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changes in Parkinson’s disease: a
comparison of 33 human and animal
studies
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Abstract

Background: As the popularity of transcriptomic analysis has grown, the reported lack of concordance between
different studies of the same condition has become a growing concern, raising questions as to the representativeness
of different study types, such as non-human disease models or studies of surrogate tissues, to gene expression in the
human condition.

Methods: In a comparison of 33 microarray studies of Parkinson’s disease, correlation and clustering analyses were
used to determine the factors influencing concordance between studies, including agreement between
different tissue types, different microarray platforms, and between neurotoxic and genetic disease models
and human Parkinson’s disease.

Results: Concordance over all studies is low, with correlation of only 0.05 between differential gene expression
signatures on average, but increases within human patients and studies of the same tissue type, rising to 0.38 for
studies of human substantia nigra. Agreement of animal models, however, is dependent on model type. Studies of
brain tissue from Parkinson’s disease patients (specifically the substantia nigra) form a distinct group, showing patterns
of differential gene expression noticeably different from that in non-brain tissues and animal models of Parkinson’s
disease; while comparison with other brain diseases (Alzheimer’s disease and brain cancer) suggests that the mixed
study types display a general signal of neurodegenerative disease. A meta-analysis of these 33 microarray studies
demonstrates the greater ability of studies in humans and highly-affected tissues to identify genes previously known
to be associated with Parkinson’s disease.

Conclusions: The observed clustering and concordance results suggest the existence of a ‘characteristic’ signal of
Parkinson’s disease found in significantly affected human tissues in humans. These results help to account
for the consistency (or lack thereof) so far observed in microarray studies of Parkinson’s disease, and act as
a guide to the selection of transcriptomic studies most representative of the underlying gene expression
changes in the human disease.
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Background
Meta-analysis is a powerful technique for understanding
gene expression in disease, increasing the power to
identify true biological signal within noisy gene expres-
sion datasets. While most meta-analyses focus on the
commonalities between studies, identifying the genes
most relevant to the condition under study, meta-
analysis approaches can also be used to shed light on
inconsistencies between studies. Such analysis has led to
the recognition of high levels of variation between pub-
lished microarray studies of disease [1], calling into
question the extent to which different tissues or model
systems can represent gene expression in human
patients. This is particularly noticeable in the context of
microarray studies of Parkinson’s’ disease. Parkinson’s
disease (PD) - a neurodegenerative disorder which
causes the death of dopaminergic neurons in the
substantia nigra, causing tremors and postural instability
- has been well-studied at the level of gene expression,
with numerous microarray studies available in public re-
positories. Several meta-analyses of PD gene expression
in human patients have been carried out [2–4] on data-
sets of up to 14 unique studies; however, concordance
between these studies has been reported to be low even
when standardized analysis is applied [3–6]. It has been
proposed that discordance could result from different
progression of the disease at time of post-mortem [6]
and differing amounts of neuronal loss between the
substantia nigra (SN) and other regions of the brain - in-
deed, an analysis of 11 human PD microarray studies
demonstrated increased convergence within the five
studies using samples from the SN [3]. As well as differ-
ing expression patterns resulting from cytoarchitectural
differences, there are patterns of tissue-specific gene
expression in healthy tissue [7] such as in different
regions of the brain [8, 9]. In diseased tissues, Dudley
et al. [10] found that comparison across different tissues
reduced the average concordance of disease gene expres-
sion from ~0.25 to ~0.10, although ‘the disease signal
[remained] stronger than the tissue signal’.
Also highlighted by an early microarray study of PD

[11] is the difference between animal models of PD
(reviewed in Blesa et al. [12]) and the human condition,
which is of much practical relevance for therapeutic
research. These models were developed to mimic the
clinical symptoms of Parkinson’s disease, and it is
unclear to what extent the underlying patterns of gene
expression will reflect those that take place in human PD.
Studies comparing disease models to human patients have
reported conflicting results: one study examined the
consistency of gene expression between a mouse model of
colorectal liver metastasis and human specimens, and
found an overlap of 35% of differentially expressed genes,
as opposed to 44% in normal liver tissue [13]. Another
study of mouse models of inflammation found little
transcriptomic agreement between human inflammatory
conditions and their model counterparts [14], although a
re-analysis of this data using different statistical methods
questioned this conclusion [15]. As the use of transcripto-
mics becomes more prevalent in medicine and drug
development, it is important to establish whether gene
expression in a model system can be treated as a proxy for
gene expression in the human condition.
Choice of microarray platform is another factor that

can affect concordance between studies. Notably,
although the cross-platform reproducibility of results
from the same biological replicates may be high [16, 17],
an early study of a mouse model of PD found very little
concordance between Affymetrix and CodeLink plat-
forms [18]. More recent studies in psoriasis [19] and in
healthy tissues [7] still found detectable platform biases,
indicating that this issue may not be resolved by the use
of newer or more closely related microarray technologies.
The effect of sample size on study concordance should
also be considered: numerous simulation studies have
found that larger sample sizes in microarray studies
result in more stable differentially expressed gene lists
[20, 21]; however, large numbers of high-quality brain
tissue samples are not always easy to obtain [22, 23],
and so it is advantageous to examine more directly
the impact of sample size on concordance in this
context.
Knowing how much concordance can be expected

between studies carried out using different parameters
will act as a measure of ‘representativeness’ of the
recorded gene expression to true human PD, helping to
establish whether animal models of disease are represen-
tative of the human condition at the transcriptomic
level, and whether gene expression in more easily
accessible surrogate tissues could be useful in PD re-
search or diagnostics [24]. As the largest meta-analysis
of PD to date, this study will analyse the effects of these
four factors - species, tissue, platform, and sample size -
to understand the reasons for the observed inconsistency
between microarray studies of PD, aiming to eventually
establish the relevance of these parameters to the repre-
sentation of the human disease at the level of measured
gene expression.

