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Abstract In this paper, we introduce a Yosida inclusion
problem as well as a generalized Yosida approximation
operator. Using the graph convergence of H(-, -)-accretive
operator and resolvent operator convergence discussed in
Li and Huang (Appl Math Comput 217:9053-9061, 2011),
we establish the convergence for generalized Yosida
approximation operator. As an application, we solve a
Yosida inclusion problem in g-uniformly smooth Banach
spaces. An example is constructed, and through MATLAB
programming, we show some graphics for the convergence
of generalized Yosida approximation operator.
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Introduction

A reasonable attention has been shown by many
researchers for the study of variational inclusions
(inequalities) and their generalized forms, which occupies a
leading and significant role to connect research between
analysis, geometry, biology, elasticity, optimization, image
processing, biomedical and mathematical sciences, etc. A
broad range of problems with which we encounter in
physics, economics, management sciences, and operations
research can be formulated as an inclusion problem
0 € T(x), for a given set-valued mapping T on a Hilbert
space H. Thus, the problem of finding a zero of 7, i.e., a
point x € H, such that 0 € T(x) is a fundamental problem
in many areas of applied sciences.

On the other hand, it is well known that monotone
operators on Hilbert spaces can be regularized into single-
valued Lipschitzian monotone operators via a process
known as the Yosida approximation. This Yosida approx-
imation operators are instrumental to approximate the
solutions of general variational inclusion problems using
non-expansive resolvent operators. Recently, many authors
[2, 3, 5, 6, 8-10] have applied Yosida approximation
operators and their generalized forms to solve some vari-
ational inclusion problems. Zou and Huang [14], Ahmad
et al. [1] introduced and studied the graph convergence of
H(-,-)-accretive operators and H(-,-)-co-accretive opera-
tors, respectively, for solving variational inclusion prob-
lems and their system. For more details, we refer to
[4, 11, 12, 15].

This paper deals with the introduction of a generalized
Yosida approximation operator with some of its properties.
Under the concept of graph convergence of H(-,-)-accre-
tive operators, we prove the convergence of generalized
Yosida approximation operator. Finally, we solve a Yosida
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inclusion problem in g-uniformly Banach spaces.
A MATLAB programming related to graph convergence of
generalized Yosida approximation operator is discussed
with a consolidated example. Our results are applicable and
new in this direction and refinement of results of Li and
Huang [7].

Preliminaries

Let X be a real Banach Space with its dual space X*. We
denote the duality pairing between X and X* by (-,-), and
2% is the family of all nonempty subsets of X.

The generalized duality mapping F,:X — 2%¥ s
defined by

Fo) = {1 € X o gy = Il I = I}, e x,

where ¢ > 1 is a constant. For ¢ = 2, F, coincides with the
normalized duality mapping. If X is a Hilbert space, F;
becomes the identity mapping on X. It is to be noted that if
X is uniformly smooth, then F, is single-valued.
Throughout the paper, we assume that X is a real Banach
space and F, is single-valued.

The function py : [0,00) — [0, 00) is called modulus of
smoothness of X, such that

e+ 31 + I = )
put) = { el

Ll <y sz}.

A Banach space X is called

1. uniformly smooth if lin&”XT(') =0;
1—

2. g-uniformly smooth if there exists a constant ¢ > 0,
such that

pX(t)Sth7 q> 1.

While encountered with the characteristic inequalities, Xu
[13] proved the following important Lemma in g-uniformly
smooth Banach spaces.

Lemma 1 Let X be a real uniformly smooth Banach
space. Then, X is g-uniformly smooth if and only if there
exists a constant ¢, > 0, such that for all x,y € X,

e+ 317 < 11X + gly, Fo(x)) + cqllylI*.

The following definitions and concepts are essential to
achieve the aim of this paper.

Definition 1 [14] Let AAB: X —-Xand H: X xX — X
be the single-valued mappings.

