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ABS TACT F THE THESIS

MODIFIED DIAMOND DIPOLE ANTENNA FOR ULTRA WIDEBAND

COMMUNICATIONS USING FINITE DIFFERENCE TIME DOMAIN METHOD

by

Srinivas Desamsetty

Florida International University, 2003

Miami, Florida

Professor Tadeusz M. Babij, Major Professor

The aim of this thesis is to analyze and design ultra wideband antennas for

personal communication devices using Finite Difference Time Domain (FDTD) method.

Initially diamond dipole, an ultra wideband antenna is selected from the literature and

analyzed. The shape of the diamond dipole is modified in such a way that the straight-line

base of the two triangular arms (near the feed) is replaced with an arc. The resulting

antenna is named as modified diamond dipole. Performance is observed by varying

radius of curvature of base of triangular arms (for constant flare angle) and by varying

flare angle (for constant radius of curvature of base of triangular arms). It is shown that

modified diamond dipole offers better performance in terms of impedance bandwidth and

return loss, than the diamond dipole with zero flare angle.

Slot loading technique has been applied to modified diamond dipole. It is shown

that the resonant frequency of the slot loaded modified diamond dipole is decreased with

increase in slot size and/or decrease in distance of the slot from the feed.
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CHAPTER 1

INTRODUCTION

We are living in an information age. There are two ways of communicating a

message to distant places. Through wired connection and wireless connection. The world

is moving more and more towards the wireless connection i.e. wireless communication.

Guglielmo Marconi was the first to see the possibility of wireless communication

when he demonstrated radio's ability to provide continuous contact with ships sailing the

English Channel [1]. From then new wireless communications methods and services have

been adapted enthusiastically. With the advent of digital technology and RF fabrication

techniques, mobile radio communications have grown in large number. With the advent

of the miniaturizing technologies, radio communication equipment has changed from

small to portable and from portable towards more and more miniature in size. Digital

switching techniques have facilitated the large deployment of affordable, easy to use

radio communication networks. The number of cellular telephone users grew from

25,000 in 1984 to about 16 million in 1994, and since then, wireless services have been

experiencing customer growth rates well in excess of 50% per year [1].

Though the customers for wireless communications are increasing continuously,

available bandwidth is always a constant. Hence many new wireless technologies like the

FDMA, TDMA, CDMA, SDMA etc. which split the frequency spectrum according to

their own criterion have evolved. These developments have laid more and more

constraints in the hardware design issues of the communication systems, like the antenna

bandwidth, filter design, amplifier design etc. Almost everyday a new service is being
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added to the existing services of wireless communications. This ranges from very low

bandwidth short message services to very high bandwidth videoconference [2]. Hence,

with such high data rate requirements (with constant and scarce bandwidth), it seems one

day in the future, the bandwidth will be inadequate. Hence, new technologies in wireless

communications have to be evolved day by day to accommodate the ever growing users

of wireless communications.

Until recently (and even today), in many areas, continuous sinusoidal waves and

semi-sinusoidal waves are used for communication purpose. It is estimated that ultra

wideband technology brings a new trend in wireless communications. Ultra wideband

(UWB) technology is a technology- which uses short pulses rather than semi-continuous

sinusoidal waveforms for communication, thereby transmitting the signal energy over a

wide frequency band. Ultra wideband technology needs no carrier to carry the

information. This new technology can directly modulate an impulse, hence can be called

as carrierless technology. FCC has defined ultra wideband systems as those having a

bandwidth more than 20% of the center frequency or more than 500 MHz, which ever is

smaller [3]. Bandwidth efficiency, defined as throughput data rate per hertz is a very

important parameter to be considered. It provides a measure of how efficiently the

bandwidth is utilized. From the definition of ultra wideband, stated above it can be

understood that this technology has a very good bandwidth efficiency. Shannon's channel

coding theorem states that for an arbitrarily small probability of error, the maximum

possible bandwidth efficiency is limited by the noise in the channel [1].

In case of ultra wideband technology which uses very short pulses for

transmission, millions of pulses are transmitted in very short time. However, the problem

2



lies in designing a receiver and generator with exception timing. Since the pulses carry

very low power, the signal energy is distributed over a very large bandwidth. Some of the

advantages of ultra wideband technology may be summarized as low power, low cost,

high data rates, precise positioning capability and no interference. Multipath distortion is

eliminated in UWB systems as the delayed copy which arrives outside the timing window

(time during which the receiver is active) is heard as noise and will be rejected. As the

technology utilizes pulses with very low power than ordinary transmitters, it is very

attractive to use in portable devices and mobile communication systems [2].

There is a lot of ongoing research to design new transmitters, receivers and

antennas for ultra wideband communications. Antenna is one of the most difficult parts of

a communication system to design because much of the literature developed for

sinusoidal wave transmission is of no use. Hence, much work has been devoted in the

design of ultra wideband antennas [4]-[10]. Ordinary wideband antennas will generally

not transmit fast transients because they have not been corrected for dispersion. This

thesis focuses on the design of ultra wideband microstrip antennas, keeping in mind the

bandwidth and miniaturizing requirements of today's technology.
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CHAPTER 2

MICROSTRIP ANTENNAS FOR PERSONAL COMMUNICATION DEVICES

In many applications like personal communication devises and satellite

communications, weight and space occupied by the communication system is given great

importance. Hence, miniaturizing the communication system components and hence, the

antenna has become a necessity and challenging factor for many years. Deschamps first

proposed the concept of microstrip radiators in 1953 and Howell and Munson developed

the first practical antenna [11]. Much work has been devoted in the past for this purpose

[12]-[16]. This chapter provides information about the concept of microstrip antennas,

different types and design issues.

2.1 Microstrip antennas

As shown in Fig. 1 and Fig. 2, a microstrip antenna consists of a dielectric

substrate sandwiched by radiating patch and a ground plane on either side. The patch

(normally copper or gold) can assume virtually any shape, but shapes like rectangle,

square, circle, ring etc. are used to simplify the analysis and performance prediction [11].

Because of advantages like light weight, low volume, low fabrication cost, thin profile

configuration, linear and circular polarizations made possible with simple feed, easily

integrable with microwave integrated circuits, readily amenable to mass production, etc

microstip antennas became popular inspite of the disadvantages like narrow bandwidth,

lower gain and efficiency, difficulty in achieve polarization purity, excitation of surface

waves, extraneous radiation from feeds and junctions, etc. However there are methods to

reduce most of the limitations of microstrip antennas, and use the advantages they offer.

A patch radiates efficiently when it is resonant, which means that some characteristic



dimension of the patch is nearly equal to one half wavelength in the substrate medium

[2].

Fig. 1. Top view of an arbitrary Fig. 2. Side view of the arbitrary

shaped microstrip antenna. shaped microstrip antenna.

2.2 Categories

All microstrip antennas can be divided into four basic categories [11]

* Microstrip patch antennas

* Microstrip dipoles

* Printed slot antennas and

* Microstrip traveling wave antennas.

Various techniques have been explored in analyzing microstrip patch antennas, including

transmission line models, cavity models, full-modal expansions, and various numerical

techniques. Transmission-line model is the easiest of all but gives inaccurate results and

lacks versatility where as the cavity model though difficult, provides more accuracy.



Cavity model is similar to perturbation methods [17]. Recently, finite difference time

domain (FDTD) method has emerged as a numerical technique of choice.

2.3 Feeding techniques

The purpose of a transmission line is to transfer the power efficiently from the feed to the

radiating structure. Feed plays an important role in miniaturizing the antenna size and

improving its characteristics. There are a number of feeding techniques developed,

however prominent among them are coaxial feed, microstrip (coplanar feed), proximity

coupled microstrip feed, aperture coupled microstrip feed, and coplanar waveguide feed.

So far, microstrip line feed is the most easy to fabricate, easily matchable to the

antenna (by adjusting the inset position) and also simple to model than the remaining

techniques. This feeding technique gives good results when the thickness of the substrate

is very small. However, surface waves and spurious radiation increases with substrate

thickness and limits the bandwidth [17]. Coaxial feed is also easy to fabricate, but has

less bandwidth. However, it is difficult to model for thick substrates. The interesting

feature is that it has very less spurious radiation. Though, proximity coupled microstrip

feed is difficult to construct, it has the largest bandwidth of all the methods mentioned

above, easy to model and has low spurious radiation [17].