Results
Higher concordance of microarray studies within humans
and within tissue groups
The mean average pairwise correlation of differential
gene expression signatures (i.e., the top 50 genes by
absolute log fold change at a significance of p < 0.05, see
Methods) over all 33 Parkinson’s disease studies is 0.05
(Fig. 1), indicating little overall consensus as to which
genes are differentially regulated in PD. To identify how



Fig. 1 Average concordance of differential gene expression within subsets of shared factors. Average concordance over all studies is low, but
increases within human patients and studies of the substantia nigra
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much of the observed inconsistency is due to experi-
mental factors, concordance was examined within sub-
groups of studies that shared characteristics including
species, tissue, or platform (Table 1, Fig. 1).
The first factor to be examined is species. The average

concordance of differential gene expression signatures
across experiments increases from 0.05 over all PD stud-
ies to 0.15 in human in vivo studies. In the subset of
mouse studies, however, average concordance of differ-
ential gene expression decreases compared to the full
dataset, at 0.03, and average concordance within the
three rat studies is actually negative. This could be
explained by the use of different disease models with
distinct effects on gene expression: concordance within
studies using neurotoxic insult to model disease is 0.09
and 0.12 for the MPTP and genetic models respectively;
although there is still disagreement between studies in
the 6-OHDA group (Table 1).
The next factor considered (independently of species)

is the tissue type sampled. Limiting the studies under
consideration to those of the basal ganglia (here includ-
ing studies of the striatum and functionally also the sub-
stantia nigra), which is highly affected in PD, increases
average gene-level concordance from 0.05 to 0.10, while
further limiting the studies to just those of the substantia
nigra yields a substantial increase to 0.30 (Fig. 1). This
result is in agreement with a previous meta-analysis [3],
which also reported an increase in concordance when
the analysis was confined to studies of the substantia
nigra. Concordance within striatal studies alone is lower
than that over all tissues of the basal ganglia at 0.07;
however, tissue selection is strongly associated with spe-
cies, with substantia nigra studies tending to be from
humans (6 of 8 studies) and striatal studies tending to be
from animal models (8 of 9 studies), and so the lower
concordance within the striatal group perhaps reflects
the general lower concordance between animal models.
To deal with issues of species dependence in tissue
choice and other experimental parameters, the following
analysis focuses on human studies.

High concordance of biological pathway enrichment in
human PD
Given the low average concordance of differential gene
expression, correlation was also calculated at the level of
biological pathway enrichment (see Methods). As path-
ways are a higher-level biological concept, capturing
concerted changes in the expression of several genes, we
might expect to see higher concordance at this level, as
demonstrated in Sutherland et al. [3] Indeed, human
studies show relatively high concordance at the bio-
logical pathway level, from 0.22 over all human patient
studies to 0.3 over studies of human brain tissue, indi-
cating that measured differential expression reflects the
activation of similar biological processes (Fig. 2; see
Additional file 1 for a list of significant pathways). In
animals, in contrast to human studies, concordance at
the pathway level was in most cases actually lower than
that at differential expression level (Additional file 2).

Little effect of microarray platform on average
concordance of PD studies
The next factor examined was the effect of microarray
platforms, which are intended to be species-specific (one
macaque study run on the U133A platform was
excluded from this analysis). There is a very slight con-
cordance increase when selecting for platform types,
from 0.08 over all 19 human studies to 0.09 over all



Table 1 Average concordance of differential gene expression
signatures in microarray studies

Subset Number
of studies

Average concordance
of expression signatures

PD studies plus Alzheimer’s disease
and glioblastoma studies

42 0.04

All PD studies 33 0.05

Species

Human (inc. human cell lines) 19 0.08

Human patients 15 0.15*

Mouse models 9 0.03

Rat models 4 −0.04

Disease model

All neurotoxic models 12 0.03

MPTP 6 0.09

MPTP, mice only 5 0.10

6-OHDA 4 −0.03

Genetic models 3 0.12

Tissue

Basal ganglia (SN (excluding
isolated dopaminergic neurons)
and striatum)

18 0.10*

SN: tissue 8 0.30*

SN: isolated dopaminergic
neurons

4 0.03

Striatum 9 0.07

Platform

Affymetrix 27 0.06

U133 and U133 Plus arrays
(human studies only)

