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Abstract We say that a finite asynchronous cellular automaton (or more generally,
any sequential dynamical system) is π-independent if its set of periodic points are
independent of the order that the local functions are applied. In this case, the local
functions permute the periodic points, and these permutations generate the dynamics
group. We have previously shown that exactly 104 of the possible 223 = 256 cellular
automaton rules are π-independent. In the article, we classify the periodic states of
these systems and describe their dynamics groups, which are quotients of Coxeter
groups. The dynamics groups provide information about permissible dynamics as a
function of update sequence and, as such, connect discrete dynamical systems, group
theory, and algebraic combinatorics in a new and interesting way. We conclude with
a discussion of numerous open problems and directions for future research.

Keywords Sequential dynamical systems · Cellular automata · Update order ·
Dynamics groups · Coxeter groups · Periodic points · Fibonacci numbers · Lucas
numbers

A cellular automaton, or CA, is a classical discrete dynamical system defined over
a regular grid of cells, such as the lattice Z

d , or Z
d
n in the finite case. Every cell
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takes on one of a finite number of states and has an update rule that only depends
on its state and the states of its neighbors. Traditionally, at every discrete time step,
the update rules are simultaneously applied. In this article we study finite cellular
automata whose update rules are applied asynchronously.

More recent work has investigated sequential dynamical systems (SDSs) defined
over arbitrary finite graphs where the update rules are applied asynchronously. (See
[4] for a detailed bibliography.) The asynchronous systems in this paper can be
viewed as either a special type of an SDS or as a modified version of a classical
elementary CA. The base graph is the circle graph Circn, there are only two vertex
states (0 and 1), and the local update rules are all the same. There are 223 = 256 pos-
sible update rules, and in an earlier article [2] we proved that exactly 104 of these
give rise to an ACA whose periodic states are independent of the update order, a prop-
erty independent of the size of the underlying graph. In this article we describe the
periodic states and the dynamics group for each of these 104 rules.

If an ACA (or more generally, a sequential dynamical system) is π -independent
we may construct its dynamics group, which is a permutation group on the set of pe-
riodic points. The elements of this group capture essential information about possible
periodic orbit structures as a function of the update sequence. As such, the group can
be used to characterize the possible long-term dynamics (e.g., which periodic orbit
configurations can be realized) and also forms an entry point to the study of permissi-
ble long-term dynamics for update sequence stochastic ACAs. Algebraic properties of
finite cellular automata were studied in [3]. The introduction of the dynamics group
constitutes a new and promising connection between algebra and the theory of dis-
crete dynamical systems.

The article is structured as follows. Sections 1, 2 and 3 contain background def-
initions, notations, and results. Section 4 studies ACAs whose dynamics groups are
trivial, Sect. 5 focuses on rules that are invertible, and Sect. 6 investigates the re-
maining cases. The results are summarized in Tables 1, 3, and 5. We conclude with
a discussion of future research problems and potential applications to those working
on cellular automata.

1 Sequential dynamical systems

We will present the main concepts in this article, such as the dynamics group, in
the more general setting of sequential dynamics systems. A sequential dynamical
system, or SDS, is a discrete dynamical system with three components: an undirected
graph Y , a list of update rules FY , and an update order ω. Seeing the setup in its full
generality is not only useful, but it is consistent with the notation in the prequel to
this paper [2] that contains the classification of the 104 π -independent ACAs, and the
original paper on dynamics groups [1].

Definition 1.1 (Graph conventions) Let Y be a simple undirected graph with n ver-
tices labeled from 1 to n, and recall that the neighbors of a vertex are those vertices
connected to it by an edge. If F is a finite field and every vertex is assigned a value



J Algebr Comb (2011) 33: 11–35 13

from F, then a global state of the system is described by an n-tuple y whose ith co-
ordinate indicates the current state of the vertex i. The set of all possible states is the
vector space F

n.

Definition 1.2 (Local functions) A function F : F
n → F

n is called Y -local at i if for
each y ∈ F

n (1) F(y) only alters the ith coordinate of y and (2) the new value of
the ith coordinate only depends on the coordinates of y corresponding to i and its
neighbors in Y . Other names for such a function are a local function or an update
rule. We use FY to denote a list with one local function for each vertex of Y . More
precisely, FY = (F1,F2, . . . ,Fn) where Fi is a function that is Y -local at i.

Definition 1.3 (Restricted local functions) If i is a vertex with k neighbors in Y ,
then corresponding to each function F that is Y -local at i, we define a function
f : F

k+1 → F where the domain is restricted to the coordinates corresponding to
i and its neighbors, and the output is the new value F would assign to the ith coor-
dinate under these conditions. The functions F and f contain the same information
packaged differently and each determines the other. Both have their uses. Functions
such as F can be readily composed, but functions such as f are easier to explicitly
describe.

Definition 1.4 (Update orders) An update order ω is a finite sequence of numbers
chosen from the set {1, . . . , n}. If every number 1 ≤ i ≤ n occurs at least once, we
say it is fair and if every number occurs exactly once, then it is simple. We use the
notation ω = (ω1,ω2, . . . ,ωm) with m = |ω|. Of course, m ≥ n when ω is fair and
m = n when ω is simple. Let WY denote the collection of all update orders and let
SY denote the subset of simple update orders. The subscript Y indicates that we are
thinking of the numbers in these sequences as vertices in the graph Y .

Definition 1.5 (Sequential dynamical systems) A sequential dynamical system, or
SDS, is a triple (Y,FY ,ω) consisting of an undirected graph Y , a list of local func-
tions FY , and a fair update order ω ∈ WY . If ω is the sequence (ω1,ω2, . . . ,ωm), then
we construct the SDS map [FY ,ω] : F

n → F
n as the composition [FY ,ω] := Fωm ◦· · ·

◦ Fω1 .

The main goal is to understand the dynamics of the SDS map, i.e., its behavior
under iteration.

Definition 1.6 (π -independence) Let Per[FY ,ω] denote the set of states periodic
under iterations of [FY ,ω]. A list of Y -local functions FY is called ω-independent
if Per[FY ,ω] = Per[FY ,ω′] for all fair update orders ω,ω′ ∈ WY and π -independent
if Per[FY ,π] = Per[FY ,π ′] for all simple update orders π , π ′ ∈ SY . When FY is
π -independent, we write Per(FY ) instead of Per[FY ,π].

In the case of π -independence we may—by abuse of notation—let the list of
Y -local functions FY stand for the entire SDS. When FY is π -independent, its lo-
cal functions permute the elements of Per(FY ).
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Proposition 1.7 (Permuting periodic states) If FY is π -independent and P =
Per(FY ), then for each i, Fi(P ) = P . In particular, the restriction of Fi to P is a
permutation.

Proof Let ω = (π1,π2, . . . , πn) be a simple update order with π1 = i and let σ be the
modified update order with π1 moved from the first to last: σ = (π2,π3, . . . , πn,π1).
Since Fi ◦ [FY ,π]k = [FY , σ ]k ◦ Fi for all k, and by hypothesis [FY ,π]k(Fn) =
[FY , σ ]k(Fn) = P for all sufficiently large k, we find that Fi(P ) ⊂ P . More explic-
itly, for large enough k,

Fi(P ) = Fi ◦ [FY ,π]k(Fn
) = [FY , σ ]k ◦ Fi

(
F

n
) ⊂ P.

Moreover, since [FY ,π](P ) = P , the restriction of Fi to P is injective, and
Fi(P ) = P . �

When FY is π -independent, we write F ∗
i and [FY ,π]∗ to denote the restrictions of

these maps to Per(FY ). By Proposition 1.7 all such maps are permutations. Note that
π -independence focuses on the periodic states as a set rather than how these states
are permuted. In particular, when a π -independent FY is paired with two different
update orders π and σ , the permutations [FY ,π]∗ and [FY , σ ]∗ are often distinct.
These various permutations can be used to construct a group encoding all of the
possible dynamics [4].

Definition 1.8 (Dynamics group) Let FY be π -independent. For any collection of
update orders U ⊆ WY , the dynamics group of FY with respect to U is

DG(FY ,U) = 〈[FY ,ω]∗ ∣∣ω ∈ U
〉
.

It should be clear that when U and V are sets of update orders and U is contained
in the closure of V under concatenation, then DG(FY ,U) ⊂ DG(FY ,V ). The dynam-
ics group of FY , DG(FY ) = DG(FY ,WY ), and the restricted dynamics group of FY ,
RDG(FY ) = DG(FY , SY ), are special cases of particular interest. Note that DG(FY )

contains and is generated by the bijections F ∗
i .