Feed plays an important roll in increasing the bandwidth of an antenna. Usually,

designing an antenna involves the design of the feed network also. In [18] it has been

reported that by using capacitively coupled feed, overall length of a shorted patch antenna

with an air substrate can be reduced from one-quarter wavelength to less than one-eigth

wavelength. In [18], it has been shown that an impedance bandwidth of 39% can be

obtained for an L-probe fed shorted patch antenna.
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2.4 Rectangular patch

It is stated that symmetrical structures are easier to analyze [17]. Rectangular

patch being the most basic symmetric structure is taken as an example for a brief

discussion. Considering transmission line model, microstrip antenna is seen as two slots

separated by low impedance transmission line. As the patch dimensions are finite, fields

undergo fringing at both the slots. Fringing is a function of the dimensions of the patch.

But for most microstrip antennas Length is very much greater than its height (L/h<<1)

fringing is reduced to a great extent. But even the least fringing effect has to be taken into

account as it effects the resonant frequency. The electric lines concentrate mostly in the

dielectric medium. But since, they travel through two different media (air and substrate)

an effective dielectric constant has to be found to find the correction factor introduced by

fringing. Effective dielectric constant (cref) is defined as the dielectric constant of the

uniform dielectric material, which produces the same effect, produced by the

combinations of the dielectric materials. Fringing causes the antenna to appear larger in

dimensions that it is. In [17] the design procedure for a rectangular patch is given as

follows. When relative dielectric constant of substrate (e ) , resonant frequency fr (in

hertz) and height (h) (in meters)are specified, width (W) and length (L) are determined as

follows.

1 2 v0  2

2 f r =, e + 1-- - - ( 2 . 1 )
2 Vua e 1 2 ,e

VO = velocity of light in air.

re ff + r 11+12- (2.2)2 2LW
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AL '~(Creff + 0 .3 - +02641 23
= .412 h(2.3)

h (reff -0.258Qh + 0.8

AL = Extension of length

L -2AL (2.4)
2fr reff toOO

2.5 Figures of merit

For any antenna, quality factor (Q), bandwidth, and efficiency are the figures of

merit. These are interrelated and there is no complete freedom to independently optimize

each one [17]. Quality factor depends on the losses of the antenna. The reciprocal of total

quality factor is defined as the sum of the reciprocals of quality factors due to individual

losses of the antenna. Since some of the losses depend on the physical dimensions of the

antenna, it can be said that the quality factor depends on the physical dimensions of the

antenna.

2.6 Antenna arrays

In most cases the characteristics like the gain, directivity or beamwidth etc. of a

single antenna cannot fulfill the requirement. This situation can be over come by using

many antenna elements in a particular pattern, called an antenna array. The pattern might

be in a linear, a planar or a volumetric fashion and hence the names linear array, planar

array, volume array. The required application dictates the type of array to be designed.

Usually, all elements (antennas) of an array are identical (though not a necessity).

Selecting identical elements, only helps to design the antenna array easily.



Overall pattern of an array depends on the geometrical configuration of the array

(linear, planar or volume), relative displacement of array elements, excitation amplitude,

excitation phase and relative pattern of the individual elements. In general, radiation

characteristics of an array can be determined once the aperture distribution is known. The

amplitude and phase distribution of the feed is usually determined according to the

intended application. The means of excitation of the radiating elements is thus an

essential and important factor. The feeds are categorized as parallel and series feeds (as

per their geometries) [11].

By properly selecting the above-mentioned factors, antenna array of

desired characteristics can be designed. Now a days, algorithms are being incorporated,

which enable an antenna array to steer the beam towards the users.
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CHAPTER 3

BROADBAND ANTENNAS

3.1 Introduction

The antenna bandwidth can be measured by using standing wave ratio (SWR)

parameter. Bandwidth can be defined as range of frequencies over which the SWR is

below a certain predefined mark (usually 1.5 to 2, and in some cases 3). Antennas, which

have a good impedance match over a wide frequency range, are called broadband

antennas. It has been reported in [17] that quality factor, bandwidth and radiation

efficiency is interrelated and in order to achiever the efficiency over one parameter,

efficiency over other parameter have to be sacrificed. The fractional bandwidth of the

antenna is inversely proportional to the total quality factor of the antenna [17].

BW = (3.1)
71

BW=band width, i = efficiency

where r = and k is wave number [22] where A =wavelength.
2fr

The above expression [22] states that, if the antenna size is constrained, instantaneous

bandwidth (BW) is gained by sacrificing some of the radiation efficiency. The standing

wave ratio bandwidth can be expressed in terms of percentage bandwidth using (3.2)

SWR bandwidth = x 100% (3.2)

fi and f 2 are the lower and upper frequencies respectively, over which the SWR is less

than a predefined value. fc is the center frequency, given by
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fA = (3.3)

Since microstrip antennas are inherently band limited, much of the research is devoted in

increasing its bandwidth.

3.2 Bandwidth of microstrip antennas

Along with low radiation efficiency and high quality factor (Q), very narrow

frequency bandwidth is a major disadvantage and a challenging parameter of microstrip

antennas which needs to be improved. Lot of work has been devoted in the past to

achieve broadband operation of microstrip antennas.

3.3 Bandwidth enhancement techniques

Increasing substrate thickness increases bandwidth of an antenna. This is a very

basic technique, but results in a low quality factor, Q. Hence, tradeoff between bandwidth

and quality factor must be made before enhancing the antenna bandwidth by this method.

Antenna bandwidth can also be increased by increasing the relative permittivity of the

dielectric material used as substrate. Relative permittivity and thickness of the substrate

may be selected properly to obtain a desirable bandwidth. Another technique is to design

a wideband-matching network. Some of the other bandwidth enhancement techniques are

mentioned below.

i) Stacked elements

It has been shown that a wider bandwidth can be achieved with microstrip

antennas in stacked patch configuration [11]. A number of parameters like substrate

thickness di and d2 , dielectric constants r1 and r,2 patch sizes, offset between the centers

of the patches and feed location are to be considered to design an antenna with a desired

bandwidth. For example, in case of antenna with two layers, the size of the upper patch is
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selected slightly smaller or larger than the lower patch to obtain a slightly different

resonant frequency. Various other parameters are optimized to achieve broadband

operation.

ii) Stacked shorted patches

It has been shown in [18] that by making two stacked shorted patches radiate as

equally as possible and having a radiation quality factor as low as possible, enhanced

impedance bandwidth can be obtained for a fixed antenna volume. If the two stacked

shorted patches have different shorting walls, then selecting the distance between the two

offset shorting walls is crucial for achieving large operational bandwidth. If the two

stacked-shorted patches have a common shorting wall, then the feed location becomes

crucial factor in achieving a wideband performance.

iii) Coplanar parasitic elements

A set of coplanar resonators with slightly different resonant frequencies can be

configured to obtain broadband performance. The feed line drives only one patch, usually

the center patch, and the other patches are either gap coupled or directly coupled to the

driven patch. The idea behind selecting resonators with different lengths is that, four

resonant modes can be excited at frequencies close to each other, thus obtaining a wide

band performance. This concept can further be extended to gap coupled arrays [11].

iv) Multimode technique

In this approach, two independent modes are excited in the same patch or in the

patch and the feeding network. In [19] an B-shaped microstrip antenna is developed such

that the patch and the slot are designed to produce resonances close to each other,

obtaining wideband impedance bandwidth.
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v) Impedance matching

By using an impedance matching network in the feed portion of microstrip

antenna, impedance bandwidth can be improved. To obtain better results (bandwidth and

efficiency), the distance between the matching network and radiating patch must be kept

as small as possible. In an approach discussed in [11], the impedance matching network

is embedded into the patch itself. The matching network is designed such that at

resonance, it produces a reactive behavior opposite to that of the patch. The loaded patch

will now have two resonances close to each other giving rise to broadband operation.

vi) Slot loading

By embedding suitable slots in a radiating patch, compact operation with

an enhanced impedance bandwidth can be obtained. The impedance bandwidth obtained

for such a design is usually equal to or less than 2.0 times that of the corresponding

conventional microstrip antenna. To achieve a much greater impedance bandwidth, one

can use compact designs with chip-resistor loading [18].

vii) Resistive loading

The impedance bandwidth of a patch antenna can be increased by introducing

losses in antenna, but at the expense of decreased radiation efficiency [11]. A chip

resistor of 1 ohm can be incorporated for this purpose. The obtained impedance

bandwidth can be increased by a factor of six compared to the design using shorting pins

discussed in [2].