1. A is said to be accretive, if

’r @ Springer

(A(x) —A(y),Fy(x—y)) >0, Vx, yeX;

2. A is said to be strictly accretive, if A is accretive and

(A(x) —A(y),Fy(x —y)) =0, if and only if x = y;
3. A is said to be d4-strongly accretive, if there exists a
constant 6, > 0, such that

(Ax — Ay, Fy(x — y)) > dallx — y|I%

4. Ais said to be y,-Lipschitz continuous, if there exists a
constant y, > 0, such that

[Ax — Ay[| <pallx =yl ¥x, y€EX;

5. H(A,") is said to be a-strongly accretive with respect to
A, if there exists a constant oo > 0, such that

(H(Ax,) — H(Ay,"),Fq(x —y)) 2 allx = y[|, Vx, y€X;
6. H(-,B) is said to be f-relaxed accretive with respect to
B, if there exists a constant § > 0, such that

(H(-,Bx) — H(:,By), Fg(x — y)) = — Bllx — y||,
Vx, ye€X;

7. H(A,-) is said to be o-Lipschitz continuous with
respect to A, if there exists a constant ¢ > 0, such that

[H(Ax, ) = H(Ay,-)[[ <ollx = y[, Yx, yeX.
Similarly, we can define the Lipschitz continuity of H with
respect to B.

Definition 2 [14] Let H: X — X be a single-valued
mapping and M : X — 2% be a set-valued mapping. The
mapping M is said to be

1. accretive, if

<M7V,Fq()€*y)>20, VX,yGX, MGM(X),VGM(_)));

2. m-accretive, if M is accretive and (I + AM)(X) = X,
for all 2 > 0, where [ is the identity operator on X;

3. H-accretive, if M is accretive and (H + AM)(X) = X,

for all /. > 0.

Definition 3 [14] Let A\ B: X —> X, H: X xX — X be
the single-valued mappings and M : X — 2X be a set-val-
ued mapping. The mapping M is said to be H(-, -)-accretive
with respect to A and B, if M is accretive and [H(A, B) +
IM|(X) = X, for every /. > 0.

Lemma 2 [14] Let H(A, B) be a-strongly accretive with
respect to A, fB-relaxed accretive with respect to B and
o > f. Let M be an H(-,-)-accretive operator with respect

10 A and B. Then, the operator [H(A,B) + JM| ™" is single-
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called the
RAH,;A) : X — X, such that

valued and is resolvent operator, i.e.,

Ry (u) =

M [H(A,B) + M|

(u), YueX, A>0. (1)

Furthermore, the resolvent operator defined by Eq. (1) is
ﬁ-Lipschitz continuous.

Lemma 3 [3] Let {a,} and {b,} be two non-negative
real sequences satisfying

ap+1 S kan + er

with 0<k <1 and b, — 0. Then, lim,_,,, a, = 0.

Generalized Yosida approximation operator
and its convergence

We define the generalized Yosida approximation operator
using the resolvent operator defined by Eq. (1), that is

Ry (u) = [H(A, B) + M) (u),

A A>0.

Vx € X,
Definition 4 The generalized Yosida approximation

operator denoted by JZ(};) is defined as

» 1 i
JZEA7)(M):E{[—RZE/{)}(M), YueX and 1>0,
(2)

where [ is the identity mapping on X.

Lemma 4 The generalized Yosida approximation oper-
ator defined by Eq. (2) is

1. 0y-Lipschitz continuous, where 0, = )(1 )] o> f.
]

2. 0,-strongly monotone, where 6, = [ '/’) )

,o0> P

Proof
1. Letu,ve X and 4> 0. Using Lemma 2, we have
i ) = 7 )|

=+ — Rl i -

1) = Ry |

A

< [l vl & ) - R )]

1 1

e Lt

5 P -

i P

i.e.,
HJZ&”(@ T H<01|lu—v\| (3)

—p+1]

where 0; = W ,o0 > f.

2. For any u,v € X, and 4 > 0 and using Lemma 2, we
have

() = 15 ). Fyu = v))

~ (R ) = R ). Fyfu =) |

> [l =l [R5 @)~ R0
= vl
> [l = vl = vl = v
= CRy;
= 5 [l = vl = g =]
_ [(OC B ﬁ) B 1] ||Lt o qu

Mo —p) '

VM,VEX,)L>0

and 0, [‘ﬁ) e=h] o > B,

a—f)

Note I 1t is interesting to note that resolvent operator
defined by Eq. (1) and generalized Yosida approximation
operator defined by Eq. (2) are connected by the following
relation:

M (@) € M+ H A B) — 1) (R ().

