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An extension to the wavelet-based method for the estimation of the spectral exponent, γ, in a 1/ f γ process and in the presence of
additive white noise is proposed. The approach is based on eliminating the effect of white noise by a simple difference operation
constructed on the wavelet spectrum. The γ parameter is estimated as the slope of a linear function. It is shown by simulations that
the proposed method gives reliable results. Global positioning system (GPS) time-series noise is analyzed and the results provide
experimental verification of the proposed method.
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1. INTRODUCTION

1/ f γ processes, also referred to as self-similar processes, are
observed in many diverse fields and have gained importance
in various signal processing applications from geophysical
records to biomedical signals, from economical indicators to
internet network traffic [1–6]. 1/ f γ processes are generally
characterized by a power-law relationship in the frequency
domain, that is, the empirical (or measured) power spectra
of such processes are considered to be of the form [1]

Sx(ω) ∼

σ2x
|ω|γ (1)

over some decades of frequency ω, where σ2x is a finite non-
zero constant and γ is the so-called spectral exponent (or
sometimes it is called the self-similarity parameter). In gen-
eral, 1/ f γ processes can be modeled by fractional Gaussian
noise (fGn) and fractional Brownian motion (fBm). fBms
are zero-mean, normally distributed, nonstationary random
processes with 1 < γ < 3, whereas fGns are zero-mean, nor-
mally distributed, stationary incremental processes of fBms
with −1 < γ < 1 [1, 7]. 1/ f γ processes are also named as col-
ored noise. White noise having a flat spectrum is the special
case of colored noise, where the spectral exponent γ = 0. For

γ = 1, it is called flicker noise and for γ = 2, it is known as
classical Brownian motion (random walk process).

The importance of such processes is due to the fact that
they can be modeled by a single parameter γ which can
be used for diagnosis, prediction, and control purposes in
many applications. Therefore, an accurate estimation of γ is
needed. However, estimation of this parameter is not often
straightforward, especially when the data is considered to be
corrupted by additive white noise. For this case, themeasured
power spectrum Sx(ω) is

Sx(ω) ∼

σ2x
|ω|γ + σ2g , (2)

where σ2g is the variance of the white noise. Now, estimation
of the underlying characteristics of such processes becomes
challenging simply because there is a single equation with
more than one unknown parameter.

Although it may seem straightforward to separate a 1/ f γ-
type process from additive white noise, one has to know the
domination of this process among frequency regions exactly.
There are several methods for γ estimation from noisy mea-
surements [3–5, 8–11]. Among them, the conventional ones
attempt to estimate the parameters of the processes in the
spectral domain [3, 4]. In this approach, σ2x , σ

2
g , and γ are ex-

tracted from the estimated noise power spectral density using
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a least-square fit algorithm to the spectrum in (2). The spec-
tral density of the 1/ f γ process rapidly decays towards the
higher frequency regions so that the white noise spectrum
tends to dominate the rest of the spectrum which makes a
reliable estimation of γ difficult.

There are also some other methods such as approximate
and exact maximum-likelihood estimation methods in the
time—[3–5] and in the wavelet—[8, 9, 11] domains. In [3–
5], a maximization of a likelihood function is suggested in
the time domain. This approach, however, is complex (i.e.,
matrix inversion is required) and time consuming (i.e., an it-
erative technique). In [8], a parameter estimation algorithm
for 1/ f γ process in white background noise based on iter-
ative maximum likelihood in wavelet domain is proposed.
This method, when compared with other methods, is con-
sidered to have relatively low computational complexity. In
[11], a modified version is utilized using the discrete wavelet
transform with Haar basis.

In this paper, a simple and practical extension to the
wavelet-based γ estimation method [8] is proposed, where
γ is estimated directly (without iteration) by using a differ-
entiation operation in the wavelet domain.

The paper is organized as follows. First, the wavelet-based
γ estimation technique is briefly summarized, and then a
simplified version is proposed. The effectiveness of this ex-
tension is examined using synthetic data with known param-
eters. The method provides promising results and GPS time
series noise is analyzed to provide experimental verification.

