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Abstract Recommender systems (RSs) provide personalized information by learning user
preferences. User-based collaborative filtering (UBCF) is a significant technique widely uti-
lized in RSs. The traditional UBCF approach selects k-nearest neighbors from candidate
neighbors comprised by all users; however, this approach cannot achieve good accuracy and
coverage values simultaneously. We present a new approach using covering-based rough set
theory to improve traditional UBCF in RSs. In this approach, we insert a user reduction pro-
cedure into the traditional UBCF approach. Covering reduction in covering-based rough sets
is used to remove redundant users from all users. Then, k-nearest neighbors are selected from
candidate neighbors comprised by the reduct-users. Our experimental results suggest that,
for the sparse datasets that often occur in real RSs, the proposed approach outperforms than
the traditional UBCF, and can provide satisfactory accuracy and coverage simultaneously.

Keywords Covering-based rough sets · User-based collaborative filtering ·
Covering reduction · Active user · Recommender systems

1 Introduction

With rapid development in technology and improved economic conditions, consumers tend
to demand more personalized services. Recently, recommender systems (RSs), which can
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provide item recommendations based on personal preferences that help users make purchase
decisions, have become very popular (Adomavicius and Tuzhilin 2005; Bobadilla and Ortega
2013; Lu et al. 2015).

Collaborative filtering (CF) is a significant component of the recommendation process
(Symeonidis et al. 2008; Hameed et al. 2012). User-based collaborative filtering (UBCF)
approach relies on active user neighborhood information to make predictions and recom-
mendations (Herlocker and Konstan 2002). Neighborhood selection is one crucial procedure
of UBCF approach, which selects a set of users from candidate neighbors to comprise neigh-
borhood for an active user. Whether appropriate neighborhood can be selected will have a
direct bearing on the rating prediction and item recommendation. In general UBCF approach,
k-nearest neighbors (k-NN) approach is proved to be the best method to generate a neighbor-
hood, which picks the k most similar (nearest) users from candidate neighbors to comprise
the neighborhood for an active user (Herlocker and Konstan 2002). So we consider the k-NN
UBCF approach as the traditional UBCF approach in the rest of this paper.

Currently, commercial RSs have a large number of users, neighborhoodmust be composed
of a subset of users rather than all users if RSs want to guarantee acceptable response time
(Herlocker and Konstan 2002). Accuracy measures how closed RSs predictions reflect actual
user preferences, and coverage interprets the extent to which recommendations cover the
set of available items. Both metrics are important in RSs. In the neighborhood of traditional
UBCF approach, neighbors tend to have similar tastes, so high predicted scores from them
concentrate in few types of items, even just popular items. Due to the popular items often
have high ratings from users, so recommendations from the traditional UBCF approach
often have high accuracy. However, types of recommendations are very limited, it leads to an
unsatisfactory coverage value (Gan and Jiang 2013). Therefore using the traditional UBCF
is difficult to achieve good values for both metrics simultaneously.

Aiming at improving the traditional UBCF approach to obtain good values of accuracy
and coverage at the same time, in this study, covering-based rough set theory is applied
to RSs. We propose covering-based collaborative filtering (CBCF), a new approach that
uses covering reduction to remove redundant users, then neighborhood is selected from
candidate neighbors comprised by the reduct-users. Experimental results reveal that our
proposed CBCF approach provides better recommendation results than the traditional UBCF
approach.

The remainder of this paper is organized as follows. In Sect. 2, some background infor-
mation is provided. We review basic concepts involved in the traditional UBCF approach
and covering-based rough sets, describe covering reduction algorithm. In Sect. 3, we analyze
neighborhood selection problems, then give the detailed motivation and construction of the
CBCF approach. In Sect. 4, we provide an example to demonstrate the CBCF approach. In
Sect. 5, we describe our experiments and compare CBCF results with the results obtained
using the traditional UBCF approach. Conclusions and suggestions for future work are pre-
sented in Sect. 6. Note that this paper is a revised and extended version of a previous paper
(Zhang et al. 2015).

2 Background

Here, we introduce the basic knowledge of UBCF approach, then briefly describe covering,
covering approximation, and covering reduction. In addition, we analyze and compare three
types of reduction algorithms.
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2.1 Overview of the traditional UBCF approach

Given an RS, let U and I be finite sets of users and items. Suppose each item has the same
attributes. The item attribute matrix is denoted as AM. Let R ∪ {�} be the set of possible item
rating scores, and RM be the User-Item rating matrix. Note that the absence of a rating is
represented by an asterisk (�). The rating score of user u for item i is denoted ru,i ∈ R ∪ {�},
and the average of the valid ratings of user u is denoted r̄u . θ is set as the threshold for
rating scores, and items with ru,i ≥ θ are defined as items that are relevant to user u.
Iu = {i ∈ I |ru,i �= �} is the set of all items rated by user u, I cu is the complementary set of
Iu , indicates items which have not yet rated by user u.

