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Introduction

Sweeney and Ulveling (1972) introduced weighted effect

coding, where the estimates for categories of nominal and

ordinal variables are deviations from the arithmetic mean,

typically from a sample. This somewhat neglected parame-

terization is preferred over the well-known effect coding

(ANOVA) if the data are unbalanced (i.e., when categories

hold different numbers of observations) and was recently

revived in this journal (te Grotenhuis et al. 2016). In this paper,

we show that weighted effect coding can also be applied to

regression models with interaction effects. The weighted

effect coded interactions represent the additional effects over

and above the main effects obtained from the model without

these interactions. This is a useful alternative to effect coding

when the data are unbalanced as in most observational data. In

this contribution, we describe this novel parameterization and

provide syntax, data, and examples in SPSS, R, and Stata on

http://www.ru.nl/sociology/mt/wec/downloads. For didacti-

cal reasons we apply OLS regression models, but weighted

effect coded interactions can be used in any generalized linear

model. Throughout this text we use the word ‘interaction’,

while other researchers prefer ‘moderation’.

Interactions between categorical variables

Dummy coded interaction

When directional interaction hypotheses are tested and cat-

egorical (i.e., ordinal or nominal scaled) predictor variables

are involved, dummy coding is often appropriate. In this

parameterization the main effects relate to a particular subset

of respondents and for the remaining subsets the dummy

coded interaction effects reflect deviations from these main

effects. To create dummy coded interaction variables one has

to multiply the original, 0/1 coded, dummy variables (Hardy

1993). As an empirical example we will investigate to what

extent the mean BMI differs across three age categories in a

group of respondents with one or more children and in a

childless group (Umberson et al. 2011). We use data on self-

reported body length and weight, in three random samples

(n = 3314) drawn from the Dutch population (aged 18–70)

in 2000, 2005, and 2011 (Eisinga et al. 2002, 2012a, b). We

created the dummy coded variables Childlessdc with code 1

for respondents with no children and code 0 for respondents

with one or more children, Middledc (code 1 for the middle-

aged and 0 for both young and older respondents) and Olderdc

(1 for older and 0 for both young and middle-aged respon-

dents). The dummy coded interaction variables

Childlessdc 9 Middledc, and Childlessdc 9 Olderdc are

multiplications of these dummy coded variables (see Table 1

and our website for details). First, we estimated the main

effects without interaction (see Table 4, Model 1) and sec-

ond, we added the two interaction variables (Table 4, Model

2). Note that the reference categories (a) respondents with

children, (b) youngsters, and (c) childless youngsters are

omitted from the two models, which means that their esti-

mates are set to zero.
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Our results show that without interaction, the estimated

mean BMI among childless respondents is a significant 0.9

BMI points lower compared to respondents with children,

taking into account their age. Further, the estimated mean

BMI is significantly higher in both the middle-aged group

(1.36) and in older respondents (2.09), compared to

youngsters while controlling for having children or not.

After adding the interactions, the main effect of the

dummy coded variable Childless relates to the youngest

group only. So, respondents who are youngest and childless

have an estimated mean BMI of -1.92 points lower

compared to the youngest respondents with children. Fur-

ther, the main effects in the middle-aged and older group

pertain to the respondents with children only. The middle-

aged people with children have an estimated mean BMI

that is 0.46 (non-significant) higher compared to young-

sters with children. The older respondents with children

have a BMI that is about 1 BMI point higher (1.22), again

compared to youngsters with children.

The two interaction effects (one of them being signifi-

cant) show the extra effect on BMI on top of the

aforementioned main effects. For instance, childless mid-

dle-aged respondents have an estimated mean BMI that is

-1.92 ? 1.22 = -0.7 BMI points less compared to mid-

dle-aged respondents with children. Likewise, the childless

middle-aged respondents have an estimated mean BMI that

is 1.68 higher (0.46 ? 1.22) compared to youngsters who

are childless.