Let M : X — 2X be a set-valued mapping. The graph of
the mapping M is defined by
graph(M) = {(x,y) e X x Y :y € M(x)}

Definition 5 [7]LetA,B: X — Xand H : X Xx X — X be
the single-valued mappings. Let M,,M: X — 2X be
H(-,-)-accretive operators for n = 0, 1,2, . ... The sequence
{M,} is said to be graph convergence to M, denoted by

M, M, if for every (x,y) € graph(M), there exists a
sequence (x,,y,) € graph(M,), such that

Xp — X, Y, —Yy asn— Q.

Y
ﬁ @ Springer
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Theorem 1 [7] Let M,,M : X — 2% be H(-,-)-accretive
operators for n =0,1,2,.... Assume that H: X x X — X
is a single-valued mapping, such that

1. H(A, B) is a-strongly accretive with respect to A and
P-relaxed accretive with respect to B, o > f;
2. H(A, B) is v,-Lipschitz continuous with respect to
A and y,-Lipschitz continuous with respect to B.
Then, MngM if and only if
Ry (w) = Ry W), VueX, >0,
H() -1 H() _
where R, = [H(A,B) +/M,] " and R, ;" = [H(A,B)
+M) "

Now, we prove the convergence of generalized Yosida
approximation operator in the light of graph convergence
of H(-,-)-accretive operator without using the convergence
of resolvent operator defined by Eq. (1).

Theorem 2 Let M, M :X — 2% be H(-,-)-accretive
operators for n=20,1,2,..., and H: X XX — X be a
single-valued mapping, such that conditions (1) and (2) of
Theorem 1 hold.

Then M,,gM if and only if
JZE/) (x) — JZS")(X), VxeX, A>0,
where

H(-,- 1 H(-
i@ = [1- R ),

. 1 .
I () = Z [1 ~ R )} (x), WxeX,

and RZi’;) and RZ(}") are defined in Theorem 1.

v

Proof Necessary part: Suppose that M,,gM. For any
given x € X, let
w=Jy ) and z=70 ().

Then,

= 2050 =2 [T R o)

implies that

(x = 72) = Ry (x) = [H(A, B) + 2M] ' (),
ie.,

H(A,B)(x — Az) + AM(x — 42) = x.

It follows that
1

Sl H(A,B)(x - iz)] eM(x — 2).

ﬁ @ Springer

That is
(x _ /lz,% e — H(A, B)(x — ;,z)}) € graph(M).

By Definition 4, there exists a sequence (w,,y,) €
graph(M,,), such that

W (= 72), sl HAB) -9 (@)

Since y, € M,,(w,), we have
H(Aw,,Bw,) + Ay, € [H(A,B) + M, |(w,),

and so,

Wy = [H(A, B) + M, ' [H(Aw,, Bw,) + Ay,],
= RyC)[H(Aw,, Bw,) + Ay,

= (1= A I (Av, Bwa) + i),

which implies that
1
“Wn =
A

2 H (AW, Bw,) + 3 = Ty [H(Aw, Bw) + iy (5)
Using (1) of Lemma 4 and Eq. (5), we have
llzn — 2

= |~

. 1 1
JZ(R(x) + T T T W =2

= |75 )+ H A, B) + 3, = )

[H (Aw,, Bw,) + Jy,] — }W —

< HJZ,E}Z) (x) = JHC [H (Aw,, Bw,) + ]

1
*H(AWH,BW,,) +yn - an —Z

< 0y]|x — H(Aw,, Bw,,) — Ay,||
1

1
EH(AW,,,BW,,) + V- Ix

+

1 1
W, —=X+2Z
A

+ p

4

_ (01 - %) e — Ay, Bs) — 23+ 1wy —x-+ 7]
- (91 - %) x — H(Awn, Bwy) + H(A, B)(x — /2)
— H(A,B)(x — ) — Ayl + o — x4 2]
< (005l LB~ 22— i
(00 5) I8 B~ 22— B,

1 )
+z||w,, —x+ Az]|.