2 Asynchronous cellular automata

The SDSs we focus on are defined over circular graphs, they have only two possible
vertex states, and all the local functions are identically defined. These asynchronous
cellular automata, or ACAs, are an asynchronous version of the classical finite ele-
mentary cellular automata. Even in such a restrictive situation there are many inter-
esting dynamical behaviors.

Definition 2.1 (Circular graphs and vertex states) Let Y = Circn denote the circular
graph with vertex set {1, . . . , n} (viewed as residue classes mod n) and edges con-
necting i and i + 1 mod n. To avoid trivialities, we always assume n > 3. Each vertex
has two possible states that we identify with F2 = {0,1}, the field of size 2.
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Definition 2.2 (Wolfram rules) Let Fi : F
n
2 → F

n
2 be a function Circn-local at i and

let fi : F
3
2 → F2 be its restricted form. Because the neighbors of i are i − 1 and i + 1,

it is conventional to list these coordinates in ascending order in the domain of fi ,
keeping in mind that all subscripts are viewed mod n. The function Fi , henceforth
referred to as a Wolfram rule, updates the value of yi based on the value of the triple
(yi−1, yi, yi+1) and it is completely determined by how the ith coordinate is updated
in these eight possible situations. In other words, Fi is completely described by the
following table.

yi−1yiyi+1 111 110 101 100 011 010 001 000
fi(yi−1, yi, yi+1) a7 a6 a5 a4 a3 a2 a1 a0

More concisely, the 28 = 256 possible Wolfram rules can be indexed by an 8-digit
binary number a7a6a5a4a3a2a1a0, or by its decimal equivalent k = ∑

ai2i . There is
thus a Wolfram rule k for each integer 0 ≤ k ≤ 255.

Definition 2.3 (Asynchronous cellular automata) We write Wolf(k)
i to denote the

update rule Fi : F
n → F

n corresponding to k and Wolf(k)
n for the list (Wolf(k)

1 ,

Wolf(k)
2 , . . . ,Wolf(k)

n ) of update rules. For each fair update order ω the SDS (Circn,

Wolf(k)
n ,ω) is called an asynchronous cellular automaton, or ACA. If Wolf(k)

n is
π -independent (ω-independent) for all n > 3, we say Wolfram rule k is π -indepen-
dent (ω-independent).

When Wolf(k)
n is π -independent, let Pn,k = Per(Wolf(k)

n ) denote its periodic states
and let Gn,k = DG(Wolf(k)

n ) denote its dynamics group. We usually suppress the
dependence on n and simply write Pk and Gk . In this notation, our goal is to describe
the set Pk and the group Gk for each π -independent Wolfram rule. In [2] we proved
the following result.

Theorem 2.4 Exactly 104 Wolfram rules are π -independent. More precisely, Wolf(k)
n

is π -independent for all n > 3 iff k ∈ {0, 1, 4, 5, 8, 9, 12, 13, 28, 29, 32, 40, 51, 54,
57, 60, 64, 65, 68, 69, 70, 71, 72, 73, 76, 77, 78, 79, 92, 93, 94, 95, 96, 99, 102,
105, 108, 109, 110, 111, 124, 125, 126, 127, 128, 129, 132, 133, 136, 137, 140, 141,
147, 150, 152, 153, 156, 157, 160, 164, 168, 172, 184, 188, 192, 193, 194, 195, 196,
197, 198, 199, 200, 201, 202, 204, 205, 206, 207, 216, 218, 220, 221, 222, 223, 224,
226, 228, 230, 232, 234, 235, 236, 237, 238, 239, 248, 249, 250, 251, 252, 253, 254,
255}.

In [2] we also defined the inversion, reflection, and inversion-reflection of an ACA.
Loosely speaking, inversion systematically swaps the roles of 0 and 1, reflection sys-
tematically switches left and right, and inversion-reflection does both at once. The
inversion, reflection, or inversion-reflection of a π -independent Wolfram rule is still
π -independent, it has a corresponding set of periodic states and an isomorphic dy-
namics group. This should not be surprising since all we have done is relabel the
underlying states on which the local functions act. Rules related in this manner are
dynamically equivalent. When the 256 Wolfram rules are partitioned into classes of
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rules related by reflection, inversion or both, there are 88 equivalence classes. The
104 rules listed in Theorem 2.4 belong to 41 such classes and thus we only need to
describe Pk and Gk for 41 representative values of k.

Corollary 2.5 (41 representative rules) Every π -independent Wolfram rule is dynam-
ically equivalent to Wolf(k)

n for some k ∈ {0, 1, 4, 5, 8, 9, 12, 13, 28, 29, 32, 40, 51,
54, 57, 60, 72, 73, 76, 77, 105, 128, 129, 132, 133, 136, 137, 140, 141, 150, 152,
156, 160, 164, 168, 172, 184, 200, 201, 204, 232}.

Finally, because the binary notation is cumbersome and the decimal notation is
opaque, we introduce (as in [2]) a concise symbolic tag for each Wolfram rule.

Definition 2.6 (Tags) The four functions from F2 to F2 can be described by their
behavior: the value never changes, the value always changes, both elements go to 0,
or both elements go to 1. We refer to these functions by the evocative symbols -,
x, 0, and 1, respectively. The restricted local form of Wolfram rule k is completely
determined by the four functions from F2 to F2 that result when the values of yi−1
and yi+1 are held constant. Let t0, t1, t2 and t3 be the symbols for these functions in
the four cases yi−1 = yi+1 = 0, yi−1 = 0 and yi+1 = 1, yi−1 = 1 and yi+1 = 0, and
yi−1 = yi+1 = 1, respectively. The tag of k is the string t3t2t1t0. Note that t0 depends
on the values of a0 and a2, t1 depends on a1 and a3, t2 depends on a4 and a6, and
t3 depends on a5 and a7. The numbering and the order of the ti ’s has been chosen to
match the traditional binary representation as closely as possible, easing the transition
between the two. As an illustration, the reader can verify that Wolfram rule 29 has
binary notation 00011101 and tag 0x-1.

Patterns among the Wolfram rules are easier to discern when using tags.

Remark 2.7 (Tags and dynamic equivalence) On the level of tags, reflections switch
the order of t1 and t2. For example, the reflection of rule 0-1x is 01-x. To describe
the effect that inversion has on tags, we define a map ι : {1,0,-,x} → {1,0,-,x}
that fixes - and x while switching 0 and 1. When Wolfram rule k has tag t3t2t1t0,
its inversion has tag ι(t0)ι(t1)ι(t2)ι(t3). For example, the inversion of rule 0-1x is
x0-1. See [2] for a more detailed explanation.

Remark 2.8 (Tags and other SDSs) If (Y,FY ,ω) is an SDS with only two vertex
states, then each update rule Fi can be described by a set of symbols similar to the tag
used to describe Wolfram rules. More specifically, if vertex i has exactly k neighbors,
then the restricted local form of Fi is a function fi : F

k+1
2 → F2 and this function is

determined by the 2k functions from F2 to F2 that result when the values of the
neighbors of i are held constant. In particular, the behavior of Fi is determined by the
corresponding 2k symbols, selected from {1,0,-,x}.

3 Groups

In preparation for our investigation of dynamics groups we recall a few basic facts
about group actions and Coxeter groups.
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Definition 3.1 (Faithful actions) Let G be a group acting on a set X. The action
is called faithful if nontrivial elements act nontrivially. When this is the case, we
can view G as a subgroup of SYMX . Note that groups generated by permutations
act faithfully on their underlying sets almost by definition. In particular, for any π -
independent SDS FY , the action of its dynamics group DG(FY ) on its periodic states
Per(FY ) is faithful.

One of the key features of a group acting on a set is its orbit structure.

Definition 3.2 (Orbits) Let G be a group acting on a finite set X. The orbit of a
point x ∈ X is the subset of points to which it can be sent by an element of G.
Thus the orbit of x is Gx = {g · x | g ∈ G}. Because two orbits are either identical or
disjoint, the collection of all orbits {Gx | x ∈ X} partitions X into equivalence classes
X = X1 � X2 � · · · � X�. When there is only one orbit we say the action is transitive.

As we investigate the faithful action of Gn,k on Pn,k , we use on,k to denote the
number of orbits under this action. And, as with Gk and Pk , we usually suppress
the dependence on n and write ok instead. The orbit structure is of interest because
distinct orbits provide information about the structure of the group.

