
Multimed Tools Appl (2012) 59:941–971
DOI 10.1007/s11042-011-0782-5

Resource optimization in distributed real-time
multimedia applications

Ran Yang · Robert D. van der Mei · Dennis Roubos ·
Frank J. Seinstra · Henri E. Bal

Published online: 23 March 2011
© The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract The research area of multimedia content analysis (MMCA) considers all
aspects of the automated extraction of knowledge from multimedia archives and
data streams. To adhere to strict time constraints, large-scale multimedia applications
typically are being executed on distributed systems consisting of large collections
of compute clusters. In a distributed scenario, it is first essential to determine the
optimal number of compute nodes used by each cluster, properly balancing the com-
plex tradeoff between computation and communication. This issue is referred as the

R. Yang (B) · R. D. van der Mei · D. Roubos
Department of Mathematics, Faculty of Sciences, VU University, De Boelelaan 1081A,
1081 HV Amsterdam, The Netherlands
e-mail: ryang@few.vu.nl

R.D. van der Mei
e-mail: mei@few.vu.nl

D. Roubos
e-mail: droubos@few.vu.nl

R. Yang · R. D. van der Mei
Centre of Mathematics and Computer Science, Science Park 123,
1098 XG Amsterdam, The Netherlands

R. Yang
e-mail: r.yang@cwi.nl

R. D. van der Mei
e-mail: mei@cwi.nl

F. J. Seinstra · H. E. Bal
Department of Computer Science, Faculty of Sciences, VU University, De Boelelaan 1081A,
1081 HV Amsterdam, The Netherlands

F. J. Seinstra
e-mail: fjseins@cs.vu.nl

H. E. Bal
e-mail: bal@cs.vu.nl

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81624843?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


942 Multimed Tools Appl (2012) 59:941–971

“resource utilization” (RU) problem. Next, it is important to tune the transmission
of newly generated data sent to each cluster, so as to obtain the highest service
utilization, while minimizing the need for buffering. This latter issue is referred as
the problem of “just-in-time” (JIT) communication. In this paper, we first present a
simple and easy-to-implement method for the RU problem, which is based on the
classical binary search method. Second, we address the JIT problem by introducing
a smart adaptive control method that properly reacts to the continuously changing
circumstances in distributed systems. Extensive experimental validation of the two
approaches on a real distributed system shows that our optimization approaches are
indeed highly effective.

Keywords Multimedia content analysis · Distributed computing ·
Resource optimization

1 Introduction

In recent years, the increasing role of multimedia data, in particular in the form
of still pictures and video, has boosted demands for extraction, comparison, and
processing of features from multimedia data sources. The domain of Multimedia
Content Analysis (MMCA) aims to adhere to these demands, and to arrive at
automated methods of extracting new knowledge from multimedia data. In part,
the MMCA domain is driven by the requirements of emerging applications, ranging
from the automatic comparison of forensic video evidence, to searching publicly
available digital television archives, and real-time analysis of video data obtained
from surveillance cameras in public locations [37].

In the very near future, computerized access to the content of multimedia data
will be a problem of phenomenal proportions, as digital video may produce high data
rates, and multimedia archives steadily run into petabytes of storage (http://privacy.
cs.cmu.edu/dataprivacy/projects/explosion). As individual compute clusters cannot
satisfy the high computational demands, distributed supercomputing on large collec-
tions of compute clusters is rapidly becoming indispensable.

Moreover, applications in MMCA often must run under strict time constraints.
For example, to avoid delays in queues of people waiting, a biometric authenti-
cation system must identify a person’s identity within several seconds. Largely au-
tonomous applications, such as the automatic detection of suspect behavior in video
data obtained from surveillance cameras, may even need to work under real-time
restrictions.

In a typical services-based execution scenario, a client program (typically a local
desktop computer) connects to one or more remote multimedia servers, each running
on a (different) compute cluster. At application run-time, the client application sends
images or video frames (e.g., captured by a camera) to any number of available
servers, each performing the analysis in a data parallel manner [32]. Note that
applications running under this scenario form a specific class of applications, i.e.
those having relatively static, repetitive workloads. Examples include (real-time)
video processing applications in which the same data analysis is performed on each
video frame in turn, and (off-line) image database applications in which the same

http://privacy.cs.cmu.edu/dataprivacy/projects/explosion
http://privacy.cs.cmu.edu/dataprivacy/projects/explosion


Multimed Tools Appl (2012) 59:941–971 943

processing is performed on each image stored. In this paper we specifically target this
class of applications.

For reasons of efficiency (be it in computational terms, economical, environmen-
tal, or otherwise), it is essential to find the best match between the available compute
resources and the multimedia analysis problem at hand. In an execution scenario
in which a number of multimedia servers are being executed on a distributed set
of compute clusters, the resource optimization problem can be separated into two
main parts. First, it is essential to determine the optimal number of compute nodes
used by each individual multimedia server. This part of the optimization problem
generally depends on a priori system information, including the multimedia server
application itself, and the specifics of the computing environment (e.g., network
characteristics, CPU power, memory, etcetera). In this context, it is essential to
properly balance the following trade-off: if the number of compute nodes employed
by a multimedia server is too low, the processing power is insufficient to meet the
strict time constraints of real-time applications; if the number of compute nodes is
too high, the parallelization overhead will cause a degradation of the computational
performance. This problem is referred to as the resource utilization (RU) problem
throughout this paper. Clearly, as researchers in the MMCA domain generally are
not experts in parallel computing, there is an urgent need for simple and easily
implementable, yet ef fective methods (in terms of the number of evaluation steps)
for determining the optimal level of parallelism. Also, the method should be easily
adaptable to inherently dynamic changes in the distributed environment.

Second, based on the result achieved from the RU problem, it is essential to
employ the allocated resources efficiently by sending data (e.g., video frames) to
each multimedia server at carefully determined moments in time, in order to obtain
the highest service utilization possible, and to minimize the service response time.
Clearly, if an available multimedia server is currently unoccupied, analysis results for
a video frame can be obtained in the fastest possible way. Unfortunately, keeping a
multimedia server mostly idle is a waste of compute resources. Alternatively, sending
video frames to a multimedia server as soon as possible may cause a need for queuing
of video frames at the server side. Having to wait for the processing of previously
queued data may result in an unacceptably long delay between the moment of data
generation and result calculation. Hence, to optimize server utilization and response
time, it is essential to tune the transmission of video frames to the occupation of
the remote multimedia servers. Due to variations in transmission latencies and other
variabilities in the computing environment, however, it is difficult to accurately tune
the sending of video frames to the variable response time of a multimedia server. In
this paper we refer to this issue as the just-in-time (JIT) communication problem.

To solve the JIT problem, we need effective prediction methods that react
to the continuously changing circumstances in distributed systems. An immediate
consequence of a JIT approach is that a multimedia server always analyzes the most
recently generated (or, “up-to-date”) video frames; no server response delays are
introduced due to frame buffering at either the client side or at the server. Clearly,
this is an important, even critical requirement in real-time applications.