The traditional UBCF approach is one type of CF, it utilizes the information of an active
user’s neighborhood to make predictions and recommendations, it can be separated into three
steps:

Step 1: Similarity computation An active user au’s candidate neighbors CNau are com-
prised by all users. Based on historical rating information, compute similarity between each
user u ∈ CNau and an active user au. Here, Pearson correlation coefficient approach (1) is
popularly used as a similarity measure:

sim(au, u) =
∑

i∈Iau∩Iu

(
rau,i − r̄au

) (
ru,i − r̄u

)

√∑
i∈Iau∩Iu

(
rau,i − r̄au

)2
√∑

i∈Iau∩Iu

(
ru,i − r̄u

)2
, (1)

where sim(au, u) indicates the similarity between the active users au and user u ∈ CNau.
Iau = {i ∈ I |rau,i �= �} is the set of all items rated by active user au, r̄au is the average rating
of active user au:

r̄au =
∑

i∈Iau rau,i
card(Iau)

. (2)

Step 2: Neighborhood selection Select the k most similar (nearest) users from CNau to
comprise the neighborhood Nau(k) for the active user au;

Step 3: Rating prediction and item recommendation Normalize ratings and according
to the rating information of neighborhood, predict a rating score pau,i for each item i in
unrated item set I cau of the active user au. The adjusted weighted sum approach (3) is often
utilized to make rating prediction.

pau,i = r̄au + λ
∑

u∈Nau(k)∩Ui

sim(au, u) ∗ (ru,i − r̄u), (3)

where pau,i is the prediction of item i for active user au, Ui = {u ∈ U |ru,i �= �} is the set of
users who have rated item i , and multiplier λ is a normalizing factor and is selected as

λ = 1
∑

u∈Nau(k)∩Ui
sim(au, u)

. (4)

Note that, within specific systems, these steps may overlap or the order may be slightly
different. Algorithm 1 summarizes the traditional UBCF approach.

2.2 Covering-based rough sets and covering reduction theory

Rough set theory was first presented by Pawlak in the early 1980s (Pawlak 1982). Lower
and upper approximation operations are key concepts in classical rough set theory, and an
equivalence relation, i.e., a partition, is the simplest formulation of the lower and upper
approximation operations (Pawlak and Skowron 2007). Covering-based rough sets extend
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Algorithm 1 Traditional UBCF approach
Input: User-Item rating matrix RM and an active user au.
Output: Recommended items set of size N for the active user au.

k : Number of users in the neighborhood Nau(k) of the active user au.
N : Number of items recommended to the active user au.
I cau : Items which have not yet rated by the active user au.
CNau : Candidate neighbors of the active user au.
pau,i : Rating prediction of item i for the active user au.

1: CNau = U , then compute similarity between active user au and each user u ∈ CNau;
2: for each item i ∈ I cau do
3: Find the k most similar users in CNau to comprise neighborhood Nau(k);
4: Predict rating score pau,i for item i by neighborhood Nau(k);
5: end for
6: Recommend to the active user au the top N items having the highest pau,i .

the classical rough set by utilizing a covering of the domain rather than a partition. Here, we
define covering and covering approximation space. More detailed explanations can be found
in the literature (Tsang et al. 2008; Zhu 2009a, b; Yao and Yao 2012).

Definition 1 Let T be the domain of discourse and C be a family of subsets of T . If none of
the subsets in C is empty and ∪C = T, C is called a covering of T .

Definition 2 Let T be a non-empty set and C be a covering of T . Then, we refer to the
ordered pair 〈T,C〉 as the covering approximation space.

Note that a partition of T is a covering of T ; thus, the concept of a covering is an extension
of a partition. Different lower and upper approximation operations generate different types
of covering-based rough sets. The covering-based rough set was first presented by Zakowski
(1983). Zakowski extended Pawlak’s rough set theory from a partition to a covering, and
presented the basic concept of covering. In addition, related studies have been undertaken by
Pomykala (1987), Tsang et al. (2004), Wang et al. (2004), Zhu (2007), and Zhu and Wang
(2012).

Covering reduction is a significant concept in covering-based rough set theory (Yang and
Li 2010). The concept of covering reduction was originally presented by Zhu and Wang
(2003). In this paper, we refer to the algorithm proposed by Zhu andWang (2007) as the first
type of reduction algorithm, which corresponds to the definition of reduct(C) in Zhu and
Wang (2007). Definition 3 defines this algorithm.

Definition 3 Let C be a covering of domain T , and K ∈ C . If K is a union of some sets in
C − {K }, K is reducible in C ; otherwise, K is irreducible. When all reducible elements are
removed from C , the new irreducible covering is called the first-type reduct of C .