Definition 3.3 (Subdirect products) If G acts faithfully on a finite set X with orbits
X1, X2, . . . , X� then G can be viewed as a subgroup of SYMX1 × SYMX2 × · · · ×
SYMX�

. To see this note that when an element of G is written in disjoint cycle nota-
tion, each cycle must permute elements within a single orbit. Thus every g ∈ G can
be viewed as a �-tuple g = (g1, g2, . . . , g�) where gi ∈ SYM(Xi). Even better, we can
replace each SYMXi

with Gi , the image of G under the projection to the ith factor.
As a result G embeds in a direct product G1 × G2 × · · · × G�, where the projection
to each factor is onto. We call G a subdirect product of G1, G2, . . . , and G�, and the
Gis are called the orbit groups of G.

For an illustration of these concepts, consider a group generated by a single per-
mutation.

Example 3.4 (Cyclic groups) The permutation (1,2)(3,4,5)(6,7,8,9) generates a
cyclic group G of order 12. It naively belongs to SYM9, a group of size 362880, but
based on its orbit structure it lives inside the much smaller group SYM2 × SYM3 ×
SYM4 of size 288. And if we cut down each factor to the image under projection,
then G embeds in Z2 × Z3 × Z4, a noncyclic group of order 24 that contains G as an
index 2 subgroup.

One caution is that G can be a subdirect product of groups without splitting as a
direct product. Consider the cyclic group G generated by (1,2,3)(4,5,6). The pro-
cedure described above embeds G as a subdirect product of Z3 and Z3, but G itself is
simple. The second set of results we need to recall are about Coxeter groups. A Cox-
eter group is a group generated by involutions with a presentation of a particularly
simple form.
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Definition 3.5 (Coxeter groups) Let W be a group generated by a finite subset S =
{s1, . . . , sn} and let mij ∈ N ∪ {∞} denote the order of the product sisj . The pair
(W,S) is called a Coxeter system if the elements of S are involutions (i.e., mii = 1)
and the presentation 〈s1, . . . , sn | (sisj )mij = 1〉 is a presentation of W . Note that when
mij = ∞, no relation is included for this pair of indices and that trivially mij =
mji ≥ 2 for all i �= j .

The letters W and S are those traditionally used for a Coxeter group and its Cox-
eter generators. Coxeter groups have an incredibly rich theory and close connections
with many areas of mathematics. By comparison, the results we need are fairly mod-
est. Before listing these results, we first establish the relevance of Coxeter groups to
our investigation of dynamics groups.

Proposition 3.6 (Coxeter quotients) Every group generated by a finite set of involu-
tions can be viewed as a quotient of a Coxeter group in a natural way.

Proof Let G be a group and let S = {s1, . . . , sn} be a subset of involutions that gen-
erate G. If we define mij as the order of sisj in G and we define W as the group
with presentation 〈s1, . . . , sn | (sisj )mij = 1〉 then there is a natural surjective homo-
morphism from W to G sending si to si . �

Theorem 3.7 (Dynamics groups as Coxeter quotients) If FY is a π -independent SDS
with only two possible vertex states, then F ∗

i , the restriction of a local function to
the periodic states Per(FY ), is either trivial or an involution. As a consequence, the
dynamics group DG(FY ) is either trivial or a quotient of a Coxeter group.

Proof The key observation is that because F ∗
i can only change the ith coordinate,

the size of the cycles in its cycle structure are bounded by the number of possible
vertex states. For the second assertion, note that when the dynamics group DG(FY )

is nontrivial, it is generated by the nontrivial F ∗
i and then apply Proposition 3.6. �

The case when DG(FY ) is trivial can be recognized by its fixed points.

Definition 3.8 (Fixed points) If y ∈ Per(FY ) is fixed under some simple update or-
der π , then y must be fixed by each local function Fi . This is because a change to
the ith coordinate cannot be corrected by the other local functions in the composition
that produces [FY ,π]. As a consequence, y is fixed under all update orders ω. We
write Fix(FY ) to denote the set of periodic states fixed by some simple update order,
or equivalently, the set of periodic states fixed by all local functions Fi (and thus fixed
by all update orders).

Proposition 3.9 (Trivial groups and fixed points) A π -independent SDS FY has a
trivial dynamics group DG(FY ) iff Fix(FY ) = Per(FY ).

Proof If Fix(FY ) = Per(FY ) then each F ∗
i is trivial and DG(FY ) is trivial. On the

other hand, if Fix(FY ) �= Per(FY ) then there is a periodic state y and a local function
Fi such that Fi(y) �= y. For this i, F ∗

i is nontrivial and thus DG(FY ) is nontrivial. �
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When the dynamics group DG(FY ) is nontrivial, the graph Y can be used to de-
scribe the Coxeter group of which it is a quotient.

Definition 3.10 (Coxeter diagrams) The presentation of a Coxeter group is often
summarized in graphical form as follows. Given a Coxeter system (W,S) we con-
struct a graph with vertices indexed by S and an edge labeled mij connecting vertex i

and j whenever mij > 2. The Coxeter presentation of W can be easily reconstructed
from this edge-labeled graph called the Coxeter diagram of W .

Definition 3.11 (Coxeter diagrams for dynamics groups) If FY is a π -independent
SDS with only two possible vertex states and a nontrivial dynamics group DG(FY ),
then the Coxeter diagram for the Coxeter group of which DG(FY ) is a quotient can
be obtained from Y in three easy steps. First remove every vertex i (and the edges
connected to it) for which F ∗

i is trivial. Next, remove the edges between i and j when
mij = 2 (or equivalently when F ∗

i and F ∗
j commute). And finally, add the label mij

to each remaining edge. We note that because F ∗
i and F ∗

j can only alter coordinates
i and j , the cycles of F ∗

i ◦ F ∗
j have size at most 4. Thus each mij divides 12, the gcd

of possible cycle lengths.

Definition 3.12 (Coxeter label) The Coxeter diagram for the Coxeter group mapping
onto the dynamics group of a π -independent Wolfram rule k is particularly simple
because of the symmetry of construction of the Wolf(k)

n . Writing Fi instead of Wolf(k)
i

we see that one F ∗
i is nontrivial iff they are all nontrivial and the order of F ∗

i ◦ F ∗
i+1

is a constant, independent of i and n. We call this constant ck , the Coxeter label of
Wolfram rule k, and as noted above, the value of ck must divide 12. When Gk is
nontrivial all vertices remain. If ck > 2, all edges remain and are labeled ck .

The result we need from Coxeter theory is an identification of certain classes of
groups.

Remark 3.13 (Small Coxeter labels) If Wolf(k)
n is π -independent, Gk is nontrivial,

and ck = 2, then Gk is a quotient of the Coxeter group Z
n
2 defined by an edgeless

Coxeter diagram. If Wolf(k)
n is π -independent, Gk is nontrivial, and ck = 3, then Gk

is a quotient of the Coxeter group defined by a circular Coxeter diagram with edges
labeled 3. This group is the affine Coxeter group of type Ãn−1 but since it is the only
Coxeter group we consider without a pre-existing common name (such as SYMn),
we call this group COXn. Its structure is well-known. Let (Zn ⊥ 1) denote the subset
of Z

n perpendicular to the vector 1 = (1,1, . . . ,1), i.e., the set of vectors whose
coordinates sum to 0, and note that these form a subgroup under vector addition.
If we let SYMn act on (Zn ⊥ 1) by permuting coordinates in the natural way, then
COXn is isomorphic to the semidirect product (Zn ⊥ 1) � SYMn. Geometrically, it
is the group of isometries of the Euclidean space R

n that preserve the sum of the
coordinates and send vectors with all integer coordinates to other such vectors.

For the sake of concreteness, we select the following explicit isomorphism be-
tween COXn and (Zn ⊥ 1) � SYMn. To avoid confusion we use x = (x1, x2, . . . , xn)

for an element of (Zn ⊥ 1) and reserve y = (y1, y2, . . . , yn) for states. Let s1, s2,
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. . . , sn, denote the Coxeter generators of COXn. For each i < n let si be the el-
ement that switches xi and xi+1, and let sn send x = (x1, x2, . . . , xn−1, xn) to
(xn − 1, x2, . . . , xn−1, x1 + 1). The natural map to SYMn only remembers how the
subscripts on the xis are permuted and ignores the translational component. An el-
ement in the kernel of the map COXn → SYMn is called a pure translation since it
merely adds to x a vector in (Zn ⊥ 1). These pure translations are generated by the el-
ements Ti in COXn defined as follows. The element T1 = s1s2 · · · sn−1snsn−1 · · · s3s2
and the other Ti are obtained by consistently shifting the subscripts. In terms of its
effect on an element x ∈ (Zn ⊥ 1), T1 adds the vector 〈−1,0, . . . ,0,1〉. More gener-
ally, Ti adds 1 to xi−1 and subtracts 1 from xi . The pure translations are generated by
these commuting Ti which are nearly independent. The sole nontrivial relation they
satisfy is that T1 + T2 + · · · + Tn is trivial.