12 0.10

Asterisks indicate subgroups where concordance is within the top 5% of
concordance values over randomly sampled subgroups of PD studies. The
threshold for significance varies with the number of studies in the subset
(see Methods, Additional file 12). Concordance estimates for smaller subgroups
should be regarded as less reliable, as the average concordance is more sensitive
to variation in individual studies
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Affymetrix platforms (15 studies) and 0.10 for those
studies run on the most common platform types, the
Affymetrix U133A and U133 Plus series (12 studies). It
should be noted that although these are different
platforms, they are technically very similar, as the probe
set of the U133A arrays represents a non-random subset
of the U133Plus2 arrays [19], and so are considered as a
single platform type for the purpose of this analysis. At
the pathway level, the concordance increase within a the
U133 subgroup is much larger (Fig. 2), and this may
reflect the effect of a shared probeset in calculating
pathway enrichment profiles, as biological pathway
enrichment analysis captures concerted low-level
changes in differential gene expression that are missed
by the analysis of highly-regulated individual genes.
Smaller PD studies do not show lower concordance of
differential gene expression
The next factor to be examined was the study sample
size. Multiple studies have found that larger sample sizes
in microarray experiments allow greater confidence in
calling differentially expressed genes and more robust
differentially expressed gene lists [20, 21, 25], but the
effect of sample size in the context of average concord-
ance across different datasets - i.e., the likelihood of
being an unrepresentative ‘outlier’ study - has not been
examined directly. When the smallest 25% of human
studies were excluded (excluding five studies with
sample sizes of less than 10), concordance within the
remaining larger studies increased slightly from 0.08 to
0.11 at the differential gene expression level and from
0.15 to 0.17 at the pathway level. Linear regression was
used to test whether this implied that smaller studies
were more likely to show low concordance across all
(human) datasets. The association between sample size
(case plus control) and average concordance of differ-
ential gene expression signatures was not significant,
at a p value of 0.87 and an R2 of 0 (see Additional
file 3 for plots). Similar results were obtained at the
biological pathway enrichment level, (p = 0.93, R2 = 0.00,
see Additional file 3 for plots).

Visualizing the gene expression landscape of PD studies
reveals a distinct subset of human studies
The relationships between studies in differential gene
expression space (here defined as the 1,008 genes in the
union of expression signatures, i.e., the top 50 genes by
absolute log fold change at a significance of p < 0.05,
across all studies; see Methods; see Additional file 4 for
list of 1,008 genes) were visualised using principal com-
ponents analysis (PCA, Fig. 3). PCA enables representa-
tion of the 1,008-dimensional expression signature space
in a lower-dimensional space which captures the greatest
amount of variance amongst studies, allowing us to de-
fine a two-dimensional distance between samples which
represents the correlation of their differential expression
signatures [26]. The visualisation of samples in this
space shows an outlying group of human studies which
appear distinct from other human and animal studies
(Fig. 3). This is most clearly visualised in the second and
third principal components, although similar separation
is seen in other components (see Additional file 5);
these first three components together represent 44%
of the variance.
The principal component plot is dominated by outlier

studies with very large distances from the other studies
in principal component space. Examination of the
differential gene expression signatures of these studies
(which correspond to GSE35642; GSE24233; GSE89562;
GSE43490; and GSE20141; see Additional file 6) reveals



Fig. 2 Average concordance within subgroups of human studies of PD. Concordance increases in studies of human patients (i.e., excluding
human cell line studies), and within tissue subgroups. Concordance of pathways compares regulation at the level of biological processes rather
than individual genes, and accordingly concordance at the pathway level is generally higher than at the level of differential gene expression
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that these studies show very high log fold change values
in many genes, which explains their distinct position on
the PCA plot. If we perform PCA on only the sign of
the differential expression signatures, discarding the
magnitude, the variation between studies is reduced,
reducing the cluster effect but allowing clearer visualisa-
tion of the separation of studies by tissue type and
species (Additional file 7).
In order to examine this distinct human group in more

detail, hierarchical clustering was performed over the 258
genes in the union of the top 10 most differentially
expressed genes all 33 studies (Fig. 4; see Additional file 4
for list of 258 genes). This shows more clearly a distinct
cluster composed mainly of human studies of the
Fig. 3 Principal component analysis of PD studies based on differential exp
genes by absolute log-fold change across all 33 studies reveals a distinct g
the substantia nigra and frontal cortex (left). There appears to be little separation
using other neurotoxins (rotenone and Maneb-Paraquat) appear very distinct fro
and third principal components; a similar separation is seen in the first
substantia nigra (the most highly-affected tissue in PD)
and studies of the cerebral cortex (SFG and PFC-
Brodmann area 9) [27, 28], which are also affected in PD,
although the cortex is affected at a later stage of disease
[29]. The bootstrap p-value of the highlighted cluster (see
Methods) is 0.99, indicating that this cluster remains
highly stable under resampling of the dataset. A heatmap
of the differential expression signatures (Additional file 6)
reveals that studies in this cluster share downregulation in
a set of genes related to protein binding and neuronal
signalling (see Additional file 4 (Sheet 1) for gene names),
a pattern which is not shared by animal models or other
human tissues. It should be noted that a sixth study of the
substantia nigra, which was run on an Agilent platform
ression signatures. PCA of the 1,008 genes in the union of the top 50
roup of studies composed mainly of human studies (centre, right) of
between different disease model types (right); although the two studies
m the other studies. This is most clearly visualised in the second
two principal components (see Additional file 5)