The main contributions of this paper are as follows: (1) we provide a solution
to the JIT problem which is entirely new, as—to our knowledge—it has not been
addressed in the literature before, and (2) we provide an innovative solution to the



944 Multimed Tools Appl (2012) 59:941–971

RU problem, which—in contrast to existing methods—is a fully dynamic, runtime
approach. Our solution requires only limited (run-time) benchmarking, which is
performed in a transparent and portable manner. Also, our solution is independent
of the specific implementation of the applications at hand, making our solution
highly sustainable (as it is immediately applicable, even after the application is
altered).

This paper is organized as follows. In Section 2 we present related work, and
address the pros and cons of existing methods. Section 3 presents our proposed
approaches, which are further formulated in Section 4. Section 5 presents the
experimental setup, and describes example applications. Section 6 discussed our
experimental results. Finally, Section 7 concludes.

2 Related work

Previous work in this field can be categorized into two groups. The first group,
relevant to our RU problem, incorporates the general performance estimation and
optimization problem of computer systems. The second group, relevant to our JIT
problem, relies on statistical predictions of system behavior.

Roughly speaking, techniques to general performance estimation can be classified
into one of three main categories: (1) measurement, (2) modeling and (3) hybrid
methods. Estimation techniques that belong to the second category can be further
divided into the subcategories of (2a) mathematical analysis and (2b) simulation [18].

Performance estimation by measurement is generally performed on a real system
under conditions that reflect typical workload and behavior. Execution times of real
problems are then inferred from measured results [22, 40]. Application of this ap-
proach has several drawbacks. First, in many cases the complete system to be eval-
uated has yet to be developed, and may change over time. Second, even if a complete
system is available it is often not clear what workload is realistic or typical. Finally,
if the measurement process is biased towards certain aspects of the underlying
hardware, the measurement technique may not be applicable to other platforms.

Benchmarking is an alternative technique within the category of measurement,
which is often used for comparison of multiple computer systems (e.g., see [4, 5, 9,
16, 41]). Rather than reflecting typical behavior, benchmarks often represent non-
typical, artificial workloads. In comparison with direct measurement, benchmarking
has the advantage that the system to be evaluated does not have to be available. The
use of non-typical workloads, however, often has a negative effect on the accuracy of
the performance estimations. A solution—albeit complex—is to capture results for
small instruction mixes and a variety of workloads, and to interpret the measurement
results with utmost care [8, 39].

Performance modeling can be applied in cases where direct measurement is too
costly, or where the computer system to be evaluated is not available. In the category
of mathematical analysis, models range from simple (linear) algebraic expressions to
complex formalisms such as queueing networks [18, 29]. In general, such models have
a high response time due to their ease of evaluation. An additional advantage is that
parameter values may be varied to observe their relative impact on performance.
However, to obtain high estimation accuracy, the large number of model parameters
may violate the simplicity and applicability constraints.



Multimed Tools Appl (2012) 59:941–971 945

In simulation models behavior and workloads are described (imitated) in a special
computer program—usually an annotated or otherwise adapted version of a ‘real’
program [18, 26]. Performance predictions are obtained by monitoring the execution
of the adapted program. The main advantage of simulation models is that dynamic
system behavior is easily captured. Also, simulation makes it easy to ‘zoom in’ on
interesting or expensive parts of a system. A disadvantage is that the system to be
evaluated must be available, at least in some rudimentary form. Another drawback
is that it is a costly method for obtaining even moderately accurate performance
estimates.

In hybrid estimation techniques a combination of measurement and modeling is
applied [24, 46]. Such techniques have the advantage that the complexity of using
either measurement or modeling in isolation can be avoided, while a high level
of estimation accuracy can still be obtained. As an example of an approach in
this direction, Saavedra-Barrera et al. [28] have measured system performance for
sequential Fortran programs in terms of an Abstract Fortran Machine (AFM), an
approach referred to as narrow spectrum benchmarking. The AFM-based approach
provides a solution to the problem of the high complexity of complete analytical
study of computer systems. The drawback of the approach, however, is that system
variance is almost completely ignored. For applications working on extensive dense
data fields (e.g., image data structures) this is a too crude restriction as variations
in the hit ratio of caches and system interrupts often have a significant impact on
performance [12, 30].

Other performance estimation techniques that incorporate more detailed behav-
ioral abstractions relating to the major components of a computer system [18, 23]
need tens—if not hundreds—of platform-specific machine abstractions to obtain
truly accurate estimations. Consequently, the requirements of simplicity and applica-
bility to the MMCA domain are not satisfied. To overcome this problem, Seinstra et
al. [33] have designed a new model for performance estimation of parallel image
and video processing applications running on clusters, based on the Abstract Parallel
Image Processing Machine (APIPM). The APIPM model has been used in a large
set of realistic image and video processing applications to find the optimal number
of compute nodes. The main advantage of this model is that predictions are based
on the analysis of a small number of rather high level system abstractions (i.e.,
represented by the APIPM instruction set). The main limitation of this model,
however, is that the instruction set and its related performance values are parame-
terized with a very large number of instruction behavior and workload indicators.
As such, the model still does not meet our requirements, as obtaining accurate
performance values for all possible parameter combinations is both costly and
complex.

For our JIT problem, prediction techniques can be classified into analytical [20],
artificial intelligence (AI), and statistical methods. The models in analytical tech-
niques are constructed by hand or use automatic code instrumentation. AI methods,
such as neural network-based method, predict the future performance of resources
or applications by learning from historical data and classifying the information. Sta-
tistical approaches analyze the successive historical data using the statistical methods
(e.g., time series analysis [34]) in an effort to predict the data in future. Experience
has taught that even some seemingly random or very noisy series can be modeled
and predicted to a usable error margin [10] using statistical methods. Therefore, we



946 Multimed Tools Appl (2012) 59:941–971

restrict ourselves in this paper only on the statistical prediction methods to forecast
the properties of a Grid.

To accurately predict job runtimes in a Grid environment, it is essential to have
a method that effectively reacts to the peaks and level switches in job runtimes. For
this purpose, Dobber et al. [7] developed Dynamic Exponential Smoothing (DES)
methods based on traditional exponential smoothing (ES) method [2, 3, 17, 42].
Sonmez et al. [38] use mean-based, median-based and ES for predicting job run-
times and job queue waiting times, whilst Berman et al. [1] choose the Network
Weather Service (NWS) prediction algorithm for the same purpose. To predict
different properties of a Grid, the NWS algorithm selects between the following three
prediction methods: mean-based method, median-based method and Autoregressive
(AR) method. For instance, Wolski et al. [44] take the NWS algorithm to predict
resource availability. Furthermore, Smith et al. [35] and Guim et al. [13] aim to
predict the total running times of parallel applications. The former one uses the
mean-based and the Linear Regression (LR) method, while the latter one uses mean-
based and median-based methods. Moreover, AR is applied by Zhang et al. [49] and
Wu et al. [45] to predict CPU load and by Qiao [27] to predict network traffic. To
improve the accuracy of the prediction, the basic forecasting methods can be ap-
plied adaptively (e.g., adapted mean-based method [43], adapted median-based [43]
method and adaptive ES-based method). These adapted prediction methods have
shown to be very accurate. Apart from the basic forecasting methods, some research
areas are interested in predictors that estimate the possibility of an event from its
likelihood and prior probability as its probability conditional to its characteristics,
such as Bayesian inference used in [25] to predict the resource availability in a
Grid.