4 Trivial groups

In this section we discuss π -independent Wolfram rules with trivial dynamics group.
Of the 41 representative Wolfram rules, 26 of them fall into this category. For rule
204 (with tag ----), this is immediate since as its tag indicates no local function ever
alters the current state. For the other 25 rules the triviality of Gk is a consequence
of Proposition 3.9. More specifically, several lemmas in [2] established conditions
under which all periodic points are fixed. These lemmas are listed below along with
the representative rules they cover.

• Lemma 5.3 (Rules 0, 4, 8, 12, 72, 76, 128, 132, 136, 140 and 200)
• Lemma 5.5 (Rules 160, 164, 168, 172 and 232)
• Lemma 5.6 (Rules 5, 13, 77, 133 and 141)
• Lemma 6.1 (Rules 32 and 40)
• Lemma 6.3 (Rules 152 and 184)

Even though the group Gk is trivial in each case, the set Pk remains to be calcu-
lated. (Many of the proofs in [2] are nonconstructive and do not determine the set of
periodic states explicitly.) Because periodic states and fixed states coincide for these
rules, there is a relatively straightforward procedure for finding them: simply look at
the definition of the rule and remove all states containing triples yi−1yiyi+1 of con-
secutive states that would lead to an alteration. Clearly the removed states are not
fixed by all local functions and do not belong to Pk , and any states remaining at the
end of this procedure are fixed by every local function and do belong in Pk . This
prompts the following definitions.

Definition 4.1 (Avoiding words) For each n, let NXY... denote the set of states in
F

n
2 that do not contain any subwords of the form X, Y , . . . . (The letter N stands for

“no”.) For example N‘11’ is the collection of states without adjacent 1s, keeping in
mind that we view the subscripts mod n.

Definition 4.2 (Abbreviations) To simplify notation, we introduce six abbreviations:
A = ‘11’, B = ‘000’, C = ‘111’, D = ‘010’, E = ‘101’, and F = ‘1100’. Thus, NAE
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Table 1 Rules with trivial dynamics group

Rule Tag Inv Refl I.r. ok Pk ck Gk

0 0000 255 0 255 1 0 1 1

8 00-0 239 64 253 1 0 1 1

32 x000 251 32 251 1 0 1 1

40 x0-0 235 96 249 1 0 1 1

128 -000 254 128 254 2 0 ∪ 1 1 1

136 -0-0 238 192 252 2 0 ∪ 1 1 1

160 1000 250 160 250 2 0 ∪ 1 1 1

168 10-0 234 224 248 2 0 ∪ 1 1 1

152 -x-0 230 194 188 2 0 ∪ 1 1 1

184 1x-0 226 226 184 2 0 ∪ 1 1 1

4 000- 223 4 223 |NA| NA 1 1

12 00-- 207 68 221 |NA| NA 1 1

132 -00- 222 132 222 |NA| + 1 NA ∪ 1 1 1

140 -0-- 206 196 220 |NA| + 1 NA ∪ 1 1 1

5 0001 95 5 95 |NAB| NAB 1 1

13 00-1 79 69 93 |NAB| NAB 1 1

133 -001 94 133 94 |NAB| + 1 NAB ∪ 1 1 1

141 -0-1 78 197 92 |NAB| + 1 NAB ∪ 1 1 1

164 100- 218 164 218 |NAE| + 1 NAE ∪ 1 1 1

172 10-- 202 228 216 |NAE| + 1 NAE ∪ 1 1 1

77 0--1 77 77 77 |NBC| NBC 1 1

76 0--- 205 76 205 |NC | NC 1 1

72 0--0 237 72 237 |NCD| NCD 1 1

200 ---0 236 200 236 |ND | ND 1 1

232 1--0 232 232 232 |NDE| NDE 1 1

204 ---- 204 204 204 2n
F

n
2 1 1

represents the states in F
n
2 with no subwords of the form ‘11’ or ‘101’. In addition,

let 0 and 1 refer to the state with all 0s and all 1s, respectively.

Remark 4.3 (Why these words) The words we have chosen to abbreviate are those
needed to efficiently describe the periodic sets of the 41 representative rules. The
words B , C, D and E are triples that need to be avoided, while the words A and
F deserve additional explanation. Avoiding the triple ‘110’ is equivalent to avoiding
the subword ‘11’ while allowing the state 1, and avoiding the triple ‘011’ leads to
the same conditions. It thus makes sense to abbreviate the word ‘11’ and treat the
state 1 separately. The word F = ‘1100’ is only needed to describe P28 and P29, so
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Table 2 Recurrence relations for the basic periodic sets

Name Words to avoid Tiles Recurrence relation Sloane

NA ‘11’ ‘0’, ‘10’ an = an−1 + an−2 A000032

NAB ‘11’, ‘000’ ‘10’, ‘100’ an = an−2 + an−3 A001608

NAE ‘11’, ‘101’ ‘0’, ‘100’ an = an−1 + an−3 A001609

NBCF ‘000’, ‘111’, ‘1100’ ‘10’, ‘100’, ‘110’ an = an−2 + 2an−3 A072328

NBC ‘000’, ‘111’ ‘10’, ‘100’, ‘110’, ‘1100’ an = an−2 + 2an−3 + an−4 A007040

NC ‘111’ ‘0’, ‘10’, ‘110’ an = an−1 + an−2 + an−3 A001644

NCD ‘111’, ‘010’ ‘0’, ‘110’ an = an−1 + an−3 A001609

ND ‘010’ – an = 2an−1 − an−2 + an−3 A109377

NDE ‘010’, ‘101’ – an = 2an−1 − an−2 + an−4 A007039

we postpone our discussion of this abbreviation until Sect. 6. We note that this is the
only abbreviated word that is not left-right symmetric.

The periodic sets for the 26 representative Wolfram rules under discussion, cal-
culated as described above, are listed in Table 1. The tag of rule k, along with the
decimal of its inversion, reflection and inversion-reflection are also included. Finally
we turn to a calculation of the number of orbits for each of these rules.

Remark 4.4 (Recurrence relations) Because the dynamics groups are trivial, we have
ok = |Pk| in each case. Moreover, since each of our sets is defined by a finite list of
configurations that it avoids, it is well-known that the number an of acceptable con-
figurations for each n are the coefficients of an easily calculated rational generating
function [6]. As a consequence, they satisfy a constant coefficient recurrence relation.
The last statement also follows from [4, Theorem 5.3, p. 132].

In all but two cases these negative descriptions can be reformulated as positive
ones that allow us to compute the recurrence with ease. For example, the states in
NA are those without adjacent 1s and every such state can be uniquely decomposed
into subwords of the form ‘0’ and ‘10’ that we call “tiles”. Counting these involve the
Lucas numbers and, indirectly, the Fibonacci numbers.

Definition 4.5 (Fibonacci and Lucas) In order to count the size of NA we first con-
sider the number bn of ways to build a word of length n out of the tiles 0 and
10, i.e. with no cyclic subscripting. By focusing on the type of the final tile, we
see that the number of such tiles satisfy the recurrence relation bn = bn−1 + bn−2
with initial conditions b1 = 1 and b2 = 2. The unique solution of the recur-
rence is bn = FIBn+1 where FIBn are the famous Fibonacci numbers with values
{1,1,2,3,5,8,13,21, . . .} starting with FIB1. Returning to the cyclic version, there
are three ways the vertex i can be covered by a tile: it can be a 0 tile, the first digit
of a 10 tile or the second digit of a 10 tile. Once the tile containing vertex i has
been placed, the remaining problem involves tiling a word. Thus an = bn−1 + 2bn−2.
It is now easy to see that an satisfies the same recurrence relation as bn but with
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different initial conditions. In this case a1 = 1 and a2 = 3 and the solution of the
recurrence is an = LUCn where LUCn are the nearly as famous Lucas numbers with
values {1,3,4,7,11,18,29, . . .} starting with LUC1.

This analysis of the size of NA easily extends to those cases with a tiling de-
scription supplementing the description by words to avoid. The tiles in each case
and the corresponding recurrence relation are listed in Table 2. The final column is
a reference to the appropriate entry in Neil Sloane’s Online Encyclopedia of Integer
Sequences [5]. The remaining two cases, ND and NDE , are classical situations where
isolated 1s and/or isolated 0s are to be avoided. See the references listed in their
entries in [5] for further details.

