same two sibling clades derived from the ancestral geno-
type. Samples X1 and X2 both contain subclones with
genotype A (with a higher percentage of this genotype in
sample X2, as confirmed by the single-cell analysis), while
this genotype is missing from sample X4. Similarly, geno-
type E is found to be private to and dominates sample
X4. The only difference in the LICHeE tree is the collapse
of genotypes B and C into one cluster; however, examin-
ing the bulk CP values reported by the study, we can see
that the CP values of these genotypes are highly similar in
the three given samples (X1, X2, and X4) and, as a result,
cannot get subdivided into two separate clusters dur-
ing the clustering step (note, the PyClone analysis of the
study was simultaneously performed on three additional
samples T, X3, and X5, which showed higher CP value
differences).

The single-cell analysis of SA494 samples T and X4
reveals two clades, with mutually exclusive sets of muta-
tions, emerging from an ancestral clone present in both
samples (see extended data of Figure three in [32]).
LICHeE reconstructs the exact same topology (Figure 4b),
showing two groups of mutations private to T and X4,
respectively. In accordance with the results reported by
PyClone, LICHeE also finds two clusters of mutations pri-
vate to X4 (with the descendent cluster present in about
20% of the sample).

Simulations

We developed a cancer cell lineage simulator to better
assess the performance of LICHeE. Our simulator models
cancer evolution from normal tissue producing a branch-
ing hierarchy of monoclonal cell populations in accor-
dance with the branched-tree cancer evolution model
[26,41,42]. Starting with the normal cell population, the
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simulator iteratively expands the cell lineage tree by intro-
ducing (with some given probability) new daughter cell
populations corresponding to newly acquired SSNV or
CNV events. In particular, in every iteration, each cell
population present in the tree can give rise to a new popu-
lation of cells (with a given randomly generated size) rep-
resenting a new SSNV with probability Pssny or a CNV
event with probability Pcny. Each cell population can also
undergo a cell death event with probability Ppeyn. Each
simulated SSNV is randomly associated with a genome
location (chromosome and position) and haplotype; the
CNVs are associated with a chromosome arm and hap-
lotype and correspond to a duplication of this chromo-
some arm. For the evaluation, we generated 100 lineage
trees, each expanded over 50 iterations, with the following
parameters: Pssnyy = 0.15; Penyv = 0, 0.1, and 0.18; and
Ppeath = 0.06. This process results in lineage trees with an
arbitrary number of branches and nodes (several hundred
to thousands of nodes on average). Figure 5 illustrates one
such lineage tree.

Multiple samples are then collected from each lineage
tree. Each sample consists of several cell populations
(nodes) of the tree, where each such cell population rep-
resents a subclone in the sample. We implemented two
sampling schemes: randomized sampling and localized
sampling. The randomized sampling process selects a ran-
dom subset of nodes from the tree for each sample; on
the other hand, the localized sampling process is meant
to mimic biopsies from spatially distinct sites and selects
nodes such that samples mostly contain subclones from
distinct branches of the simulated tree. Localized sam-
pling for n samples is achieved by selecting n disjoint
subtrees in the simulated tree using an approach based on
breadth-first search, which finds disjoint subtree roots as
high on the tree as possible (if # disjoint subtrees do not
exist in the tree, the maximum number of subtrees is used
and some samples are obtained from the same subtree in
a round-robin fashion). Figure 5 illustrates the localized
sampling procedure for ten samples.