2. WAVELET-BASED γ ESTIMATION IN THE
PRESENCE OFWHITE NOISE

Wavelet-based γ estimation method relies on calculating the
wavelet coefficients and investigating if the variances of the
wavelet coefficients follow the power-law relationship [1].
The method utilizes the orthonormal wavelet transform of
a process x(t) to estimate the spectral exponent

xmn =
∫∞
−∞

x(t)ψm
n (t)dt. (3)

Here, xmn are the wavelet transform coefficients of the sig-
nal x(t), n and m are the translation (location) and dilation
(scale) indices, respectively. ψm

n (t) are the normalized dyadic
dilations and integer translations of the mother wavelet ψ(t)
which is ψm

n (t) = 2m/2ψ(2mt−n). The wavelet transform acts
as the whitening process for a 1/ f γ process where the corre-
sponding wavelet coefficients appear to be zero-mean, uncor-
related, or weakly correlated (within and along scales) ran-
dom variables. The variances of the uncorrelated or weakly
correlated wavelet coefficients along scales satisfy a power-
law relationship [1]

var
{
xmn
} = σ22−γm, (4)

where σ2 is a positive real constant which is proportional
to σ2x . In the labeling scheme used, higher scales are related

to the higher (and wide) frequency regions, whereas lower
scales are related to the lower (and narrow) frequency ranges,
respectively. Taking base-2 logarithm of both sides of (4)
yields a straight line whose slope is the estimated γ param-
eter

log2
(
var
{
xmn
}) = c − γm. (5)

Here, c is a constant equal to log2(σ
2).

If the corresponding process is corrupted by additive
white noise, γ cannot be estimated by a linear fit in linear-log
scale. Consider the noisy process r(t) as the superposition of
colored (x(t)) and white (g(t)) noise

r(t) = x(t) + g(t). (6)

The wavelet coefficients of r(t) are obtained from (3):

rmn =
∫∞
−∞

[
x(t) + g(t)

]
ψm
n (t)dt. (7)

In this study, the discrete dyadic wavelet transform is used to
obtain the wavelet coefficients, where the number of scalesM
is related with the data length N by M = log2(N). Statistical
independence implies that the wavelet coefficients of r(t) are

rmn = xmn + gmn , (8)

and the variances of these coefficients are related according
to [8]

var
{
rmn
} = var

{
xmn
}
+ var

{
gmn
}
. (9)

The power spread of white noise is uniform throughout the
entire spectrum, hence the variance of the wavelet coeffi-
cients of the white noise component in each scale is equal to
the variance of the white noise process (σ2g ) [1, 8, 11]. There-
fore, considering (4), (9) becomes

(
σmr
)2 = σ22−γm + σ2g . (10)

In [8], a log-likelihood function is expressed as a function of
the unknown parameters σ2, σ2g , and γ. There, three cases are
analyzed: (i) all of the parameters are unknown; (ii) σ2 and
γ are unknown, σ2g is known; (iii) σ2 and γ are unknown,
σ2g = 0. In the first two cases, an iterative expectation-
maximization (EM) algorithm is utilized to estimate the pa-
rameters. In the third case where σ2g is known to be 0 (the
noise free case), it is shown that the iterative EM algorithm
is not needed, therefore the parameters can be estimated di-
rectly by using (4).
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Figure 1: Base-2 logarithm of the variances of the wavelet coefficients (a) of the process x(t) (with γ = 1), (b) of white noise (γ = 0), (c) of
the compound signal, (d) the difference sequence of the logarithm of the variances of the wavelet coefficients in (b). (Note that the values in
the figures are theoretically chosen.)

2.1. Proposedmethod

In this study, a simple extension is proposed to estimate the
parameters directly, without using any iterative minimiza-
tion technique even when white noise exists.