5 Invertible rules

We now turn our attention to Wolfram rules where every state is periodic. Of the 41
representative Wolfram rules, 9 of them fall into this category. Our results for these 9
rules are summarized in Table 3. Note that the more complicated numbers and groups
ok and Gk are not explicitly listed in the table and only described in the text. As a
convention, when it is clear that rule k is the rule under discussion, we use Fi instead
of the more cumbersome Wolf(k)

i to denote the rule that updates the ith coordinate.
Finally, recall that the Coxeter label ck must be a divisor of 12 and note that all six
possible values occur among these “invertible” rules.

Definition 5.1 (Invertible rules) An SDS FY is called invertible when every state
F

n is periodic, or equivalently when every update rule Fi is a bijection. To see the
equivalence note that when every update rule is bijective, their composition is a per-
mutation and every state is periodic. Conversely, if every state is periodic, then the
SDS maps are permutations and the only way this can happen is when every update
rule is at least injective and hence bijective.

It is also worth noting that when there are only two possible vertex states, in-
vertibility is characterized by the absence of the symbols 0s and 1s in the tags of
the update rules. Before discussing the invertible rules individually, we need some
additional notation.

Definition 5.2 (Blocks) If y is any state other than 0 or 1 then it consists of alter-
nating strings of 0s an 1s that we abbreviate using exponents. For example 1503 is
shorthand for the word 11111000. We call a maximal subword of the form 0i , 1j ,
0i1j or 1j 0i (with i and j positive) a 0-block, a 1-block, a 01-block and a 10-block,
respectively. For example, keeping in mind the cyclic nature of the subscripts, the
state y = 1101001 has two 1-blocks (1 and 13), two 0-blocks (0 and 02), two 01-
blocks (01 and 0213), and two 10-blocks (102 and 130). Every block has a length.
Blocks of length 1 are called isolated and longer blocks are called nontrivial.

The effect of each of the four possible x’s in a tag can be described in this lan-
guage.
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Table 3 Invertible rules

Rule Tag Inv Refl I.r. ok Pk ck Gk

204 ---- 204 204 204 2n
F

n
2 1 1

51 xxxx 51 51 51 1 F
n
2 2 Z

n
2

60 xx-- 195 102 153 2 F
n
2 4 SLn(Z2)

150 -xx- 150 150 150 � n
2 � + 2 F

n
2 3 Thm 5.4

105 x--x 105 105 105 o105 F
n
2 3 Thm 5.5

156 -x-- 198 198 156 |NA ∪ 1| F
n
2 6 Thm 5.6

201 ---x 108 201 108 |ND | F
n
2 6 Thm 5.9

57 xx-x 99 99 57 1 F
n
2 12 Conj 5.10

54 xxx- 147 54 147 2 F
n
2 12 Conj 5.11

Remark 5.3 (Tags and dynamics) When t0 = x (010 ↔ 000) isolated 1s can be cre-
ated and removed and when t3 = x (111 ↔ 101) isolated 0s can be created and re-
moved. When t1 = x (011 ↔ 001) the boundary between a 1-block and the 0-block
to its left can be shifted left or right and when t2 = x (110 ↔ 100) the boundary
between a 1-block and the 0-block to its right can be shifted left or right.

We now discuss the invertible rules one at a time.

Rule 204 As we already noted in the last section, under rule 204, with tag ----, all
of the local functions leave the state of the system unchanged, every local function
induces the trivial permutation, and the group generated is the trivial group. There
are thus 2n orbits since every distinct state is an orbit.

Rule 51 Under rule 51, with tag xxxx, the local functions ignore their context and
always alter the value. Since the local functions pairwise commute, c51 = 2, and
the dynamics group is a quotient of Z

n
2 . But since the composition of every distinct

subset of local functions toggles a distinct subset of vertex states, there are at least 2n

elements in G51. Thus G51 is isomorphic to Z
n
2. Finally, it is easy to see that there is

only one orbit, so o51 = 1.

Rule 60 The dynamics group G60 is interesting because its structure is slightly un-
expected. The key observation is that when vertex i is updated, its new value is its
old value plus the value of the vertex immediately to its left. In other words Wolf(60)

i

replaces yi with yi + yi−1, which leads to a matrix representation of the update rules.
Viewing y as a column vector, the effect of updating vertex i can be achieved by
multiplying y on the left by the matrix Ai := I + Ei,i−1 where I is the n × n identity
matrix and Ei,j is the elementary matrix with 0s everywhere except for a single 1 in
the (i, j) position. Matrix multiplication by Ai is a concise description of the function
Wolf(60)

i from F
n
2 to F

n
2 and thus the matrix group generated by the Ais is isomorphic

to the dynamics group G60. Since each Ai has determinant 1, it is clear that G60 is a
subgroup of SLn(Z2), and, in fact, it is well-known that these matrices generate all
of SLn(Z2) [7, p. 455]. Thus G60 is isomorphic to SLn(Z2). Under this group action
it is clear that 0 is fixed and the remaining states form a single orbit. A calculation
shows c60 = 4.
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Rule 150 Rule 150 is similar to rule 60 but this time, when vertex i is updated,
its new value is the sum of its old value plus the value of the vertices immedi-
ately to its left and its right. This is better known as the parity function. More ex-
plicitly, Fi = Wolf(150)

i replaces yi with yi−1 + yi + yi+1 mod 2, which leads to a
matrix representation of the update rules as before. If we define the matrices Ai as
I +Ei,i−1 +Ei,i+1 then the group G150 can be identified as the subgroup of SLn(Z2)

the matrices Ai generate. Unlike rule 60 it is not clear which subgroup of SLn(Z2)

this generates. An approach via Coxeter groups is more successful.
Since an easy calculation shows that ck = 3, G150 is a quotient of COXn. Recall

from Remark 3.13 that COXn
∼= (Zn ⊥ 1) � SYMn as well as the conventions estab-

lished there. The analysis of G150 involves two steps. The first is to show that the map
COXn → G150 is a factor of the map COXn → SYMn (i.e. the later map decomposes
as COXn → G150 → SYMn). To see that G150 maps onto SYMn in a manner con-
sistent with the projection COXn → SYMn start with a state y and imagine that the
numbers 1 up to n are placed in the gaps between the n positions. In particular, ini-
tially place the number i between yi−1 and yi . When Fi is applied to a state y switch
the numbers on either side of yi fixing all the others, in addition to updating the value
of yi . We claim that if i was originally in a gap that marked the end of a 0-block or 1-
block, then the same is true of the place where i ends up in the final state. This follows
easily from the way rule 150 updates states. From this it is not too hard to see that if a
sequence of update rules fixes every state, then each of the numbers 1 through n must
also return to their original position. More concretely, if the numbers 1 through n do
not all return to their original positions, it is easy to find an explicit state that is not
fixed by this sequence of update rules. This means that there is a well-defined group
homomorphism G150 to SYMn that sends the permutation [FY ,π] = Fπn ◦ · · · ◦ Fπ1

to its permutation of the set {1,2, . . . , n}. Since this matches the image of sπn · · · sπ1

under the map COXn → SYMn we have the factorization we desire.
The existence of maps COXn → G150 → SYMn imply that the kernel of the first

map consists solely of pure translations and we only need to analyze which pure
translations lie in the kernel in order to completely understand the group G150. To
do this we use the concrete description of COXn given in Remark 3.13. One of the
generating pure translations in COXn is the element T1 = s1s2 · · · sn−1snsn−1 · · · s3s2.
The image of this inside G150 is the element F1 ◦ F2 ◦ · · · ◦ Fn−1 ◦ Fn ◦ Fn−1 ◦ · · · ◦
F3 ◦ F2. If we apply this sequence of update rules to an arbitrary state y (using the
parity function as we should), the final result is y + (y2 + yn)1. More generally, the
image of Ti acts on states by sending y to y + (yi−1 + yi+1)1. Applying Ti twice is
clearly trivial so the kernel contains the subgroup of (Zn ⊥ 1) that the vectors 2Ti

generate. This set is (2Z)n ⊥ 1. As a consequence, G150 is a quotient of the group
(Zn

2 ⊥ 1) � SYMn of size 2n−1 · n!. When n is even there is another pure translation
in the kernel, namely, the result of applying once each Ti with an odd subscript.
As a pure translation this adds the vector 〈−1,1,−1, . . . ,−1,1〉. Equivalently, when
n is even G150 is a quotient of ((Zn

2 ⊥ 1)/〈1〉) � SYMn. (Note that adding 1 to a
state x replaces x with its complement, the 0s become 1s and vice versa. Moreover,
this pure translation commutes with the symmetric group action and is central in
(Zn

2 ⊥ 1) � SYMn.) We now show that these are the only pure translations in the
kernel.
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Theorem 5.4 (Rule 150) When n is odd the group G150 is isomorphic to (Zn
2 ⊥ 1) �

SYMn and when n is even it is isomorphic to ((Zn
2 ⊥ 1)/〈1〉) � SYMn. In particular,

|G150| = 2n−1 · n! when 2 � n and 2n−2 · n! when 2 | n.