Fig. 4 Hierarchical clustering of studies based on the most highly differentially expressed genes in each PD study. Clustering was performed
based on the union of the top 10 genes by absolute log-fold change across the 33 studies. The highlighted cluster contains all but one of the
human studies of the substantia nigra, as well as both human frontal cortex studies. This indicates a distinct differential gene expression pattern
that is shared by these study types. This cluster also contains one rat study, however, indicating that it is possible for animal models to capture
the expression patterns observed here. Aside from this outgroup, there is no apparent clustering of other factors such as platform, disease model,
or treatment (e.g., with L-DOPA), reflecting the low concordance seen in these groups
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(all other studies were run on Affymetrix platforms), does
not cluster, showing a distinct differential expression pat-
tern in which the majority of genes in the expression sig-
nature are up-regulated (Additional file 6).
The clustering in Fig. 4 uses average linkage; when

complete linkage is used (see Additional file 8), the SN
studies form a cluster on their own, indicating that there
are also expression patterns which are specific to the SN
and not shared by the frontal cortex samples.
Other clusters that can be seen include 4 of the 6

MPTP models of PD, 3 of the 4 studies in blood, and
clustering of iPSC studies with the appropriate tissue
(dopaminergic neurons) or model (genetic animal
models), although bootstrap p-values of these clusters
are less than 95%, indicating a less stable clustering.
Otherwise, there is no clear effect of any factor (such as
microarray platform or treatment with L-DOPA) on
study distribution within the clustering, reflecting the
low concordance seen in these groups. Concordance in
microarray studies of PD may therefore be partly ex-
plained by the different gene expression signals present
in studies of human brains and in studies of peripheral
areas or animal models.

Differential gene expression in human tissues highly-
affected in PD is distinct from other brain diseases
In order to examine the disease specificity of gene
expression in PD, PD studies were clustered with studies
of other diseases - namely Alzheimer’s disease (AD), a
neurodegenerative disorder which can present similar
pathology to PD [28], and brain tumors (glioma), which
are clinically unrelated to PD. As before, PCA was used
to provide a low-dimensional visualisation of the dis-
tance of samples in differential expression space; the first
three principal components here represent 42% of the
variance. It can be seen in Fig. 5 that while the tumor
samples appear distinct in the principal component
representation of gene expression space, with all but one
study (a mouse tumor study using an Illumina platform)
appearing separate in the PCA plot, the AD studies all
cluster with PD studies, suggesting that AD gene ex-
pression studies show similar patterns of differential
expression.
We can further examine these patterns using a

heatmap (Additional file 9). Again, a distinctive gene
expression pattern is seen for the tumor studies, while
the AD studies show more similar gene expression
patterns to the non-substantia nigra PD studies. This
suggests that the human brain tissue group of studies
shows a gene expression signal specific to PD, while
the other studies may capture a more general signal
of neurodegeneration.
It should also be noted that five of the six blood studies,

including PD, AD, and tumor studies, cluster together on
the outer edge of the heatmap, suggesting that although
tumor blood gene expression pattern is still distinct from
PD and AD blood gene expression, there is a signal cap-
tured in blood gene expression that is unique to these
studies. Otherwise, although there are tissue differences
between the tumor studies and PD studies (see Additional



Fig. 5 Principal component analysis of differential gene expression
in Parkinson’s disease, Alzheimer’s disease and brain tumor studies.
The tumor studies are mostly distant in principal component space
from PD or AD studies, suggesting different patterns of gene
expression in the two diseases; whilst the AD studies look very
similar to those of Parkinson’s disease, suggesting that gene
expression patterns in these neurodegenerative diseases could be
related to some extent. This is most clearly visualised in the second
and third principal components; a similar separation is seen in the
first two principal components (see Additional file 13)
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file 10), the distances between tumors and non-tumors are
bigger than those between different tissues in PD, suggest-
ing that the observed gene expression differences are not
caused by tissue type alone.

Inclusion of non-human and non-nigral tissue studies
reduces the percentage of Parkinson’s disease-associated
genes identified in a meta-analysis
A key aim of this study is to determine whether gene
expression in surrogate tissue (i.e., non-brain tissue) or
in animal models of disease is reflective of gene expres-
sion in the brain of a human patient. In order to estab-
lish this, a meta-analysis was carried out across different
subgroups of studies, where a gene was deemed to be
significant if it was included in the top 50 most highly
differentially expressed genes in more than three studies
(this vote-counting methodology was chosen due to the
low agreement between studies; see Methods). The
results of the meta-analysis were compared with a list of
694 potential PD-associated genes downloaded from the
Centre for Therapeutic Target Validation [30] (see
Additional file 4 for gene list). These genes were selected
on the basis of previous association with PD through
genetic, drug target, or text-mining association (see
Methods) and represent numerous pathways including
those involved in signal transduction (such as RAF/MAP
kinase cascade and G alpha and AKT signalling events)
and the immune system (such as interleukin-1 signalling
and proteasome degradation).
The overall agreement in differentially expressed gene