Given a selected subset of cell populations, the sam-
ple is then created by obtaining a fraction of the cells
from each population by sampling from a multinomial
distribution with probabilities corresponding to the cell
population sizes. For randomized sampling, we select up
to five subclones for each sample. For localized sampling,
there can be up to five subclones from the same distinct
subtree, exactly one subclone from a neighboring subtree,
and some fraction of normal cells to represent normal
contamination (the fraction is randomly selected to be
from 0% up to 20% of the sample). To determine how the
performance of LICHeE degrades as the number of SSNVs
located in CN'V regions grows, we ran several experiments
with increasing numbers of CNV events. In particular, we
set Pcny = [0, 0.1, 0.18], which resulted in a total of 0%,
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65%, and 80% of SSNVs being affected by CNVs in the
collected samples, respectively. Given the sample cell pop-
ulation counts, we can compute the VAF of each SSNV in
this sample. In the absence of CNVs, the VAF of a given
SSNV is simply the fraction of the cells containing the
SSNV out of all the cells in the sample. When CNVs are
present, we count the number of haplotypes containing
the SSNV and the reference allele across all cells of the
sample. Given an SSNV, we consider the chain of muta-
tions present in each cell population affecting its genome
position. Let H} be the number of haplotypes containing
the SSNV in population P and H}, be the number of hap-
lotypes containing the reference allele. The VAF of a given
SSNV M is then:

N
ZP:I Py - HIK

VAE(M) = —; ,
p=1Pu - (Hp + Hp)

where N is the total number of selected populations and
P, is the number of cells selected from population P.
Finally, given the true VAFs of each SSNV, we add sam-
pling and sequencing noise to each value. In particular, to
simulate reads covering each SSNV position, we sample
the VAFs from the binomial distribution B(n, p), where p
is the true VAF of each SSNV and # is the total simulated
read coverage (100x, 1,000%, and 10,000 ); the generated
frequencies have a mean p and variance p(1 — p)/n. We
simulate a Q30 (1 in 1,000) base call sequencing accuracy.
Given the simulated VAFs, we first assessed the per-
formance of LICHeE in SSNV calling. Table 1 presents
LICHeE’s sensitivity in calling mutations across the sam-
ples (that is, the number of SSNVs with correctly iden-
tified sample presence patterns out of all the simulated

SSNVs) given true VAF values and for coverages of
100x%, 1,000%, and 10,000x. As expected, higher coverage
results in higher sensitivity. The method achieves 94% to
99% sensitivity across all the experiments (more detailed
results are reported in Additional file 3).

Next we compared the topology of the reported lin-
eage trees and the simulated trees and measured LICHeE’s
accuracy in reconstructing the ancestor—descendant and
sibling relationships. For every pair of mutations in the
simulated tumor hierarchy, we checked if LICHeE pre-
served the relationship between them in the generated top
tree. More specifically, we checked for the following two
types of violations: 1) if an ancestor—descendant relation-
ship was inverted or became a sibling relationship, and 2)
if a sibling relationship became an ancestor—descendant
relationship. Tables 2 and 3 summarize the accuracy
of these metrics (more detailed results are reported in
Additional file 3). Since LICHeE may remove nodes from
the network representing non-robust SSNV groups if no
valid trees are found during the search (as described in
‘Materials and methods’), not all of the simulated muta-
tions will be present in the final tree. We report the
percentage of the SSNVs and of simulated ancestor—
descendant (AD) and sibling (Sib) mutation pairs that are
present in the tree. As expected, the number of mutations
present in the trees decreases with higher numbers of
input samples, lower coverage, and the presence of CNVs
(which can significantly alter the VAF values, causing the
violation of the VAF ordering constraints). In particular,
with a low coverage of 100x and 15 samples, only 81%
of SSNVs are preserved in the tree. Therefore, LICHeE
is best applied to data with higher coverage when the
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Table 1 Sensitivity of assignment to somatic single nucleotide variant groups on simulated data

Coverage
Number of Number of True VAF 10,000 x 1,000 x 100x
samples simulated SSNVs (+CNV) (+CNV) (+CNV) (+CNV)
s 26.6(42.2) 99.2 (96.9) 98.9 (96.7) 99.1 (96.7) 97.2 (95.5)
25 (44.5) 99.5(97.4) 99.1 (97.3) 99.3 (97.4) 974 (95.9)
10 439 (89.7) 99.2 (97.8) 98.5 (97.5) 98.5(97.7) 95 (96)
40.7 (88.6) 99.5 (97.5) 99.1 (97.3) 99 (97.3) 96.3 (95.9)
5 53.6(131.1) 98.8 (96.9) 98.2 (96.7) 97.9 (96.5) 94.2 (95.4)
51(136.1) 99.1 (97.6) 98.7 (97.4) 98.5(97.2) 94.5 (95.8)