Proof That G150 is a quotient of these groups was shown above, so we only need to
show that we have found the full kernel of the map COXn → G150. To see whether
there are any other pure translations that are trivial in G150 note that Ti−1 and Ti+1

are the only generating pure translations that add yi1 to y. Thus, if a1T1 + a2T2 +
· · · + anTn acts trivially on every state y, the parity of ai−1 and ai+1 must match for
every i. When n is odd, this means that all of the ai have the same parity and every
such element is one we already know lies in the kernel. When n is even there is one
additional possibility. Perhaps the ais with even subscripts have one parity and the
ones with odd subscripts have the other. Removing summands we already know to
lie in the kernel and using the relation T1 + T2 + · · · + Tn = 0 if necessary, we see
that this possibility is equivalent to T1 + T3 + T5 + · · · + Tn−1, again, an element we
already know lies in the kernel. �

Although we did not need its orbit structure in order to analyze G150, it is easy
to see that the changes rule 150 allows (and the only changes it allows) are the alter-
ations of the boundaries of the 0-blocks and 1-blocks. Thus two states belong to the
same orbit if and only if they have the same number of 0-blocks and the same number
of 1-blocks. In particular o150 = �n

2 � + 2 with the 2 corresponding to the fixed states
0 and 1.

Rule 105 Rule 105 is the negation of the parity function and its analysis is very
similar to our analysis of rule 150. In particular, Fi = Wolf(105)

i replaces yi with 1 +
yi−1 + yi + yi+1 mod 2. The group G105 can be described as a subgroup of a linear
group (with an extra row and column added for constants) but viewing it as a Coxeter
quotient is more fruitful. The Coxeter label c105 = 3, and COXn → G105 → SYMn as
above. The argument for such a factorization is similar in spirit to the one presented
above for rule 150 but complicated by the presence of negations. We omit the details.

The existence of maps COXn → G105 → SYMn imply that the kernel of the first
map consists solely of pure translations and we only need to analyze which pure
translations lie in the kernel in order to completely understand the group G105. This
time the image of the pure translation Ti in G105 acts on states by sending y to y+(1+
yi−1 +yi+1)1. Applying Ti twice is clearly trivial so the kernel contains the subgroup
of (Zn ⊥ 1) that the vectors 2Ti generate. This set is (2Z)n ⊥ 1. As a consequence,
G105 is a quotient of the group (Zn

2 ⊥ 1) � SYMn of size 2n−1 · n!. When n is a
multiple of 4 there is another pure translation in the kernel, namely, the result of
applying once each Ti with an odd subscript. The reason n needs to be a multiple of
4 and not merely even is that when n is twice an odd number y is sent to y + 1. As a
pure translation this adds the vector 〈−1,1,−1, . . . ,−1,1〉. Equivalently, when n is
even G105 is a quotient of ((Zn

2 ⊥ 1)/〈1〉) � SYMn. We now show that these are the
only pure translations in the kernel.
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Theorem 5.5 (Rule 105) When n is not a multiple of 4 the group G105 is isomorphic
to (Zn

2 ⊥ 1)�SYMn and when it is a multiple of 4 it is isomorphic to ((Zn
2 ⊥ 1)/〈1〉)�

SYMn. In particular, |G105| = 2n−1 · n! when 4 � n and |G105| = 2n−2 · n! when 4 | n.

Proof That G105 is a quotient of these groups was shown above, so we only need to
show that we have found the full kernel of the map COXn → G105. To see whether
there are any other pure translations that are trivial in G105 note that Ti−1 and Ti+1
are the only generating pure translations that add yi1 to y. Thus, if a1T1 + a2T2 +
· · · + anTn acts trivially on every state y, the parity of ai−1 and ai+1 must match for
every i. When n is odd, this mean that all of the ai have the same parity and every
such element is one we already know lies in the kernel. When n is even there is one
additional possibility. Perhaps the ais with even subscripts have one parity and the
ones with odd subscripts have the other. Removing summands we already know to
lie in the kernel and using the relation T1 + T2 + · · · + Tn = 0 if necessary, we see
that this possibility is equivalent to T1 + T3 + T5 + · · · + Tn−1. If n is twice an odd
number then y is sent to y + 1 and this is not in the kernel, but when n is twice an
even number (i.e. 4 | n) then this is an element we already know lies in the kernel. �

Finally, for the sake of completeness, we include a description of o105 but leave a
verification of our assertions as an exercise. When n is twice an odd number o105 =
2�n

4 � + 4, when n is twice an even number o105 = 2�n
4 � + 2, and when n is odd,

o105 = 2 (and these are the orbits of 0 and 1).

Rule 156 Wolfram rule 156 is a case where the orbit structure is useful and we use it
to prove that G156 is a subdirect product of symmetric groups of particular sizes in a
very concrete fashion. The first thing to notice is that the only changes rule 156 allows
are growing or shrinking 1-blocks from the right. Isolated 1s and 0s can neither be
created nor removed (so the number of blocks is an invariant) and the left end of a
1-block is never moved (so that subwords of the form 01 persist forever). To analyze
the number of orbits, apply the rewrite rule 110 → 100 to remove as many 1s as
possible. It should be clear that (unless we started with the state 1) this process ends
when all remaining 1s are isolated. Moreover, these remaining 1s are precisely the
leftmost 1s in the initial blocks so there is a unique state in each orbit with isolated
ones. In other words, the orbits are in natural bijection with the set NA ∪ 1, and thus
o156 = |NA ∪ 1| = LUCn + 1.

We now examine the way the updates rules act on the states in each orbit indi-
vidually. The fixed state 1 can be discarded since the trivial group it generates does
not contribute meaningfully to the subdirect product. Next we note that the dynamics
group restricted to a single orbit usually splits further as a direct product. For exam-
ple, consider the state y = 1000001000. It has a two 10-blocks, one of length 6 and
one of length 4. The orbit of y consists of all words that can be written as a 10-block
of length 6 followed by a 10-block of length 4. In particular, the first six digits can be
100000, 110000, 111000, 111100 or 111110 and the last four can be 1000, 1100 or
1110. These fifteen combinations form the complete orbit. In addition, writing Fi in
place of Wolf(156)

i , the only update rules that act nontrivially on this orbit are F2, F3,
F4, F5, F8 and F9, but F2, F3, F4 and F5 commute with F8 and F9 so G156 restricted
to this orbit splits as a direct product 〈F2,F3,F4,F5〉 × 〈F8,F9〉.
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If we focus in on the first six digits for a moment and name the possibilities x1 =
100000, x2 = 110000, x3 = 111000, x4 = 111100 and x5 = 111110 then we see that
F2 swaps x1 and x2 and fixes the other xi , F3 swaps x2 and x3, F4 swaps x3 and x4 and
F5 swaps x4 and x5. The induced permutations of the five possibilities are F2 = (12),
F3 = (23), F4 = (34) and F5 = (45). Thus, these four update rules, restricted in this
way generate a copy of SYM5 with the functions F2, F3, F4 and F5 acting as the
standard Coxeter generating set.

More generally, if a state y contains a 10-block of length m + 1 starting at posi-
tion �, then every state in the orbit of y contains a 10-block of this length at this lo-
cation. There are m possibilities for a block of this type that we call xi = 1i0j where
i, j > 0 and i + j = m+1. The update rules F�+1, . . . , F�+m−1 are the only ones that
alter this block and they generate a copy of SYMm acting on the possibilities xi in the
standard way. We call this group SYM

(�)
m . As a group it is SYMm and the number �

indicates which update rules generate SYMm and in what way. Returning to our ear-
lier example, we see that the quotient of G156 obtained by restricting to the orbit of
y = 1000001000 is the group SYM

(1)
5 × SYM

(7)
3 . More generally, if y has 10-blocks

of lengths m1 + 1, m2 + 1, . . . , mk + 1 starting at �1, �2, . . . , �k then the quotient of
G156 restricted to the orbit of y is the group SYM

(�1)
m1 × SYM

(�2)
m2 × · · · × SYM

(�k)
mk

.
To summarize, G156 is a subdirect product of groups, each of which is isomorphic

to a direct product of groups of the form SYM
(�)
m . When written out completely using

the orbit structure, the groups SYM
(�)
m occur multiple times and the projection of G156

onto each of these repeated factors is identical. As a consequence, the group G156 can
be embedded in a direct product where each of these groups only occurs once. Note
that the position � can be any number 1 through n, but that m + 1 can only be 2
through n excluding n − 1 since the complement of the 10-block with length m + 1
must be tilable by 10-blocks and these have length at least 2.