lists over all 33 studies was low, with no gene consist-
ently regulated in more than 6 studies (Table 2). The
most common findings include significant downregula-
tions in genes including ALDH1A1, TTR, TAC1, and
solute carrier genes SLC18A2 and SLC6A3, and upregu-
lation of the heat shock protein genes HSPS1A and
HSPS1B in multiple studies. This is consistent with the
findings of a previous meta-analysis [3] of human data-
sets, who reported concordance as low as ‘20 genes…
consistently differently regulated across 6 of 13 datasets’,
whilst cautioning that the downregulation seen in DDC
and other genes could be the result of ‘a disproportion-
ate number of SN dopaminergic neurons between cases
and controls’. Other findings include downregulation of
FOS, which is more commonly associated with overex-
pression following L-DOPA treatment, in two animal
(non-L-DOPA treated) and one human experiments.
SNCA is also downregulated in multiple human studies,
which previous studies have suggested may be related to
long post-mortem intervals in PD cases [31].
Over all data sets, 26% of the 43 genes called signifi-

cant by our meta-analysis (Table 2) were included in the
list of previously PD-associated genes. If the meta-
analysis was limited to human studies, however, 36% of
the 22 significant genes had previous evidence of associ-
ation with PD (Fig. 6). The inclusion of non-human
studies therefore reduced the enrichment of PD-
associated genes in the list, i.e., the likelihood of each
identified gene having a previously evidenced association
with PD is lower. If the meta-analysis is limited to just
animal models of PD, this was reduced to 10% of the 10
significant genes. There was a similarly noticeable differ-
ence between studies of different tissues. 32% of the 28
genes considered significant in a meta-analysis of the 18
basal ganglia studies (here including studies of the
substantia nigra and striatum, excluding those which
considered isolated dopaminergic neurons from the SN)
had been previously associated with PD, and increasing
to 40% when only substantia nigra studies were consid-
ered (Fig. 6), suggesting that gene expression in these
tissue types captures changes in genes and proteins
highly relevant to PD.

Discussion
The overall concordance between microarray studies of
Parkinson’s disease is low, with an average differential
expression signature correlation of just 0.05, and low agree-
ment in a meta-analysis of differentially expressed gene
lists, echoing recent concerns about the reproducibility of



Table 2 Genes highly differentially expressed in multiple Parkinson’s
disease studies. Table shows the number of times a gene is in the
top 50 genes by absolute log-fold change in each study

Gene All studies Human studies Studies of the SN

Up-regulated

HSPA1A 4 3 3

RELN 4 4 3

PTPRC 3 2 0

LCN2 3 0 0

PLIN4 3 0 0

MAFF 3 2 2

SLCO4A1 3 3 2

HSPA1B 3 3 3

IGF2BP2 3 0 0

CDKN1A 3 0 0

ENC1 3 2 1

Down-regulated

EGR2 6 0 0

FOS 5 2 1

RGS4 5 5 3

TAC1 5 4 3

SLC6A3 4 3 3

AGTR1 4 4 3

FGF13 4 3 4

PCSK1 4 3 2

NPTX2 4 1 1

GABBR2 4 3 2

NR4A2 4 3 4

EIF1AY 3 2 2

SATB2 3 0 0

RET 3 1 2

SNCA 3 3 0

TTR 3 0 0

CCK 3 0 0

DDC 3 3 3

SLC18A2 3 3 3

ALDH1A1 3 3 3

KCNJ6 3 2 2

TMEM255A 3 3 3

SCG2 3 3 3

GPR26 3 2 3

DCLK1 3 2 0

DUSP1 3 2 1

HPCAL4 3 2 1

SYNGR3 3 3 2

PREPL 3 3 0

Table 2 Genes highly differentially expressed in multiple Parkinson’s
disease studies. Table shows the number of times a gene is in the
top 50 genes by absolute log-fold change in each study (Continued)

STMN2 3 3 2

VSNL1 3 3 2

NTS 3 2 3
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microarray studies between different labs [3, 7, 10, 19] and
between humans and animal models [11, 13–15, 32]. This
study aimed to determine the major factors of study design
influencing the observed lack of concordance.
The results presented here confirm that the differences

between human studies and model systems, and between
tissues, are larger than those caused by other experimen-
tal factors such as microarray platform or sample size
(Figs. 1, 2 and 3). This analysis seems to indicate a split
between human brain tissues and other study types
(animal models and human studies of other tissues,
including isolated dopaminergic neurons). It is possible
that these human brain studies, particularly studies of
the human substantia nigra, reflect a distinct ‘character-
istic’ transcriptional signature specific to human PD;
whereas the non-human studies and human studies of
non-brain tissue reflect other, more general PD-
associated molecular changes that take place in multiple
tissues and systems, and are shared by other disease pro-
cesses such as Alzheimer’s disease (Fig. 5). The inclusion
in the ‘characteristic’ group of tissues affected later in
the disease e.g., frontal cortex [29] (Fig. 4) is notable -
given the progressive nature of PD, the late-affected
tissues potentially display a signal of the early stages of
neurodegeneration, which may be masked in the substan-
tia nigra by the extent of cell death in this region at the
time of post-mortem, as suggested by Sutherland et al. [3].
Although there are large differences between the