Recall that in the context of MMCA, prediction methods should be simple and
easily implementable, yet effective because of the strict time requirement of the mul-
timedia application. Therefore, in this paper we only use prediction methods (i.e.,
the adapted mean-based method, the adapted median-based method, ES, and the
Robbins-Monro Stochastic Approximation method [21]) that are simple and fast,
yet accurate.

For our JIT problem, we argue that existing statistical prediction methods are
not capable of adhering to the specific requirements of JIT communication. One
important problem with existing methods is that random peaks can be observed in
the processing time of each multimedia server. These delays cause accumulative
errors in predicting the exact moments of video frame transmission, resulting in
significant deviations from the optimal strategy. Similarly, existing methods cannot
deal with periodic peaks very well either. These observations have raised a need for
additional policies to amend these particular problems.

3 General: proposed approaches

In practice, running CPU-intensive applications in large-scale distributed computing
environments typically consists of two phases: (1) an initialization phase to determine
the optimal number of compute nodes L∗, and (2) the main phase to actually run the
application on the L∗ parallel nodes. In this paper, each of our proposed approaches
is used in one of these phases, respectively.



Multimed Tools Appl (2012) 59:941–971 947

3.1 Resource utilization (RU) problem

First, we propose a simple method for on-the-fly determination of the “optimal” level
of parallelism. Unlike analytical methods, our parallel multimedia server together
with the underlying execution platform is treated as a black box from the resource
allocator’s point of view. This is due to our need of obtaining a general and robust
approach to solve the optimization problem.

With our software and hardware assumed as black boxes, we are faced with the
problem of having to deal with a search space that is unlimited in theory (and
in practice limited only by the total number of available nodes in a given cluster
system). As a result, it is essential to apply heuristics that can reduce our search space
significantly. In this context, extensive experimental observations for realistic, large-
scale problems in MMCA have revealed the following three important properties of
optimal resource allocations:

First, in many cases the optimal number of compute nodes is found to be a
power of 2, i.e., of the form 2m for some m = 0, 1, . . . [47]. This observation is
important because it leads to a drastic reduction of the set of possible solutions.
For example, if the number of available compute nodes is Lmax, the size of the
solution space is reduced from Lmax (i.e., the number of elements in the index set
{1, . . . , Lmax}) to

⌊
log2(Lmax)

⌋
(i.e., the number of elements of the set {20, 21, . . . , 2K}

where K = ⌊
log2(Lmax)

⌋
). Here the symbol �x� represents the largest integer ≤ x.

Second, on compute nodes consisting of multiple CPUs (and potentially multiple
cores), for a fixed number of compute elements, using more compute nodes and less
CPUs per node yields better performance.

Third, if the compute cluster processing time is denoted by S(L), with L the
number of compute nodes, then there exists a threshold value L∗ such that S(L)

decreases fast as a function of L for L < L∗, whereas S(L) flattens out, and may even
increase, for L > L∗. L∗ is commonly referred to as the engineering knee. Moreover,
in practice using too many compute nodes may be very costly. L∗ should be the
smallest number that matches the conditions specified above.

It should be noted here that our first two observations above may not be (and
probably are not) true for all potential target systems. For such systems, however,
other heuristics will apply, which can then be used for our search space reduction.
Such other heuristics do not affect the manner in which our search is applied.

Based on the above observations, our proposed method is aimed at determining
L∗ as the optimal point of operation. The method takes the idea of the well-known
classical binary search method for non-linear optimization, and converges if the
relative improvement of S(L) with respect to L (on a log scale) is close enough to 0
(say 5–10%). In Section 4 we will give a complete formulation of our method.

3.2 JIT communication problem

A simple execution approach to solve the JIT communication problem, which we
refer to as the back-to-back method (BBM), is to perform the sending of a newly
generated video frame exactly after a result has been received from the same server
(see Fig. 1). Using the BBM method, any video frame processed by a multimedia
server is guaranteed to be most up-to-date. A drawback of BBM, however, is that
the server is idle when it has processed a frame and is waiting for the next one.



948 Multimed Tools Appl (2012) 59:941–971

Fig. 1 BBM approach for
video frame transmission

client

server

PROBLEM:
server is idle!

get frame 1
from camera

send frame 1
to server

send frame 2
to server

get frame 2
from camera

start parallel
calculations

send result 1
to client

In a bottleneck situation, the video frame transmission time from the client to the
server (Tc1) and the time to send a result back (Tc2) may be long. In practice, Tc1 is
normally very close to Tc2, thus we denote them by Tc. Then, the service utilization
(SU) using BBM is given by

SU = Ts
Ts + 2 · Tc

,

where Ts is denoted as the service processing time of a video frame. Obviously, if the
communication time increases, service utilization decreases.

An alternative approach, referred to as the buffer storage method (BSM), is to
establish a buffer at the server side. As long as the buffer is not full, the client is
allowed to keep sending frames to the server. When the server is busy, the frames
will be stored in the buffer before being processed (see Fig. 2). Using BSM, service
utilization can reach 100%. However, the drawback is that the data in the buffer may
have become outdated before the actual video content analysis even takes place, due
to the long waiting time. A solution would be to simply remove outdated frames at
the server side. This, however, leads to (a lot of) unnecessary traffic between client
and server, which should be avoided as resources are scarce.

Given the previous two methods, the optimal strategy would be to send each
(i + 1)-st frame with a delay after sending the i-th frame. The delay is exactly the
processing time of the i-th frame. For instance, if the service processing time of the
current frame equals Tsi, sending the next frame after a period of Tsi will give an

Fig. 2 BSM approach for
video frame transmission

client

server

get frame 1
from camera

send frame 1
to server

send frame 3
to server

send frame 2
to server

start parallel
calculation 1

send result 1
to client

start parallel
calculation 2

buffer
frame 2&3

send result 3
to client

send result 2
to client

start parallel
calculation 3



Multimed Tools Appl (2012) 59:941–971 949

Fig. 3 An optimal solution for
video frame transmission client

server

t t+Tsi

Tc1 Tsi Tc2

optimal solution. With this strategy, the server gets the most up-to-date frame and
the service utilization is unity (see Fig. 3). Unfortunately, Tsi is unknown before the
result of the current frame is returned back to the client side. It is therefore essential
to have an accurate prediction of the processing time of video frame data.

We have observed that existing predictive methods (i.e., the adapted mean-
based method [43], the adapted median-based method [43], exponential smooth-
ing [2, 3, 17, 42], and the Robbins-Monro Stochastic Approximation method [21])
are all capable of generating an accurate trend line based on the processing time of
previous frames. However, for our JIT communication problem, these methods are
not sufficiently optimized for particular cases. The first problem appears, when the
processing time of certain frames suddenly become much longer (e.g., a peak) than
the expected Ts obtained from a trend line. The sudden change breaks the rhythm of
frame transmission and causes accumulative waiting times for all subsequent frames,
even when the processing time returns back to the expected Ts (see Fig. 4).

Apart from random peaks, a second complication is that one can observe process-
ing times to have periodic peaks. If the service processing time of frame i is predicted
as a peak, then the sending of frame (i + 1) should be delayed to prevent a long
buffering time. None of the prediction methods mentioned above can effectively deal
with random peaks very well, nor do these pay attention to periodic characteristics.
See [48] for more details.