Theorem 5.6 (Rule 156) The group G156 is a subdirect product of symmetric groups.
In particular,

G156 ⊂
n∏

�=1

(

SYM
(�)
n−1 ×

n−3∏

m=2

SYM(�)
m

)

and each generator of G156 restricted to a factor is either trivial or a standard Cox-
eter generator as described above.

Note that the factors with m = 1 have been eliminated from these products, which
is possible because the groups SYM

(�)
1 are trivial. We computed the order of G156 for

4 ≤ n ≤ 7, and the results are shown in Table 4. Notice that for n > 4 each of these
orders are nth powers.

Rule 201 Rule 201 is a second situation where the orbit structure can be used to
simplify our analysis. In particular we use orbit structures to prove that G201 is a sub-
direct product of groups that are all (conjecturally) symmetric or alternating groups
of particular sizes in a very concrete fashion. The first step is to analyze the orbit
structure. The only changes under rule 201 are the creation or removal of isolated 1s.
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Table 4 The orders of G156, G201 and G73 for small values of n

n |G156| |G201| |G73|

4 23.34 (7!/2) (7!/2)

5 215.35 25.(11!/2) 25.(11!/2)

6 218.312.56 26.36.(18!/2) 25.36.(18!/2)

7 242.328.57 221.314.57.(29!/2) 221.37.57.(29!/2)

In particular the size and location of nontrivial 1-blocks in a state y are an invariant of
its orbit. In fact, since we can remove all isolated 1s, any two states with the same set
of nontrivial 1-blocks belong to the same orbit and every orbit has exactly one state
with no isolated 1s. Thus o201 = |ND|, the number of states with no isolated 1s.

Let y be a state with no isolated 1s. It should be clear that the restriction of the
group G201 to the orbit of y will split as a direct product with one factor for each
0-block in y. This is because all of the local functions that insert and remove isolated
1s in one 0-block will commute with those that insert and remove isolated 1s in a
different 0-block, being separated by nontrivial 1-blocks. As was the case with rule
156, the orbit groups of G201 split into factors, the refined direct product contains re-
dundancies and these redundancies can be removed to give a better subdirect product
representation of G201. In particular, G201 embeds in the subdirect product of orbit
groups acting on orbits with only one 0-block. Let LGn denote the group obtained
by restricting G201 to the orbit of 0 and let FG(�)

m be the group obtained by restricting
G201 to the orbit of the state y with a single 0-block of length m starting at position �.
The notations stand for Lucas group and Fibonacci group and are suggested by the
fact that the orbit of 0 under G201 is NA of size LUCn and the orbit of y under G201

has size FIBm (the first 0 is fixed and the remaining m − 1 digits of the 0-block are
tiled by tiles 0 and 10). In the case of LGn we can be slightly more precise.

Proposition 5.7 (Lucas groups) The group LGn is a subgroup of SYMLUCn when
FIBn−1 is odd and a subgroup of ALTLUCn when FIBn−1 is even.

Proof Since LGn acts on a set of size |NA| = LUCn, only the second assertion needs
to be established. Let F ∗

i denote the restriction of Wolf(201)
i to NA and note that these

permutations generate LGn. To count how many 2-cycles are in the disjoint cycle
notation for F ∗

i , note that for each y ∈ NA, F ∗
i (y) �= y iff yi−1 = yi+1 = 0. Thus, the

number of 2-cycles in F ∗
i equals the number of words yi+1yi+2 . . . yi−2yi−1 of length

n − 1 with only isolated 1s and yi+1 = yi−1 = 0, which equals the number of ways
to tile a word yi+2 . . . yi−2yi−1 of length n − 2 with tiles 0 and 10. As we saw in
Definition 4.5, this number is FIBn−1. Thus F ∗

i is an even permutation iff FIBn−1 is
even, and when this is true, LGn is a subgroup of ALTLUC(n). �

The following conjecture is based on computational evidence for small values
of n. We have checked, for example, that FG(�)

6
∼= SYM8 = SYMFIB6 and that LG4 ∼=

ALT7 = ALTLUC4 (as predicted since FIB3 = 2 is even).
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Conjecture 5.8 (Fibonacci groups and Lucas groups) For all m, FG(�)
m

∼= SYMFIBm

and for all n, LGn
∼= SYMLUCn when FIBn−1 is odd and LGn

∼= ALTLUCn when
FIBn−1 is even.

The parity of the Fibonacci numbers is quite predictable and a more direct state-
ment is possible, but the one given is more closely tied to the reason LGn stays
inside ALTLUCn . The obstruction to establishing Conjecture 5.8 is how far the per-
mutations generating the Fibonacci groups and Lucas groups differ from the standard
generating sets of the symmetric and alternating groups. In any case, this analysis of
the orbit structure under rule 201 gives the following subdirect product decomposi-
tion for G201. The values of m only range from 3 to n − 2 to exclude trivial groups
on the low end and because the complement of the 0-block needs to leave room for a
nontrivial block of 1s.

Theorem 5.9 (Rule 201) The group G201 is a subdirect product of Lucas groups and
Fibonacci groups. In particular,

G201 ⊂ LGn ×
n∏

�=1

n−2∏

m=3

FG(�)
m

Finally, we used a computer program to calculate the order of G201 for 4 ≤ n ≤ 7,
and the results are shown in Table 4. Notice that the answer in each case is an nth
power times the size of ALTLUCn .

Rule 57 Wolfram rule 57 can introduce and remove isolated 0s and 1s and it can
grow and shrink 0-blocks from the left and 1-blocks from the right. With so much
flexibility it is easy to see that there is only one orbit and thus o57 = 1. Moreover,
because Wolf(57)

i (y) = y only when yi−1 = 0 and yi+1 = 1, the number of 2-cycles

in the disjoint cycle representation of Wolf(57)
i is 2n−3. In particular, it is an even

permutation for n > 4 and we conclude that G57 is a subgroup of ALT2n .

Conjecture 5.10 (Rule 57) For all n > 4, G57 ∼= ALT2n .

We have verified Conjecture 5.10 explicitly up to n = 8. The reason Conjec-
ture 5.10 is difficult to establish abstractly is that the permutations Wolf(57)

i are far
removed from the standard generating sets of ALT2n .

Rule 54 Rule 54 is similar to rule 57 except that the state 0 is now fixed. Since 1-
blocks can grow to the left or the right and isolated 0s can be removed, all states
other than 0 are in the same orbit as 1. Thus o54 = 2. Since fixed states only con-
tribute trivial groups to the subdirect product structure, they can be ignored when
computing the dynamics group. In particular, G54 is a subgroup of SYM2n−1. Be-
cause Wolf(54)

i (y) = y only when yi−1 = yi+1 = 0, the number of 2-cycles in the

disjoint cycle representation of Wolf(54)
i is once again 2n−3, which is even for n > 4,

and G54 lies in ALT2n−1.
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Conjecture 5.11 (Rule 54) For all n > 4, G54 ∼= ALT2n−1.

We have verified Conjecture 5.11 explicitly up to n = 8 as well. The reason Con-
jecture 5.11 is difficult to establish abstractly is that, as with rule 57, the permutations
Wolf(54)

i are far removed from the standard generating sets of ALT2n−1.

6 Seven exceptions

Of the 41 representative Wolfram rules, we have seen that 26 have trivial dynamics
groups, 9 are invertible, and 1 rule is both. In this section we study the remaining 7
rules. One key to understanding the dynamics of these noninvertible rules with non-
trivial dynamics is to note that they agree with an invertible rule on a union of its
orbits, which implies that the dynamics group of the noninvertible rule is a homo-
morphic image of the dynamics group of the invertible rule with which it agrees. We
begin by establishing these general facts.

Theorem 6.1 (Independence and invertibility) If FY is a π -independent SDS, then
there exists an invertible SDS F′

Y such that (1) FY and F′
Y agree on the set Per(FY ),

(2) Per(FY ) is a union of orbits of the action of DG(F′
Y ) on F

n, and (3) there is a
surjection from DG(F′

Y ) onto DG(FY ).