results from animal models and human studies, it is en-
couraging to note that animal models (both genetic and
neurotoxic) are not completely separated from human
neurodegenerative disease in differential gene expres-
sion space (Fig. 3), suggesting that at least some of
the underlying features of gene expression in human
PD can be captured by animal models. In particular,
one of the two animal models sampling tissue from
the SN appears very similar to human studies in hier-
archical clustering (Fig. 4), suggesting shared gene
expression patterns. It is possible that these simply
reflect the ‘terminal cytoarchitectural differences’ [3]
related to neuronal loss in the SN; however, the ob-
served similarity of cortical studies (neither of which
show severe neuronal loss [3] compared to the SN,
where next to no dopaminergic neurons remain post-
mortem [28]) to studies of the substantia nigra (Figs. 3
and 4) points towards at least partly shared gene



Fig. 6 Percentage (bar) and number (number above bar) of genes previously associated with PD amongst genes identified by a meta-analysis in
each grouping. Gene lists from human studies and studies using tissue from the basal ganglia (here including studies of the striatum and substantia
nigra) are more enriched for genes and proteins that have been associated with PD through genetic mutations, drugs, or literature-mining than those
from animal models or studies using other tissues
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expression patterns which are reflective of other bio-
logical processes.
There is much interest in the use of non-brain tissues for

gene expression studies, as these can be relatively easily
obtained pre-mortem and could reflect processes associated
with early-stage PD, as well as potentially offering direct
patient benefit. Studies which use human cell lines, such as
iPSCs derived from PD patients, do not replicate the differ-
ential expression patterns found in brain tissue but iPSC-
derived dopaminergic neurons share similar expression
signatures to dopaminergic neurons isolated post-mortem,
while iPSCs harbouring SNCA mutations cluster with
genetic animal models of PD, suggesting the ability of these
study types to replicate relevant gene expression patterns in
PD. Similarly, studies in blood samples cluster together,
appearing distinct from gene expression in brain tissue
(Fig. 4) but also appearing distinct from gene expression
in blood studies of AD and brain tumors (Additional file
9), suggesting a common transcriptional pattern that
could function as a PD marker. These are encouraging
results for the development of these approaches for
studying gene expression in PD.

Conclusion
In practice, the concordance between microarray studies
from different experimental groups will never reach 100%.
Experimental factors such as array scanning and wash
protocols (e.g., Ach et al. [33], van Hijum et al. [34];
reviewed in Jaksik et al. [35]) exert a significant effect on
the results and reproducibility of studies; in the context of
PD, there are a number of experimental factors which in-
fluence measured RNA expression in the brain including
the impact of age, gender, and post-mortem interval
[22, 36, 37] and other confounding factors including
long-term anti-Parkinsonian drug treatment and the
co-occurrence of other diseases such as Alzheimer’s
disease [5]. More detailed meta-data associated with stud-
ies uploaded to public repositories would be immensely
helpful in aiding meta-analysis and identification of differ-
ences between studies; both disease-specific (such as dis-
tinguishing between idiopathic and genetic PD cases, and
drug-treated or drug-naïve patients) and more general
(for instance, a measure of RNA integrity such as RIN
[38], especially key in post-mortem studies where RNA
quality is affected by the agonal state [39]).
Nevertheless, the authors believe that this study can act

as a guide to the amount of agreement that can be
expected between different microarray studies in the
context of PD, and the general conclusions may be equally
applicable in studies of other conditions. This also acts as
a guide to the ‘representativeness’ of different tissues and
of disease models to the human condition, which is of
special significance due to the inaccessibility of PD-
affected tissues in living patients, and as a guide to the use
of animal models in an era of increasing use of tran-
scriptomics and other molecular-level analyses in drug
discovery and development [40]. Our identification of a
specific ‘characteristic’ signal of PD in human brain tissues
could explain the apparent discordance between micro-
array studies of PD, and is hence of more general interest
for the study of PD at the transcriptomic level.

Methods
Obtaining Parkinson’s disease microarray studies
GEO was searched for suitable case-control studies of
Parkinson’s disease using combinations of PD keywords,



Oerton and Bender BMC Neurology  (2017) 17:58 Page 10 of 14
i.e., “Parkinson’s”/“Rotenone”/“MPTP” AND “homo
sapiens”/“mammals”/“primate”, using studies submitted
up to February 2017.
Inclusion/exclusion criteria were as follows:

1. Studies must be designed specifically for the
investigation of PD or PD drug treatment.

2. Contrasts Parkinson’s disease (or equivalent model)
versus healthy (wild-type/vehicle injected) control
must be available with at least two samples for each
condition.

3. Gene expression must be measured using
microarray technology, as too few studies are
currently available on GEO using other methods of
expression profiling (such as Serial Analaysis of
Gene Expression or RNA-Seq) to be able to draw
any conclusions about their use in PD.

4. Human stem cell studies must be derived from PD
patients and not just modelled by PD-associated mu-
tations, in order to be comparable with human PD;
equivalently, stem cells derived from PD patients
compared to mutation corrected controls (such as
GSE46798, GSE29773) were excluded.

