Behav Ecol Sociobiol (2015) 69:841-855
DOI 10.1007/s00265-015-1883-3

METHODS

Time is of the essence: an application of a relational event model

for animal social networks

K. P. Patison - E. Quintane - D. L. Swain + G. Robins -
P. Pattison

Received: 20 July 2014 /Revised: 30 January 2015 / Accepted: 30 January 2015 /Published online: 24 March 2015
© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract Understanding how animal social relationships are
created, maintained and severed has ecological and evolution-
ary significance. Animal social relationships are inferred from
observations of interactions between animals; the pattern of
interaction over time indicates the existence (or absence) of a
social relationship. Autonomous behavioural recording tech-
nologies are increasingly being used to collect continuous
interaction data on animal associations. However, continuous
data sequences are typically aggregated to represent a relation-
ship as part of one (or several) pictures of the network of
relations among animals, in a way that parallels human social
networks. This transformation entails loss of information
about interaction timing and sequence, which are particularly
important to understand the formation of relationships or their
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disruption. Here, we describe a new statistical model, termed
the relational event model, that enables the analysis of fine-
grained animal association data as a continuous time sequence
without requiring aggregation of the data. We apply the model
to a unique data set of interaction between familiar and unfa-
miliar steers during a series of 36 experiments to investigate
the process of social disruption and relationship formation. We
show how the model provides key insights into animal behav-
iour in terms of relationship building, the integration process
of unfamiliar animals and group building dynamics. The rela-
tional event model is well suited to data structures that are
common to animal behavioural studies and can therefore be
applied to a range of social interaction data to understand
animal social dynamics.

Keywords Animal social networks - Temporal data - Social
association - Social structure - Triad - Event probability

Introduction

Analysing animal social structure based on social associations
has become increasingly popular in the research literature
(Lusseau and Newman 2004; Croft et al. 2011; Whitehead
and Lusseau 2012). The approach stems from earlier animal-
related research by zoologists and sociologists (Chase 1974;
Hinde 1976). Quantifying animal social association underpins
ecological and evolutionary knowledge related to biological
processes such as mate selection (Psorakis et al. 2012), social
learning (Kendal et al. 2010) and the potential for disease
transmission (Hirsch et al. 2013). Recent research has adopted
social network concepts to study the effect of social associa-
tions on individual and population level outcomes
(Granovetter 1973; Snijders 1996; Newman and Park 2003;
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Burt 2004). Social network research studies the relationships
between individuals and the effects these relationships have
on individual outcomes as well as on the overall social system
(Wasserman and Faust 1994). Individuals could refer to a sole
animal, subgroup or population, and the relationships that
connect them, such as a social interaction, kin relationship or
shared habitat. Understanding how social relationships are
created, maintained and severed is a critical avenue for re-
search on human social networks.

Similarly, understanding the social processes that lead to
the creation and disappearance of relationships between ani-
mals is critical because changes in social relationships have
both ecological and evolutionary significance (Psorakis et al.
2012). Many fission-fusion societies exist in wild populations,
where group composition changes depending on internal and
external factors such as mating season (Psorakis et al. 2012),
food resources (e.g. zebra, Sundaresan et al. 2007), or diurnal
patterns (e.g. primates, van Schaik 1999). Conversely, cattle
naturally exist within stable social systems where group com-
position rarely fluctuates (Reinhardt and Reinhardt 1981).
However, livestock production systems rely on regrouping
individuals according to production parameters (e.g. age,
pregnancy status, weight), which can result in social disrup-
tion and instability (Zayan 1991). Implications of this disrup-
tion can result in agonistic behaviour, changes in maintenance
behaviour and physiological stress (e.g. Kondo and Hurnik
1990; Hasegawa et al. 1997; Gupta et al. 2008). Thus, the
process of social re-stabilisation is important for the animal’s
welfare.

Human social relationships are typically considered as
states (e.g. friend of, collaborates with) that are conceptually
distinct from specific interactions (Robins 2015), even though
a human social relationship usually entails some regularity of
dyadic interaction. Animal social relations, on the other hand,
are largely inferred from interactions, so that the observation
of association patterns over time is evidence for the existence
(or absence) of a social relationship between animals. For
example, social relationships can be inferred from displays
of affiliative behaviour, such as allogrooming, providing pro-
tection and maintaining close proximity (Newberry and
Swanson 2001). Consequently, most data used in animal so-
cial network analysis are based on interactions between ani-
mals rather than the reports of states of social relations that are
typical of many human network studies. While recent techno-
logical advances in animal behaviour monitoring are enabling
researchers to obtain very fine-grained information about the
temporal and spatial dynamics of animal movement and be-
haviour, standard statistical frameworks in network analysis
require the data be aggregated into one cross-sectional dataset,
or at best into panels of data at specific time points, thereby
removing detailed information about timing and sequence
(Blonder et al. 2012). This time sequence information, how-
ever, is critical to animal studies for understanding the

@ Springer

processes of specific social behaviours, such as reciprocity
(Trivers 1971) or hierarchy formation (Chase 1982).
Analysing data with respect to timing and sequence can also
provide valuable information on critical short-lived events that
occur suddenly, such as a mating event, which can potentially
be missed when aggregating data. Developing event-based
models that allow analysis of sequential data are gaining a
new popularity in the social networks literature by providing
a way of handling long sequences of exchanges within the
context of a relational system. Such models have come to
prominence with the availability of digital data, where the data
does not contain information about relationship states but
comprises sequences of transactional exchanges (or ‘relational
events’) within dyads.

In this paper, we describe a statistical model derived from
these new social network methods. The model enables the
analysis of fine-grained observational data on animal associa-
tions over time without the need for aggregation, thus
avoiding the loss of temporal and sequential information.
The relational event model that we introduce is based on
Butts’s (2008) framework and is equivalent to a multinomial
conditional logistic regression. The model predicts each asso-
ciation between two animals (e.g. physical proximity,
grooming) based on a history of associations between these
two animals; the characteristics of the animals; and previous
associations between each of the animals and other animals in
the network. Because we can use different lengths of history
of associations to predict the existence of future associations,
the model provides insights into how recent patterns of asso-
ciations deviate from or reproduce patterns of association that
have occurred over longer time frames.