Values indicate the number of correctly assigned SSNVs out of the total number of SSNVs collected in each experiment (number of simulated SSNVs). Results are
shown for 5, 10, and 15 samples given true VAFs, 10,000 x, 1,000, and 100x coverage data obtained with localized (top row in each pair) and randomized (bottom
row) sampling, from trees without CNVs and with approximately 80% of SSNVs in CNV regions (in parentheses). All values are averaged over 100 simulated trees. CNV,
copy number variant; SSNV, somatic single nucleotide variant; VAF, variant allele frequency.

number of input samples is high. For instance, with a
higher coverage of 1,000x, 91% to 94% of SSN'Vs and 83%
to 88% of mutation pairs are present in the trees with 15
samples (although this metric drops with the presence of
CNVs to the ranges 91% to 92% for SSN'Vs and 66% to 70%
for SSNV pairs).

Since LICHeE groups mutations with the same presence
patterns across samples and similar VAFs, only the muta-
tions occurring in a different set of samples or with sig-
nificantly different VAFs will be placed in distinct nodes
of the tree. We report the percentage of such ancestor—
descendant pairs (AD-Ord) in Tables 2 and 3. We then
evaluate how many ordered mutations preserved the cor-
rect ancestor—descendant relationship (AD-Corr). Across
all the experiments without CNVs, we get 99% to 100%
correctness (with less than 1% of pairs being in reversed
order). We see 92% to 96% correctness in experiments
with 80% of SSNVs located in CNV regions and 1,000 x
coverage. AD mutations that were not ordered or grouped
in the same node, will be siblings in the reconstructed tree
(AD —Sib). We find that the vast majority of such muta-
tion pairs involve private mutations, whose placement
in the tree is usually under-constrained (that is, multi-
ple tree nodes can serve as ancestors to such mutation
groups). Finally, we can see that the reverse violation of
sibling mutations being placed into ancestor—descendant
nodes (Sib—AD) is also very rare (up to 7% across all
the experiments). Therefore, we conclude that the trees
reconstructed by LICHeE provide highly accurate order-
ing of the mutations in its nodes.

Conclusions

LICHeE has been designed to automatically infer cell lin-
eages of multiple tumor samples and the sample subclone
decomposition. Our analysis shows that LICHeE is highly

effective in reconstructing the phylogenies and uncov-
ering the heterogeneity of previously published datasets
and in simulations, improving not only upon traditional
tree-building methods, but also on recent developments
specialized for cancer data. Currently LICHeE works with
deep-sequencing data that provide VAF estimates with
low variance (as well as on CP values that can be obtained
from existing tools and can correct for CN'Vs, LOH, and
sample purity). SSNV data obtained from deep whole-
genome sequencing, targeted resequencing of informa-
tive SSNVs, or exome sequencing in tumors with a high
degree of somatic SSNVs present in exomes, should
be appropriate inputs to LICHeE. Several directions for
future work are open: extension of this method to lower
coverage whole-genome sequencing data and incorpo-
ration of aneuploidies and large CNVs directly into the
model.