Zhu and Wang (2007, 2012) presented two other covering reduction algorithms, which we
refer to as the second and third types of reduction algorithms, respectively.Definition 4 defines
the second-type algorithm, which corresponds to the definition of exclusion(C) provided by
Zhu and Wang (2007). Definition 5 defines the third-type algorithm, which corresponds to
the definition of exact-reduct(C) (Zhu and Wang 2012).

Definition 4 Let C be a covering of domain T , and K ∈ C . If there exists another element
K ′ of C such that K ⊂ K ′, K is an immured element of covering C . When we remove all
immured elements from C , the set of all remaining elements is still a covering of T , and this
new covering has no immured element. We refer to this new covering as the second-type
reduct of C .
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Definition 5 Let C be a covering of domain T , and K ∈ C . If there exists K1, K2, . . . Km ∈
C − K such that K = K1∪, . . . ,∪Km , and ∀x ∈ K and {x} is not a singleton element of
C , K ⊆ ∪{K ′ | x ∈ K ′ ∈ C − {K }}, K is called an exact-reducible element of C . When
all exact-reducible elements are removed from C , the new irreducible covering is called the
third-type reduct of C .

Comparing the three types of covering reduction algorithms, we find that, the first type
removes redundant elements more efficiently than the third type because the third type has an
additional restriction condition. For example, we assume that K ∈ C is a reducible element
in the first type, but if there exists x ∈ K that {x} is a singleton element of C , K is not an
exact-reducible element in the third type. However, if K ∈ C is an exact-reducible element
in the third type, it must be a reducible element in the first type.

Here, we consider the first and second types. If we assume that K ∈ C is a reducible
element in the first-type algorithm, then there must be other elements whose union is K . For
example, for K = K1∪K2, only K should be removed; however, under the same conditions,
in the second-type algorithm, K1 and K2 would both be considered as immured elements,
which should be removed.

Typically, an RS has a vast number of items and each user has different preferences.
Therefore it is difficult to represent one user’s preferred item set as a union of other users’
preferred item sets accurately. In this situation, for the first-type algorithm, few reducible
elements can be removed; however, for the second type, there can be a large number of
reducible elements, because RSs have a large number of users, it is easy to find one user’s
preferred item set that includes another user’s set. Thus, the second type of covering reduction
algorithmcanbe used to removemore reducible elements inRSs. The second-type of covering
reduction algorithm (STCRA) is given in Algorithm 2.

3 Covering-based collaborative filtering approach

Here, first we discuss neighborhood selection problems in the traditional UBCF approach.
To address these problems, we propose CBCF approach and describe its detail process. In
addition, we discuss the innovative aspects and significance of the proposed approach.

Algorithm 2 STCRA: The second-type of covering reduction algorithm
Input: A covering of a domain: C .
Output: An irreducible covering of a domain: reduct(C).

Ki ,K j : Elements in the covering C .
1: set reduct(C)=C ;
2: for i = 1 to card(C) do
3: for j = 1 to card(C) do
4: if K j ⊂ Ki then
5: if K j ∈ reduct(C) then
6: reduct(C) = reduct(C) − {K j };
7: end if
8: end if
9: end for
10: end for
11: return reduct(C);
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3.1 Neighborhood selection problems in traditional UBCF approach

Neighborhood selection is to determine which users’ rating information will be utilized to
compute the prediction for an active user, in other words, it decides who will be selected
as neighborhood of the active user. In theory, every user could be selected as a neighbor.
However, modern commercial RSs have vast customers, e.g., Amazon has billions of users,
it is impractical to consider every user as a neighbor when trying to maintain real-time
performance. A subset of users must be selected as neighborhood if RSs want to guarantee
acceptable response time. Herlocker and Konstan (2002) discussed the size of neighborhood
in detail, anddrewa conclusion that the size of neighborhood affects the performanceofRSs in
a reasonably consistent manner. It suggests that, in the real-world situations, a neighborhood
of 20–60 neighbors is reasonable to be used to make predictions.

Currently, k-NN method is often used in the traditional UBCF approach to make neigh-
borhood selection, neighborhood is comprised by the top k users with highest similarity in
candidate neighbors. However, in RSs, some items, especially the popular items, have high
rating scores from most of users, and the active user usually also prefer these items. In this
case, when using the traditionalUBCF approach, userswho prefer the popular items are likely
to have high similarity with the active user, so they will easily appear in the neighborhood.
Other users, who prefer niche items, are difficult to be selected as the neighborhood, but these
niche items may also be preferred by the active user. For example, the relevant items of user 1
and user 2 are popular items, the relevant items of user 3 are niche items. Similarity between
active user and them are 0.9, 0.8, and 0.7, respectively, besides that, user 2’s relevant item set
is included in user 1’s relevant item set. In traditional UBCF approach, if we select two most
similar users as neighborhood, user 1 and user 2 will be selected, in this case, only popular
items will be recommended to the active user. However, user 3 also have high similarity
with the active user, relevant items of user 3 may also be preferred by the active user. In
order to obtain neighborhood with diverse tastes, we can remove user 2 and select user 1 and
user 3 as the neighborhood. Because the relevant item set of user 2 is included in user 1’s
relevant item set, so we can only utilize user 1 to make predictions for popular items rather
than both of them. Here, we consider users like user 2, whose relevant item set is included
in other user’s relevant item set, as the redundant users. In traditional UBCF approach, the
k-nearest neighbors have similar taste, so they tend to have similar relevant items, therefore
neighborhood usually contains many redundant users. When making prediction, they tend to
give high predicted scores for few types of items, even just the popular items. It causes the
traditional UBCF approach cannot provide recommendations with good values of accuracy
and coverage simultaneously.