When γ > 0, the process has lower power at higher
scales which are more affected by the white noise compo-
nent than at the lower scales. Therefore, if the logarithm
of both sides of (10) is taken, a curve like behavior is ob-
served, instead of a straight line, as is illustrated in Figure 1
where simulation results are given for flicker noise (γ = 1)
and additive white noise (γ = 0). Here, the data length
is considered to be 2048. In Figures 1(a), 1(b), and 1(c),
the base-2 logarithm of the variances of the wavelet coef-

ficients versus the scales are plotted for flicker noise, white
noise, and the compound signal, respectively. The plot of
the compound signal forms a knee-like shape with broken
line around scale 6 which means that the higher scales are
affected more than the lower scales. If one attempts to fit
a line to one of the curves in the figure, the slope does
not accurately provide the true γ value. Initially, two dif-
ferent slopes of 0.7812 and 0.1524 are observed due to the
white noise corruption. It is relevant to mention here that
in Figure 1 the values on the plots are theoretically chosen.
In practice, due to the limited data length, the variances of
the wavelet coefficients cannot be determined exactly, there-
fore, the plots may not be perfect lines or curves for practical
data.
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In order to estimate γ, σ2, and σ2g directly and reliably, a
difference sequence of (10) can be constructed along scales
as

�(σmr )2 = (σmr )2 − (σm+1
r

)2
= σ22−γm − σ22−γ(m+1)

(11)

which eliminates the constant noise term σ2g yielding

�(σmr )2 = σ2
(
1− 2−γ

)
2−γm. (12)

By taking the base-2 logarithm of both sides of (12), γ and
σ2 can be estimated by fitting a linear equation (a straight
line) in the least-square sense. Note that the slope here
is identical to the slope of the linear equation in (5). Fi-
nally, σ2g can be estimated by substituting γ and σ2 in (10).
When the above operations are applied to the compound
process of Figure 1(c), the γ estimation plot becomes as in
Figure 1(d). Here, the slope is 1 which is equal to the γ pa-
rameter of the underlying process (in this case, flicker noise).

Note that if one assumes the fit error as Gaussian dis-
tributed, the line fit in the least-square sense corresponds to
a maximum likelihood estimation which means that the pro-
posed line regression method becomes a line fitting problem
to data corrupted by Gaussian noise.

The performance of this approach is examined by simu-
lations in the next section below.

3. SIMULATION RESULTS

In this section, the performance of the proposed technique
is examined on synthetic data. The data set is constructed as
synthesized 1/ f γ processes superposed with white Gaussian
noise having different SNR1 values from −20 dB to 20 dB,
with increments of 4 dB, and where γ varies from 0.5 to 2.0
with increments of 0.25. In addition, the data length is set
to N = 2i, where i is varied from 10 to 14 with increments
of 1. Using the wavelet-based synthesis method, the data sets
of K = 100 trials are generated for each combination of N ,
SNR, and γ given above. Although the wavelet-based γ esti-
mation is shown to be empirically insensitive to the choice
of the wavelet bases [8], in the simulations, among many
available wavelet basis, Haar basis is used as suggested in
[11].

The proposed technique is applied to each data set. Then,
the mean values, the variances, and the root-mean-square
(RMS) errors of the estimates are calculated. Here, RMS is

defined as RMS =
√
(1/K)

∑K
k=1(γ − γ̂)2, where γ is the theo-

1 SNR is defined as the ratio of the 1/ f γ noise variance to the white noise
variance (SNR = 10 log10(σ

2
x /σ

2
g )).

retical, γ̂ is the estimated parameter, and K is the total num-
ber of trials.

In Figure 2(a), the RMS errors of the estimated γ̂ versus
SNR values are plotted for fixed data length of 4096. We see
smaller RMS errors for smaller γ (≤ 1) even for poor SNR(≤
0 dB.) When γ is relatively higher (≥ 1.50), the 1/ f γ process
is dominated by white noise in the high frequency regions.
Notice that to have better estimates, we need to observe the
logarithm of the variances of the wavelet coefficients at lower
scales which requires longer data. In Figure 2(a), the RMS
errors of the estimates are asymptotically bounded below as
the SNR increases.

The data length dependence is observed by the results
given in Figure 2(b), where the RMS errors of the esti-
mated γ̂ versus the data length N are shown for a fixed
SNR value of 0 dB. Here, estimation errors decrease with
the increasing data length. Note that when γ increases, the
dependency of the estimation method on the data length
decreases. These results are similar to the ones given in
[8, 9].