Materials and methods

Grouping and clustering somatic single nucleotide variants
When partitioning SSNVs into groups based on sample
occurrence, each SSNV is first associated with a binary
sample profile denoting its presence or absence in each
sample. Given S samples from an individual, the binary
profile is defined as a binary sequence of length S where
the ith bit is set to 1 if this SSNV is called in the ith sam-
ple, and is O otherwise (for example, given five samples,
an SSNV with the profile 01011 is called in samples 2, 4,
and 5). SSNVs with the same profile are assigned to the
same SSNV group (for example, a group with the profile
01101 will contain all the SSN'Vs occurring in samples 2, 3,
and 5). The group with the profile consisting entirely of 1s
will contain SSN'Vs that occur in all the samples and are,
therefore, germ-line variants (assuming that the sample
set includes a normal control sample).
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Table 2 Topological ancestor-descendant and sibling relationship reconstruction on simulated data

Samples Cov Trees %SSNVs %AD %AD-Ord % AD-Corr % AD—Sib (—priv) %Sib  %Sib-Corr % Sib— AD (—priv)
VAE 94 989 99 415 100 30.2 (2.6) 98.2 832 73(1.5)
98 99.5 99.5 404 100 263 99.2 84.8 6.6 (0.9)
10K 95 988 98.7 404 99.9 30.5 (2.5) 97.8 825 7.7 (14)
c 98 99.2 98.7 39 100 274 98.8 84.7 7(1.3)
1K 95 98.6 97.7 39.7 100.0 30.5(2.3) 97.1 82.8 72(13)
98 994 99.5 38.1 99.7 29.2 98.9 83.9 7502.2)
100 97 96.8 932 387 99.8 314 (3.5) 93.1 81.8 79(1.7)
97 97.3 94.8 352 99.7 30.1 953 83.7 72(2.2)
VAE 97 97.5 96.2 588 100 431(22) 96.9 94.4 33(0.2)
95 97.7 96.5 582 100 38.1(1.9) 96.7 935 42(14)
10K 98 96.5 944 57.3 100 449 (4) 95.2 94 36(04)
10 96 97 96.1 56.5 100 39.8(2.3) 96.2 933 43(1.2)
1K 98 974 96.4 575 99.9 452 (3.9) 96.8 94.1 3.7(04)
96 97 95.7 574 99.9 38.7 (24) 96 927 4.8(1.5)
100 93 90.8 757 523 99.7 386 (4.4) 78.0 939 34(0.7)
91 90.5 804 479 99.5 403 (5.7) 833 92.8 44(1.5)
VAF 99 91.7 85 63.1 100 40.8(2.2) 88 96.6 2(0.2)
96 92.1 87.5 61.7 100 415(2) 89.1 96.9 2(03)
10K 98 923 85.3 61.2 100 443 (3.5) 87.6 96.2 24(03)
s 100 90.6 83.6 59.1 100 41.8(2.6) 85.8 96.6 21(03)
1K 93 94.7 83.5 61.5 99.9 427 (43) 854 96.1 2.6(0.6)
100 91.8 854 59.1 100 435(29) 87.8 96.7 2.1(0.3)
100 92 81.1 55.2 484 994 37.4(5) 613 96.1 2.1(03)
98 8138 57.1 46.1 99.8 36.5(2.2) 63.1 96.2 2204

Results are shown for 5, 10, and 15 samples given true VAFs, 10,000x, 1,000x, and 100x coverage data (without CNVs) obtained with localized (top row in each pair)
and randomized (bottom row) sampling. All values are averaged over the number of reconstructed trees (Trees) out of 100 simulated trees. The following metrics are
presented: SSNVs present in the tree (% SSNVs), ancestor-descendant pairs of mutations in the tree (AD), ordered AD pairs (AD-Ord), correctly ordered AD pairs
(AD-Corr), unordered AD pairs reconstructed as siblings (AD— Sib) (with and without private mutation nodes), sibling pairs of mutations in the tree (Sib), correctly
reconstructed sibling pairs (Sib-Corr), sibling pairs reconstructed as AD (Sib— AD) (with and without private mutation nodes).

AD, ancestor-descendant; CNV, copy number variant; Corr, correctly ordered; Cov, coverage; Ord, ordered; priv, private mutation nodes; Sib, sibling; SSNV, somatic
single nucleotide variant; t-VAF, true variant allele frequency; VAF, variant allele frequency.