viii) Reactive loading

Inserting a microstrip line section at one of the radiating edges of a rectangular

patch provides an integrated reactive loading to the microstrip antenna. By varying the
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dimensions of the inserted microstrip line section, two resonant modes near the

fundamental mode of the original unloaded microstrip antenna can be excited, making

dual frequency operation possible. Further, by applying this inserted loading technique

and modifying the inserted microstrip-line section to an inserted microstrip structure of

cascaded transmission line sections, the two resonant modes can be made to excite at

frequencies very close to each other to form a wideband operation. This technique can be

extended to square, circular and triangular patch shapes [18].

ix) Modified probe feed

For conventional probe-fed microstrip antennas, the large probe reactance owing

to long probe pin is undesirable. In [118] it has been reported that, an annular ring slot or a

narrow rectangular ring slot can be cut to solve this problem. By choosing suitable

dimensions of the ring slot, the large probe reactance can be obtained. By using a

capacitively coupled feed, or an L-probe/L-strip coupled feed, similar probe

compensation can be obtained.

x) Varactor diode

A varactor diode can be used to obtain dual frequency operation. By

careful design, one can obtain the two resonant frequencies very close to each other

thereby achieving wideband operation. Two diodes are positioned symmetrically in the

patch to minimize the cross polarization effects, and the relationship between the power

and the bias voltage level of the varactor diode represents a way of tuning the structure

[2]. Hence by using any of the above methods or a combination, one can obtain

broadband performance of microstrip antennas, defeating their disadvantage of very low

bandwidth.
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CHAPTER 4

ULTRA WIDEBAND TECHNOLOGY

4.1 Introduction

The concept of ultra wideband can be well understood if we consider the frequency

domain and time domain representations of a pulse. For a better understanding Fourier

Transform and Discrete Fourier Transform are discussed.

A signal can be viewed in time domain and frequency domain. Fourier Transform is a

mathematical tool, which can be used to transform to convert the signal from time

domain to frequency domain representation. The Fourier Transform of a waveform w(t)

is defined as

W(f) = F[w(t)] = J[w(t)]e-j"*dt (4.1)

F[.] is the Fourier Transform of [] and f is the frequency parameter with units of Hz. F is

the frequency. With the availability of high speed computers and signal processors, the

spectrum of a waveform is approximated using Discrete Fourier Transform (DFT). DFT

is defined as

k=N-1

X(n)= Zx(k)e-j(2 lrl/N)nk n=O,1,2.... N-1 (4.2)
k=O

A program has been written in MATLAB to obtain the time domain and frequency

domain of a sinusoidal pulse which is shown in the next page.

MATLAB Program for the generation of sinusoidal pulse in Time and Frequency

Domain.

M=7;
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N=2AM

n=O:1:N-1;

tend=2;

T=10;

dt=T/N;

t=n*dt;

%creating time waveform

w=zeros(length(t), 1);

for(i=1:1 :length(w))

if(t(i)<=tend)

w(i)=sin(2*pi*t(i));

else w(i)=0;

end;

end;

plot(t,w);

axis([0 T -1.5 1.5]);

xlabel('t (sec) --- >');

ylabel('w(t)');

title('Time Waveform');

pause;

figure;

W=fft(w);

f=n/T;
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W=abs(W);

plot(f,abs(W));

axis([O 10 0 40]);

xlabel('f (Hz) --->');

ylabel('IW(f)I');

title('Frequency domain');

Fig. 3. Sinusoidal pulse in time domain.

ii

Fig. 4. Sinusoidal pulse in frequency domain.
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It can be seen that the waveform in frequency domain distributes the energy over

a very wide frequency range. This technology of utilizing pulse for communication is

called ultra wideband technology. Ultra wideband technology is a technology- which uses

short pulses rather than semi-continuous sinusoidal waveforms for communication,

thereby transmitting the signal energy over a wide frequency band. Using pulses is not a

new technique. This technology has been used in ground penetration radar and much

work has been done in that area. It is only recently that this technology has been

considered for personal communications and many patents were reported. The most

interesting part is that ultra wide band technology makes use of the garbage frequency,

ISM (industrial, scientific, medical) band of frequencies.

4.2 Intricacies of ultra wideband technology

The basic idea behind ultra wideband is to transmit low power pulses (usually Gaussian)

whose rise time is very small, typically ranges from few pico-seconds to hundreds of

nano-seconds. The signal occupies a very wide spectrum of bandwidth. Percentage

bandwidth (% BW) is an important parameter to be defined in this context.

2(fH - fL)
%BW= H L xl100 (4.3)

fR

where fH and fL is the upper and lower frequency limit between which the

standing wave ratio of the antenna is less than a pre-selected value. fR is the frequency

of resonance.

FCC has defined ultra wideband systems as systems, which have a percentage

bandwidth of 20% or 500 MHz, which ever is smaller [3]. Because of high data rate in

the form of pulses, non-ultra wideband receivers (designed for receiving continuous
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sinusoidal waves) sense these pulses as noise (as they could not understand pulses with

high data rates). But, the challenging factor is the design of the system. The transmitter

needs to be designed to transmit millions of pulses in very short time and the receiver to

receive the pulses with exceptional timing. Another challenging factor is to design

antenna, which have to radiate the fast transients (pulses) without much distortion, which

is the topic of thesis.

4.3 Advantages of ultra wideband technology

Ultra wideband technology overcomes many of the limitations of narrowband

technology.

* The straightforward advantage is the bandwidth it offers. Narrowband systems are

characterized to have a fractional bandwidth of 10% or less of center frequency,

where as ultra wideband systems are characterized to have a fractional bandwidth

of 20% or more of center frequency [2], [3].

* Ultra wideband technology can transmit data from very high rates (for short range

communications) to very low rates (for telemetry applications).

" Ultra wideband being a carrier less technology reduces the cost of architectures

for communication systems.

* Fading is a very important limitation to be considered. Fading occurs when

multipath components of the signal (signal components taking different paths by

reflection, refraction and scattering) cause destructive interference (signals

opposite in phase). Ultra wideband systems are more robust to fading and

interference than narrowband systems. Ultra wideband devices can incorporate

multiple parallel receivers, known as RAKE receiver architecture, to coherently
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add the energy from the many suitable reflected signals to increase the signal-to-

noise ratio [2].

* Ultra wideband technology is utilized to detect objects to a very high precision

(typically from tens of meters to a few centimeters).

* Because of low power requirements, the batteries of the personal communications

devises can operate for a longer time.

The areas where the ultra wideband technology can be used are personal area

networking, military warfare, motion tracking etc. There is a constant search for areas

where the ultra wideband technology can be used.
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CHAPTER 5

FINITE DIFFERENCE TIME DOMAIN (FDTD) METHOD

5.1 Introduction

The starting point for any electromagnetic problem is the Maxwell's equations [20]

B
VxE=-- (5.1)

at

VxH= -+J (5.2)
at

V.D = p (5.3)

V.B= 0 (5.4)

In case of any structure, the fields inside, its visualization, and the way it radiates

is very difficult to find out. This is one of the reasons why, most antennas are symmetric

structures. Symmetric structures can be analyzed with relative ease. Though expressions

are developed by Kraus, Tai, Pozar and others for some structures they only give

approximate results and a more accurate results might be desirable [17]. With the advent

of high speed computers with memories of hundreds of giga bytes, numerical techniques

became very effective tools than any other tool to study the behavior of any

electromagnetic scatterer or radiator.

FDTD (finite difference time domain), MoM (method of moments) and FEM

(finite elements method) are some of the most popularly employed numerical techniques

for electromagnetic analysis. In this research only FDTD method is used as a analyzing

tool. In the next section, a brief discussion of how the FDTD method works is outlined.
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5.2 Finite difference time domain (FDTD) method

Out of the many approaches (method of moments, finite element analysis,

physical optics etc.) FDTD technique is the one, which can be applied to large number of

electromagnetic problems (electromagnetic radiation, interaction, and scattering). FDTD

method was developed by Kane S. Yee, in 1966 [20]. FDTD method is a time domain

technique, which means the fields are computed as a function of time. Initially, this

method did not gain much popularity because of the huge computational overhead. But,

with the advent of high-speed computers with memories of the order of several hundreds

of giga bytes, FDTD method became the most widely employed method. Computer

science, computer engineering and computational engineering are the three fields applied

to develop the FDTD method.

5.2.1 Approach

The basic building block of FDTD method is the Yee Cell, shown below.