3.2 Motivation of CBCF approach

The proposed CBCF approach aims to improve the traditional UBCF approach by reducing
redundant users, and constructs neighborhood by users who have high similarity and diverse
relevant items. As we discussed above, redundant user’s relevant item set is included in other
user’s relevant item set. According to discussions in Sect. 2.2, reducible element in the second
type of covering reduction algorithm is also included in other elements, so we can remove
redundant users by using the second type of covering reduction algorithm. Removing all
reducible elements means we remove all redundant users.

In general RSs, there are vast items, it means the item domain I is too large. However,
different users have rated different items, it may cause not so many users could be considered
as redundant users. In order to remove redundant users as many as possible, item domain
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should be reduced as much as possible. In CBCF approach, we reduce the domain from
item set I to active user’s decision class D. Items fit the active user’s relevant attributes
comprise the decision class D. However, in practical application, users usually do not enter
their relevant attributes into RSs. Here, in order to obtain relevant attributes of an active user,
we sum each attribute value in the active user’s relevant item set. Due to the more high rating
scores indicate that the more the active user likes the attribute, l number attributes with the
largest sums are selected as the relevant attributes. Relevant attributes of the active user in
the following form:

[at1 = av1] ∧ [at2 = av2] ∧ · · · ∧ [atm = avm],
where m means the number of all attributes, atm is an attribute and avm is the value of atm .

3.3 Construction

In CBCF approach, we insert user reduction step into the traditional UBCF approach. Algo-
rithm 3 presents concise steps of the CBCF approach. The detailed procedure is as follows:

Step 1: User reduction First set I as the domain, relevant items of each user comprise a
set in domain I . We construct decision class D for the active user au. The decision class D
consists of all items that fit the active user’s relevant attributes, defined by (5).

D = {i ∈ I |at1(i) = av1, at2(i) = av2, . . . , atm(i) = avm}, (5)

where atm(i) = avm means that the value of the attribute atm on item i is avm .
Then to remove as many redundant users as possible, we reduce the domain from item

set I to decision class D, and for each user u ∈ U , the relevant items of user u in domain D
comprise the relevant set Cu , where

Cu = {i ∈ D|ru,i ≥ θ}. (6)

LetC∗ = D−∪Cu ; then,C = {C1,C2 . . .Cn,C∗} is a covering for the active user in domain
D.

Next, based on the second type of covering reduction algorithm in the covering-based
rough sets, redundant elements are removed from covering C to obtain reduct(C), we can
obtain the active user’s reduct-users Ur , where

Ur = {u ∈ U |Cu ∈ reduct(C)}. (7)

Step 2: Similarity computation Users in Ur comprise candidate neighbors CNr
au of

the active user au. According to the rating information, compute the similarity sim(au, u)

between the active user au and each user u ∈ CNr
au by the similarity measure.

Step 3: Neighborhood selection The active user au’s neighborhood Nr
au(k) is composed

by k most similar (nearest) users in CNr
au.

Step 4: Rating prediction Based on rating information of neighborhood Nr
au(k), we

predict rating score pau,i for each item i in unrated item set I cau of the active user au.

3.4 Discussion

To provide recommendations with good values of accuracy and coverage for an active user
au, the biggest innovation of the proposedCBCF approach is that, we insert the user reduction
procedure into the traditional UBCF approach. For an active user au, before computing the
similarity, we remove redundant users from all users to obtain reduct-users Ur and which
comprise candidate neighborsCNr

auwith diverse tastes, kmost similar (nearest) users selected
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Algorithm 3 CBCF approach
Input: User-item rating matrix RM , item attribute matrix AM, and an active user au.
Output: Recommended items set of size N for the active user au.

k : Number of users in the neighborhood Nr
au(k) of the active user au.

N : Number of items recommended to the active user au.
D : Decision class of the active user au.
Ur : Users after making user reduction, reduct-users.
I cau : Items which have not yet rated by the active user au.
CNrau : Candidate neighbors of the active user au after making user reduction.
pau,i : Rating prediction of item i for the active user au.