The SSNV binary profiles can be passed as input or
computed from SSNV VAFs as follows. First two hard
VAF thresholds, Tpresent and Tapsent are used to determine
if an SSNV is robustly present or absent from a sam-
ple. An SSNV profile is classified as robust if its VAF is
above or below the two thresholds, respectively, and if at
least a minimum number of other robust SSNVs (default
set to 1) have the same binary profile. All other SSNVs
are considered non-robust and are assigned to a group
as follows. Given a non-robust SSNV m, its VAF across
samples can either fall below (marked 0), above (marked
1), or in between (marked*) the thresholds Tpresent and
Tabsent> resulting in a profile such as 01*11. The candidate
groups, to which m can be assigned, must have an iden-
tical profile in all the samples that are marked 0 or 1 (for

example, for profile 01*11, two valid candidate groups are
01111 and 01011). Since m can be assigned to more than
one target group, we consider that the group containing a
robust SSNV that is most similar in VAF to m is the best
candidate. The following metric is used to compute the
similarity between two SSNVs m and n:

min(m.VAF;, n.VAF;)
max(m.VAF;, n.VAF;)’

simyy,, = E

iesamples

1)

where m.VAF; is the VAF of m in sample i. If the max-
imum similarity is higher than a given threshold, m is
assigned to the group of argmax,,c,,didatesSimMmn- Unas-
signed non-robust SSNVs will form new profile groups.
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Table 3 Topological ancestor-descendant and sibling relationship reconstruction on simulated data in the presence of

copy number variants

Samples Trees % SSNVs % AD % AD-Ord % AD-Corr % AD—Sib (—priv) % Sib % Sib-Corr % Sib— AD (—priv)
. 95 96.2 89.1 144 937 20(04) 926 80.8 24(0)
98 97.42 91.96 10.74 96.1 0.20 94.85 80.46 2(0.02)
10 91 94.8 771 14.6 935 249 (0.6) 90.9 91.8 13(0)
92 94.55 78.97 11.95 93.1 041 90.5 91.7 1.1(0.01)
" 97 91.8 65.9 1.1 92.5 23.3(04) 85.5 94.6 0.7 (0)
94 929 69.6 10.8 94.5 24.2 (0.35) 875 94.8 0.6 (0.01)

Results are shown for 5, 10, and 15 samples given 1,000 x coverage data obtained with localized (top row in each pair) and randomized (bottom row) sampling with
approximately 80% of SSNVs in CNV regions. All values are averaged over the number of reconstructed trees.
AD, ancestor-descendant; CNV, copy number variant; Corr, correctly ordered; Cov, coverage; Ord, ordered; priv, private mutation nodes; Sib, sibling; SSNV, somatic

single nucleotide variant.

We minimize the number of such new groups by formulat-
ing this task as a set cover problem. In particular, let X be
the set of all unassigned SN'Vs. Denote Y as the set of sub-
sets of X, where each subset represents mutations that can
be assigned to the same potential target group. The tar-
get groups are a list of all possible binary profiles that the
SSN'Vs can be assigned to, obtained by substituting all *’s
by 0 or 1. We want to find the minimum number of target
groups (that is, the smallest subset of Y), which cover all
mutations in X. This problem is known to be NP-complete
and searching for the exact solution is not feasible. Instead
we apply the standard greedy algorithm by choosing (at

each stage) the target group that covers the largest number
of non-robust SSNVs. For SSNVs whose targets are not
supported by any other mutations, we convert each * to 1
or 0 depending on whether the VAF is closest to Tpresent
or Typsent, respectively.