Effect coded interaction

It seems a bit odd to use dummy coding in our example

because to our knowledge there is no theory that for

instance predicts a stronger age-effect among the childless

or a weaker effect of having children among the middle-

aged. In general, dummy coding is less appropriate if one is

agnostic about the direction of effects as the selection of

reference categories and the associated statistical tests are

then mostly arbitrary. One popular solution is effect cod-

ing, where in interaction models the main effect represents

a grand mean effect while the interaction effects are

deviations from that grand mean effect. This grand mean

effect is unweighted, so effect coding is tailor-made for so-

called completely balanced designs (Berger and Wong

2009). In such designs all cells have equal numbers of

observations. This is not a necessary condition for the

sample data; it suffices to assume a population with such a

balanced design, while the sample is unbalanced due to

randomness for instance. Especially in experimental set-

tings where equal group sizes are often desired, this type of

parameterization is well suited to test whether the treatment

effect differs across relevant groups (Berger and Wong

2009). Note that in that particular case there are no

hypotheses about the directions of the interaction effects.

In general, an effect coded variable has code 1 for a

specific category, 0 for all other categories save the sta-

tistically redundant and, therefore, omitted reference

category, which is coded -1 (Hardy 1993). In our example,

we created six effect coded interactions which are the result

of the effect coded variables Childlessec and With Chil-

drenec multiplied with Youngec, Middleec, and Olderec,

which are also effect coded (see Table 2 and our website

for details).

The results for this effect coded interaction model are

given in Table 4, and again model 1 with no interaction is

presented first. The grand mean BMI is 24.73 (intercept)

and respondents with children have an estimated mean

BMI of 24.73 1 0.45 = 25.18. The respondents with no

children have an estimated mean BMI of

24.73 - 0.45 = 24.28. To find the grand mean again we

have to sum 25.18 and 24.28 and divide it by 2, resulting in

24.73, which again is the value for the intercept. This

proves that with regard to the point of reference, effect

coding does not take into account the possible unequal

number of observations in the categories. Compared to this

grand mean of 24.73, the estimated mean BMI is -1.15

Table 1 Coding scheme for the dummy coded main and interaction effects for the childless, middle-aged and older-aged (references/omitted

categories are with children, young, and childless 9 young)

Categories Dummy coding

Main effects Interactions

Childlessdc Middledc Olderdc Childlessdc 9 Middledc Childlessdc 9 Olderdc

With children and younger 0 0 0 0 0

With children and middle-aged 0 1 0 0 0

With children and older 0 0 1 0 0

Childless and younger 1 0 0 0 0

Childless and middle-aged 1 1 0 1 0

Childless and older 1 0 1 0 1
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lower for the younger respondents, 0.21 higher for the

middle-aged, and 0.94 higher for the older respondents.

Note that when these three deviations are summed, the

outcome equals zero, which is typical for using a balanced

design. After adding the effect coded interaction variables

(Model 2), the grand mean shifts to 24.88 and the main

effects also change. This is due to the unbalanced nature of

our data, for instance the number of older respondents

without children is 62, whereas 3314/6 = 552 is expected

in a completely balanced design. The interaction effects

denote the extra change in the estimated mean BMI over

and above the unweighted main effect. Young, childless

respondents have a mean BMI of 0.41 less, so their esti-

mated mean BMI is 24.88 - 0.56 - 0.97 - 0.41 = 22.94.

For youngsters with children the estimated mean is 0.41

higher than the main effects indicate: 24.88 ? 0.56

- 0.97 ? 0.41 = 24.88. Note that both interaction effects

are counterparts and note also that the sum of all interac-

tion effects equals zero, which again is the result of

assuming balanced data.

Weighted effect coded interaction

In our example the sample data are far from being balanced

(see the numbers of observation per category in Table 4).