1: for each user u ∈ U do
2: Cu = {i ∈ D|ru,i ≥ θ}.
3: end for
4: Let C∗ = D − ∪Cu ; then, C = {C1,C2, . . .Cn ,C∗} is a covering for an active user au in domain D.
5: reduct(C) = STCRA(C)

6: Reduct-user Ur = {u ∈ U |Cu ∈ reduct(C)}.
7: CNrau = Ur , compute similarity between the active user au and each user u ∈ CNrau
8: for each item i ∈ I cau do
9: Find the k most similar users in CNrau to comprise neighborhood Nr

au(k);
10: Predict rating score pau,i for item i by neighborhood Nr

au(k);
11: end for
12: Recommend to the active user au the top N items having the highest pau,i .

fromCNr
au comprise neighborhood Nr

au(k). Although comparing with input conditions of the
traditional UBCF, our proposed CBCF needs an additional condition: item attribute matrix
AM; however, in general RSs, item attribute matrix is very common and easy to obtain.

User reduction is a core component of CBCF approach, which applies the notion of
covering reduction to reduct redundant users from all users. First, we set all items I as
the domain, and relevant items of each user comprise a set in domain I . However, in this
case, there are only a few sets can be removed as redundant elements. To remove as many
redundant users as possible, when obtaining the decision class D, we reduce the domain from
I to D such that the domain can be sufficiently small. Then, the relevant items of each user in
decision class D will be a element of a coveringC . Based on the definition of the second type
of covering reduction algorithm, for set C1, if there exists another set C2 for which C1 ⊂ C2,
C1 is considered reducible and therefore removable. In this approach,C1 denotes the relevant
items of user 1 in domain D and C1 ⊂ C2 indicates that user 1 and user 2 are likely to prefer
same type of items, so we can just utilize user 2 to make prediction for this type of items, thus
user 1 can be considered as redundant user to be removed. Removing all reducible elements
means that all redundant users are removed from all users, so that this approach can only use
the reduct-usersUr to compriseCNr

au. Users inCN
r
au have diverse relevant of items, and high

similarity users are selected from CNr
au to comprise neighborhood Nr

au(k). So in proposed
CBCF approach, neighbors in the Nr

au(k) have both high similarity and diverse preference,
they can make accurate predictions for more types of items and present recommendations
with high accuracy and coverage at the same time.

4 Example of CBCF approach in RSs

Here, we present an example to explain the CBCF approach more clearly. Table 1 illustrates
an User-Item ratingmatrixRM about rating scores by six users for eight items,Uau represents
the active user. The rating value is from 1 to 5, where a higher value indicates that the user
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Table 1 Example of user-item rating matrix RM

User Co-rated items Target items

Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 Item 7 Item 8

U1 2 4 1 3 3 4 5 5

U2 1 3 2 3 2 5 2 3

U3 1 2 3 5 3 4 2 1

U4 2 2 5 1 4 5 1 4

U5 2 4 5 2 1 3 5 3

Uau 1 4 2 5 2 3 � �

Table 2 Example of item
attribute matrix AM

Item Attribute

Horror Comedy Drama Action Musical

Item 1 1 0 1 0 0

Item 2 0 1 0 1 1

Item 3 1 1 0 1 1

Item 4 1 1 1 1 0

Item 5 0 1 1 1 0

Item 6 0 1 0 1 0

Item 7 0 1 1 0 0

Item 8 1 0 0 1 1

Table 3 Example of similarity
and rank depending on different
approaches

User–User Traditional UBCF Proposed CBCF

Similarity Rank Similarity Rank

Uau−U1 0.501 3 0.501 2

Uau−U2 0.563 2 – –

Uau−U3 0.646 1 0.646 1

Uau−U4 −0.458 5 – –

Uau−U5 0.075 4 0.075 3

likes the given item more. Table 2 shows the item attribute matrix AM about eight items, and
each item has the following attributes: Horror, Comedy, Drama, Action, and Musical, where
a value of 1 indicates that the item is of that genre and a value of 0 indicates it is not. Note
that items can be in several attributes simultaneously. The detailed steps are as follow:

Step 1: User reduction Here, we treat the rating threshold θ as 3; thus, from the rating
matrix RMwe can obtain the active user’s relevant items set {Item 2, Item 4, Item 6}.We sum
each attribute value in the relevant item set according the item attribute matrix AM (Horror=
1, Comedy = 3, Drama = 1, Action = 3, Musical = 1). Then, two attributes with the largest
sums (Comedy and Action) are selected as relevant attributes of the active user. Then, all
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items that fit the relevant attributes comprise the decision class D = {Item 2, Item 3, Item 4,
Item 5, Item 6}.

Reduce the domain from all items set to decision class D. Relevant items of the user u in
domain D will be a set Cu :

C1 = {Item 2, Item 4, Item 5, Item 6}, C2 = {Item 2, Item 4, Item 6},
C3 = {Item 3, Item 4, Item 5, Item 6}, C4 = {Item 3, Item 5, Item 6},
C5 = {Item 2, Item 3, Item 6}.