Y

y+11

IH

E tHx"l

E H x+1

/E

Fig. 5. Geometry of Yee cell.
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In Fig. 3, Ex, Ey, E, are the x, y and z components of electric field at location (x, y, z).

Exz+l is the x component of the electric field at the point (x, y, z+l). Similarly we can

write the components of electric field at other points. H", Hy, Hz are the x, y and z

components of the magnetic field at locations (x, y, z). Hj*l is the x component of the

magnetic field at the location (x+1, y, z). We can write the fields at other locations also.

As an example, ExX+l, yl,'1 represents the x component of electric field at the point (x+1,

y+1, z+l). In the FDTD software, we select a problem space, which is nothing but the

space where the electromagnetic radiator (or scatterer) under test is studied. Space as well

as the time is quantized. The whole space is thus divided into cubes of dimensions x

Ax, y =GAy, z = Az, as shown in Fig. 3. The time is quantized as t= n At where n is the

number of time steps. Usually the time step n is determined by an index (integer variable)

variable N. For electric fields n=N, and for magnetic fields n=N+1/2 [20]. Hence usually

the electric fields are calculated initially and used to calculate the magnetic fields in the

next instant of time which are further used to calculate the electric fields in the next

instant of time and the process goes on, till all the fields in the whole space are

calculated. This is popularly known as leap frog fashion of calculating the fields.

5.2.2 Equations formulation

FDTD method utilizes a separate field formalism i.e.

E =Etotal = Etotal + Escattered (5.5)

H= Htota= Htota + Hscattered (5.6)

The idea behind using a separate field formalism is that, we can specify the incident

field, so that the algorithm does the computations to find the scattered field.
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To see how the equations for the electric and magnetic fields are calculated and how the

finite differencing is applied, let us consider formulation of a perfect conductor in FDTD

method. The starting point for FDTD method is the curl equations. For clarity, let us

write the Maxwell's equations once again

VxE = -aB / t (5.7)

VxH = -8D / at + J (5.8)

Utilizing the fact that B =p H and D = c E, (5.7) and (5.8) are re-written as

-aD / at =- -( V xE)- H (5.9)

aE / at=- E+ -(V xH) (5.10)
86

Since we have considered the case of a perfect conductor, we have a* = = 0, .= po and

= Eo ,Hence re-writing (5.9) and (5.10) we get,

BE_ 1
-- (V x H) (5.11)

at 6o

aH 1a -- (V x E) (5.12)
at p

By writing the above equations separately for x, y and z components of the electric fields

and magnetic field , we get

-E = 1 -a aHy (5.13)
at 6 ay az

aH _ 1 aEy aE,

a -az Z 
(5.14)
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aE, 1 (aH, aH 1  (5.15)
at O az ax

aLIY - 1 zj a~x(5.16)

at p a x az

EZ 1 (aHy aH lx(5.17)
at a0 ax ay

aH 1 (aE aE
(5.18)

at -o ay

In case of a perfect conductor Escat = -E". Assuming that the problem space consists of

only the conductor and free space, scattered fields can be calculated by specifying the

incident fields. We apply the concept of differencing here. Finite difference replaces the

derivatives with difference equations as shown below.

af _ f(x,t2)-- f(xt) f(xt2)-fx, 1 ) (5.19)
at AI-+O At At

af _ f(x2,t)- f(xit) f(x2, t)- f(x,t) (520)
= lim ~(.0

ax Ax->aAOA

Now (5.19) is applied to the right hand side and equation (5.20) is applied to the left hand

side of the (5.13)-(5.18) respectively.

E" - E4 1 A H 2

x -1 --Y-- (5.21)

At 0 ®y Az

E" -E n- 1 nH- 2 n-

LAII Ix 2I (5.22)
At '6 Az Ax
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I1
E" -E E"~ 1 nH,2 'H-2_ z - -y- (5.23)

At go Ax Ay

H+2 -2 n nE E
x x _ - -y z (5.24)

At p oAz Ay

H 2 -H 2 1 AE" AE"
-_- _ z--(5.25)

At p o Ax Az

+ 2 _z2 1 AE" A'E"
2 _ y (5.26)

At p oAy Ax)

Now, if we need the fields for the time instant n+1, we replace n with n+1 in the (5.21) -

(5.26). Also terms like z are further simplified as shown below.

At n+- n+ At n+1 n+
E = E" + H - 2  - H2 - (5.27)

E.Ay z ziJ k y.AJk

At n+ 1 n+ 1 At n+ 1 n+1

E"+ E + 2 -H H 2 -H j (5.28)
ysj.lk y i1k ,.z x~i, k+l x,r, k c. z,i+ljk ,

At n+ n+ At n+ nE" E + 2 H H -H 2 (5.29)EZJJ~k Ez~,J~ 6 X (. yi~lj~k 
YJ ~ k 

.®, 
ij+lk x i Jkl

n+2 _ n nt n

E~i'7k =E .>k + Ht(Y,iJlk E.Ay

Hy H k+ (E E, (E" -E" 3

n+ - n~ n pn A

= +- A (E"k - E" )- At (E". -E (5.31)
y,i,jk yi, J,k +zi j k z,i-lj,k xi,Jk xiJ,k-1

p.A PA
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At H t+ , -E ," (E, (5.32)
p. Ay -

From the above equations [20], [21] one can easily observe how the electric field at the n-

th instant is used to calculate the magnetic field at (n+1/2) instant of time and this in term

is used to calculate the electric field at the (n+l) instant. This is how the software

calculates the corresponding fields. However, inorder to ensure that the results we get

after simulation are reasonably accurate, some considerations like the cell size, time

stepsize, incident field specification, etc. need to be made. For example, if we consider

the time step, it is calculated using the Courant condition.

vAt 1 (5.33)
+ 1 1

Ax +(Ay 2  (Az)2

v is the velocity of the electromagnetic wave in he medium

At is the time step

Ax, Ay, Az are the dimensions of the cell.

Also the cell size must be less than one tenth of the wavelength of the electromagnetic

wave (in that medium). This implies ten cells per wavelength. Some applications demand

even smaller cell size. But in most cases X/10 makes a good choice to get reasonably

accurate results [20], [21].

5.2.3 Merits and demerits

FDTD method has become one of the most widely used techniques. As it is a time

domain method, it can encompass a wide frequency range with single run. It is easy to
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understand and implement in software [2]. Merits of FDTD method can be summarized

as follows

* We can model any arbitrarily shaped three dimensional geometry ( aircrafts,

human bodies, satellites etc.).

* Performance can be obtained for a broad range of frequencies with single

simulation run (as it is a time domain method).

* Objects with almost any value of conductivity can be specified and modeled.

* Both electric and magnetic materials can be modeled.

* FDTD method has very good absorbing boundary conditions (ABCs) like the

Liao, PML etc;

* FDTD method provides a display as to how the actual radiation looks at

various time instants. This allows the user to understand about the current

densities at various locations.

* Another important advantage is that FDTD method provides the sub grid

feature, which can be used in the region of the structure where greater

accuracy is desired.

* FDTD method also allows us to mention the type of feed (stimulus). It has

many types of stimuli (Gaussian, modulated Gaussian etc.) to select from.

* Further, FDTD method offers some basic geometries like the sphere, the

cylinder, wire etc.

Demerits of FDTD method can be summarized as

* FDTD method requires huge amount of memory. Also the processor must be

fast enough, for the calculations to run faster.
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* The selection of cell size must be made as small as possible. Though it

increases accuracy, it requires a lot of time for the to run. Hence tradeoff

between cell size and accuracy must be made.

* If the point where the field has to be calculated is a bit far more problem space

might have to be selected. XFDTD software can calculate far field values but

it requires post processing which takes a lot of time.

5.2.4 System requirements for XFDTD software

XFDTD from Remcom is the software used in this thesis work. The minimum

system requirements for XFDTD software are [2]

0 32 MBRAM, 128 MB

0 1024 x 768 resolution

* 256 color display

* 10 MB Hard Drive space for executable files

* 300 MB Hard Drive for full installation of all example files

5.2.5 Reason for choosing FDTD method

The most important reason for selecting FDTD method is that it can

analyze the structure for a wide range of frequencies in one simulation run, where as this

is not possible with MoM (method of moments).
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CHAPTER 6

METHODOLOGY

6.1 Description

The work done in this thesis can be divided into three parts. The first part being

the study of diamond dipole, the second being the analysis of modified diamond dipole

and the third part comprising of the study of slot loaded modified diamond dipole. The

antennas are analyzed using FDTD method. Initially a diamond dipole as in [2] is

analyzed (for completeness). Next, modified diamond dipole with various radius of

curvatures of the base (of triangular arms) region and with different flare angles are

constructed and analyzed. Next, a comparison of diamond dipole and modified diamond

dipole is made. Lastly, modified diamond dipole is loaded with slots and the behavior of

the antenna is studied for various slot dimensions. Also the slot loaded modified diamond

dipole is compared with modified diamond dipole analyzed in part II.