We propose two policies to amend these problems. The first, referred to as the
one-before-last-measurement (BLM) policy, is to restore the rhythm of transmission
by removing the extra delay observed at an earlier moment. The second, referred
to as the peak-prediction (PP) policy, is to find the periodic characteristics of the
peaks in processing times and then to predict occurrence of subsequent peaks. Our
proposed prediction methods, including the BLM and PP policies, provide good
solutions for our JIT communication problem.

Fig. 4 All frames are affected
continuously by sudden long
process times

client

server

Tspeak

t+E[Ts]

E[Ts]

t t+2E[Ts]

buffering buffering



950 Multimed Tools Appl (2012) 59:941–971

4 Detail: method formulation

This section describes the two proposed modeling approaches in detail. The ap-
proaches are based on the results of extensive experimentation performed on the
DAS-3 distributed cluster system (see Section 5).

4.1 Resource utilization (RU) problem

In our services-based execution scenario, video frames are being processed on a
per-cluster basis, using a varying number of compute nodes on each cluster, each
consisting of multiple CPUs. The compute cluster (or service) processing time is
defined as a function S(L, n) of the number of compute nodes L = 1, . . . , Lmax and
the number of CPUs per node n = 1, 2, . . . , nmax. Our goal is to minimize the cost
function S(L, n) over the set of possible values of (L, n); thus, we are searching for
the point (L̂, n̂) where S(L, n) attains its minimum.

As stated earlier, the set of possible combinations (L, n) may be very large such
that, in practice, finding the optimum (L̂, n̂) may be very time consuming. In the
previous section, we have defined a number of heuristics that lead to a drastic
reduction of the set of possible values of (L, n). In a general form, our heuristics
reduce the solution set to the combinations X = {(2p, 1), p = 0 . . . P} ∪ {(2P, 2q), q =
1 . . . Q}, where P := ⌊

log2(Lmax)
⌋

, Q := ⌊
log2(nmax)

⌋
. Therefore, the solution set is

reduced drastically from Lmaxnmax to P + 1 + Q. The cost function S is a sorted list
according to the observation in the last section. For simplicity, we use (2(P+q), 1)

instead of (2P, 2q) for our notation, although (2(P+q), 1) does not exist.

4.1.1 Approximating the optimal (L, n)

From the reduced solution space, we iteratively increase the total number of CPUs
to find the optimal (L, n). When the number of applied compute nodes becomes
larger, the parallelization overhead increases, and may even become dominant. Our
experimental results show that there exists a threshold value m∗ such that S(2m, 1)

decreases fast for m < m∗, whereas S(2m, 1) flattens out, and may even increase, for
m > m∗. As an illustration, Fig. 5 shows the average service processing times for
an example application (described in detail in the next section) for different values
of L = 2m. We observe that there exists some saturation point L∗ = 2m∗

such that
increasing the number of parallel nodes L beyond L∗ does not lead to a significant
reduction of the service processing times. Throughout, L∗ = 2m∗

will be referred to
as the engineering knee and is regarded as the (near-) optimal point of operation. It
is worthwhile to note that the optimal point is not fixed due to the dynamic changes
in the distributed environment.

To find the engineering knee L∗, we have developed a Logarithmic Dichotomy
Search (LDS) method. This method can fulfill the requirement of seeking the
engineering knee in a dynamic environment. The LDS method follows the idea of
a well-known conventional binary search (CBS) algorithm [19] which aims to find
a particular value in a sorted list. Compared to the CBS strategy, the LDS method
makes progressively better guesses, and proceeds closer to the optimal value. Let the
elements in the solution set X be denoted by (e0, . . . , eK), with K = P + Q, P and Q



Multimed Tools Appl (2012) 59:941–971 951

Fig. 5 Engineering knee of
example application

4 8 16 32 64 128 256
0

500

1000

1500

2000

2500
Average service processing time of TRECVID application

Number of compute nodes

A
ve

ra
ge

 s
er

vi
ce

 p
ro

ce
ss

in
g 

tim
e 

(m
s)

L*

are defined above. The LDS strategy selects the median element in the set X, denoted
by eMid. Define ε as the desired minimal improvement in the service processing time
by increasing the number of compute nodes. If S(eMid)−S(eMid+1)

S(eMid)
> ε, then we repeat

this procedure with a smaller list, and we keep only the elements (eMid+1, . . . , eK). If
S(eMid)−S(eMid+1)

S(eMid)
≤ ε then the list in which we search becomes (e1, . . . , eMid). Pursuing

this strategy iteratively, it narrows the search by a factor of two each time, and finds
the minimum value that satisfies our requirement after log2(K) iterations.

Note that the selection of ε is very important in finding the engineering knee. A
large ε means that we are easily satisfied with the improvement. However, the result
may not be close to the actual optimum. Setting ε to a very small value or even
zero certainly will let us find the engineering knee (which is close to, or equal to,
the optimal number of compute nodes), but this may take an undesirably long time.
Hence, in practice ε is always a small positive number which is close to, but not equal
to, zero. The pseudo code for our LDS method for the solution space X is given in
Algorithm 1.

Algorithm 1 Pseudo code of LDS strategy.

Low := 0
High := K
While (Low < High) {

Mid :=
⌊

Low+High
2

⌋

if S (eMid) ≤ S(eMid+1)

1−ε
{High = Mid;}

else {Low = Mid +1;}
end if;

}
Optimal number of compute nodes := High.



952 Multimed Tools Appl (2012) 59:941–971

4.2 JIT communication problem

The following continues with a detailed fomulation of the proposed solution for the
JIT problem. The notations used here are defined as follows:

– Tsi: the processing time of the i-th frame.
– Tci: the communication time of sending the i-th frame from the client to the

server.
– ti: the time point when the client sends the i-th frame to the server.
– ri: the time point when the client receives i-th result from the server.

4.2.1 Preliminaries

Trend line As shown in Fig. 3, if we can predict the service processing time of
the current frame accurately, then sending the next frame after the predicted time
unit should provide an optimal solution. Therefore we investigated several con-
ventional prediction methods (i.e., adapted mean-based methods, adapted median-
based methods, exponential smoothing methods, and Robbins-Monro Stochastic
Approximation methods) for predicting the service processing time. We found that,
based on the earlier service processing times, and by using any of these prediction
methods, an accurate trend line can be generated. Figure 6 gives an illustration of the
predicted service processing time versus the measured value of running an example
application using one compute node and a single CPU only.

Periodicity of the peaks Another important observation from our experimental re-
sults is the occurrence of periodic peaks when using large numbers of compute nodes.
Because our multimedia applications are partially implemented in Java, the Java
garbage collector (http://www.artima.com/underthehood/gc.html) has an influence
on the service processing time. In case of large service processing times, the effect of
garbage collection generally is insignificant and can be ignored. This is the situation
as depicted in Fig. 6. In contrast, when the service processing time is small compared
to the garbage collection time, the periodic peaks are significant. We ran an example
application using 64 compute nodes (using one CPU per node) during three different
periods in time. From these data sets, we notice that there is a deterministic period
of the occurrences of certain specific peaks (see Fig. 7).

4.2.2 Method

Based on the experimental results, we conclude that an effective prediction method
for our application must have the following characteristics: (1) it must be able to
generate an accurate trend line of the service processing time, (2) it should be able to
deal with outliers in the observed processing time as soon as possible, and (3) it must
be able to predict when the next peak occurs. In this section, we discuss the applied
prediction methods and our BLM and PP policies in detail.