More specifically, we present an application of the relation-
al event model to a unique dataset of behavioural data among
familiar and unfamiliar steers collected via proximity loggers
during a series of 36 experiments, each lasting approximately
7.5 days. We aim to understand the social disruption generated
by the introduction of an unfamiliar animal into an existing
social context formed by two familiar animals. We specify
statistics to capture the influence of recent history (1 h) versus
more distant history (1 day) of interactions among familiar
animals and with the unfamiliar animals on the emergence
of relationships and groups. Our results provide evidence of
disruption created by the introduction of the unfamiliar animal
into the pair of familiar animals and highlights the processes
through which social groups emerge and consolidate in the
face of disruption.

Approaches to modelling social networks
Statistical modelling of social networks implies accounting for

the dependencies inherent in social network data that reflect
important social processes, such as reciprocity or transitivity.
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Three statistical frameworks are currently available for the
modelling of social network data in a way that accounts for
the dependencies in the data: exponential random graph
models (ERGMs), stochastic actor oriented models
(SAOMs) and the relational event model (REMs). Each of
these frameworks is best suited for different types of data
structures. The ERGM framework is best suited for cross-
sectional observations of social networks, usually taken at
one point in time (Lusher et al. 2013). A typical data struc-
ture for an ERGM model is one directed or undirected net-
work composed of binary relationships between actors. The
SAOM framework is best suited for the modelling of a
network that evolves over time, captured using panel data
at discrete points in time (van de Bunt and Groenewegen
2007; Snijders et al. 2010). SAOM also requires binary ties,
directed or undirected. There are longitudinal versions of
ERGM’s for panel network data, but SAOMs are preferred,
especially when nodal attributes also evolve across time.
Hence, both ERGM and SAOM require a network com-
posed of binary ties captured at one point in time as a cross
section or at a limited number of discrete time points. Be-
cause this requirement entails aggregation of sequences of
events that occur in continuous time into one or several
cross sections, the timing and sequence of the events are
lost when using ERGMs or SAOMs with relational event
sequences. For example, the stream of events obtained
through a logger would need to be aggregated into one or
several cross sections, which would remove information
about the timing and the sequence of events.

By contrast, the relational event model (Butts 2008) is spe-
cifically designed to model sequences of relational events that
occur continuously through time. More specifically, the rela-
tional event framework enables direct modelling of sequences
of relational events without aggregating them into cross sec-
tions. Relational event modelling was first proposed by Butts
(2008) to describe radio communication pathways and
similarly applied by Brandes et al. (2009) to analyse patterns
of political conflict. More recently, there has been an active
and growing interest in developing and applying relational
event models for social data (de Nooy 2011; Stadtfeld and
Geyer-Schulz 2011; Vuetal. 2011; DuBois et al. 2013; Lerner
et al. 2013a, b; Quintane et al. 2013), including the develop-
ment of an R package, ‘relevent’, by Butts (2014), a tool kit of
syntax to fit relational event models. The term event relates to
any form of social action between two or more individuals.
The approach incorporates relational effects that have been
used in cross-sectional and longitudinal models for interaction
or relational data and, hence, have become familiar in models
for network structure (e.g. Snijders et al. 2006). Such an ap-
proach has been noted in the animal science literature (e.g.
Blonder et al. 2012; Psorakis et al. 2012; Pinter-Wollman
et al. 2014) although to our knowledge has not been applied
to animal association data.

Model overview

The current form of the model is a conditional logistic regres-
sion model that uses an ordinal form of event history analysis
(e.g. Blossfeld and Rohwer 1995) to analyse sequences of
events in the past to predict the possibility of future events.
Markov chain models have previously been used to analyse
transition probabilities (e.g. Azzalini 1994), which consider
random processes and use current event states to predict future
events without considering the history of prior events. The
current model differs from the Markov approach as each po-
tential event is considered to be independent of all other events
but conditional on the collection of events that have occurred
in the past. In other words, the model uses the structure of past
events to predict the occurrence of events in the future. Impor-
tantly, the next event is assumed dependent on the patterns of
relational exchanges in the past, hence the terminology rela-
tional events model.

Model description

The current model specifies the probability of a potential event
between individuals i and j at time, z. The sequence of events
up to and including the actual event at time ¢ is:

Ay = (ay : m<t),

where m is the time at which the event a occurs and a,, is an
encounter between individual i and j at the mth moment in
time. The potential event at time 7 that involves an encounter
between i and j is denoted by Y;; which has the value 1 if
individual 7 encounters individual j at time 7 and has the value
0, otherwise.

The probability of an event occurring at time ¢ based on an
earlier event at time #'<t is the probability of all possible
events that could have occurred in the time interval from #
to ¢ (i.e. the joint likelihood that none of the possible events
occurred in the interval between ¢’ and f) (Butts 2008). The
realisation of all actual and possible events in the data set
provides a complete description of all encounters (Blossfeld
and Rohwer 1995).

The probability of the next event is described by:

p@) =X/ (3 ),

where A, is a rate parameter associated with event a and the
events a' run over all possible events. The parameter A, is
dependent on the prior history of events and exogenous co-
variates, such as characteristics of the individuals, and can be
parameterized in the form:

Ay = €Xp (Z ht%s;,),
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where the statistics sy, is determined by the prior history of
events and exogenous covariates (described below) and 0}, are
corresponding parameters. The parameters can be used to ex-
plain how prior events are related to future events: a large
positive (or negative) value of 0y, indicates that an event a is
more (or less) likely if the statistic s;, summarising relevant
prior events is high.