Finally two new antenna designs (1) modified diamond dipole (2) slot loaded

modified diamond dipole are proposed.

6.2 Part I Diamond dipole

Diamond dipole antenna for ultra-wideband communication consists of two

triangular arms. The diamond dipole antenna analyzed here is same as in [2], except for a

few changes in the dimensions of the dielectric layer. A dielectric substrate having the

dimensions 79 x 54 x 1.5 mm3 and a relative permittivity of 4.7 is constructed and the

antenna is centered on the substrate. The antenna with dimensions is shown in Fig. 6. To

analyze the antenna using XFDTD software, we need to select a problem space large

enough to fit the antenna and allow some boundary (Liao boundary) around the antenna.
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Fig. 6. Diamond dipole antenna with dimensions.

From the study done in chapter IV, the antenna geometry is to be constructed using Yee

cells. Hence, we need to select dimensions of the cell. Ten cells per wavelength is agood

choice (X/10) to start with [22], [23]. The cell dimensions are selected as dx=Ley=1.0

mm, ®z=0.5 m. The cell dimensions are specified as shown in a window shown in Fig.

7.

Fig. 7. Cellular dimensions in XFDTD software.
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Fig. 8Cellular dimensions of diamond dipole antenna.

Fig. 8shows diamond dipole in terms of cellular dimensions. According to the cellular

dimensions mentioned in Fig. 8, the antenna is constructed in XFDTD software. The

geometry of the antenna in XFDTD software looks as in Fig. 9and Fig. 10. The three

dimensional view of the antenna is shown in Fig. 11 Liao's absorbing boundary

condition, shown in Fig. 12 is selected for this purpose. The boundary extends to 15 cells

on all the sides of the antenna geometry. Modulated Gaussian pulse has been selected for

exciting the antenna. The time step as calculated by XFDTD is 0.001362 nano seconds. A

pulse width of 512 time steps is taken and the simulation is rn for 10,000 time steps. The

source details are shown in Fig. 13 and Fig. 14 shows a snapshot of the window to enter

the source location. Fig. 15 shows a plot of the source used for excitation. Fig. 16 and

Fig. 17 show plots of return loss and input impedance calculated by XFDTD software.
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Fig. 11. 3-Dimensional view of diamond dipole in XFDTD software.
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Fig. 12. B-ieonal coiton seleonip in XFDTD software.
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Fig. 16. Frequency Vs. return loss for diamond dipole antenna.
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Fig. 17. Frequency Vs. input impedance for diamond dipole antenna.

6.3 Part II Modified diamond dipole

6.3.1 Geometry

Modified diamond dipole with dimensions is shown in Fig. 18. A dielectric

substrate 79 x 54 x 1.5 mm3 is selected and the antenna is centered on the substrate. The

length of each arm is 38mm. The shape of modified diamond dipole is derived from

diamond dipole. The modified diamond dipole is constructed as follows: Initially

diamond dipole with selected dimensions (flare angle, length and width of arms) is

drawn. Next, the straight line base of triangular arms of diamond dipole is replaced with a

circular arc (with selected radius of curvature) in such a way that the straight line base of

diamond dipole (if present) forms a tangent to the circular arc. Thus the width becomes a

function of flare angle and radius of curvature of the base arc and is generated
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automatically (Fig. 18). The alteration of radius of curvature of base and the flare angle

are shown in Fig. 20 and Fig. 21. A cell having dimensions of Ax = Ay =l mm, Az

=0.5mm is chosen. A problem space of 140 x 100 x 65 is chosen and the antenna is

centered allowing 15 cells for Liao boundary on all sides of the antenna. A dielectric

substrate having a relative permittivity of 4.7 is chosen as dielectric material. A

modulated Gaussian pulse having a pulse width of 512 time steps is chosen and the

simulation is run for 10000 time steps.

Fig. 18. Modified diamond dipole.

(all dimensions are in mmn)

To study the modified diamond dipole, flare angle and radius of curvature of the bas of

triangular arms are selected as parameters and 9 antenna designs are selected which are

tabulated in Table 1.
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Fig. 20. Radius of curvature alterationl of mnodified diamond dipole.
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Fig. 21. Flare angle alteration of modified diamond dipole.

Table 1

Information about the modified diamond dipole antenna models

Antenna model Semi-flare angle (c/2)0 Radius of curvature (R mm)

MDIDO-A1 27 20

MDIDO-A2 27 30

MDIDO-A3 27 40

MDIDO-B1 35 20

MDIDO-B2 35 30

MDIDO-B3 35 40

MDIDO-C1 45 20

MDIDO-C2 45 30

MDIDO-C3 45 40
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6.3.2 Modified diamond dipole, model MDIDO-A1

Initially MDIDO-Al antenna, is constructed in XFDTD software as shown in Fig. 22. A

3-D view is shown in Fig. 23.

Fig. 22. Layer z=33 (xy plane) of MDIDO-A1 in XFDTD software.

FieE i V ae W doaa l

I J1U/ >N33~N N

Fig. 23. 3-Dimensional view of MDIDO-A1 in XFDTD software.
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Fig. 24 and Fig. 25 show variation of return loss and input impedance with frequency

respectively.

0

-2O0
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Fig. 24. Frequency Vs. return loss for MDIDO-Al.
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Fig. 25. Frequency Vs. input impedance for MDIDO-Al.
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6.3.3 Modified diamond dipole, model MDIDO-B1

MDIDO-B1 antenna is constructed in XFDTD software as shown in Fig. 26. A 3-D view

is shown in Fig. 27.

Fig. 26. Layer z=33 (xy plane) of MDIDO-B1 in XFDTD software.

Fig. 27. 3-Dimensional view of MDIDO-B 1 in XFDTD software.
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Fig. 28 and Fig. 29 show variation of return loss and input impedance with frequency

respectively.
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Fig. 2. Frequency Vs. inptr impeanc for MDIDO-B 1
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6.3.4 Modified diamond dipole, model MDIDO-C1

MDIDO-C1 antenna is constructed in XFDTD software as shown in Fig. 30. A 3-D view

is shown in Fig. 31.

4

Fig. 30. Layer z=33 (xy plane) of MDIDO-C1 in XFDTD software.

Fig. 31. 3-Dimensional view of MDIDO-C 1 in XFDTD software.
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Fig. 32 and Fig. 33 show variation of return loss and input impedance with frequency

respectively.
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Fig. 32. Frequency Vs. return loss for MDIDO-C1.
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Fig. 33. Frequency Vs. input impedance for MDIDO-C1.
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6.3.5 Modified diamond dipole, model MDIDO-A2

MDIDO-A2 antenna is constructed in XFDTD software as shown in Fig. 34. A 3-D view

is shown in Fig. 35.

Fig. 34. Layer z=33 (xy plane) of MDIDO-A2 in XFDTD software.

S IZ

vi.

Fig. 35. 3-Dimensional view of MDIDO-A2 in XFDTD software.
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Fig. 36 and Fig. 37 show variation of return loss and input impedance with frequey

respectively.

-5 /
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Fig. 36. Frequency Vs. retur loss for MDIDO-A2.
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Fig. 37. Frequency Vs. input imnpedance for MDIDO-A2.
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6.3.6 Modified diamond dipole, model MDIDO-B2

MDIDO-C1 antenna is constructed in XFDTD software as shown in Fig. 38. A 3-D view

is shown in Fig. 39.

P 74

I t

Fig. 3. 3Diension(x ae of MDIDO-B2 in XFDTD software.
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Fig. 40 and Fig. 41 show variation of return loss and input impedance with frequency

respectively.
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Fig. 4. Frequency Vs. reurn lmposs for MDIDO-B2.
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6.3.7 Modified diamond dipole, model MDIDO-C2

MDIDO-A2 antenna is constructed in XFDTD software as shown in Fig. 42. A 3-D view

is shown in Fig. 43.

Fig. 42. Layer z=33 (xy plane) of MDIDO-C2 in XFDTD software.

Fig. 43. 3-Dimensional view of MDIDO-C2 in XFDTD software.
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Fig. 44 and Fig. 45 show variation of return loss and input impedance with frequency

respectively.