Then, C = {C1,C2,C3,C4,C5} is a covering for the active user in domain D. Based on the
definition of the second-type covering reduction algorithm,C2 ⊂ C1,C4 ⊂ C3; thus,C2 and
C4 can be regarded as redundant elements to be removed. Then, we can obtain the reduct(C)
= {C1,C3,C5}, so the reduct-users Ur = {U1,U3,U5}.

Step 2: Similarity computation Candidate neighbors CNr
au for the active user are com-

posed by users in Ur , CNr
au = Ur = {U1,U3,U5}. Then utilize the Pearson correlation

coefficient similarity measure to compute the similarity between the active user and each
user in CNr

au. Table 3 shows results of similarity and user rank for the traditional UBCF and
proposed CBCF approaches.

Step 3: Neighborhood selection If we consider only three nearest users in candidate
neighbors as neighborhood of the active user,U1,U2, andU3 will comprise the neighborhood
Nau(3) for the traditional UBCF; however, for our proposed CBCF approach, U1,U3, and
U5 will be considered as the neighborhood Nr

au(3).
Step 4: Rating prediction From the rating scores of Nr

au(3), we use the adjusted weighted
sum approach to predict the rating scores for item 7 and item 8. Here
Pau,7 = 3.284, Pau,8 = 2.588

Because Pau,7 > Pau,8, if we select the top one movie as recommendation, item 7 will be
recommended to the active user.

5 Experiments and evaluation

In this section, we introduce the evaluation dataset and metrics, examine the effects of the
approach components, and compare the CBCF approach’s performance with the traditional
UBCF approach with different datasets.

5.1 Experimental setup and evaluation metrics

In our experiments, we utilized the MovieLens (Herlocker et al. 1999) and Jester (Ken et al.
2001) datasets because they are often used to evaluate RSs. The MovieLens 100K dataset
consists of 1682movies, 943 users, and 100,000 ratings on a scale of 1–5. Each user has rated
at least 20 movies, and in our study, movies rated above 3 were treated as a user’s relevant
movies. The Jester 3.9M dataset contains ratings of 100 jokes from 24,983 users. Each user
has rated 36 or more jokes. The value range of rating scores is −10 to 10. A value of “99”
represents an absent rating. In our experiment, jokes rated above 5 were treated as a user’s
relevant jokes.

We also used the conventional leave-one-out procedure to evaluate the performance of the
proposed approach. For each test user, we only considered items that the user had rated as
test items. First, we supposed that the test items had no rating scores from the test user. Then,
our approach predicted a rating score for each test item using the information obtained from
the remaining users. Finally, comparisons were made between the original and predicted
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Table 4 Average size of decision class versus l with the MovieLens dataset

l (number of relevant attributes) 1 2 3 4

Average size (decision class) 583.257 70.363 7.068 0.303

rating scores. For the MovieLens dataset, we summed each attribute value in the test user’s
set of relevant movies, and l number attributes with the largest sums were selected as the
relevant attributes of the test user. As there were 18 attributes for each movie, we computed
the average size of decision class in terms of different number of l, Table 4 shows the result.
If the size of test user’s decision class is too big, there will be just fewer redundant users
could be removed; however, if the size of test user’s decision class is too small, other users’
relevant item set will include this decision class easily, in this case, it will lose the meaning
of reduction. Overall consideration, we select two attributes to construct the decision class.

For the Jester dataset, no information was presented about item attributes. There were 100
jokes in this dataset, we considered the top 50 jokes sorted by the test user’s rating scores
as the decision class. If the number of rated jokes from the test user was less than 50, we
treated all rated jokes as the decision class. However if the neighbor’s set of relevant jokes
was too large, it would include the decision class, in this case, covering reduction will lose
effectiveness. To avoid this, we selected the top 10% users who had rated the fewest jokes
from all users, and utilized these 2498 users for our experiment.

To measure the performance of the proposed approach, we used the mean absolute error
(MAE), root mean square error (RMSE), and coverage as evaluation metrics, all of which
are popular metrics for evaluating RSs.

The MAE and RMSE metrics demonstrate the average error between predictions and real
values; therefore, the lower these values, the better the accuracy of RSs.

MAE = 1

card(U )

∑

u∈U

⎛

⎝ 1

card(Ou)

∑

i∈Ou

|pu,i − ru,i |
⎞

⎠ , (8)

RMSE = 1

card(U )

∑

u∈U

√
√
√
√

1

card(Ou)

∑

i∈Ou

(pu,i − ru,i )2, (9)

where Ou = {i ∈ I |pu,i �= � ∧ ru,i �= �} indicates set of items rated by user u having
prediction values.

In different research fields, the coverage metric can be interpreted and defined differently.
We define coverage metric as calculating the percentage of situation in which at least one
k-nearest neighbors of the active user can rate an item which has not been rated by that active
user. Here, let Su,i as the set of user u’s neighbors which have rated the item i , and define
Zu = {i ∈ I |Su,i �= ∅}.