Prediction methods Among existing predictive methods there is a huge difference
in the way previously obtained data are handled. In some cases one wants to adapt
very quickly to observed changes in the data, while there are also cases in which this
behavior is not desired. The adapted mean-based method [43] uses arithmetic aver-
ages over some portion of the measurement history to predict the next measurement.

http://www.artima.com/underthehood/gc.html


Multimed Tools Appl (2012) 59:941–971 953

0 100 200 300 400 500 600
1200

1300

1400

1500

1600

1700

1800

1900
Service processing by using 1 CPU

Job number

S
er

vi
ce

 p
ro

ce
ss

in
g 

tim
e 

(m
s)

Measured value
Adapted mean−based method

(a) adapted mean-based method

0 100 200 300 400 500 600
1200

1300

1400

1500

1600

1700

1800

1900
Service processing by using 1 CPU

Job number

0 100 200 300 400 500 600
Job number

0 100 200 300 400 500 600
Job number

S
er

vi
ce

 p
ro

ce
ss

in
g 

tim
e 

(m
s)

Measured value
Adapted median−based method

(b) adapted median-based method

1200

1300

1400

1500

1600

1700

1800

1900
Service processing by using 1 CPU

S
er

vi
ce

 p
ro

ce
ss

in
g 

tim
e 

(m
s)

Measured value
Exponential smoothing method

(c) exponential smoothing method

1200

1300

1400

1500

1600

1700

1800

1900
Service processing by using 1 CPU

S
er

vi
ce

 p
ro

ce
ss

in
g 

tim
e 

(m
s)

Measured value
Robbins−Monro approximation method

(d) Robbins-Monro approximation method

Fig. 6 Trend line generated by different prediction methods

In particular, the extent of the history taken into account depends on a parameter K,
specifying the number of previous measurements for the arithmetic average. The
parameter K is changed by −1, 0, or +1 over time based on the prediction error. In
our experiments, the initial value of K is set to 20.

Adapted median-based methods [43] use a portion of the measurement history
defined by the parameter K to calculate the median which is used for the prediction.
The parameter K is adapted in the same way as in the mean-based method above.
Note that the prediction of this method is not influenced much by asymmetric outliers
(e.g., a peak in the processing time), since this does not affect the median greatly.

In exponential smoothing [2, 3, 17, 42] earlier measurements are not weighted
equally as in the case of a mean-based method, but with exponentially decreasing
weights as the measurements get older. More specifically, denote by w(i) the weight
for the i-th previous measurement. Then, w is the following function

w(i) = α(1 − α)i,

with α a parameter determining the rate of decay of the function. In our experiments,
we set α = 0.5. As in the previous methods, the parameter K determines the number



954 Multimed Tools Appl (2012) 59:941–971

Fig. 7 Service processing time
taken at different times

0 100 200 300 400 500 600 700
120

140

160

180

200

220

240

260

280

300
Service processing time measured during period 1

Job number

0 100 200 300 400 500 600 700
Job number

0 100 200 300 400 500 600 700
Job number

S
er

vi
ce

 p
ro

ce
ss

in
g 

tim
e 

(m
s)

(a) Measurement 1

120

140

160

180

200

220

240

260

280

300
Service processing time measured during period 2

S
er

vi
ce

 p
ro

ce
ss

in
g 

tim
e 

(m
s)

(b) Measurement 2

120

140

160

180

200

220

240

260

280

300
Service processing time measured during period 3

S
er

vi
ce

 p
ro

ce
ss

in
g 

tim
e 

(m
s)

(c) Measurement 3

of earlier measurements that we intend to use. In case K > {# available previous
measurements} and in case K < ∞ we made sure, by scaling of the weights, that the
sum of the weights used sum up to 1.



Multimed Tools Appl (2012) 59:941–971 955

The Robbins-Monro approximation method [21] is a stochastic method. If we
denote by T̂si the estimation of the i-th processing time, then the estimation is
updated according to the following relation

T̂si+1 = T̂si + εi

(
Tsi − T̂si

)
,

where εi is a parameter possibly depending on i. The intuition behind the update
rule is the following. In case the observed processing time is higher than estimated,
the prediction for the next processing time is increased by a small amount of the
difference, and vice versa. When εi = 1 for all i, then the prediction for the next
processing time is equal to the last observation. We set εi = 0.5 for our experiments.

BLM policy Our first policy to deal with peaks is called “one-before-last-
measurement” (BLM) policy. This policy determines the optimal sending time under
the following three cases.

Case 1: waiting for sending

The i-th job will not be sent until the result of the (i − k)-th job becomes available
to the client. Because we must take care that the server has enough jobs to process,
we cannot use the last measurement data as a predictor (also indicated by Harchol-
Balter and Downey [14]). Therefore k must be larger or equal to 2. Throughout this
paper, we focus on the case that E[Tc] ≤ E[Ts]

2 . Here E[Ts] and E[Tc] represent
the expected service processing time and the communication time respectively. In
this case, we set k = 2. This implies that at most one job is waiting in the buffer at the
server side. As a result, the occurrence of cumulative waiting times can be prevented.
In the case that Tc > E[Ts]

2 , we only need to enlarge the value of k. Hence, for k = 2,
we have the following equation,

ti ≥ ri−2. (4.1)

This equation implies that the i-th video frame is sent after the result of the (i − 2)-th
frame is received by the client. Figure 8 gives an illustration.

Case 2: sending immediately

Obviously, if the result of the (i − 1)-th frame is received, the i-th frame must be
sent immediately. Therefore, we have

ti ≤ ri−1. (4.2)

Case 3: adjusting sending time

The sending time of the i-th frame is also decided by the relationship between the
expected service processing time and measured service processing time of the (i − 2)-
th frame Tsi−2. If Tsi−2 > E[Ts], then it is optimal to send the i-th frame at ri−2 +
E[Ts] − 2 · E[Tc]. Figure 8a gives an example. In case Tsi−2 ≤ E[Ts], the optimal
sending moment is at ti−1 + E[Ts]. See Fig. 8b. Hence we get the following equation,

ti =
{

ri−2 + E[Ts] − 2 · E[Tc] if Tsi−2 > E[Ts],
ti−1 + E[Ts] otherwise.

(4.3)



956 Multimed Tools Appl (2012) 59:941–971

Fig. 8 Overview of the BLM
policy client

server

ti-2
ti

Tsi-2 Tsi-1=E[Ts]

buffering

ti-1=ti-2+E[Ts] ri-1ri-2

(a) Optimal sending time in case of TS i −2 >

>

E [Ts ]

client

server

ti-2 ti

Tsi-2 Tsi-1=E[Ts]

ti-1=ti-2+E[Ts] ri-1ri-2

waiting

(b) Optimal sending time in case of TS i − −2 E [Ts ]

Note that using the receiving time of the (i − 2)-th frame to determine the sending
time of i-th frame indirectly takes into account the variation of the communication
time between the client and the server. Therefore, the assumption Tc1 = Tc2 is not
necessary any longer. Combining (4.1), (4.2), and (4.3), the optimal sending time of
i-th frame is given by

ti = min (ri−1, max (ri−2, ti−1 + E[Ts],
ri−2 + E[Ts] − 2E[Tc])) .