/ I

-25
1 2 3 4 5 6 7 8

Frequency (GHz) x 10g

Fig. 44. Frequency Vs. return loss for MDIDO-C2.
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Fig. 45. Frequency Vs. input impedance for MDIDO-C2.
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6.3.8 Modified diamond dipole, model MDIDO-A3

MDIDO-A3 antenna is constructed in XFDTD software as shown in Fig. 46. A 3-D view

is shown in Fig. 47.

tf

Fig. 46. Layer z=33 (xy plane) of MDIDO-A3 in XFDTD software.

Fig. 47. 3-Dimensional view of MDIDO-A3 in XFDTD software.
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Fig. 48 and Fig. 49 show variation of return loss and input impedance with frequency

respectively.
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Fig. 48. Frequency Vs. return loss for MDIDO-A3.
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Fig. 49. Frequency Vs. input impedance for MDIDO-A3.
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6.3.9 Modified diamond dipole, model MDIDO-B3

MDIDO-B3 antenna is constructed in XFDTD software as shown in Fig. 50. A 3-D view

is shown in Fig. 51.

Fig. 50. Layer z 33 (xy plane) of MDIDO-B3 in XFDTD software.

~U 1

Fig. 51. 3-Dimensional view of MDIDO-B3 in XFDTD software.
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Fig. 52 and Fig. 53 show variation of return loss and input impedance with frequency

respectively.

-10{ "

1 2 3 4 5 & 7 8
Frequen y (GHa) 10*

Fig. 52. Frequency Vs. return loss for MDIDO-B3.
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Fig. 53. Frequency Vs. input impedance for MDIDO-B3.
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6.3.10 Modified diamond dipole, model MDIDO-C3

MDIDO-C3 antenna is constructed in XFDTD software as shown in Fig. 54. A 3-D view

is shown in Fig. 55.

Fig. 54. Layer z=33 (xy plane) of MDIDO-C3 in XFDTD software.

Fig. 55. 3-Dimensional view of MDIDO-C3 in XFDTD software.
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Fig. 56 and Fig. 57 show variation of return loss and input impedance with frequency

respectively.

01
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Frequ noy (GNz) x1

Fig. 56. Frequency Vs. return ross for MDIDO-C3.
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Fig. 57. Frequency Vs. input impedance for MDIDO-C3.
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6.4 Part III Slot loaded modified diamond dipole

6.4.1 Geometry

To study the effect of slot loading, slots have been incorporated into modified

diamond dipole. Slot loaded modified diamond dipole is shown in Fig. 58.

Fig. 58. Slot loaded modified diamond dipole.

Antenna models as shown in Table 2 are selected. Two parameters, Dl and D2 are

selected (as shown in Fig. 58) which indicate slot size and distance of the slot from the

feed respectively. MDIDO-A1 is the antenna selected for slot loading. Keeping all the

parameters like the cell size, dielectric constant of the substrate, source details constant ,

slot loaded diamond dipole is constructed. Three slot sizes have been selected to study

the effect of slot loading.
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Table 2

Information about the slot loaded modified diamond dipole antenna models

Antenna Model Slot width (Dl mm) Distance of slot from feed (D2 mm)

SLMDIDO-A 8 1

SLMDIDO-B 6 3

SLMDIDO-C 4 5

6.4.2 Slot loaded modified diamond dipole, model SLMDIDO-A

SLMDIDO-A antenna is constructed in XFDTD software as shown in Fig. 59. A 3-D

view is shown in Fig. 60.

Fig. 59. Layer z=33 (xy plane) of SLMDIDO-A in XFDTD software.
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Fig. 60. 3-Dimensional view of SLMDIDO-A in XFDTD software.
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Fig. 61. Frequency Vs. return loss for SLMDIDO-A.
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6.4.3 Slot loaded modified diamond dipole, model SLMDIDO-B

SLMDIDO-A antenna is constructed in XFDTD software as shown in Fig. 62. A 3-D

view is shown in Fig. 63.

I e

Fig. 62. Layer z=33 (xy plane) of SLMDIDO-B in XFDTD software.

Fig. 63. 3-Dimensional view of SLMDIDO-B in XFDTD software.
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Fig. 64. Frequency Vs. return loss for SLMDILD-B.

6.4.4 Slot loaded modified diamond dipole, model SLMDIDO-C

SLMDID-A antenna is constructed in XFDTD software as shown in Fig. 65. A3-D

view is shown in Fig. 66.
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Fig. 63, Fig. , Fig. 67 show the return loss of SL I -A, SL - I- - - and

SL - antenna models respectively.
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CHAPTER 7

JUSTIFICATION

7.1 Justification for modified diamond dipole

In order to justify the shape modification of diamond dipole, a blend of diamond

dipole and modified diamond dipole as shown in Fig. 68 is considered. This shape

modification is justified by taking the current density into account. Consider the portions

A and B. In diamond dipole the current density exists on both A and B regions. In case of

modified diamond dipole, region A is absent (removed). Portion B has to accommodate

the entire current present.

A

Fig. 68. Justification model-I for justifying modified diamond dipole behavior.

Any patch antenna can be modeled as a simple LC resonant circuit [15]. There will be

different current densities at different portions of the antenna structure and these L and C

values of the resonant circuit depends on the strength of these current densities, and the

path and distance they travel on the antenna structure. The introduction of a circular arc
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base has a varied inductive effect. The modified diamond dipole can be divided into 5

regions as shown in Fig. 69 In region R1, diamond dipole and modified diamond dipole

have almost the same size, and hence the current path is same for both the antennas in

RI. In regions R2 and R4, modified diamond dipole has smaller area than diamond dipole

and hence the current path is reduced (current density is increased). This can be modeled

as a reduction in the inductance (shown in Fig. 70). In regions R3 and R4 modified

diamond dipole has a much smaller area than diamond dipole which accounts for much

smaller current paths and a still reduced inductance. The equivalent circuits are shown in

Fig. 70. Hence the antenna acts a triple resonant circuit. This is the case for smaller flare

angles. But if either the flare angle or the radius of curvature increases to a larger extent,

it has the effect of increasing the arc length. In such case the antenna can be modeled as a

resonant circuit of more than three resonant frequencies, since with the increase of the

flare angle, the arc length increases (Fig. 69) and hence the antenna can be divided into

more number of regions and hence modeled as an equivalent resonant circuit consisting

of more resonant frequencies. Two antenna models, the diamond dipole antenna as shown

in section 6.2 of chapter VI and MDIDO-Al are considered for explaining the

justification

Table 3

Information about the antenna models selected for justification I

Antenna Model Semi-flare angle (o/2)0 Radius of curvature (R mm)

ID 27 0

MDIDO-A 27 20
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R4

Rr

Fig. 69. Justification model-II for justifying modified diamond dipole behavior.

b L-Ili L 2

C C C

Equivaant circuit Equivaent circuit Equivale t circuit
of regionR of regions R2,R4 of r n R3P5

Fig.70. Resonant circuits for justification model-II.

Fig. 72 shows a comparison of current densities measured at a point (60, 60, 33) of DIDO

(diamond dipole) and MDIDO-Al. It can be observed that the current density is higher

for modified diamond dipole than for modified diamond dipole.
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Fig. 71. Coord inate where current density (Jx is measured).
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Fig. 7. Cdnt r urrent de nsity (Jx is measured)1.
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Fig. 73. Frequency Vs. retur loss for DIDO and MDIDO-A1.
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Fig. 74. Frequency Vs. input resistance for DIDO and MDIDO-A1.
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7.2 Justification for slot loaded modified diamond dipole

In order to justify the slot loading applied to modified diamond dipole, Fig. 76 i

considered. Current density is taken into account for justification purpose.

B B

Fig. 76. Current distribution in slot loaded modified diamond dipole.
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When slots are introduced, the current must traverse round the slot to travel the

through the dipole arms which increases the current path. In Fig. 76 there is more current

in region A than in region B. This can be modeled as an increase in inductance. Fig. 77

shows an equivalent circuit of the modified diamond dipole with and without slot

loading.

LL+A L1

C C

Fig. 77. Equivalent circuit of Fig. 78. Equivalent circuit of

modified diamond dipole. slot loaded modified diamond dipole.

Two antenna models MDIDO-Al and SLMDIDO-A are considered to explain the

justification. Both models are identical (in geometry) except for the slot present in

SLMDIDO-A. Current densities are measured at a point (64, 39, 33) as shown in Fig. 79.