Model components

Our particular relational event model used time-stamped
association data collected using proximity loggers be-
tween any set of three individuals. The loggers record
the duration and frequency of all close proximity encoun-
ters, thus each recorded event has a beginning and an end,
referred to as onset events and offset events, respectively.
A sample of the data stream is shown in Table 1. Onset
events relate specifically to the creation of a tie between
two or more individuals and can characterise the nature of
a social relationship. For example, a consistent pattern of
onset events between the same pair may represent
affiliative behaviours such as mutual grooming or grazing
within close proximity. There were a number of different
onset event types involved in each interaction (see below),
where the event sequence of prior events was used to
determine the event type. Offset events describe the dis-
solution of an existing event, but in order to present a
simpler model as an illustration of the method, they are
not modelled in this article and are the subject of ongoing
work (see Discussion). Offsets, however, were still con-
sidered as a function of the onset event sequence, as every
onset event has an associated offset event and the occur-
rence of offset events were important to determine the
type of onset event that occurred.

Predictor variables
The model included an individual attribute factor

familiarity between individuals (whether or not the in-
dividuals knew each other prior to the start of the

Table 1  An example of the proximity logger data stream
Cow Encountered Start Start End End Duration
ID  cowID date time date time (seconds)

9/03/2009 18:49:34 9/03/2009 18:49:35 1
9/03/2009 18:52:57 9/03/2009 18:56:00 183
9/03/2009 18:56:05 9/03/2009 18:56:21 16
9/03/2009 18:56:48 9/03/2009 18:58:38 110
9/03/2009 18:56:05 9/03/2009 18:56:21 16
9/03/2009 19:01:03 9/03/2009 19:01:06 3

—_ e = e e
NSRS I S S A SIS
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study). Event type was included in the model, based
on the number of individuals involved in an event and
their configuration at the time. Event type was based on
triadic association where there were three possible event
configurations: (i) an event involving an association of
an isolated dyad (a pair event); (ii) an event involving a
simultaneous onset of one animal with the other two (a
group event); or (iii) an event involving a pair-wise
onset among all three animals at once (a triangle event)
(Fig. 1). A pair event involved a change in state from
no existing contact to the creation of a single tie
between two individuals, while a group event was con-
ditional on the contemporaneous existence of a pair
event. A triangle event was formed when a tie was
created between the two animals that were not connect-
ed in the prior group event, thus all three individuals
were in contact at the one time. A triangle event was
conditional on the contemporaneous existence of a
group event.

In this article, we present separate models to predict
pair and group events. Given that our models are for on-
sets only, a model predicting the next pair event is condi-
tional on the current situation being one of non-contact;
and a model for the next group event is conditional on the
current situation being one of a pair. For example, if the
current situation involved two animals connected in a pair
event, the next onset event could only occur between one
animal already involved in the current event and the third
previously unconnected animal (Fig. 1). In other words,
we are predicting pair and group events for particular
animals based on counts of those animals’ past associa-
tions in pair and group events. Such a model can tell us
how past patterns of onsets relate to future onset events
for particular animals. However, conditional on the cur-
rent presence of a group, an onset necessarily implies the
occurrence of a triangle with probability 1, so triangle
events cannot be modelled using only onsets. In what
follows, we ignore triangle-based models, leaving them
for the development of more complex onset-offset
models. Fortunately, as described below, triangles were
quite rare in our data.

The predictors then were the frequency of prior events over
a given period. Two periods were modelled simultaneously to
capture both short and longer term regularities in association
patterns: the immediate past hour and daily patterns. The time
frames (hour and day) were chosen to reflect the behavioural
patterns of the species investigated in the case study (in this
application, shorter time frames did not result in different sta-
tistics or significance patterns; data not shown). Both time
frames have potentially important implications for social pro-
cesses. In human relational event models, different time
frames have been shown to be important (Quintane et al.
2013). Short-term patterns reflect recent animal activity while
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Fig. 1 The event types that could O O Onset
potentially occur between three
animals. The solid lines represent O Offset

a tie between two individuals
a Null

daily patterns represent regularity in association patterns and
long-term contact preferences. Each time interval considered
prior pair events and prior group events as separate predictors
in the model; the distinction between event types was impor-
tant, since pair events indicate isolated dyadic activity, where-
as group events relate directly to associations involving all
three individuals and the potential for group formation. While
there is some correlation between the two time frames, as what
happens in the preceding hour is nested within what happens
in the preceding day, the hourly statistics capture interaction
patterns that deviate from daily patterns, thus identifying
short-term activity bouts, for example biologically significant
short-lived events such as a mating event, that are not repre-
sentative of daily activity. This approach differs from methods
that rely on aggregation, as each event is considered within the
model and the outputs are summarised by meaningful time
frames as opposed to presenting averages per nominal time
frame.

Model input

Prior to transforming the association data from the proximity
logger data stream into an event sequence, events that oc-
curred at exactly the same time were temporarily distin-
guished from one another by adding 1 s to the second event
(there were 24 events in our data set that required adjusting). A
custom-developed java application was used to transform the
association data into actual and potential onsets and produced
statistics based on the history of prior events (to view the Java

O C)/CD Onset
Offset

b Pair event

CD\C)/() Onset
Offset

C Group event

7

d Triangle event

syntax, please see the supplementary online material). Poten-
tial onsets are onsets that could have occurred at the same time
as the onset being modelled but did not. For example, assum-
ing that the observed onset was an interaction between ani-
mals 1 and 2, the potential onsets were (a) an interaction be-
tween animals 2 and 3 or (b) an interaction between animals 1
and 3. Onsets were defined over the full observation period for
each model (i.e. a day). The program calculated statistics for
each event or potential event for (i) the familiarity of the an-
imals involved, (ii) the type of the event that occurred (either
pair, group or triangle event) and (iii) statistics based on the
frequency of relevant prior events. The possible onset event
configurations are shown in Fig. 2. For pair events, three
events could potentially occur, a familiar pair between animals
1 and 2, an unfamiliar pair between animals 1 and 3 and an
unfamiliar pair between animals 2 and 3. For a group event,
there were only two possible events that could occur, a group
event where the prior pair involved the unfamiliar or an event
where the unfamiliar animal was involved with the creation of
a tie with one of the two familiar steers in an existing dyad to
form a group. Triangles formed from no prior contact did not
occur in the current data set (data not shown).