Math Sci

Since H is y,-Lipschitz continuous with respect to A and
7,-Lipschitz continuous with respect to B, we have

HH(A,B) (x — 2z) — H(A, B)w,

‘H(A(x —)2),B(x — 22)) — H(A(x — 22), Bwa)

+ H(A(x — 2z),Bw,) — H(Aw,, Bw,)

< ||H(A(x — 22), B(x — Jz)) — H(A(x — iz), Bw, ]|
+ | H(A(x — 4z), Bwa) — H(Awy, Bw,)||

<pallx = 2z = wall + nillx = Az — wa|

= (1 +72)llx — 2z — wy. (7)

Using Egs. (7), (6) becomes
1
oo = ll = (00 = ) b = HOALBYx = 72— i

1 1
# (0= 3) ot v+ 5] x4 el
By Eq. (4), we have
Wy (0= 72), vy = 5l H(A,B)(x — 2]

1.e.,

, 1 ,
[lwn —x + Az|| — O, 7 |lx — H(A,B)(x — Az) — Jyu|| — O,

and so
llzo — 2]l = 0, asn — oo,
i.e.,

I @) — I ().

Sufficient Part: Suppose that

I @) = I ), vreX, A>0.

For any (x,y) € graph(M), we have y € M(x), and hence
H(Ax,Bx) + Ay €[H(A, B) + /M](x).

Therefore,

x= [I - }JAZ(A)} (H(Ax,Bx) + Ay).

Let x, = [I - )JAZE/)} (H(Ax, Bx) + Ay). This implies that

%[H(Ax, Bx) — H(Axn, Bx,) + Ay] € My(xy).

Let y, = 1[H(Ax, Bx) — H(Ax,,Bx,) 4+ /y] and using the
same arguments as for Eq. (7), we have

1
(A= :Hz [H(Ax, Bx) — H(Ax,, Bx,) + Ay] — yH

1
=—||H(Ax, Bx) — H(Ax,, Bx,)||
A

1
=—||H(Ax, Bx) — H(Ax,, Bx)
A

+ H(Ax,, Bx) — H(Ax,, Bx,))| (8)

1
< 7 |[H(Ax, Bx) — H(Ax,, Bx)||

1
+ i ||H(Ax,, Bx) — H(Ax,, Bx,)||

< (P32 1, - ).

Using above arguments, we have
oo =l = || (7= 2731 ) (A, B) + ) = (1= 2y
[H(Ax, Bx) + Ay]]|
_ H [(1 - ;,Jjjij) - (1 - uj;f';”)] [H(Ax, Bx) + /ly]H.
9)
Since JZ(A) (x) — JZ(/)(x) we have from (9) that

||, — x| = 0 asn — oco.

Thus, from (8), it follows that y, — y as n — oo,
i.e.,

M, SM.
This completes the proof. O

Combining Theorems 1 and 2, we have the following
remark.
Remark 1 The convergence of the resolvent operator
RAHIiX (x) — RZ('/{‘)(x), and the convergence of the gener-
alized Yosida approximation operator JZEA) (x) — JZ(;) (x)

are equivalent if and only if the operator MngM .

Proof Suppose that MngM and RZ()) (x) — RZ(A)(x)
Then
Ry () — Ry (x), vxeX

= [’ ~ Ry } (x) = [1 - R;’,ﬂ ()

= % 1= Ry 0 — % =Ry 0

= JZ(/) (x) — JZS':")()C), Vx € X.
.. H(Y) H(7)
On similar way, we can show that Jy, "’ (x) — Jy, 7" (x)

implies that RZ(A) (x) — Rf;i)(x) O

ﬁ @ Springer
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We construct the following consolidated example which
shows that the mapping M is H(-, -)-accretive with respect to

A and B, M, M and Jjj") — Ju. Through MATLAB

programming, we show some graphics for the convergence
of generalized Yosida approximation operator.

Example I let X=R; A,B:R—Rand H:Rx R —
R be the mappings defined by

Vx € R,

with the condition x*> + y? + xy > 1. Suppose M,,M : R —
2% are the set-valued mappings defined by

x 1
Mn(.x)_i'f' 3
and

X
M(x) ==.

Then, for any fixed u € R, we have
<H(Axa M) - H(Ay7u)7x _y> :<A)C _Ayux _y>

Hence, H(A, B) is %—strongly accretive with respect to A. In
addition

(H(u,Bx) — H(u,By),x —y) = —(Bx — By, x — y)
1

= S-S

Hence, H(A, B) is %—relaxed accretive with respect to B.
One can easily verify that for 1 = 1,

[H(A,B) + M) (R) = R.
Hence, M is H(-,-)-accretive with respect to A and B.