Once the SSN'Vs are partitioned into groups, the SSN'Vs
of each group are further clustered based on their sam-
ple VAFs. Each SSNV group is associated with a matrix
M of VAFs of size n x s, where n is the number of SSNVs
in this group and s is the number of represented samples
(for example, s = 3 for a group with the profile 0110001).
The expectation-maximization clustering algorithm for
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Figure 6 Evolutionary constraint network for patient EVO07 with 8 tumor samples and 55 SSNVs. Each node is associated with the binary profile of

its corresponding SSNV group, the VAF centroid vector, and the number of SSNVs assigned to it. The edges represent the potential precedence
relationships between the node SSNVs. The spanning tree reported for patient EV007 is highlighted (see ‘Results and discussion’). GL, germ line;
SSNV, somatic single nucleotide variant; VAF, variant allele frequency.
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Gaussian mixture models is run on the resulting VAF
matrix M using [43]. The result is a set of SSNV clusters
with an associated VAF centroid vector, VAF. To handle
the high variance in the VAF data due to noise, some of
the resulting clusters are eliminated (based on size) or col-
lapsed with neighboring clusters, based on the distance
between their centroid vectors.

Evolutionary constraint network construction

Given the clusters of each SSNV group, we construct
an evolutionary constraint network to capture valid evo-
lutionary timing relationships between the mutations of
each cluster pair. The network is a DAG, where each
node corresponds to an SSNV cluster (except the root,
which represents the germ line) and each edge between
two nodes, (1 — v) denotes that parent node u could be
an evolutionary predecessor of child node v (that is, that
SSNVs in cluster # could have ‘happened before’ SSNVs
in cluster v). In particular, an edge (¥ — v) is added
only if the nodes satisfy the following two constraints
Vi € samples (which guarantee that the network will be
acyclic):

(1) u.VAF; > v.VAF; — ¢, and

2
(2) ifu.VAF; =0, v.VAE; =0, @

where €, is the VAF noise error margin (note, the error
margin is the maximum of the sum of the standard errors
for sample i of the two clusters and a configurable param-
eter). In the resulting network, each node will have at least
one parent (since all nodes can be connected to the root).
We avoid checking all node pairs, by organizing the nodes
into levels according to the Hamming weight (that is, the
number of 1’s) of the binary group profile to which they
belong. Nodes that are in the same level and have conflict-
ing binary profiles cannot satisfy the above constraints.
Nodes from different levels can only be connected such
that the node in the higher level is the parent of the node
in the lower level. Finally, for nodes that are in the same
level and have the same binary profile, the edge is added
in the direction that minimizes VAFgrr, where:

VAFgrp,., = Y lerg,.,() - (v.VAF; — w.VAF)?

i€ samples
(3)
with the indicator function:
, 1, v.VAF; > u.VAF,,
1gRR, ., (D) = ' ! (4)
0, otherwise.

Figure 6 illustrates the constraint network produced for
the dataset of ccRCC patient EV007 (described in ‘Results
and discussion’).
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Phylogenetic tree search

By the constraint network construction, a valid lineage
tree T of the SSNV clusters (that is, a tree that does
not violate the three constraints of the perfect phylogeny
model) must be a spanning tree of the network that
satisfies the following requirement V nodes u# € T:

Vi € samples : Z v.WAF; < uVAF;+¢. (5)

vs.t.(u—v)eT

That is, the sum of the VAF centroids of all the chil-
dren must not exceed the centroid of the parent. We use
inequality here since our method does not require all the
true lineage branches to have been observed. To tolerate
noise in the VAF data, we relax the constraint by allowing
the sum of children VAFs to exceed the parent by an error
margin €. Given such a valid lineage tree, each sample can
then be decomposed into subpopulations by enumerating
all the paths in the tree starting with the germ-line root
and ending in the last node containing mutations in that
sample.