This means that testing interaction effects under the

assumption of balanced data with a grand mean effect as a

point of reference is less appropriate, because most prob-

ably the data are not balanced in the target population as

well. In such cases testing interaction effects against the

effects found without interactions makes more sense, as the

latter are overall main effects, taking into account the

numbers of observation per category. This is a new way of

modelling interaction using weighted effect coded inter-

action variables. Unlike dummy coding and effect coding,

these interaction variables are not simply the multiplication

of two weighted effect coded variables. Instead, weights

are assigned to the interaction variables to obtain main

effects that equal the effects from the model without these

interactions (see Table 3 for details and our website for in-

depth matrix information and for syntax in SPSS, R and

Table 2 Coding scheme for the effect coded main and interactions effects for the childless, middle-aged and older-aged (omitted categories are

with children, young, and childless 9 young)

Categories Effect coding

Main effects Interactions

Childlessec Middleec Olderec Childlessec 9 Middleec Childlessec 9 Olderec

With children and younger -1 -1 -1 1 1

With children and middle-aged -1 1 0 -1 0

With children and older -1 0 1 0 -1

Childless and younger 1 -1 -1 -1 -1

Childless and middle-aged 1 1 0 1 0

Childless and older 1 0 1 0 1

Table 3 Coding scheme for the weighted effect coded main and interactions effects for the childless, middle-aged and older-aged (omitted

categories are with children, young, and childless 9 young)

Categories Weighted effect coding

Main effects Interactions

Childlesswec Middlewec Olderwec Childlesswec 9 Middlewec Childlesswec 9 Olderwec

With children and younger -(nc/nw) -(nm/ny) -(no/ny) (ncm/nwy) (nco/nwy)

With children and middle-aged -(nc/nw) 1 0 -(ncm/nwm) 0

With children and older -(nc/nw) 0 1 0 -(nco/nwo)

Childless and younger 1 -(nm/ny) -(no/ny) -(ncm/ncy) -(nco/ncy)

Childless and middle-aged 1 1 0 1 0

Childless and older 1 0 1 0 1

nw number of observations (n) in category with children, nc n in category childless, ny n in category young, nm n in category middle, no n in

category older, nwy n in category with children and young, nwm n in category with children and middle, nwo n in category with children and older,

ncy n in category childless and young, ncm n in category childless and middle, nco n in category childless and older
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Stata). The orthogonal interaction effects then denote the

extra effect over and above the main effects found in the

model without these interactions, no matter whether the

data are unbalanced or not. In case the data are completely

balanced, the estimates from weighted effect coding are

equal to those from effect coding, but they can be quite

different in effect size and associated t values when the

data are unbalanced. This is illustrated in Table 4, last two

columns. In Model 1 (without interactions), the estimate

for the intercept equals 24.98, and equals the observed

(arithmetic) sample mean in our dataset. Respondents with

children have an estimated mean BMI that is 0.29 higher

than 24.98, whereas childless respondents score 0.61 BMI

points lower. Further, the youngster have a mean BMI of

24.98 - 1.24 = 23.74, whereas for the middle-aged the

mean BMI is slightly higher (?0.12), and finally for older

respondents we must add 0.85 to 24.98 to find their

estimated mean BMI. Note that the effects no longer add

up to 0, as we take into account the unequal numbers of

observations. When the six interactions are added in Model

2, nothing changes in the intercept or main effects, because

the interactions have a mean of 0 and are orthogonal to the

main effects. The interpretation of these interactions is

straightforward: it is the extra estimated mean BMI over

and above the main effects found in the model without

interactions. For instance the young respondents with no

children have a BMI which is an extra -0.17 lower com-

pared to 24.98 (on top of the main effects -1.24 and

-0.61). Note that the equal sized interaction effects -0.17

(childless 9 young) and 0.17 (childless 9 older) have

quite different t values (-2.75 vs. 0.39). This is a direct

result of taking into account the different number of

respondents per category; there are much less older people

than younger people, so the power of that test is lower.