The relational event model was fitted with conditional lo-
gistic regression using SPSS (to view the SPSS syntax please,
see the supplementary online material). The model calculated
the probability of the next event as a function of counts of
previous events between the two animals over the time period.
The next event in the sequence of events was considered the
dependent variable. For example, when a pair event was being

Fig. 2 The three onset event

Preexisting Preexisting Predicted Predicted Possible configurations
types that could occur between state configuration event configuration 9
three animals, their prior . !
Isolated animal Pair event _
configuration state and the O o O\ o -0 o
predicted configuration O 0 o-6 ©
possibilities

Pair O\O Q  Group event O\O e
e
4

O\‘ K J
NN

Group Triangle event ——— ——— ———

Key:
. = familiar animal

O = unfamiliar animal

= existing tie
_____ = predicted tie

(O = animal of either familiarity

@ Springer



846

Behav Ecol Sociobiol (2015) 69:841-855

predicted, all previous pair events were placed in a sequence
with respect to their temporal ordering and each pair in the
sequence was considered a dependent variable in the model.
The time period used in this application was one day, thus the
data for each day started and finished on the same day, and
data recorded in the previous day was not considered in the
day being modelled. On the day of introduction, the statistics
contained all of the events that occurred prior to the event
being modelled on that day, thus the day of introduction was
treated the same as all other days. As there was no daily his-
tory at the time of introduction, the model considered all the
events that had occurred up until the event being modelled for
the daily statistics. The statistics were normalised in line with
Quintane et al. (2013), so as to be comparable in scale over the
time period.

A parameter was estimated for each statistic, or effect, in
the model, and each model involved five effects: (i) unfamil-
iarity (i.e. whether the animal was the unfamiliar animal—see
below); (ii) prior pair events (past hour); (iii) prior pair events
(past 24 h); (iv) prior group events (past hour); (v) prior group
events (past 24 h). Two separate models were fitted on a daily
basis to predict the probability of pair events and group events
separately.

Case study: cattle associations and social disruption

The case study formed part of a larger research programme
exploring relationship development in cattle (Patison et al.
2010a, b). Social association data were recorded directly onto
proximity logging devices (Sirtrack, Havelock North, New
Zealand) that were mounted onto a collar and fitted around
each individual’s neck. The loggers are UHF radio telemetry
devices that continuously record the frequency and duration of
close proximity contacts, thus providing a continuous stream
of time ordered association data. Limitations were imposed on
the data to control for known discrepancies in the logger data,
for example, contacts less than 1 s were removed as they can
erroneously occur when two loggers are at the edge of their
detection zones (Prange et al. 2006). Thus, the minimum con-
tact length was 2 s; this duration was chosen to capture short
fleeting associations between unfamiliar individuals.
Additionally, processing the data as a time sequence
allowed for reciprocal issues to be rectified, where previous
studies have relied on pre-processing to manipulate the data
(e.g. Swain and Bishop-Hurley 2007; Hamede et al. 2009).
For each collar, the transmitting output power was set to UHF
40. The detection range was set to record contacts less than
4 m to represent meaningful social encounters that occurred
within two body lengths of a collared animal (see Fig. 3a). The
animal’s body will absorb a portion of the signal, thus
selecting a range longer than one body length ensured that
contacts initiated from the rear of the animal would be
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detected. Encounters detected within this range relate to all
forms of social behaviour, such as investigative behaviour,
grazing and resting within close proximity and grooming
events.

Each recorded contact was identified as an event, where
spatial proximity was used to infer social association. Infer-
ence of sociality from proximity is based on the ‘gambit of the
group’ theory, which states that if two individuals are within
proximity, then they are interacting in some way (Whitehead
1995; Franks et al. 2010), thus temporal and spatial dynamics
reflect social affinity (Coussi-Korbel and Fragaszy 1995). The
resultant set of events depicts a proximity network, where
edges are created when individuals approach each other and
disappear when they move apart (Blonder et al. 2012). Thus, a
priori definitions (being within 4 m for longer than 1 s) were
used to define interaction thresholds.

Two groups of 2.5-year-old Brahman (Bos Indicus) steers
were used as the animal model. Cattle were chosen as they
provided an opportunity to manipulate social structure; cattle
are known to exhibit strong social connections (Reinhardt and
Reinhardt 1981). To investigate how existing relationships are
affected by social instability and to identify association chang-
es related to relationship formation, a group of familiar and
unfamiliar animals formed the basis of the study. The first
group comprised 24 animals that had been together for
12 months prior to the study, forming the familiar group of
steers. The second group comprised 42 animals that had no
previous interaction with the familiar group and formed the
unfamiliar steers. Over 3 deployments between February and
March 2009, association data recorded by proximity loggers
were collected from 36 triads, each located in a 1.5 ha plot
with a minimum 20 m buffer between plots. Twelve triads per
deployment were formed using a step-wise approach: pairs of
familiar steers were monitored for 2.5 days before a randomly
selected animal from the unfamiliar group was introduced to
the pair. Unfamiliar animals were introduced into the plots at
approximately the same time. The first recorded encounter
between either familiar steer with the unfamiliar steer was
classed as the time of introduction. Associations between the
triad were monitored for a further 5 days.

The familiar steers were re-used in consecutive deploy-
ments following a minimum 7 days re-stabilisation with orig-
inal group members, while the unfamiliar steers were only
monitored once to ensure that each familiar pair was only
grouped with steers that were completely unfamiliar. We
hypothesised that familiar steers would maintain closer prox-
imity and therefore record more contacts with themselves than
with the unfamiliar animal due to their existing relationship,
but these encounter differences would decrease as the triad
developed a stable and familiar relationship.