The problem of finding all such trees is equivalent to
the problem of finding all spanning trees of the constraint
network DAG for which Eq. (5) holds. We have extended
the Gabow and Myers spanning tree search algorithm [44]
to generate all such spanning trees. The original algo-
rithm generates all spanning trees of a directed graph
using backtracking and an efficient bridge edge detection
method based on depth-first search (DFS). Our exten-
sion consists of enforcing Eq. (5) during the tree search
by terminating the expansion of a given tree and back-
tracking as soon as an edge violating Eq. (5) is added (see
Algorithm 1). Same as the original algorithm, this search
runs in O(|V| + |E| + |E|N) time, where |V] is the num-
ber of nodes, |E| is the number of edges, and N is the
number of spanning trees in the network. While the run-
time of the program depends on the number of spanning
trees in the constraint network, in practice the search is
very fast (taking of the order of a few seconds). How-
ever, since, in theory, it is possible for the algorithm to
take longer on datasets that result in constraint networks
with many spanning trees, we provide a bound on the
maximum number of lineage trees to generate to avoid
searches that are too long. Similarly, we also have a high
bound on the number of calls to the GROW procedure in
Algorithm 1. We expect these scenarios to be very rare in
typical validation datasets. To reduce the search space, we
also optionally constrain the placement of private muta-
tion nodes in the constraint network to their closest valid
predecessors.



Popic et al. Genome Biology (2015) 16:91

Algorithm 1 Finding All Lineage Trees

1: Initialization: f <— empty list, L < null // stores the
last tree output

2. procedure LINEAGE TREE SEARCH(N) // N isa
constraint network rooted at r

3 Tree t <— new empty Tree

4 t.ADDNODE(r)

5 add all edges (r > v) e N tof

6: GROW(2)

7. procedure GROW(¢, N)

8 if ¢ contains all the nodes in N then

9

: L <t

10: output L

11 else

12: s < empty list

13: b < false

14: while (not b and f not empty) do

15: // e defined as (e.From — e.To)

16: Edge e < f.REMOVELAST()

17: Node v < e.To

18: t.ADDNODE(V)

19: t.ADDEDGE(e.From — v)

20: // return true if Eq. (5) is satisfied for node
e.From

21: if £. CHECKCONSTRAINT(e.From) then

22: add all edges (v > w),w gt to f

23: remove all edges (w — v), w € ¢ from f

24 GROW(t)

25: if number of returned trees >

max_Ltrees return

26: remove all edges (v — w), w € ¢ from f

27: add all edges (w — v),wettof

28: t.REMOVEEDGE(e.From — e.To)

29: N.REMOVEEDGE(e.From — e.To)

30: s.ADD(e)

31: if Jan edge (w — v) s.t. wnota descendant
of vin L then

32: b <« false

33: else b < true

34: for all edges e starting from the end of s do

35: remove e from s, add eto f, add eto N

The above search algorithm will find all spanning trees
for which Eq. (5) holds locally at each individual node;
however, it is possible that to satisfy this constraint, the
centroid values are deviated (within €) in a globally incon-
sistent way. Therefore, to enforce consistency, we apply
one additional requirement to the trees returned by the
search. In particular, we formulate the following quadratic
programming (QP) problem to find a set of e,; such that
for every sample i and node v:
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minimize )", Y, €2,
subject to

> st.(u—sv)eT (v.VAFi + ev,i) < u.VAF; + e,,; and

ley,il < e€,e,; < v.VAF;

(6)

If no solution exists, the tree is considered invalid. Since
multiple valid lineage trees can be generated, we rank
them using the resulting e, ; solution, which corresponds
to how well each tree fits the VAF data. The top-ranking
tree will be the tree with the minimum sum of squared
deviations: ), >, elz,,i. Since for certain networks the total
number of valid lineage trees can be large, it is impracti-
cal to run a QP program on each tree. Therefore, we first
rank the trees based on the sum of squared deviations
computed locally at each node, and then run QP on the
resulting top k trees.