Table 4 Ordinary least squares regression effects on the body mass index (BMI), using dummy coding, effect coding, and weighted effect

coding, without interactions (Model 1) and with interactions (Model 2), number of cases per category between brackets (n) Data source: Eisinga

et al. (2002, 2012a, b), total n = 3314

OLS effects on BMI Dummy coding Effect coding Weighted effect coding

b-estimates t values b-estimates t values b-estimates t values

Model 1

Intercept 24.02 118.58 24.73 317.14 24.98 389.21

Having children

With children (2254) 0.00 (ref) 0.45 5.51 0.29 5.51

Childless (1060) -0.90 -5.51 -0.45 -5.51 -0.61 -5.51

Age-group

Young (610) 0.00 (ref) -1.15 -8.46 -1.24 -7.81

Middle (2111) 1.36 6.93 0.21 2.28 0.12 2.38

Older (593) 2.09 8.56 0.94 7.52 0.85 5.99

Variance explained 6.1 % 6.1 % 6.1 %

Model 2

Intercept 24.88 67.06 24.88 223.52 24.98 389.54

Having children

With children (2254) 0.00 (ref) 0.56 4.99 0.29 5.51

Childless (1060) -1.92 -4.74 -0.56 -4.99 -0.61 -5.51

Age-group

Young (610) 0.00 (ref) -0.97 -5.97 -1.24 -7.80

Middle (2111) 0.46 ns 1.21 0.11 ns 0.87 0.12 2.39

Older (593) 1.22 3.01 0.86 4.72 0.85 5.99

Children 9 young (99) Not applicable 0.41 2.50 0.86 2.75

Children 9 middle (1624) Not applicable -0.21 ns -1.66 -0.05 -2.00

Children 9 older (531) Not applicable -0.20 ns -1.10 -0.02 ns -0.39

Childless 9 young (511) 0.00 (ref) -0.41 -2.50 -0.17 -2.75

Childless 9 middle (487) 1.22 2.72 0.21 ns 1.66 0.15 2.00

Childless 9 older (62) 1.21 ns 1.88 0.20 ns 1.10 0.17 ns 0.39

Variance explained 6.3 % 6.3 % 6.3 %

ns not significant (t value\1.96), t values are presented for illustrative purposes
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Note also that the t value for children 9 older and child-

less 9 older is equal (-0.39) as the dichotomy children/

childless is mutually exclusive. Note further that weighted

effect coded interaction effects do not add up to zero as in

effect coding, again due to the different numbers per cat-

egory. We finally add that in Table 4 the explained

variances are the same in all three models 1 and in all three

models 2. So, no matter which type of coding is used, the

predicted BMI scores are exactly the same. The only dif-

ference is the type of base line one wishes to use. In

dummy coding this base line is a particular subset of

respondents, in effect coding it is a grand mean of esti-

mates (neglecting the possible unbalance in the data), while

in weighted effect coding the base line is the weighted

main effect.

To save space we did not include control variables in

our models, the interpretation, however, is basically the

same: the weighted effect coded interaction effects still

reflect deviations from the weighted main effects, only this

time after taking into account one or more control vari-

ables. Because the weighted effect coded interactions may

be correlated with the control variable(s), the main effects

in a controlled model with and without weighted coded

interaction parameters can be different in such cases (see

our website for an example). The interaction between

weighted effect coded variables and interval/ratio scaled

variables is available on our website as well.

To conclude: whenever non-directional interaction

hypotheses are tested using unbalanced data and this

unbalancedness is deemed relevant for the target popula-

tion, weighted effect coded interactions are to be preferred

over effect coded interactions.

Weighted effect coded interactions in generalized linear

models

In this contribution, we showed that weighted effect coded

interaction effects represent deviations from the overall

main effects (i.e., the main effects found in a model

without interaction). This general interpretation holds for

any generalized linear model. However, we must add that

in logistic regression models the main and interaction

effects relate to the odds (i.e., p1/(1 2 p1)). They do not

directly relate to p1 itself, i.e., the estimated probability to

score 1 on the dependent variable. In fact, even without

interaction parameters, the effects of the predictor variables

in a logistic regression model exhibit interaction when the

probability (p1) is considered (Mood 2010).
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