Proof We define new local functions F ′
i as follows. Call a state y ∈ F

n i-periodic if
the sequence y, Fi(y), Fi(Fi(y)), Fi(Fi(Fi(y))), etc., eventually returns to y; other-
wise call it i-transitory. The function F ′

i is defined as equal to Fi on the i-periodic
states and the identity function of the i-transitory ones. It is now straightforward to
check that F ′

i is both Y -local at i and bijective. By Definition 5.1, the bijectivity of
each F ′

i means that F′
Y is invertible. Next, by Proposition 1.7 each F ∗

i is a permu-
tation of Per(FY ). Thus the states in Per(FY ) are i-periodic for each i, and FY and
F′

Y agree completely on this set of states. The invariance of Per(FY ) under each Fi

and its agreement with the corresponding F ′
i means that Per(FY ) is a union of orbits

under the action of DG(F′
Y ). And finally, the projection from the subdirect product

containing DG(F′
Y ) onto the factors corresponding to the orbits contained in Per(FY )

produces the required surjective group homomorphism. �

Corollary 6.2 (Independence and invertibility) If FY is a π -independent SDS with
only two possible vertex states, then the update rules for an invertible SDS F′

Y satis-
fying the conclusions of Theorem 6.1 can be obtained by replacing every 0 and 1 in
the tags of the update rules of FY with the symbol -.

Proof The assertion merely describes the effect the previous construction has on
tags. �

As an illustration, we apply the corollary to each of the 7 exceptional rules.



32 J Algebr Comb (2011) 33: 11–35

Table 5 The seven exceptional cases

Rule Tag Inv Refl I.r. ok Pk ck Gk

28 0x-- 199 70 157 |NAB| + 1 NBCF ∪ 0 2 Z
n
2

29 0x-1 71 71 29 |NAB| NBCF 2 Z
n
2

1 000x 127 1 127 1 NA 6 LGn

9 00-x 111 65 125 1 NA 6 LGn

129 -00x 126 129 126 2 NA ∪ 1 6 LGn

137 -0-x 110 193 124 2 NA ∪ 1 6 LGn

73 0--x 109 73 109 |NCD| NC 6 Theorem 6.5

Example 6.3 (Exceptional rules and invertibility) By Corollary 6.2, rules 28 (0x--)
and 29 (0x-1) agree with rule 156 (-x--) when restricted to P28 and P29, respec-
tively. Similarly, rules 1 (000x), 9 (00-x), 129 (-00x), 137 (-0-x) and 73 (0--x)
agree with rule 201 (---x) when restricted to P1, P9, P129, P137, and P73, respec-
tively.

The proof of Theorem 6.1 also provides a concrete description of the periodic
states.

Corollary 6.4 (Periodic orbits) If FY is a π -independent SDS with only two possible
vertex states and F′

Y is the corresponding invertible SDS satisfying the conclusions of
Theorem 6.1, then the nonperiodic states under FY are the union of the orbits under
F′

Y that contain a state y that can be altered as a consequence of a 0 or a 1 in the
tag of an update rule of FY .

Table 5 contains a summary of our results about these 7 exceptional rules. These
noninvertible rules with nontrivial dynamics naturally fall into three classes: {28,29},
{1,9,129,137}, and {73}.
Rules 28 and 29 By Corollary 6.2, both G28 and G29 are quotients of G156. The
first step is to decide which states are in P28 and P29. By Corollary 6.4, rule 28 (with
tag 0x--) must exclude all orbits that contain a state with subword 111 and rule
29 (with tag 0x-1) must exclude all orbits that contain a state with subword 111
or 000. For rule 29, we are left with those states that have no 10 blocks of length 4
or more (because any orbit that contains 1000 or 1100 also contains 1110) and for
rule 28 we are left with the same states plus 0 which is fixed. These states can be
described by excluding B = ‘111’, C = ‘000’ and F = ‘1100’. Because fixed states
contribute trivial groups to the subdirect product and both G28 and G29 are obtained
by restricting the action of G156 on F

n
2 to the same set of non-fixed periodic states,

G28 and G29 are isomorphic groups. The number of orbits depends on the number
of ways to tile n cyclically arranged positions by tiles of size 2 and 3 and, as we saw
in Sect. 4, this number is counted by |NAB|. Thus o29 = |NAB| and o28 = |NAB| + 1.
Continuing the notation used in our discussion of invertible rule 156, this means
that G28 = G29 is the image of G156 in the product SYM

(1)
2 × SYM

(2)
2 ×· · ·× SYM

(n)
2
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which is isomorphic to Z
n
2 . And since G156 projects fully onto each factor, G28 = G29

is all of Z
n
2. As a final note, when n = 4, m + 1 is not allowed to be 3 and the factors

SYM�
2 do not occur in the subdirect product. Thus G28 = G29 are trivial groups for

n = 4.
An alternative way to proceed would have been to calculate c28 = c29 = 2, con-

clude that G28 = G29 is a quotient of Z
n
2 and then to argue that it is actually equal

to Z
n
2 . Finally, we remark that rules 28 and 29 have the same dynamics group as rule

51 but for very different reasons. It is perhaps surprising that rules 28 and 29 have
such simple dynamics groups since they were among the six exceptional cases that
needed to be dealt with separately in the proof of Theorem 2.4 due to the complica-
tions in analyzing their dynamics.

Rules 1, 9, 129 and 137 By Corollary 6.2, G1, G9, G129 and G137 are all quotients
of G201. To decide which quotient, the first step is to decide which states are in
P1, P9, P129 and P137. By Corollary 6.4, all four sets must exclude any state with
adjacent ones (although P129 and P137 include the fixed state 1) and, by our previous
analysis of rule 201, the states with only isolated 1s form a single orbit under its
action and thus are included in all four periodic sets. This means that o1 = o9 = 1
and o129 = o137 = 2. Moreover, recalling that fixed states contribute trivial groups
to the subdirect product, G1, G9, G129 and G137 are all isomorphic to the group
obtained when the action of G201 is restricted to the single orbit NA. In other words,
the groups G1, G9, G129, and G137 are all isomorphic to LGn.

Rule 73 Our final rule, rule 73, is also a quotient of G201 as indicated by Corol-
lary 6.2, but this time the number of orbits retained is much larger. In fact, by Corol-
lary 6.4, only states containing C = ‘111’ as a subword need to be removed. Since
neither rule 201 nor rule 73 can bring subwords of the form ‘111’ into existence, all
states in NC are periodic under G73. Because the orbits under rule 201 each contain
a unique state with no isolated 1s, the number of orbits in P73 equals the number
of states with no ‘111’ and no ‘010’. Thus P73 = NC and o73 = |NCD|. When the
orbit groups for these orbits are factored into direct products and redundancies are
removed, the Lucas group LGn and all of the Fibonacci groups FG(�)

m arise, except
those with m = n − 3 and m = n − 4. This is because the complement of the 0-block
of length m starting at location � must be tilable with pairs of adjacent 1s that alter-
nate with other 0-blocks. When m = n − 2 the complement is a single pair of 1s and
when m ≤ n − 5 the complement can be a word of the form 120i12 with i > 0.

Theorem 6.5 The group G73 is the projection of G201 into the following direct prod-
uct:

G73 ⊂ LGn ×
n∏

�=1

(

FG(�)
n−2 ×

n−5∏

m=3

FG(�)
m

)

As with rule 201, we used a computer program to calculate the order of G73 for
4 ≤ n ≤ 7, and the results are shown in Table 4.
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7 Concluding remarks

Even though the periodic states and the dynamics groups have now been largely de-
scribed for all π -independent ACAs, many interesting research topics remain. Exam-
ples include proving or disproving Conjectures 5.8, 5.10, and 5.11. The theory and
techniques developed in this paper also apply to the larger class of π -independent
SDSs. In contrast to ACAs, where the graph is Circn, SDSs are defined over arbitrary
finite graphs. Our initial work in [2] started from ACAs since this class of systems
is amenable to analysis and still exhibits interesting behavior. Extending our analy-
sis to SDSs over arbitrary graphs poses a bigger challenge, even when restricted to
special classes of vertex functions such as logical NOR and NAND functions (which
are always π -independent [1]), or those inducing invertible SDSs. As may be clear
from this paper, determining the dynamics group from its definition may be chal-
lenging. It would be interesting to investigate whether there is a result similar to the
celebrated Seifert–van Kampen Theorem that would allow one to deduce dynam-
ics groups based on, e.g., graph unions or minors. Even if this may be too much
to expect in the general case, it would still be interesting even if it applies for spe-
cial classes of vertex functions. Another problem that may be worth pursuing in the
general context is how to give an efficient presentation of the dynamics groups. In
particular, they are all finite quotients of Coxeter groups. What are the additional re-
lations arising from the fact that vertex functions are defined using Z2 as the state
space?

The original motivation for this work was to explore the concept of π -independent
ACAs and the possible dynamics groups that can arise. Admittedly, this theory and
associated techniques still need to be developed in order for this to become a pow-
erful tool in the study of discrete dynamical systems. Nonetheless, the construction
of the dynamics group establishes a new connection between algebra and discrete
dynamical systems. As such, it provides a possible avenue for extending SDS theory
through a large body of established mathematical theory.
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