PP policy Our second method, called peak-policy, tries to predict the next outlier
based on historical observations. We define an outlier (i.e., a peak) as significantly
different from the average processing time if the observation is much larger than
the average (say 1.2 times larger). Based on the occurrences of peaks in the
previous observations, we try to predict when the next peak will occur. Motivated
by experiments, we observe that there is a deterministic period of the occurrences
of peaks. See Fig. 7 for the experimental results. Denote P = {i|Tsi is peak} as the
set of peaks and denote by p̃ j the j-th element of P. Let k be an integer number. If
p̃ j − p̃ j−1 = · · · = p̃ j−(k+1) − p̃ j−k then we say that there is a deterministic period of
length d = p̃ j − p̃ j−1, and we expect the next peak to occur at job number j + d. Note
that k defines the number of previous peaks that should have occurred equidistantly
with length d such that we consider the peaks as periodical events. The optimal k is
not known beforehand. Therefore, we will start with an arbitrary value and adjust it
as time evolves. Suppose that k = 3, and we observe three peaks each having distance
d, then the method predicts that the next peak occurs after processing of d frames.
If it turns out that the prediction is wrong, then we increase k by 1, since probably
k = 3 was too low. In case the prediction is correct, then we decrease k by 1, such as



Multimed Tools Appl (2012) 59:941–971 957

to try a smaller number. To prevent meaningless values for k, we restrict k to be in
[3,∞).

By combining the BLM and PP policies with one of the prediction methods to
predict service processing times, we obtain our final model to deal with the JIT
communication problem in real-time applications.

5 Experimental setup

In a Grid environment, resources have different capacities and many fluctuations
exist in load and performance of geographically distributed nodes [6]. As the
availability of resources and their load continuously vary over time, the repeatability
of the experimental results is hard to guarantee under different scenarios in a
real Grid environment. Also, the experimental results are very hard to collect and
to observe. Hence, it is wise to perform experiments on a testbed that contains
the key characteristics of a Grid environment on the one hand, and that can be
managed easily on the other hand. To meet these requirements, we perform all of
our experiments on the DAS-3 (the Distributed ASCI Supercomputer 3) Grid test
bed (http://www.cs.vu.nl/das3/).

DAS-3, see Table 1 and Fig. 9, is a five-cluster wide-area distributed system, with
individual clusters located at four different universities in The Netherlands: VU
University Amsterdam (VU), Leiden University (LU), University of Amsterdam
(UvA), and Delft University of Technology (TUD). The MultimediaN Consor-
tium (UvA-MN) also participates with one cluster, located at the University of
Amsterdam. As one of its distinguishing features, DAS-3 employs a novel in-
ternal wide-area interconnect based on optical 10G links (StarPlane http://www.
starplane.org/).

5.1 Example applications

In our experiments, we use DAS-3 to run a real-time multimedia application (re-
ferred to as “Aibo”), as well as an off-line application (referred to as “TRECVID”).

The Aibo application demonstrates real-time object recognition performed by a
Sony Aibo robot dog [32] (see Fig. 10). Irrespective of the application of a robot, the
general problem of object recognition is to determine which, if any, of a given reposi-
tory of objects, appears in an image or video stream. It is a computationally demand-
ing problem that involves a non-trivial trade-off between specificity of recognition
(e.g., discrimination between different faces) and invariance (e.g., to shadows, or to
differently colored light sources). Due to the rapid increase in the size of multimedia

Table 1 Overview DAS-3 cluster sites

Cluster Nodes Type Speed Memory Storage Node HDDs Network
(GHz) (GB) (TB) (GB)

VU 85 dual Dual-core 2.4 4 10 85 × 250 Myri-10G and GbE
LU 32 dual Single-core 2.6 4 10 32 × 400 Myri-10G and GbE
UvA 41 dual Dual-core 2.2 4 5 41 × 250 Myri-10G and GbE
TUD 68 dual Single-core 2.4 4 5 68 × 250 GbE (no Myri-10G)
UvA-MN 46 dual Single-core 2.4 4 3 46 × 1,500 Myri-10G and GbE

http://www.cs.vu.nl/das3/
http://www.starplane.org/
http://www.starplane.org/


958 Multimed Tools Appl (2012) 59:941–971

Fig. 9 The distributed ASCI
supercomputer 3

repositories of ’known’ objects [11], state-of-the-art sequential computers no longer
can live up to the computational demands, making high-performance computing
(potentially at a world-wide scale, see also Fig. 10) indispensable.

The TRECVID application represents a multimedia computing system that has
been applied successfully in recent editions of the international NIST TRECVID
benchmark evaluation for content-based video retrieval [15, 36]. The aim of the
TRECVID application is to find semantic concepts (e.g., vegetation, cars, people,
etc.) in hundreds of hours of news broadcasts, a.o., from ABC and CNN. The

Fig. 10 Our example real-time (left) and off-line (right) distributed multimedia applications, which
are capable of being executed on a world-wide scale. The real-time application constitutes a visual
object recognition task performed by a robot dog (Aibo). The off-line application constitutes our
TRECVID system



Multimed Tools Appl (2012) 59:941–971 959

TRECVID concept detection task is, in general terms, defined as follows: Given the
standardized TRECVID video data set, a common shot boundary reference for this
data set, and a list of feature definitions, participants must return for each concept a
list of at most 2000 shots from the data set, ranked according to the highest possibility
of detecting the presence of that semantic concept. TRECVID is computationally
intensive; for thorough analysis it easily requires about 16 s of processing per video
frame on the fastest sequential machine at our disposal [31]. Consequently, the
required time for participating in the TRECVID evaluation using a single computer
easily can take over one year of processing.

Both applications have been implemented using the so-called Parallel-Horus
software architecture, that allows programmers to write parallel and distributed mul-
timedia applications in a fully sequential manner [32]. The automatic parallelization
and distribution of both applications results in services-based execution: a client
program (typically a local desktop machine) connects to one or more multimedia
servers, each running on a (different) compute cluster. Each multimedia server is
executing in a fully data parallel manner, thus resulting in transparent task parallel
execution of data parallel services.

More specifically, in both applications, before any processing takes place, a con-
nection is established between the client application and a multimedia server. As long
as the connection is available, the client can send video frames to this server. Each
received video frame is scattered by this server into many pieces over the available
compute nodes. Normally, each compute node receives one partial video frame for
processing. The computations at all compute nodes take place in parallel. When the
computations are completed, the partial results are gathered by the communication
again and the final result is returned to the client. In this paper, the time to process
a single video frame in this manner is defined as the service processing time Ts. The
individual values of Tsi are collected as data source for a trace-driven simulation. In
our simulation, the service utilization and total waiting times are calculated by using
different prediction methods combined with our BLM and PP policies.

6 Numerical results

In this section we present the results of our experiments performed on the DAS-
3 system. Even though our methods have been applied successfully on all DAS-3
clusters, results are shown here only for the largest cluster (VU University Amster-
dam) consisting of 85 compute nodes with 4 CPUs per node. For application-specific
performance results on DAS-3 as a whole, and even on a world-wide set of compute
clusters, we refer to [32].