Table 4

Information about the antenna models selected for justification II

Antenna model Slot width (D1 mm) Distance from feed (D2 mm)

MDIDO-Al 0 0

SLDIDO-A 8 1
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Fig. 79. Point where current density is measured.
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Fig. 1. Frequency vs. return loss for MDIDO-A1 and SLI-D

Since the current density of LMDID-A is more than current density o

MID-O-A1 at point (64, 39, 33) (from Fig. 80), there is a shift in the resonant frequency

(from Fig. 81) which agrees well with the explanation given above.
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CHAPTER 8

OBSERVATIONS

8.1 Observations made from various plots of modified diamond dipole

In this chapter observations are made from the plots of frequency Vs. return loss

of various modified diamond dipole antenna designs. For clarity the designs names are

provided here again.

Table 5

Information about the modified diamond dipole antenna models

Antenna model Semi-flare angle (oc/2) 0  Radius of curvature (R mm)

MDIDO-Al 27 20

MDIDO-A2 27 30

MDIDO-A3 27 40

MDIDO-B1 35 20

MDIDO-B2 35 30

MDIDO-B3 35 40

MDIDO-C1 45 20

MDIDO-C2 45 30

MDIDO-C3 45 40

Initially, flare angle is kept constant and antennas are analyzed for different radius

of curvatures of the base of triangular arms of modified diamond dipole. Hence MDIDO-

Al, MDIDO-A2, MDIDO-A3 (Fig. 82) and MDIDO-B1, MDIDO-B2, MDIDO-B3 (Fig.

85) and MDIDOC1, MDIDO-C2, MDIDO-C3 (Fig. 88) are compared individually for
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return loss (S 1). Next, radius of curvature of the base of triangular arms of modified

diamond dipole is kept constant and the flare angle is modified. Hence MDIDO-A1,

MDIDO-B1, MDIDO-C1 (Fig. 91) and MDIDO-A2, MDIDO-B2, MDIDO-C2 (Fig. 94)

and MDIDO-A3, MDIDO-B3, MDIDO-C3 (Fig. 97) are compared for return loss (S 11).

Fig. 82. Frequency s. return loss for MDIDO-Al, MIDO-A2, M ID -A3.

Table6

Resonant frequencies of IDO-A series antennas

Antenna model Frequencies of resonance (GHz)

1IDO 1.9

DID-A 1.9, 53,7.7

M IDO-A2 1.9, 5.1, 7.3
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Fig. 3. Frequency Vs. input resistance for MDID-A, DIDO-A2, MIDO-A3.
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Fig. 83. Frequency Vs. input resistance for MDIDO-A1, MDIDO-A2, MDIDO-A3.
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Fig. 85. Frequency Vs. return loss for MDIDO-1, M IDO-B2, MDIDO-B3

Table 7

Resonant frequencies of I -B series antennas

Antenna model Frequencies of resonance (GHz

MDIDD B1 1.9, .7, 7.6

1I-2 2.0, .1, 7.3 8.0

ID-3 2.0,4.9,7.1
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Fig. 86. Frequency Vs. input resistance for MDIDO-B 1, MDIDO-B2, MDIDO-B3.
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Fig. 88. Frequency Vs. return loss for MDIDO-C1, MDIDO-C2, MDIDO-C3.

Table 8

Resonant frequencies of MDIDO-C series antennas

Antenna model Frequencies of resonance (GHz)

DIDO 1.9

MDIDO-C1 1.8, 3.7, 5.8, 7.2

MDIDO-C2 2.0, 5.0, 6.6, 7.8

MDIDO-C3 2.1, 5.0, 6.6, 7.5
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Fig. 89. Frequency Vs. input resistance for MDIDO-C1, MDIDO-C2, MDIDO-C3.

MDD0C



10 . M DIDO-C1
MDIDO-C1

5*

0

I -A1 1.-.3 .

I -

01

-35

1 2 3 4 5 6 7 8
Frequency (GHz) x 10~

F. 91. Frequency Vs. return loss for MDIDO-A1, MDIDO-B1, MDIDO-C1.

Table 9

Resonant frequencies of MDIDO-A1, MDIDO-B 1, MDIDOC 1

Antenna model Frequencies of resonance (GIz

DIDO 1.9

MDIDO-A1 1.9, 5.3, 7.7

MDIDO-B1 1.9, 5.7, 7.6

MDIDO-C1 1.9, 3.7, 5.9, 7.2
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Fig. 94. Frequency Vs. return loss for MDIDO-A2, MDIDO-B2, MDIDO-C2.

Table 10

Resonant frequencies of MDIDO-A2, MDIDO-B2, MDIDOC2

Antenna model Frequencies of resonance (GCz)

DIDO 1.9

MDIDO-A2 2.0, 5.1, 7.3

MDIDO-B2 2.0, 5.1, 7.3, 8.0

MDIDO-C2 2.0, 5.1, 6.6, 7.9
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Fig. 95. Frequency Vs. input resistance for MDIDO-A2, MDIDO-B2, MDIDO-C2.

100k MDIDO-A2
8Q MDIDO-62

.MDIDO-C2

60K

4Q0
E
C 20 *

-U 0

Q 20 I /
-40

-6

-80 ~

-100 J
1 2 3 4 5 6 7 8

Frequency (GHz) x1

Fig. 96. Frequency Vs. input reactance for MDIDO-A2, MDIDO-B2, MDIDO-C2.
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Fig. 97. Frequency Vs. return loss for MDIDO-A3, MDIDO-B3, MDIDO-C3.

Table 11

Resonant frequencies of MID-A3, MIDO-B3, MDID -C3

Antenna model Frequencies of resonance (Ga z)

DIDOO 9

MDIDO-A3 1.9M4.8, 7.2

DIDO-B3 2.0 4.9 7.1

MID -3 2.1 4.9, 6.6, 7.5
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8.1.1. Inference from the plots

From Fig. 82 and Table 6, it is seen that there is a significant shift in the resonant

frequencies (other than the resonant frequency at 1.9 GHz) towards the left with increase

in radius of curvature of the base of triangular arms of modified diamond dipole (keeping

the flare angle constant at 270). From Fig. 85, Table 7 and Fig. 88, Table 8 respectively

we have seen the same result. There is a significant shift in the resonant frequencies

(other than the resonant frequency at 1.9 GHz) towards the left with increase in radius of

curvature of the base of triangular arms of modified diamond dipole (for constant flare

angle). This behaviour of the antenna is expected and can be explained by considering

the current density at a point on the antenna. Fig. 100-102 show plots of current densities

of various modified diamond dipole antenna models.

Fig. 100. Current density fr MIDO-A, MI -A2, MDIDO-A3 .
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From Fig. 88, Fig. 89 and Fig. 90 it can be observed that current density decreases

as the radius of curvature of base increases which means, there will be a shift in the

resonant frequency to the left as the radius of curvature of the base of triangular arms of

modified diamond dipole increases.

From Fig. 91 and Table 9 it is seen that for constant radius of curvature of the

base of the triangular arms of modified diamond dipole, if the flare angle is increased the

number of resonant frequencies increased. Also there is a decrease in return loss with

increase in flare angle. From Fig. 94, Table 10 and Fig. 97 and Table 11 we have seen the

same result. For constant radius of curvature of the base of the triangular arms of

modified diamond dipole, if the flare angle is increased the number of resonant

frequencies increased. Also there is a decrease in return loss with increase in flare angle.

R

R4

RS

R7

Fig. 103. Figure showing how arc length increases with flare angle.
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This behavior of the antenna can be explained by considering the Fig. 103. As the flare

angle increases, the arc length increases and hence the antenna can be divided into more

number of regions (like R1, R2 etc.) and hence the number of resonant frequencies

increase because of coupling between the regions.

There is not much shift in the resonant frequency at 2 GHz because the region R1

is approximately the same for both diamond dipole and modified diamond dipole.

8.2 Observations made from various plots of slot loaded modified diamond dipole

For clarity the designs names of slot loaded modified diamond dipole are

provided here again.

Table 12

Information about the slot loaded modified diamond dipole antenna models

Antenna model Slot width (D1 in mm) Distance of slot from feed (D2 in mm)

SLMDIDO-A 8 1

LMDIDO-B 6 3

SLMDIDO-C 4 5

Fig. 105 shows return loss for various slot loaded modified diamond dipole antenna

models. It is observed that there is a shift in the resonant frequency as the slot size

increases. The distance of the slot from the feed plays a major role in the amount of shift

the resonant frequency undergoes. Here the shift in the resonant frequency is a function

of both the slot width and distance of the slot from the feed. We observe that as D2,

distance of the slot from the feed decreases, there will be an increase in the current

density in the region D2, and hence there will be more shift in the resonant frequency to
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the left. Also as the slot size increase the current have to travel longer to traverse the

dipole arms.