From previous experiments (Patison et al. 2010a, b), all
familiar steers had experience with being paired with both
familiar and unfamiliar individuals, thus there were
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4 Fig. 3 A case study applying a relational event model to relationship
development in cattle using proximity loggers to record all close
proximity encounters between a pair of familiar steers with a newly
introduced unfamiliar steer over 5 days. Proximity loggers continuously
record the date, time and duration of all close proximity encounters in
sequence. A java programme was used to transform the data from each of
the three loggers into a single event stream and classify each encounter
based on one of three event types based on the number of individuals
involved the encounter. a The proximity loggers recorded all encounters
that occurred within a 4m detection zone; this range is equivalent to two
body lengths of a collared animal. Encounters detected within this range
relate to all forms of social behaviour, such as grazing and resting within
close proximity (as in 7), investigative behaviour (as in #i) and grooming
events. b A summary of the proximity logger data prior to transformation
with the Java programme. Aggregating the data provided a basic
overview that there were more contacts (bars, £SED) of longer duration
(lines, £SED) between familiar steers than familiar-unfamiliar contacts
over the 5-day period (data are square root transformed interaction
means). Being familiar strengthens group cohesion and provides
essential social support, which in this case, may have contributed to the
low level of association with the unfamiliar animals and the suggestion
that the unfamiliar animal was being excluded from the familiar pair. The
daily patterns showed no evidence that the unfamiliar was integrated into
the pair; the time taken for a new individual to be accepted into a group
depends on various factors, such as the species, sex, number of
individuals and the space available.

removed. The time of each encounter was defined as the num-
ber of seconds that had elapsed since the time of introduction.

Two separate methods were used to process (i) the data
used to derive the basic proximity logger statistics and (ii)
the data being analysed by the relational event model. The
data used to calculate the descriptive statistics were processed
on a pair-wise basis to facilitate the statistical analysis. To
ensure that there was no overlap recorded by loggers in a triad,
the reciprocal contacts were compressed using the same meth-
od as Patison et al. (2010b) and Hamede et al. (2009). A single
file of contacts were created for each pair within the triad and
further refined by classifying all unfamiliar contacts into one
category, regardless of which familiar animal was involved in
the contact. Combining the unfamiliar contacts into one cate-
gory meant there were twice as many unfamiliar contacts rel-
ative to the one familiar pair per triad and would therefore
over-represent the proportion of contacts involving the unfa-
miliar. To overcome this, the total number of unfamiliar con-
tacts per triad was averaged between the two unfamiliar pairs
to represent the average number of unfamiliar contacts per pair
within the triad.

The number of contacts per hour and the average contact
length were analysed for treatment and day effects using a
repeated measures analysis of variance (Rowell and Walters
1976) in Genstat 12th edition (Payne et al. 2009), with day as
the within-subjects effects and familiarity as the treatment
blocked by triad within deployment. Differences were consid-
ered significant at the 5 % probability level. To meet the dis-
tributional assumptions of the statistical analyses, residual and
normal probability plots were inspected for normality. The
large proportion of short duration contacts and infrequent
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contacts per hour produced positively skewed distributions.
A square root transformation provided the closest fit to nor-
mality and was applied to all proximity logger data prior to
analysis. All statistical results presented in the text are back-
transformed values.

The data used as input into the relational event model were
processed by assigning each animal in each triad a unique
animal identification code, from 1 to 3, to represent the iden-
tity and familiarity status of each animal: animals 1 and 2
represented the familiar animals and animal 3 was coded as
the unfamiliar animal. Events were also coded to identify
which pair was involved in the encounter, with a familiar
pairing between animals 1 and 2 coded as a contact event of
type ‘1’ and the unfamiliar pairings between animals 1 and 3
and animals 2 and 3 coded as types 2° and ‘3’, respectively.

Results
Proximity logger summary

Aggregating the proximity logger data showed a basic trend
that there were more contacts between the familiar animals
than contacts with the unfamiliar steer (Fig. 3b), and that the
greatest level of interaction occurred on the day of introduc-
tion (Table 2). There was no effect (P>0.05) of day on the
number or length of contacts between individuals within
triads.

Model results

A summary of the event data per pair is shown in Table 3,
which identifies all familiar pairs recording contacts each day
post-introduction. The unfamiliar pairings, however, did not
always record contacts each day, thus there was some level of
avoidance or lack of active association between specific pairs.
The lower number of events on day 1 was due to the day of
introduction comprising only half a day.

Table2  There were more contacts, regardless of familiarity, on the day
of introduction than any other days, even though it comprised only half a
day (means not followed by a common letter are significantly different at
P=0.05). It is suggested that the greatest level of investigation and social
stress occurred on the day of introduction

Day Number of contacts/hour
1 1.17 (1.37)

2 1.04 (1.09)°

3 1.03 (1.06)°

4 1.12 (1.24)°

5 1.05 (1.10)°

SED 0.05
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Table 3  The average number of onset events recorded between each
pair and the proportion of triads that recorded onset events (Pair 1
represents two familiar animals; Pairs 2 and 3 represent a pairing with

Table 5 A summary of the number of offset dissolution events
identified by the relational event model

the unfamiliar individual) Day Offset event types
Day Pair Average number % of triads that No Pair Group Triangle
of events per pair recorded events event dissolution dissolution dissolution
1 1 25.4 (2.80) 100 % 1 1297 1466 130 12
2 9.3 (2.40) 89 % 2 2758 3055 220 20
3 9.8 (2.07) 86 % 3 2836 3120 176 5
2 1 48.8 (5.00) 100 % 4 3031 3485 309 22
2 20.6 (4.76) 86 % 5 2817 3125 236 19
3 21.5 (5.93) 94 %
3 1 48.6 (5.41) 100 %
2 231 (5.97) 83 % Predicting future pair events
3 28.5(5.57) 83 %
4 | 54.8 (5.77) 100 % Overall, there was a negative effect of the unfamiliar animal
2 232 (5.14) 9 % (Table 6), 'indicating that a future even't .betwe?en two 'anin?als
3 238 (5.57) 83 % was less ll.k'ely t(? involve the gnfamlllar ammgl. L1k§w1se,
5 ) 474 (487) 100 % bemg familiar w.1t.h another animal was associated with an
5 221 (4.26) 81 % mf:reased probgb1hty of a future association. The st.rength of
N 258 (6.15) 92 % this effect varied across days; there was a decreasing trend

A summary of the events identified by the model is
shown in Table 4, quantifying the total number of pair
events, group events and triangle events. Generally, the
number of pair and group events was consistent across
days with the greatest number of all three event types
recorded on day 4. Overall, there were consistently
more pair events than group events. The occurrence of
triangle events was rare and constituted only a fraction
of the total number of events. Even though offsets were
not modelled in this application, the numbers of offset
event types are shown in Table 5 to provide a summary
of the number of offset events relative to onset events,
as the number of offset events determines the potential
for future onset events.