6.1 Resource utilization (RU) problem

We start our discussion with the numerical results of the average service processing
times versus a varying total number of compute nodes. In addition, the simplicity of
the LDS strategy to determine the optimal number of compute nodes is validated.

First, denote the possible solution space of the compute nodes and the number of
CPUs per node as O, where O = {(L, n), L ∈ [1, . . . , 85] and n ∈ [1, . . . , 4]}. To show
that using more compute nodes and less CPUs per node provides better performance
in general, we ran our real-time “Aibo” application on a varying numbers of CPUs



960 Multimed Tools Appl (2012) 59:941–971

(2, 4, 8, 16, 32, 64, and 128 CPUs). We compared the obtained service processing
times for a fixed total number of CPUs, while varying the number of CPUs per nodes.
The results are shown in Fig. 11. In this figure we notice that for small numbers
of CPUs (say, ≤16), the service processing time is largely independent of the ratio
between the total number of employed CPUs and the number of employed CPUs per
node. As the number of CPUs increases, it becomes obvious that wider distribution
of the CPUs, that is, using less CPUs per node and more compute nodes, provides
better performance.

We also compared the service processing time for our off-line TRECVID appli-
cation, on a varying total number of CPUs (16, 64 and 128 CPUs). The results are
tabulated in Table 2. For this application we have a similar conclusion: more compute
nodes and less CPUs per node provides the best performance results.

In Section 3, we mentioned that the optimal number of compute nodes is consis-
tently found to be a power of 2. Combining this result and the observations above, we
reduced the original space O with 85 × 4 = 340 possible solutions to the space X with
nine possible solutions, where X = {(2i, 1), i ∈ [0, . . . , 6]} ∪ (64, 2) ∪ (64, 4). Based on
X, we apply our LDS method to find the minimum value after

⌊
log2 9

⌋ = 3 steps. We

0 20 40 60 80 100
700

750

800

850

900

950

1000
Service processing time by using 2 CPUs

Job number

S
er

vi
ce

 p
ro

ce
ss

in
g 

tim
e 

(m
s)

 

 
2 compute nodes, 1 CPUs per node
1 comupte nodes, 2 CPUs per node

(a) 2 CPUs

0 20 40 60 80 100
400

450

500

550

600

650

700

750
Service processing time by using 4 CPUs

Job number

0 20 40 60 80 100
Job number

0 20 40 60 80 100
Job number

S
er

vi
ce

 p
ro

ce
ss

in
g 

tim
e 

(m
s)

 

 
4 compute nodes, 1 CPU per node
2 comupte nodes, 2 CPUs per node
1 comupte nodes, 4 CPUs per node

(b) 4 CPUs

250

300

350

400

450

500

550
Service processing time by using 8 CPUs

S
er

vi
ce

 p
ro

ce
ss

in
g 

tim
e 

(m
s)

 

 
8 compute nodes, 1 CPU per node
4 comupte nodes, 2 CPUs per node
2 comupte nodes, 4 CPUs per node

(c) 8 CPUs

200

250

300

350

400

450
Service processing time by using 16 CPUs

S
er

vi
ce

 p
ro

ce
ss

in
g 

tim
e 

(m
s)

 

 
16 compute nodes, 1 CPU per node
8 comupte nodes, 2 CPUs per node
4 comupte nodes, 4 CPUs per node

(d) 16 CPUs

Fig. 11 Service processing time of the Aibo application using different numbers of CPUs



Multimed Tools Appl (2012) 59:941–971 961

0 20 40 60 80 100
Job number

0 20 40 60 80 100
Job number

200

250

300

350

400

450
Service processing time by using 32 CPUs

S
er

vi
ce

 p
ro

ce
ss

in
g 

tim
e 

(m
s)

 

 
32 compute nodes, 1 CPU per node
16 comupte nodes, 2 CPUs per node
8 comupte nodes, 4 CPUs per node

(e) 32 CPUs

200

220

240

260

280

300

320

340

360

380

400
Service processing time by using 64 CPUs

S
er

vi
ce

 p
ro

ce
ss

in
g 

tim
e 

(m
s)

 

 
64 compute nodes, 1 CPU per node
32 comupte nodes, 2 CPUs per node
16 comupte nodes, 4 CPUs per node

(f) 64 CPUs

0 20 40 60 80 100
200

250

300

350

400

450

500

550
Service processing time by using 128 CPUs

Job number

S
er

vi
ce

 p
ro

ce
ss

in
g 

tim
e 

(m
s)

 

 
64 compute nodes, 2 CPUs per node
32 comupte nodes, 4 CPUs per node

(g) 128 CPUs

Fig. 11 (continued)

use Table 3 to explain the three steps taken in the Aibo application when ε = 0.1. We
continue to approach the optimal number of compute nodes L∗ by doubling the total
number of compute nodes, until the relative improvement is less than 10%. Here
the index of the elements of X is denoted as [0, 1, . . . , 8]. Then the LDS method is
applied. In the first step, we have Low = 0 and High = 8, and thus

Mid =
⌊

Low + High
2

⌋
= 4.

Therefore, we measure the service processing time using 24 = 16 and 25 = 32 com-
pute nodes and 1 CPU per node. The measured average service processing times and
the calculated relative improvement are shown in the first row of Table 3. Because
the relative improvement using 32 compute nodes compared to 16 compute nodes is

Table 2 Average service processing time of the TRECVID application (in ms)

(L, n) (16, 1) (8, 2) (4, 4) (64, 1) (32, 2) (16, 4) (64, 2) (32, 4)
S(L, n) 669.28 682.44 736.56 241.62 244.90 263.01 190.70 218.27



962 Multimed Tools Appl (2012) 59:941–971

Table 3 Three steps to approach the optimal (L, n)

Step Low High Mid S(eMid) S(eMid+1) Relative Action
improvement

1 0 8 4 (16, 1) (32, 1) 0.27 Keep high half
152.26 110.64

2 5 8 6 (64, 1) (64, 2) −0.15 Keep low half
93.58 108.55

3 5 6 5 (32, 1) (64, 1) 0.15 Finish, return index 6
110.64 93.58

0.27 (>ε), we conclude that 16 compute nodes is not optimal. Therefore, we continue
searching for the optimal. In the second step, the index value 5 (= 32 compute nodes)
is set as the value of Low. The value of High remains the same. Therefore Mid = 6.
When calculating the relative improvement using 64 compute nodes and 2 CPUs
per node compared to 26 compute nodes, we find that the improvement (−0.15) is
less than ε. Therefore, in the third step, the value of High is reset to 6, and Low
remains the same. In this case, Mid = 5. The improvement of using 26 compute nodes
compared to 25 is more than ε. Thus, Low is reset to 6, such that Low is equal to High,
and the whole procedure is finished. The LDS method returns index 6 as the optimal
solution. This means, for ε = 0.1, the optimal number of CPUs is 26 = 64 compute
nodes.

For different ε (0.1, 0.2 and 0.3), the (L, n) to be evaluated and the corresponding
average service processing time of both applications are reported in Tables 4 and 5,
respectively. The optimal L∗ that we found for both applications for different values
of ε are listed in Table 6. In this table, we notice that with larger ε, the L∗ remains
the same or decreases.

As shown above, we notice that our method is very simple to implement. Besides
this, it is very effective because of the small number of steps required to find the
optimal number of compute nodes. In addition, by varying ε, we are able to obtain
the optimal result related to the desired improvement in the service processing time
by increasing the number of compute nodes.