Now, we show that M,,gM . For any (x,y) € graph(M),
there exists a sequence (x,,y,) € graph(M,,), where let

(1+))
Xp=|14-)x
n

and

X 1
Yn = Mn(xn) == +ﬁ7

> Vn € N.

Y4
ﬁ @ Springer

Since

1
limx, = lim[(l +;)x} =X,

we have,
X, — X asn — oo.

In addition, by definition of graph, it follows that

L 1) 1
lim y, = 1i£n(%+n—2) = Sx =M@ =».

It follows that y, — y as n — oo and hence, MngM.

Furthermore, we show that JZ('E) — Jz('-") as MngM .

n A

Let for A = 1, the resolvent operators are given by
_ 3 1
Rﬁi,;)(x) = [H(A,B) + AM,] l(x) =2 (x _ ;)

and
R (x) = [H(A,B) + 2M] ' (x) = 2V,

and the generalized Yosida approximation operators are
given by

" 1 - , 1
win-3i-o- -+

and

I @) =5 [1= RS o) = (x = 295).

lxz‘ G%)} — (x—2A)

We evaluate

b 1) -

My, 2 )

which shows that

) =G| =0 asn— o,
ie

L.,

G
My A as M,—M.

Using the above example, the convergence of general-
ized Yosida approximation operator JZ(;) to JZ(;')

illustrated in the following figure for n = 1,2, 5, 15.

is
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The convergence of J“HA( { to Jan(i) taking Mn(x)=></2+1/n2 and M(x)=x/2

A Yosida inclusion problem and existence
of solution

First, we state a Yosida inclusion problem and its equiva-
lence with a fixed point problem.

Let X be g-uniformly smooth Banach space and let M :
X — 2% be H(-,-)-accretive operator. We consider the
following problem.

Find x € X, such that

0 € J0) (x) + M (),

WA
where Jﬁf'j') is the generalized Yosida approximation
operator defined by Eq. (2). Problem (10) is called Yosida
inclusion problem.

The fixed point formulation of the problem Eq. (10) is

as follows:

VxeX, A>0, (10)

x =R | H(AB)x — 25 (x) |, ¥x € X, 2> 0. (11)
Using the definition of the resolvent operator RZ('j') defined
by Eq. (1), one can easily obtain the equivalenée of Egs.
(10) and (11).

Based on Eq. (11), we construct the following iterative
algorithm for solving Yosida inclusion problem Eq. (10).

Algorithm 1 For any xp € X, compute the sequence
{xx} C X by the following scheme:

Swer = Ry [HA B, — 1) (), 1)

where A >0, n=0,1,2,....

If JZ(X; =T, where T:X — X is a mapping, then the
Yosida inclusion problem (10) and Algorithm 1 reduces to
the variational inclusion problem (10) and Algorithm 1 of
Li and Huang [7], respectively, and note that for

suitable choice of operators in the formulation of (12), one
can obtain many existing problems and algorithms in
literature.

Theorem 3 Let X be a g-uniformly smooth Banach space
and A,B : X — X be the single-valued mappings. Let H :
X X X — X be a single-valued mapping and M,,,M : X —

. G
2X be the H(-,-)-accretive operators, such that M,—M.
Assume that

1. H(A, B) is o-strongly accretive with respect to A and
P-relaxed accretive with respect to B and o« > [,

2. H(A, B) is v,-Lipschitz continuous with respect to
A and vy,-Lipschitz continuous with respect to B;

3. (a=B) =Y T+cy(yi +72)" —qla—B)
+4/T— gl + 470
4. (Ot—ﬁ)Z[Vl +V2+)01]

where 0; = Ki(fjg)l] , 0 = %, o> p and c, is same

as in Lemma 2.1. Then, the Yosida inclusion problem (10)
has a unique solution and the iterative sequence {x,}
generated by Algorithm 1 converges strongly to x.