Coverage = 1

card(U )

∑

u∈U

(

100 × card(I cu ∩ Zu)

card(I cu )

)

. (10)

In addition, the reduction rate is defined as an evaluation metric, that measures the effec-
tiveness of removing redundant users from all users. Reduction rate is given as follows:

ReductionRate = 1

card(U )

∑

u∈U

card(CNu − CNr
u)

card(CNu)
, (11)
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Table 5 Number of candidate
neighbors for traditional UBCF
and CBCF approaches

UBCF CBCF Reduction rate

MovieLens 943 193 0.795

Jester 2498 580 0.768

whereCNu means candidate neighbors of user u,CNr
u represents user u’s candidate neighbors

after user reduction.

5.2 Experimental results and comparisons

We conducted experiments to demonstrate the performance of the proposed CBCF approach.
In addition, using different datasets, comparisons of the CBCF and traditional UBCF
approaches were performed to verify if the proposed CBCF approach could provide better
recommendations or not than traditional UBCF approach. In both experiments, the Pearson
correlation coefficient approach was used as the similarity measure, k-NN approach was
utilized to select the neighborhood, and the adjusted weighted sum approach was used as the
aggregation function. To obtain MAE, RMSR, and coverage values, according to Herlocker
and Konstan (2002), we selected different size k neighborhood from candidate neighbors,
k ∈ {20, 25, 30, . . . , 60}. Currently, researches have gotten the conclusion that there is a
trade-off relationship between accuracy and coverage in traditional UBCF approach. As
increasing the size of neighborhood, coveragemetric increases constantly; however, for accu-
racymetric, it first increases and then decreases (Herlocker et al. 1999;Herlocker andKonstan
2002). In our experiments, due to the size of neighborhood is in a small range, experimental
results may appear that both accuracy and coverage increase as the size of neighborhood
increases. However, it does not negate the trade-off relationship between accuracy and cov-
erage in traditional UBCF approach.

Table 5 shows results about number of candidate neighbors for traditional UBCF and
CBCF approaches in MovieLens and Jester datasets respectively. As can be seen, in Movie-
Lens dataset, there are 943 users, so in traditional UBCF approach, all 943 users will be
considered as candidate neighbors. After user reduction, on average, approximately 79.5%
of users are removed as redundant users, so in CBCF approach, remaining 193 users will
comprise the candidate neighbors. In Jester dataset, recall that there are 2498 users, so the
number of candidate neighbors for traditional UBCF approach is 2498. The reduction rate
is 76.8%, which means approximately 76.8% of users are removed as redundant users on
average, so in CBCF approach, the average number of candidate neighbors is 580.

First, we introduce comparisons between the CBCF and traditional UBCF approaches
with the MovieLens dataset. Figure 1 shows accuracy results (MAE and RMSE) versus the
size of neighborhood. As can be seen, for traditional UBCF approach, both MAE and RMSE
values decrease as the size of neighborhood increases, when the size of neighborhood is
60, they obtain the least values 0.626 and 0.801 respectively. On the other hand, for CBCF
approach, the MAE and RMSE values are stable, and values of two metrics are 0.623 and
0.788 when the size of neighborhood is 60. Overall, for MAE and RMSE metrics, all values
of CBCF approach are lower than traditional UBCF approach, whichmeans that the predicted
scores by CBCF approach are closer to the original scores. So the proposed CBCF approach
outperforms traditional UBCF in terms of MAE and RMSE. Figure 2 illustrates the coverage
metric versus the size of neighborhood. As shown in figure, the coverage of both CBCF
and traditional UBCF approaches increases obviously as the size of neighborhood increases.
However, the coverage of proposed CBCF approach is higher than traditional UBCF in terms
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Fig. 1 Accuracy results (MAE and RMSE) versus the size of neighborhood with MovieLens dataset
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Fig. 2 Coverage results versus the size of neighborhood with MovieLens dataset

of different size of neighborhood, it means, CBCF approach can recommend more types
of movies that the active user has not yet rated. Thus, the comparative results for CBCF
and traditional UBCF obtained with MovieLens dataset indicate that, our proposed CBCF
approach can select more appropriate neighborhood, and outperform the traditional UBCF
approach in terms of accuracy and coverage.