Multiple lineage trees can support a dataset equally well
since the placement of certain nodes in the tree may be
ambiguous using perfect phylogeny SSNV ordering con-
straints only (especially when not all lineage branches
have been observed). In these cases, more sophisticated
custom evaluation criteria would be required to rank the
trees. We do not address defining such criteria in this
work. Instead we report all the produced trees to the
user ranked by their associated score (the number of trees
reported is configurable) and provide a GUI to allow the
user to easily explore the differences in the topologies (see
‘Visualization’ for details). We expect that under any opti-
mality criteria, the suboptimal trees can also represent
signals in the data of potential biological significance.

It is also possible that no valid lineage trees are found
during the search. This can happen if the noise error
margin is too narrow or the network contains nodes cor-
responding to SSNV groups with a misclassified binary
profile. In this case, the network is adjusted and searched
again. Currently the network adjustment procedure will
remove one by one all the nodes that belong to non-robust
SSNV groups (smallest nodes first). Other adjustments,
such as increasing the noise error margin, are also possible
but not currently implemented.

Visualization

The constraint network and the phylogenetic trees can be
visualized and interacted with in GUI form. The JUNG
graph library [45] is used to generate the resulting graphs.
When visualizing lineage trees, each input sample appears
as a leaf in the tree and is connected to the nodes that
contain SSN'Vs present in the sample. By clicking on the
nodes of a tree, it is possible to obtain additional infor-
mation about each node. The information displayed about
an internal (non-sample) tree node consists of its binary
group profile, its cluster centroid and standard deviation
vectors, and the list of the SSNVs in its cluster (these
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SSNV node selected
ID: Binary Profile (Size)\*

11: 011170000000

1: 000000001000 (2)

6: 00000000001 (6)

R11 /

Group: 011111111111 -

Size: 6

VAF Mean: [0.2 0.24 0.22 0.18 0.22 0.18 0.13 0.16 -
Stdev: [0.03 0.03 0.04 0.02 0.03 0. 0. 0.

|SSNVs: ) _
DUSP19 chr2 183960200 T/G , _ -
VHLchr310191401C/T |, _ _  _ _ _ _ _ - —
|OR2A14 chr7 143826573 T/C | <----
EDC4 chr16 67912020 G/A |

Remove Node |

Collapse Nodes

Figure 7 LICHeE graphical user interface output for top lineage tree of ccRCC patient RK26 with node selection. Information is displayed about the
SSNV members of the selected node. ccRCC, clear-cell renal cell carcinoma; SSNV, somatic single nucleotide variant; Stdev, standard deviation; VAF,

variant allele frequency.

11: 011110000000

8: 010000p00000 (4) 9: 000001400000 (10)

6: 000000p00001 (6)

R11

Selected Sample

RS:
GERMLINE
11111111111: 0.16 (0.02]

“
¢2000000111000: 0.03 [0] .
¢ 000000001000: 0.09 [0] Selected Decomposition

{2)000000001111: 0.15 [0.03]

_Remove Node

Collapse Nodes

Figure 8 LICHeE graphical user interface output for top lineage tree of ccRCC patient RK26 with sample selection. Information is displayed about
the sample composition. ccRCC, clear-cell renal cell carcinoma.
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SSNVs can be annotated with information from public
databases such as COSMIC, TCGA, etc.). If a sample
leaf node is clicked, the information displayed consists of
the lineage of this specific sample obtained by doing a
DFS traversal of the tree starting with the germ-line root.
Finally, the user can rearrange the nodes in the tree, as
well as remove nodes and collapse nodes (provided they
are clusters of the same group). See Figures 7 and 8 for
several examples. In addition to the GUI, the program
reports the number of trees found and the score of the
highest-ranking tree. The user can control how many trees
to display.

Implementation

The LICHeE algorithm was implemented in Java. It is
open source and freely available online at [33].

Additional files

Additional file 1: Evaluation of Phylosub. Performance evaluation of
the Phylosub [29] program on the ccRCC dataset.

Additional file 2: Experimental details of the ccRCC, HGSC, and
xenoengraftment comparison. It includes a description of the dataset
and LICHeE parameter settings.

Additional file 3: Detailed simulation results.
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