Table4 A summary of the number of events per type identified by the
relational event model for onset events

Day Onset event types Total
Pair Group Triangle

1 1296 170 50 1517

2 2757 298 70 3126

3 2835 285 34 3155

4 3030 455 83 3569

5 2816 309 72 3198

from the day of introduction until day 4, which was followed
by peak on day 5.

There was a strong and positive effect of prior pair events
leading to future pair events between the same animals
(Table 6). This effect was consistently strong across all days
for both the short and long term, except for a negative but non-
significant short-term effect on day 1. The more two animals
had encounters in the past the more likely they were to have
encounters in the future. This effect suggests that repeated
encounters involving two animals reflect a relationship be-
tween them: the encounters signify both a pattern of past en-
counters and the expectation of future ones. The lack of a
significant short-term effect on day 1 suggests that there was
some disruption caused by the introduction of the unfamiliar
as the same pair events were not repeated in the future. The
long-term effect on day 1, however, was positive and signifi-
cant and in combination with the positive and significant pair
effect on subsequent days indicates that overall prior contact
between a pair leads to future contact.

There was an enhanced probability of an encounter be-
tween two animals if the same animals had encountered each
other in the past day as a part of a group event (Table 6), thus if
two animals were involved in a group event, there was a
greater probability that the same animals would be observed
together as a pair in the future. This effect was variable over
the 5 days, but was generally most notable on the day of
introduction, when both the short and daily trends were posi-
tive. Together with the prior pair results, these effects suggest
that the pattern of future contact between two animals is af-
fected positively by the same two animals being within close
proximity in the past, either as an isolated pair or as a function
of a more complex encounter involving a third animal.
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Table 6  Parameter estimates and standard errors predicting future pair events

Predicting future pair events Day
1 2 3 4 5
Parameter B SE B SE B SE B SE B SE
Frequency of prior events
Unfamiliarity effect —0.49 0.09%* —0.35 0.05%* -0.43 0.05%* —0.09 0.05 —0.52 0.05%*
Prior pair events: Past hour —-0.50 0.33 2.67 0.35%* 225 0.34%* 232 0.33%* 2.89 0.35%*
Past day 2.59 0.24%* 1.96 0.12%* 2.15 0.13%* 2.35 0.12%* 1.88 0.11%*
Prior group events: Past hour 0.43 0.20%* 0.14 0.16 0.78 0.15%* 0.24 0.14 0.59 0.18%*
Past day 0.62 0.21%* 0.31 0.13* 0.11 0.12 0.03 0.12 0.44 0.13**

*P<0.05; **P<0.01
Predicting future group events

In the model predicting future group events, there was a pos-
itive and consistent effect of the unfamiliar animal over the 5-
day period (Table 7). This result indicates that future group
events were created by a tie involving the unfamiliar: either
the pre-existing pair creating the foundation of the group event
involved the unfamiliar or the unfamiliar approached a famil-
iar animal while it was within close proximity to the other
familiar animal. This effect is confirmed by the summary re-
sults shown in Table 8, where the majority (between 70—89 %)
of group events were formed from the existence of a pair event
between the two familiar animals.

The frequency of pair events in the past day leading to
future group events had a strong and positive effect
(Table 7). In other words, the more two animals interacted,
the more likely were group events involving proximity be-
tween those two animals on that day. This effect was strongest
on the day of introduction yet was variable over the remaining
4 days, suggesting that there was a high level of association on
day 1, which settled out from day 2 onwards.

The propensity for group events to lead to future group
events was variable (Table 7). On the day of introduction,

the short-term effects were positive yet the daily effects were
negative. The positive short-term effects indicate that the
group event was created by the addition of the third animal
to the same pair of animals that were tied together in past
group events, which suggests short-term group building be-
haviour. While the negative daily effect suggests that the pair
configuration of future group events was different to that of
the past, or partner swapping (see Fig. 4). Taken together, the
results for day 1 suggest instability within the triad resulting
from the disruption caused by the introduction of the unfamil-
iar steer.

From day 2 onwards, the pattern of prior group events
leading to future group events was also variable between
short-term and daily patterns. The daily effect was consistent-
ly strong and positive. Indeed, being within close proximity in
the past means it is more likely that the same pairs will be in
close proximity in the future: this effect suggests stability. The
change from a negative effect on day 1 to a positive effect on
consecutive days suggests that the same pairs were remaining
together in future group events, which could suggest relation-
ship building between the unfamiliar steer with one of the two
steers. The hourly effects, however, were not consistently re-
peated and alternated between negative and positive effects on

Table 7  Parameter estimates and standard errors predicting future group events

Predicting future pair events Day
1 2 3 4 5
Parameter B SE B SE B SE B SE B SE
Frequency of prior events
Unfamiliarity effect 0.98 0.26** 0.29 0.17 0.88 0.20%* 0.36 0.14* 0.44 0.17*
Prior pair events: Past hour -2.07 1.30 -1.60 1.26 —0.69 1.53 0.29 1.20 0.76 1.55
Past day 2.35 1.06* 1.30 0.51* 1.80 0.78* 0.39 0.47 1.40 0.54%*
Prior group events: Past hour 1.19 0.56* —-0.08 0.37 —-1.00 0.40%* 0.84 0.38% 0.61 0.38
Past day —-1.57 0.75*% 1.20 0.42%* 227 0.55%%* 1.49 0.45%* 1.08 0.47*

*P<0.05; **P<0.01
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Table 8 The number of

group events formed Day  Existing dyad Total

from pre-existing famil-

iar pairings and pre- Familiar ~ Unfamiliar

existing unfamiliar

pairings per day 1 125 45 170
2 265 33 298
3 222 63 285
4 317 138 455
5 234 75 309

days 3 and 4, respectively. These variable patterns are difficult
to explain, but may indicate a continuing instability in the triad
as the unfamiliar tried to be incorporated into the familiar pair,
perhaps unsuccessfully.