This gave a total of 33 publically available studies. Four
studies of Alzheimer’s disease and five studies of brain
tumors (glia- and astrocyte-derived) were included as
disease controls (see Additional file 10). These studies
were only included in the analysis in the section ‘Differ-
ential gene expression in human tissues highly-affected
in PD is distinct from other brain diseases’.
Variables recorded were the species (human, mouse,

rat, or macaque); the tissue (substantia nigra, striatum,
blood, frontal cortex, cell line, whole brain section, or
cerebellum); the microarray platform used (Affymetrix
(various types), Illumina, or Agilent); the number of
cases and controls; the disease model (human PD,
neurotoxic (various types), or genetic (various types));
and drug treatment status (drug treatment status was
not reported for patient studies, but is known for animal
models; two animal models of PD were additionally
treated with L-DOPA). See Additional file 10 for details.
In order to minimise the impact of possible labora-

tory effects on concordance results, where multiple
datasets were contributed by the same investigator
and less than a year apart, only one of the two was
retained (with the exception of two studies submitted
as part of a meta-analysis that did not state whether
the studies originated from the same experimental
group, see Additional file 10). Similarly, if a single
study analysed multiple tissues, only one tissue was
retained for analysis. The retained study was chosen
in order to provide the most balanced study design;
i.e., the most even split between tissues.
Processing of datasets
All analyses were carried out in R version 3.3.2 running
under OS X 10.11.6 (El Capitan) [41]. Raw files from
Affymetrix platforms were obtained from GEO and pre-
processed using RMA with the Affy package, version
1.48.0 [42], or the Oligo package (REF) where necessary
(for platforms Affymetrix Rat Gene 2.0 ST Array [tran-
script (gene) version] and Affymetrix Human Exon 1.0
ST Array [transcript (gene) version]). For experiments
that used Illumina platforms, the non-normalized data
was obtained from GEO, log-transformed if necessary,
and quantile-normalized (for equivalence with the RMA
normalization method). It is known that choice of
normalization methods can affect observed correlation
[43], however quantile normalization was used for this
analysis as it is the standard in microarray analysis due
to its use in the Affymetrix pre-processing algorithms
RMA and GC-RMA [44]. For other array types (see
Additional file 10), and for GSE4550 where raw data
was unavailable, the submitter-supplied normalized
files were used. Array quality was assessed using the
ArrayQualityMetrics package [45], version 3.30.0; any
samples which failed more than one of the three
outlier tests (distances between arrays; boxplots; MA
plots) were removed. No batch correction was used
as experimental batch information is not available on
GEO series records.
Log-fold change profiles were generated using limma

3.26.7 [46] as per the limma user’s guide. Probe IDs were
then annotated to their associated genes using the rele-
vant Annotation GPL file (obtained from GEO). In order
to make comparisons between gene expression in differ-
ent species, all non-human studies were mapped to
orthologous human genes using annotationTools 1.44.0
[47]. Where multiple probes mapped to a gene, the
probe with the highest p-value was retained. Where a
probe was associated with multiple genes, the probe
information was retained for both genes in order to
maximise the number of genes available for comparisons
between different platforms, and it should be noted that
this could artificially inflate concordance between
studies, especially for those using the same platform.
Biological pathway enrichment
Biological pathway enrichment profiles were calculated
from the differential gene expression profiles (generated
above) against the Reactome pathway database with the
GSEA function of the Bioconductor package ReactomePA
1.14.4 [48], using the default settings of 1000 permutations
to calculate significance and a minimum geneset size of
10. For animal studies, the original non-ortholog genes
were used to calculate enrichment profiles using mice-
and rat-specific pathways provided by Reactome.
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Calculation of pairwise concordance of differential gene
expression
The ‘agreement’ between two microarray studies can be
measured in many different ways, including comparison
of lists of genes which are differentially expressed
according to some cut-off (which can be published lists,
or lists created by standardized analysis of published
data) [3, 5, 11], comparison of ranked gene lists [10, 49],
and agreement of direction or magnitude of measured
gene expression [19, 50], either over all measured genes,
or over those defined as significant by some cut-off.
These are reviewed in a 2009 paper by Lu et al. [51].
In this analysis, concordance between studies is defined