In Figure 3, the mean of γ̂ versus SNR for fixed data
length N = 4096 is provided. For poor SNR, the method
underestimates γ̂ for larger values of γ, whereas it over-
estimates γ̂ for smaller γ. The standard deviations of the
γ̂ estimates decrease with the increasing SNR. Note that
since there are less coefficients in the small scales, the first
3 scales are not used in the γ estimation method for sta-
tistical reasons. This limitation causes a bias of γ̂ estimates
for higher SNRs as is evident in Figure 3. However, when
the SNR is high, the proposed technique gives similar re-
sults to the noise-free case and the wavelet-based method in
[8].

4. REAL DATA ANALYSIS—GPS NOISE

There are various signal processing applications where
the signals contain colored and white noise together. In
some applications, estimation of noise characteristics is
critical. For example, noise in electronic devices is observed
to be the sum of 1/ f γ processes and white noise which
are induced independently by microscopic defects and
different physical mechanisms [10]. Separation of these
two processes is essential for the quality and reliability of
the devices determined by means of noise measurements.
Another important example can be given from geophysics.
It is shown that the GPS coordinate time series error can
be conveniently characterized by the superposition of 1/ f γ

noise (time-correlated) and white noise (time invariant)
processes [2–5]. The estimations of GPS noise characteristics
(i.e., the spectral exponent of the 1/ f γ process, the variance
of white noise, and the mixture ratio of these processes) are
crucial since they are used to obtain the model parameters
which characterize the surface displacement velocity of
the earth (as linear slope), seasonal motions (as periodic
components), relaxation after an earthquake (as logarithmic
decay), and so forth. The accuracy and the precision of
the estimated model parameters depend on the accurate
estimation of relevant noise characteristics [2–5].
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Figure 2: (a) The RMS errors of the estimated γ̂ versus SNR for a fixed data length N = 4096; (b) The RMS errors of the estimated γ̂ versus
various data length N for SNR = 0 dB.
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Figure 3: The mean values of the estimated γ̂ as a function of SNR
for N = 4096. The vertical lines indicate the standard deviations.

For real data, the GPS coordinate time series noise is an-
alyzed. We present the analysis of the north components of
GPS data obtained from TUBI site run by TÜBİTAK Earth
andMarine Sciences Institute. After the preprocessing proce-
dures (outlier cleaning and small gap filling as in [3–5]), the

GPS noise is obtained as the difference (residual) between the
model and the observed data. Then, the proposed technique
is applied to the residual signal.

In Figure 4(a), the TUBI GPS noise data is plotted. In
Figure 4(b), the base-2 logarithms of the variances of the
wavelet coefficients along scales are given. The existence of
white noise appears as a broken-line around the 6th scale.
After applying the difference operator to the variances of the
wavelet coefficients, a linear progression is observed as shown
in Figure 4(c). The estimated γ̂ value is close to 1 (to be exact,
γ̂ = 1.0194).

5. CONCLUSIONS

An extension to the wavelet-based spectral exponent estima-
tion method has been proposed. The method can be used to
obtain the spectral exponent of a 1/ f γ process with additive
white noise whose parameters are unknown. The method is
based on a difference operation realized in the wavelet do-
main from the variances of the wavelet coefficients for each
scale which eliminates the unknown noise parameters yield-
ing a direct γ̂ estimation as the slope of a linear function.
The method gives reliable results on synthetic data even for
relatively low SNR. Note that for higher SNR, the method
becomes similar to the wavelet-based method in the noise-
free case. For the data with relatively high spectral exponent
(γ ≥ 1.50), the domination of white noise on 1/ f γ process is
effective. For this case, estimation of γ is difficult.
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Figure 4: (a) GPS noise obtained from TUBI GPS station. (b) The logarithm of the variances of the wavelet coefficients of the data in (a).
Initially two different slopes of 1.3930 and 0.5303 are observed due to the white noise corruption. (c) The logarithmic difference sequence
obtained from the values in (b). The spectral exponent is estimated as γ̂ = 1.0194.

Analysis of real GPS noise shows that such data can be
modeled as the superposition of flicker noise (γ = 1) and
white noise (γ = 0), as suggested by some GPS experts.
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Süleyman Baykut et al. 7

[11] L. M. Kaplan and C.-C. J. Kuo, “Fractal estimation from noisy
data via discrete fractional Gaussian noise (DFGN) and the
Haar basis,” IEEE Transactions on Signal Processing, vol. 41,
no. 12, pp. 3554–3562, 1993.
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