Event type comparisons

On day 4, when the greatest number of events were recorded
(Table 6 and 7), future group events were strongly predicted
by prior group events but not pair events, while future pair
events were strongly predicted by prior pair events but not
group events. This result suggests that dyadic events and
group events are substantially different, and as such, group
building processes do not easily emerge from repeated dyadic
association but are instead influenced by prior group
participation.

Discussion

The use of automated technology to collect continuous re-
cords of animal association data is increasing, and the devel-
opment of analytical techniques to deal with these large and
complex data sets are being explored. We have described a
relational event model for animal association data that will
allow researchers to analyse continuous event stream data, a

form that has become increasingly common in animal studies
using autonomous behavioural recording technologies (Wark
et al. 2007; Handcock et al. 2009). Understanding and quan-
tifying the social structure of animal populations allow general
hypotheses regarding evolutionary and ecological aspects of
within- and between-species interactions to be tested (Pinter-
Wollman et al. 2014). The current form of the relational event
model links temporal variances in event sequence animal as-
sociation data with changes in social behaviour. This approach
allowed us to explore changes in social behaviour associated
with the introduction of an unfamiliar individual into an
established familiar dyad. By comparing different historical
periods, it was possible to determine the temporal patterning
and characteristics of a stable relationship and to determine
when there were deviations from regular patterns of
association.

By modelling distant and recent histories, the relational
event model provides insight into how relationships (i.e. stable
association patterns) are formed, reproduced or eroded over
time. Distinguishing between dyads and groups as predictors
of stable association patterns allowed us to show how pairs of
familiar steers were more likely to maintain their status quo, as
shown by the relatively stable level of dyadic associations in
both the long-term (day) and short-term (hourly) relations.
This stability reflects a relationship between the familiar pair,
where the pattern of encounters in the past is reproduced and
future encounters are expected. Preferential social associations
exist in many species, for example in cattle (Reinhardt and
Reinhardt 1981), pigs (Durrell et al. 2004), giraffes (Carter
et al. 2013), dolphins (Lusseau et al. 2003) and finches (Oh
and Badyaev 2010). The existence of preferential pair associ-
ations in animal systems influences the likelihood of ecolog-
ically important processes, such as mate choice and sexual
selection, cooperation including social grooming and cooper-
ative foraging, and social learning, which is a major contrib-
utor to within-group behavioural adaptation over generations

Fig. 4 A description of the
positive and negative significant

Prior group event

Predicted group event

parameter effects when the onset
of a group event was predicted
from the sequence of prior group
events. A negative parameter
indicates that the predicted

configuration was different from ‘ /\ ]

the previous sequence and ~<.
represents a partner swapping
event

Positive 9 o\ Same
» ’ i [
g ‘@ 0) _@f’ partners
Partner
Negative ’ or swapping

Key:

= existing tie

_____ = predicted tie
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(Coussi-Korbel and Fragaszy 1995). These behaviours have
important outcomes for group cohesion and reproductive
success.

The dynamic social situation of introducing an unfamiliar
into a familiar pair provided the necessary conditions to create
a change in social interaction. The model outputs showed
within-group variability and volatility in short-term group as-
sociations, representative of social disruption caused by the
unfamiliar animal’s introduction. The presence of an unfamil-
iar animal is considered a threat to an individual’s social status
as well as competition for resources (Price 2008), resulting in
social stress caused by disruption of the existing social hier-
archy (Syme and Syme 1979; Zayan 1990). Familiar animals
provide each other with social support, which has been shown
to provide a calming influence in stressful situations (Boissy
and LeNeindre 1997) and protection from outside threats
(Neisen et al. 2009). Moreover, the introduced animal is faced
with social stressors additional to those experienced by the
familiar individuals, which could include an unfamiliar envi-
ronment, separation from familiar group members, a change in
group size and human handling (Zayan and Dantzer 1990;
Newberry and Swanson 2001). Thus, it is expected that the
introduced individual may seek to form a relationship with
conspecifics to alleviate social stress, as being isolated is
stressful and individuals are vulnerable without the presence
of conspecific to provide social support (Boissy and
LeNeindre 1997; Boissy and Dumont 2002). The model out-
puts provide evidence that the unfamiliar steer was actively
trying to engage with either of the familiar animals while there
was also evidence to suggest that the familiar pair were ex-
cluding the unfamiliar animal; however, as there were no vi-
sual observations to validate these claims, our assumptions are
speculative but evidenced by the patterns shown in the results.
The unfamiliar was the predominant actor creating group
events, either joining an existing familiar pair or being
approached by the other familiar while already within close
proximity to the other familiar steer. Such patterns are sugges-
tive of information seeking behaviour, where individuals
change configuration to learn each other’s characteristics and
features. Similar occurrences were seen in a study by Psorakis
et al. (2012), who used co-location at feeding events to docu-
ment the change in avian associations as mating pairs were
formed at the beginning of a breeding season; association
patterns rapidly changed from random to a highly structured
proximity network at the onset of the breeding season.

The results demonstrate that inherent differences exist be-
tween dyadic and triadic relationships; prior pair-wise interac-
tions were more likely to lead to future pair events and, equal-
ly, prior group events lead to future group events. Dyadic
interaction forms the basis of a social system (Wasserman
and Faust 1994), yet Chase et al. (2003) determined that iso-
lated dyadic outcomes were insufficient to explain group
structure and showed that social context influences group
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outcomes. Triads have unique social properties that are not
common to any other group size (Simmel 1950); in human
groups, triads present an opportunity for social choice where
two can join forces to exclude the third (Feinman and Lewis
1984), while Chase (1982) showed that in chickens, triadic
outcomes predominate group behaviour even when four or
more individuals are present. The model outcomes suggest
that triadic, rather than dyadic, interactions are responsible
for group building processes. Future work will use larger
group sizes to investigate: if the same pair and group patterns
are observed; if triadic interaction forms the basis of group
activity; and if the environment (both social and physical)
influences association patterns.