as the Pearson correlation (as calculated by R’s cor function
[52]) of their differential gene expression signatures: the 50
genes most significantly associated with the disease condi-
tion over the control condition in each study (from the set
of 2,372 genes recorded by all 33 PD studies, or 2,310 over
all 42 studies of brain disease, see Additional file 4 for gene
lists). Log-fold change was used as the selection criteria for
the signature, as it has been shown to generate gene lists of
higher reproducibility compared to other ranking methods
such as P-value ranking [25, 53, 54], so the expression sig-
nature consists of the 50 genes in each study (at a signifi-
cance of p < 0.05) with the highest absolute log-fold
change. Similar concordance results were obtained when
the expression signature was defined over 20, 100, or 250
genes for each study; a value of 50 was chosen in order to
capture the most relevant information while keeping the
dimensionality relatively low (important in the following
analyses). If correlation was calculated over the sign of the
log-fold changes (i.e., considering only the direction and
not the magnitude of fold changes), similar results were
obtained; concordance in the SN was somewhat reduced
from 0.3 to 0.22, but was still the highest-concordance
tissue type, and so the measured log-fold changes were
used in order to retain information.
Calculation of pairwise concordance of biological
pathway enrichment
At the biological pathway enrichment level, pairwise
concordance cij between two studies was defined as the
Pearson correlation of the normalized enrichment scores
of pathways that are significantly up- or down-regulated
(FDR <0.25, as recommended by the Broad Institute’s
GSEA page [55]) in either experiment. In the case where
a pathway is significant in one experiment but there is
no score reported in the other, a NES of 0 was assigned
for the missing pathway. If no significantly enriched
pathways were reported for either experiment, the cor-
relation was set to 0. The Pearson correlation is the
most appropriate correlation measure to use given the
distribution of normalized enrichment scores (a large
cluster of zero-valued scores with an approximately
normal distribution of the non-zero-valued scores) [56].

Calculation of average concordances within subsets of
studies
The mean of the pairwise concordances cij of a study i
with every other study j in a set of studies S gives a
measure Ai of how well this study agrees with other
studies on average.
From the average agreement of each individual study,

the average agreement AS in a set can be measured (i.e.,
AS is the average of each Ai).
In this case, S is a subset of studies chosen to repre-

sent a particular factor of experimental design, such as
the subset of microarray studies using human speci-
mens, or the subset of studies run on a particular micro-
array platform, and the basis of this analysis is the
comparison of AS between these different subsets, spe-
cifically for subsets in which three or more studies
shared one of the experimental factors tissue, species,
platform, or sample size.
Note that in the case of differential gene expression,

smaller subsets have larger numbers of shared genes,
(e.g., due to sharing a platform which measures the same
genes). Concordance over smaller subsets was calculated
on the same expression signatures as for the set of all
studies, i.e., expression signatures selected from the
shared 2,372 genes, in order to ensure that AS was not
biased by the size of shared gene-sets in different sub-
sets. Concordance was also calculated over the full set of
genes shared by each subset, retaining a greater amount
of information; results were not substantially different
(see Additional file 11).

Significance testing of subgroup concordances
Significance of average subgroup concordances was
tested against the 95th percentile of the ordered distri-
bution of average concordances over randomly sampled
subgroups of the 33 PD studies (to a maximum of
100,000) of each size. An observed average correlation is
significantly higher than would be expected by chance
alone if it is greater than the 95th percentile value. The
smaller the subgroup size, the more likely that randomly
chosen subgroups show high concordance by chance
alone (the distribution of observed correlations is wider),
and so the confidence threshold is higher for smaller
subgroups (see Additional file 12).

Principal component analysis and hierarchical clustering
Hierarchical clustering was performed using R’s hclust
function [57] using correlation distance. Correlation
distance was chosen over the default Euclidean distance
because it uses only the direction of gene expression
changes. When Euclidean distance is used, which also
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uses the magnitude [58], the clustering is dominated by
studies which show large log fold changes. Significance
of the observed clusters was calculated using the R pack-
age pvclust [59], which uses multiscale bootstrap resam-
pling to approximate a p-value for each observed cluster
(p-values quoted are the Approximately Unbiased
values). Principal component analysis was performed
using R’s prcomp with centering and scaling [60]. At the
differential gene expression level, the feature vector for
each study was defined as its log-fold change values over
the gene-set defined by the union of the 50 highest-
ranking genes (the union of expression signatures; i.e.,
the 50 genes in each study at a significance of p < 0.05
with the highest absolute log-fold change) in every study
in the set, in order to retain as much data as possible.
For hierarchical clustering, where high dimensionality
affects the stability of clusters, this was reduced to the
union of the top 10 highest-ranking genes. See Add-
itional file 4 for the lists of genes used for these analyses.
Meta-analysis of Parkinson’s disease microarray studies
A meta-analysis over the 33 PD studies was carried out
using a ‘vote-counting’ approach in which a gene was
deemed to be of importance in a study if it was in the
top 50 genes by absolute log-fold change, at a signifi-
cance of P < 0.05. A gene was deemed to be significant
by the meta-analysis if it was considered to be of import-
ance by more than three studies. This threshold was
chosen due to the low agreement between studies (see
Results). Accordingly, only direction of association (up-
or down-regulation) is reported rather than effect size.
The results of the meta-analysis were compared against
a list of potential PD-associated genes downloaded from
the Centre for Therapeutic Target Validation [30] on 8th
March 2016. This includes genes identified by genetic
associations, by PD drugs, and by text-mining (see
Additional file 4 for the list of genes).
The initial list downloaded from CTTV contained

targets identified through reprocessing of previous RNA
expression studies, which may have some overlap with
those in the datasets considered here. To remove the
possibility of bias resulting from potential overlap of ex-
pression studies, genes identified by RNA expression
alone were excluded, leaving 694 genes from the initial
list of 870. Similar results (in terms of the proportions of
genes identified by each subgroup) were obtained when
the meta-analysis was carried out over the top 10 or top
100 genes instead of the top 50.
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