Fig. 104. Slot loaded modified diamond dipole with regions D1 and D2.
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yK

Fig. 105. Frequency Vs. return loss of slot loaded modified diamond dipole models.
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CHAPTER 9

DESIGN EXAMPLE

9.1 Design

From Chapter VIII, section 8.1.1, we can say that the return loss decreases as the radius

of curvature decreases. The reason behind that is that for small radius of curvatures there

is a smoother transition from the arc shaped base to the sides of the triangular arms of

modified diamond dipole. Hence for a given flare angle, the smallest radius of curvature

of the base gives the lowest return loss. The smallest radius of curvature for a given flare

angle is nothing but the radius of In-circle of the triangular arm as shown in Fig. 107.

Fig. 107. Modified diamond dipole with base having radius of curvature equal to the

radius of the incircle of triangular arm of diamond dipole.

Three antenna models with flare angles 27 , 350, 450 and the radius of curvatures of base

equal to the radius of in-circles of triangular arms of respective antennas have been

developed. Table 13 provides the information about the antenna models.
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Table 13

Information about the most efficient antenna models in terms of return loss

Antenna model Semi-flare angle in degrees Radius of curvature in mm

MDIDO -EFF1 27 12

MDIDO-EFF2 35 13

MDIDO -EFF3 45 15

The radius of curvatures are rounded to the nearest integer. Fig. 108 show a comparison

of return loss of the antenna models shown in table 2. From Fig. 108 the return loss for

modified diamond dipole with flare angle 270 has crossed the -20 dB mark (for all the

frequencies of resonance) and that for modified diamond dipole with flare angle 350

return loss has crossed the -15 db mark (for all the frequencies of resonance) and that for

modified diamond dipole with flare angle 450 , the return loss has crossed the -25 dB

mark (for almost all the frequencies of resonance). The reason for obtaining four resonant

frequencies for all the flare angles can be attributed to the length of the base arc. But it

can be seen that inspite of the return loss at the frequencies of resonance is small the

percentage bandwidth is small.

It can be observed that as the flare angle a -+180, R -+18mm (twice the length

of the arm of modified diamond dipole) and in such case the modified diamond dipole

would transform into circular dipole with each arm having a radius of 1 8mm. This

transformation of modified diamond dipole into circular dipole is shown in Fig. 109. The

sides of triangular arms of modified diamond dipole are represented as al, bi, a2, b2, ci,

c2. Fig. 110 shows the return loss of circular dipole.
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Fig. 108. Cormparison of frequency ~s. return loss for various antenna mnodels.

3 a2 a2F3

1 a

bla a

b3 b3

Fig. 109. Modified diamond dipole to circular dipole transforrnation.
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Fig. 110. Frequency Vs. return loss of a circular dipole o radius =19m.

We have selected 900 to be a flare angle of the modified diamond dipole to study. The

reason is that, as we have studied that as the radius of curvature increases (or with an

increase in the ac length) the return loss increases which happens if we increase the flare

angle. Also for very large fare angles ( >90) the shape of modified diamond dipole

approaches the circular dipole (from Fig. 109). Hence 90 (which is the angle in a semi

circle) is chosen as the angle of interest. Hence the antenna with flare angle 90 , is tested

for various radius of curvatures of the base of triangular arms. A value of 20m as

radius of curvature yielded the largest percentage bandwidth of 137%.

Percentage andwidth = 2 f ,)x 100 (8.1)
(A2 +Af)

which can be written as follows by substituting the respective values

Percentage andwidth - 8. 16 x 100 ;:: 137%
(8.0+1.6)
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The percentage bandwidth of diamond dipole based on -10 dB mark is zero (since the

return loss is about -5 dB at the resonant frequency i.e. 1.9 GIz). Fig. 24. shows a plot of

return loss Vs. frequency of modified diamond dipole with 900 flare angle and 20mm

radius of curvature of base of the arms.

Fig. 
ost efficient Md IDO

01

-.5

-.20

-.25~

-.30k

-35

1 2 3 4 5 6 7 8
Frequency (GHz)x10

Fig. 111. Frequency Vs. return loss for most efficient modified diamond dipole.

Hence by appropriately selecting the flare angle and radius of curvature of the base of

triangular arms of modified diamond dipole, the antenna can be designed to operate in

selected frequency band.
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Fig. 112. Comparison of gain for modified diamond dipole and diamond dipole
at 1.8 GHz.
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Fig. 113. Comparison of gain for modified diamond dipole and diamond dipole at

3.6GHz.
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Fig. 114. Comparison of gain for modified diamond dipole and diamond dipole

at 5.9 GHz.
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Fig. 115. Comparison of gain for modified diamond dipole and diamond dipole

at 7.3 GHz.
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CHAPTER 10

CONCLUSIONS

10.1 Summary of conclusions

The conclusions about the work done can be summarized as follows

* For a given geometry, modified diamond dipole has a lower reflection coefficient

when compared to diamond dipole's (at most frequencies, including resonant

frequency) (from chapter VII, page 69).

* The resonant frequency of 1.9 GHz appears in both the modified diamond dipole and

diamond dipole (from chapter VII, page 69).

* Modified diamond dipole offers more percentage bandwidth than diamond dipole.

Hence modified diamond dipole can be used over a wider frequency range (chapter

IX, page 96).

* As the flare angle of modified diamond dipole is increased, there is an increase in the

number of resonant frequencies (from chapter VIII, pages 81, 83, 85).

* As the flare angle of modified diamond dipole is increased, the reflection coefficient

is decreased at the frequencies of resonance, indicating that more power is transferred

to antenna from feed (from chapter VIII, pages 81, 83, 85).

* When the radius of curvature of the base region (near the feed) is decreased, antenna

radiate more efficiently (from chapter VIII, pages 75, 77, 79).

* Least return loss is observed when the radius of curvature of the base region is equal

to the radius of the in-circle of the triangular arms of modified diamond dipole (from

chapter IX, page 95).
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* Modified diamond dipole is better matched to the 50 ohms feed than the diamond

dipole(lower return loss than diamond dipole) (from chapter VII, page 69).

* When the radius of curvature is decreased there is a shift in the resonant frequency

towards the left. Hence the resonant frequency is slightly decreased with decreasing

radius of curvature (from chapter VIII, pages 75, 77, 70).

* Resonant frequency at 1.9GHz is not affected with variations in either the flare angle

or the radius of curvature of the base of modified diamond dipole or both (from

chapter VIII, pages 75, 77, 79, 81, 83, 85).

* Modified diamond dipole offer's more performance bandwidth (bandwidth over

which the input resistance is fairly constant and input reactance is fairly constant and

very close to zero) than diamond dipole (from chapter VII, pages 69, 70).

" When slots are introduced into the modified diamond dipole antenna, there is a shift

in the resonant frequency (from chapter VII, page 73).

* The amount of shift in the resonant frequency depends on the slot size and the

distance of the slot from the feed (from chapter VIII, pages 91, 92).

* The more the distance of the slot from the feed, the more the shift in resonant

frequency (from chapter VIII, pages 91, 92).

* Also, as the slot dimension is increased there is a much wider shift in resonant

frequency towards the left (from chapter VIII, pages 91, 92).

It can be summarized as modified diamond dipole offers better performance than

diamond dipole in terms of reflection coefficient, percentage bandwidth and

performance bandwidth. Slots introduce a shift in the resonant frequency to the left.
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The more the slot size and/or distance of the slot from the feed, the more the shift (to

the left) in the resonant frequency.
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FUTURE WORK

* An equation can be formulated relating the antenna dimensions flare angle, radius

of curvature of the base of triangular arms, dielectric constant of the substrate,

thickness of the substrate etc. with the percentage bandwidth which can be used in

writing a genetic algorithm to get the most efficient geometry of the antenna with

respect to percentage bandwidth.

" Many examples of modified diamond dipole can be constructed, simulated and

the results (along with dimensions) used in training a neural network to get the

required design to cover the required bandwidth using the neural network.

* Also a mechanical system can be designed (which can alter the slot sizes) to tune

the antenna over a very wide frequency range.
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