The relational event model is well suited to investigations
where social connectivity is related to population outcomes
that are linked to social factors such as cooperation (Clutton-
Brock 2009), social learning (Franz and Nunn 2009; Hoppitt
and Laland 2011) or disease transmission (Hamede et al.
2009; Hirsch et al. 2013), as well as physiological events such
as oestrus or parturition (Finger et al. 2014). The process of
social transmission can be traced through the network, wheth-
er it be a series of gradual changes or a specific behavioural
event, and individual relationships can be correlated with the
rate that it spreads through the population. Further information
on individual propensities to interact with the same- or mixed-
species individuals is also possible with the relational event
model framework; hypotheses on the ecological advantage of
inter-species associations could be tested and add value to
existing network analyses, such as flock diversity and coop-
erative foraging (Farine and Milburn 2013) or the process of
patch discovery based on network connectivity (Aplin et al.
2012). The familiar-unfamiliar setting is representative of spe-
cies that exhibit fission-fusion dynamics, where group cohe-
sion varies with time and membership frequently changes
(Aureli et al. 2008). Including weighted parameters in the
model to predict the likelihood of future events based on prior
knowledge creates an informed benchmark with which to
compare and contrast association changes. Changes in associ-
ation patterns leading to the fission event and equally, obser-
vations of the process of relationship development as fusion
occurs can be assessed. Specific change points can then be
related to ecological factors, such as assortativity by sex or
degree (fission, e.g. Ramos-Fernandez and Morales 2014) or
reproduction (fusion, e.g. Psorakis et al. 2012).

The relational event model is very well suited for data
structures that are common in the study of animal behaviour.
Electronic loggers or recordings of animal interactions pro-
vide reliable, highly granular information about social en-
counters between animals. For example, Swain and Bishop-
Hurley (2007) investigated maternal behaviours using prox-
imity loggers to reveal that maternal behaviours extended be-
yond direct offspring. Methods for the analysis of ordered
sequences of interaction data currently require prior
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transformation. As mentioned previously, aggregation can re-
sult in lost information about timing and sequence (Psorakis
et al. 2012), which may include data related to biologically
important events. The current application of the method does,
however, require some a priori definitions to infer meaning
from the data. Imposing restrictions on the data collected by
autonomous data recording devices is often unavoidable as
most devices initially require boundaries to be set that define
the activity of interest. For example, proximity loggers require
an encounter distance to be set by means of signal strength,
thus we deliberately chose a 4 m radius to represent meaning-
ful social contact based on the size of the animal and type of
encounters under study. Additionally, 1 s interactions have
been shown to over-represent the amount of time two individ-
uals spend within close proximity (Prange et al. 2006) and
were therefore discarded. Thus, before any analysis has taken
place, we have defined an association to represent proximity
within 4 m for longer than 1 s; these settings are based on
previous testing and validation to provide the most accurate
data representative of the behaviours of interest. Restrictions
for other technologies may not necessarily relate to behaviour-
al classifications, for example, the accuracy of global position-
ing systems (GPS) increases with the frequency at which po-
sitional estimates are recorded, known as ‘fix rate’ (Swain
et al. 2008). However, issues of battery life and data storage
are encountered and thus researchers face a trade-off between
data quality and quantity. It is inevitable then that further pro-
cessing is required to ‘make sense’ of the data. The relational
event model, however, is capable of using the data in its most
simplistic form with minimal processing enabling researchers
to model actual interactions between animals, rather than as-
suming relationships.

The current relational event model extends the notions of
persistence and recency presented in Butts’s (2008) original
paper by introducing two time frames of past interactions
(short term and long term) for which different statistics are
calculated. The relational event model can be applied to any
empirical context where a number of social actors interact
together over time. Even though in our illustrative example
the networks were small (three animals), these were in fact full
networks; the relational event model should typically be used
when information about the interactions between social actors
in a full network is known, including when the composition of
actors in the network changes over time. Limitations, howev-
er, were imposed on the current model to illustrate its capabil-
ities, and as such, a simpler design of the model has been
presented here detailing onsets only. Further refinements and
specifications of the current model could include investigating
historical periods additional to hour and day, incorporating
offsets to investigate social dissolution, and considering the
duration of encounter events, to address specific behavioural
questions. The parameters presented in the model (pair, group
and triangle events) are common structures in animal social

networks, and as such, can generally be applied to event data
from various animal species. Increasing the social context
from triads to larger groups, however, requires additional
methodological and biological considerations, for example,
additional parameters within the degree distribution, such as
three paths and four cycles, as well as full triangles would
need to be included. Furthermore, if the interaction between
animals has a direction (i.e. that an interaction from A to B is
different from an interaction from B to A), then parameters
that investigate processes of reciprocity, indegree and
outdegree distribution or different forms of closure would also
need to be considered. Incorporating goodness of fit criteria
into future models could be used to indicate how well the
model describes the data. Empirical or simulations studies of
biologically important events, such as mating events as evi-
denced by a sharp increase in male-female interaction or ter-
ritorial displays as indicated by a sudden increase in male-
male encounters, provide appropriate data sets to further test
applications of the relational event model.

The results presented in this paper demonstrate how rela-
tional event modelling may be used to understand animal so-
cial dynamics. We are hopeful that animal behaviour re-
searchers will apply these methods to a broader range of data
to investigate animal contact sequences. Proximity loggers
and related data collection methods, such as positional locat-
ing devices, provide ideal time-stamped association data for
relational event modelling. Retaining the sequential nature of
social associations provides a fine-grained appreciation as to
how social dynamics unfold. We encourage animal behaviour
researchers to consider these new event-based statistical
models recently introduced into the social networks literature.

Open AccessThis article is distributed under the terms of the Creative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.
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