Proof Let the mapping F : X — X be defined by
F(x) = R [H(A,B)x - )Jﬁ’jfﬁ(x)} , VxeX, >0

A

For any x,y € X and using Lemma 2, we have

1FG) = FO)I| = R [HAB)x = i) )]

~ Ry [H (A, B)y = My (y)] H
< ﬁ e, B)x — 222 ) — (A, BYy + 2|
- ﬁ HH(A,B)x — H(A,B)y — (x - y)

+ =) = @+ )|

1
< WHH(A,B))C—H(A,B)};_ (x—y)]
1
Rea

(13)

Using the same arguments as used in Li and Huang [7], we
have

|H(A, B)x — H(A, B)y — (x — )|’

< [0+ e +72)" — ql— BY] e — 11,
and hence
|H(A, B)x — H(A, B)y — (x )|

< /Tt + e +92)" = qlo— B)]Ibr = 31l

Using (1) and (2) of Lemma 4, we obtain

Y
ﬁ @ Springer
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H(x -y - A(JZ(A () - JZf[)(y)) Hq
< Je =yl = g2 (I3 () =I5 0, Folx =)
W =0 o)|

¢ = y[I* = gA0alx — y[|* + ¢4 410 [Ix — y||?
(1 —qlby + cqﬂf’()l) [lx = I,

+ c M1

ie.,
=0 = 2@ - i )|
< (/1 — g0 + ¢, 270, |[x — .

(15)

Using Egs. (14), (15), (13) becomes

1709 = FOI < 525 |1+ caln + 220" = aa = )

+{/1 = 4202 + e 210, |x = ],

1F(x)

where

— F)l <kllx =y, (16)

k=aiﬁ{{/ch(mﬂz)q*qw*ﬁ)

—+ 1[’/ 11— q)92 —+ Cq/lqgl}.

By condition (3), it follows that 0 <k < 1 and so (16) implies
that the mapping F has a unique fixed point x € X. Thus, x is
a unique solution of Yosida inclusion problem (10).

Next, we show that the sequence {x,} generated by the
Algorithm 1 strongly converges to x.

Using Egs. (11) and (12), we obtain

s =2l = R [HA By — 25 (50)]
~ Ry [Ha By = 2 W]

= | [, B = 25 ()]

— Ry [H (A, B = 2105 (50)]

+ Ry [H A, Bx,) - UZ“;)@”)}
~ Ry [H(Ax BY) W

ujf )]

— R [H (A, Ba) = 47 )|

(17)

<|mit) [H(Ax,,,Bx,,)

b R [ Br) — 22 ()]
H (-, A o H(-

- RM(/'L ) [H(Ax Bx) — /JM(; )(X)} H

<b, +—HH (A, Bx,) — 250 ()

)

- [ (Ax, Bx) — AJC (x)]

@ Springer

where

b, — H RC) [H(Axme,,) — T )}

ny

— RffA) [H(Axn,Bx,,) — /IJMn;’;; (xn)] H

Using Lipschitz continuity of H(A, B) in both the argu-
ments and Lipschitz continuity of generalized Yosida
approximation operator, we obtain

At - )

< HH(Ax,,, Bx,) — H(Axy, Bx) + H(Axy, Bx) — H(Ax, Bx)

HH(Ax,HBx,,) — H(Ax,Bx) —

= A ) = I8 = i )+ a4 ()
< |[H(Av,, Br) — H(Ax, BY) | + nH(Axn,Bx)
() — ‘]MS{ )(xn + /'LH‘/M.}: H
< 9tk = Xl 4 1l = xll + Ao + 201 —xu7

H(Ax Bx)||

+ )

(18)

where ¢, = HJM (xn) — Jﬁ(/ )(xn)
Using Eq. (18) (17) becomes

1
w1 =l < w4 =l + 92+ A0 [l = ] + Aea,

p

where 0, = A(f;l)]
By Theorems 1 and 2, we have

H 0 o H(-
Ryt [ (A, Br) = 0y (xn)] -

RZ<J> [H(Axn, an) - )J (xn)]

and hence,

Il () = I ().

Thus, b, — 0 and ¢, — 0 as n — oo. It follows that
|1 = x[| < P(O)[|xn — x[| + d,

where d,, = b, + Ac,, and P(0) = ﬁ [y, + v, + 401]. By

condition (4), we have 0<P(0) <1 and d, — 0 as b,,c, —
0(n — 00). By Lemma 3, we have

X1 = x[| = 0.
This completes the proof. O

Remark 2 If we take JZ%Q T, where T: X — X is a

mapping and deleting condition (4) from Theorem 3, we
can obtain Theorem 4.1 of Li and Huang [7].
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