Next, we illustrate comparisons between the CBCF and traditional UBCF approaches
with the Jester dataset. Figure 3 explains accuracy results (MAE and RMSE) versus the size
of neighborhood. As shown in the figure, for both CBCF and traditional UBCF approach,
values of MAE and RMSE increase slightly as the size of neighborhood increases, it means
the accuracy becomes lower when the neighborhood increases. And for MAE and RMSE
metrics, all values of the proposed CBCF approach are higher than traditional UBCF, it
indicates that CBCF approach does not outperform in terms of MAE and RMSE. Figure 4
shows the coverage metric versus the size of neighborhood. As can be seen, for both CBCF
and traditional UBCF approaches, coverage increases slightly as the size of neighborhood
increases; however, traditional UBCF is lightly higher than the CBCF approach, whichmeans
the CBCF approach cannot recommend more types of jokes for the active user. In conclu-
sion, the comparative results between CBCF and UBCF with Jester dataset reveal that, the
proposed CBCF approach is inferior to the traditional UBCF approach in terms of accuracy
and coverage.
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Fig. 3 Accuracy results (MAE and RMSE) versus the size of neighborhood with Jester dataset
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Fig. 4 Coverage results versus the size of neighborhood with Jester dataset

5.3 Discussion

The experimental results indicate that the proposed CBCF approach demonstrates differ-
ent performance with different datasets. In the MovieLens dataset experiment, there were
1682 movies and 943 users. For each user, the number of rated items was quite smaller than
the number of unrated items; therefore, this dataset is very sparse. In the proposed CBCF
approach, user reduction procedure can remove redundant users which may have high simi-
larity but can only make predictions for few types of items, reduct-users with diverse tastes
comprise the candidate neighborhood, neighborhood selected from candidate neighbors can
predict rating scores for more types of items, so the coverage metric has improved greatly
comparing with the traditional UBCF approach. Furthermore, in RSs, although some users
have higher similarity with the active user, they cannot provide predictions with high accu-
racy. For example, some users have rated few items, they often also have few co-rated items
with the active user, even only one; however their rating scores for co-rated items are similar.
In this case, they will have high similarity, but they may not have similar preferences with
the active user, so they cannot provide predictions with high accuracy. As these users have
fewer rated items, in CBCF approach, they are easy to be considered as redundant users to
be removed, so accuracy metric of CBCF approach has a great improvement than traditional
UBCF approach.
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In the Jester dataset experiment, we utilized 2498 users; however, this dataset has only
100 jokes. Thus, for each user, there are fewer unrated jokes than rated jokes. Each joke
may be rated many times by different users; thus, this dataset is not sparse. Under these
circumstances, all jokes can be considered as popular jokes, and each user can predict rating
scores for sufficient types of jokes relative to all 100 jokes. Due to co-rated items are sufficient
between each two users, so users having higher similaritywith the active user can also provide
predictionswith higher accuracy. In CBCF approach, user reduction procedure removes some
redundant users with higher similarity; however, these users canmake predictionswith higher
accuracy, so the accuracymetric decreases comparingwithUBCF approach. Besides, as there
are only 100 jokes, and each user has rated sufficient jokes, it means each user can make
predictions for almost same types of jokes. So after user reduction, reduct-users, which
comprise candidate neighbors, may not have improvements to make predictions for more
types of jokes. Therefore, comparing with traditional UBCF approach, the coverage metric
of CBCF approach does not have improvements.

Generally, in practical applications, RSsmust handle big data that include huge numbers of
users and items. Thus, for each user, only small number of items have been rated compared
to the huge number of unrated items. Thus, most RSs have sparse datasets, such as the
MovieLens dataset. However, for a sparse dataset, the proposed CBCF approach can select
more appropriate neighborhood than the UBCF approach and can make recommendations
for the active user with satisfactory accuracy and coverage values simultaneously. Thus, the
proposed CBCF approach has important significance for RSs.

6 Conclusion and future work

UBCF approach is the most commonly used and studied technology for making recom-
mendations in RSs. Generally, we use accuracy and coverage to evaluate an RS; however,
although neighborhood selected by the traditional UBCF approach has high similarity with
the active user, neighborhood tends to have similar tastes, so they are like to give high rating
scores for few types of items, even only the popular items. Therefore it is difficult for the
traditional UBCF approach to provide satisfactory accuracy and coverage simultaneously.

In this paper, we have presented the CBCF approach based on covering-based rough
sets to improve the traditional UBCF approach. In the proposed CBCF approach, we add
the user reduction procedure into the traditional UBCF, covering reduction in covering-
based rough set is utilized to remove redundant users from all users, users having diverse
preferences comprise reduct-users. Neighborhood is composed by k most similar users in
candidate neighbors which consist of reduct-users, so that neighbors in the neighborhood
not only have high similarity but also have diverse tastes. Our experimental results indicate
that, for sparse datasets (which often appears in practical RSs), unlike traditional UBCF, the
proposed CBCF approach can provide recommendations with good values of accuracy and
coverage simultaneously. Thus, the proposed CBCF approach can recommend satisfactory
recommendations and obtain high confidence from the active user.

In the future, we plan to improve the proposed CBCF approach to address the new user
cold-start problem, which is an extremely difficult issue in RSs; however, the proposed
CBCF approach cannot select appropriate neighborhood based on insufficient new user data.
We must propose a new similarity measure to select neighborhood efficiently and make
satisfactory recommendations for new users.
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