6.2 JIT communication problem

The following presents the results of our experiments relating to the JIT problem.
The results are also used as input for a trace-driven simulation in order to validate
our final model for determining the exact transmission moments of video frames.
We limit our experiments to the Aibo application, as this is the one that needs to

Table 4 Average service processing time of the Aibo application (in ms)

ε = 0.1 (L, n) (16, 1) (32, 1) (64, 1) (64, 2)
S(L, n) 152.26 110.64 93.58 108.55

ε = 0.2 (L, n) (16, 1) (32, 1) (64, 1) (64, 2)
S(L, n) 152.26 110.64 93.58 108.55

ε = 0.3 (L, n) (4, 1) (8, 1) (16, 1) (32, 1)
S(L, n) 448.57 247.72 152.26 110.64



Multimed Tools Appl (2012) 59:941–971 963

Table 5 Average service processing time of the TRECVID application (in ms)

ε = 0.1 (L, n) (16, 1) (32, 1) (64, 1) (64, 2) (64, 4)
S(L, N) 669.28 395.79 241.62 190.70 222.61

ε = 0.2 (L, n) (16, 1) (32, 1) (64, 1) (64, 2) (64, 4)
S(L, N) 669.28 395.79 241.62 190.70 222.61

ε = 0.3 (L, n) (16, 1) (32, 1) (64, 1) (64, 2)
S(L, N) 669.28 395.79 241.62 190.70

run under strict real-time requirements. The application is ran on 64 compute nodes
using 1 CPU per node.

First, we apply the BBM method (Fig. 1). In our experiment, we found that
the average service processing time (E[Ts]) and the average communication time
(E[Tc]) between client and server amount to 143.629 and 11.694 ms, respectively.
In this case, the server utilization is about 85%, and the average waiting time per
frame is 0. Consider that the service utilization using the BBM method is given by
E[Ts]/(E[Ts] + 2 · E[Tc]). This implies that when Tc is negligible, the BBM method
approaches the optimal strategy. However, in a bottleneck situation where E[Tc] is
long relative to E[Ts], the BBM method performs badly.

The server utilization can be increased by sending frames with smaller intervals.
However, if a sudden change (a peak) in service processing time takes place, all
incoming frames are affected. A particularly difficult situation is when a series of long
service times occurs, such that the waiting time of frames increases rapidly due to the
accumulation of perceived gaps. In our experiments, we used simulation to evaluate
the impact of changing the time interval between sending subsequent frames. The
time interval is reduced in five steps according to Table 7. E[Ts] and E[Tc] in Table 7
are adjusted by one of the prediction methods. Since Fig. 6 shows that all prediction
methods are capable of generating accurate trend lines, in this paper, we only choose
one of these (i.e. the exponential smoothing method) as a representative prediction
method. In Fig. 12, it is shown that the average waiting time increases significantly
as the service utilization approaches 100%. Hence, the prediction methods are not
sufficient for our just-in-time communication problem.

In our final model, in which one of the prediction methods is combined with
the BLM and PP policies, we can achieve high service utilization while keeping
the average waiting time low. By using the exponential smoothing method with our

Table 6 Value of the
engineering knee

ε L∗

(a) Aibo
0.1 64 (64,1)
0.2 32 (32,1)
0.3 16 (16,1)

(b) TRECVID
0.1 128 (64,2)
0.2 128 (64,2)
0.3 64 (64,1)



964 Multimed Tools Appl (2012) 59:941–971

Table 7 Time interval
between sending two
sequential frames

Simulation index Time interval

1 TsBBM

2 2E[Tc] + E[Ts]
3 1.5E[Tc] + E[Ts]
4 E[Tc] + E[Ts]
5 0.5E[Tc] + E[Ts]
6 0.375E[Tc] + E[Ts]
7 0.25E[Tc] + E[Ts]
8 E[Ts]

policies, we obtain service utilization of about 98%, and an average waiting time per
frame of around 7 ms. If we define the waiting time percentage (WP) as

W P = total waiting time
total waiting time+total service processing time

then we obtain a WP of around 3.5%. Because of the lower value of WP, we can
compare the performance of our final model to the BBM method by looking at the
service utilization. Define the gain in service utilization Gain(SU) as follows,

Gain(SU) = service utilization with final model
service utilization with BBM method

. (6.1)

Figure 13 shows the gain of our final model related to the BBM method for different
values of Tc

Ts .
In this figure, we notice that the gain in utilization is almost linear in Tc

Ts . This can
be explained by the fact that the service utilization in the final model is very close to
1 and the service utilization belonging to the simple strategy can be approximated by
E[Ts]/(E[Ts] + 2 · E[Tc]). Hence, based on (6.1), we have

Gain(SU) ≈ 1

Ts/(Ts + 2 · Tc)
= 1 + 2

Tc
Ts

.

Fig. 12 Average waiting time
using 64 compute nodes

0.8 0.85 0.9 0.95 1
0

200

400

600

800

1000

1200

1400
Average waiting time using 64 compute nodes

Service utilization

A
ve

ra
ge

 w
ai

tin
g 

tim
e 

(m
s)



Multimed Tools Appl (2012) 59:941–971 965

Fig. 13 Gain in the service
utilization

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3
Gain in service utilization

E[Tc]/E[Ts]

G
ai

n 
in

 s
er

vi
ce

 u
til

iz
at

io
n

For this reason, the gain in the service utilization is nearly increasing linearly with
Tc/Ts.

The last comparison is done to evaluate the benefit brought by our policies. For
the prediction method of exponential smoothing, we compare the performance of
our final model to the prediction method by looking at the average waiting time.
Define the gain in the average waiting time Gain(w) as follows,

Gain(w) = avg. waiting time with prediction method
avg. waiting time with final model

.

The results of this comparison are shown in Fig. 14. The reason why the final model
can gain so much, can be explained by the following example. Assume that during

Fig. 14 Gain in the average
waiting time

0 0.2 0.4 0.6 0.8 1
1

50

100

150

200

250

Gain in the average waiting time

E[TC]/E[TS]

G
ai

n 
in

 th
e 

av
er

ag
e 

w
ai

tin
g 

tim
e



966 Multimed Tools Appl (2012) 59:941–971

processing, only one peak takes place and that, after that peak, there are still 100
frames to be processed. In this situation the use of prediction methods causes all
following 100 frames to be delayed by the peak. But using our final model, there is
only 1 following frame affected by the peak. Thereafter, the sending times of the next
99 frames are corrected. Thus no error accumulation occurs. Therefore, we conclude
that our final model, incorporating BLM and PP, are indispensable and effective for
just-in-time communication.

7 Conclusions and future work

In this paper we first explored the relation between the service processing time of
distributed multimedia applications and the number of compute nodes for a varying
number of CPUs. We observed that there exists an engineering-knee threshold value
L∗ such that the service processing time decreases fast as a function of L for L < L∗,
whereas the service processing time flattens out, and may even increase, for L > L∗.
To find L∗, we first reduce the possible solution set, and then apply our LDS method
to find L∗. Extensive validation has shown that our method is fast and effective.

Specifically, we have found that our method can find optimal resource utilization
for an average-sized cluster system in no more than three evaluation steps. As a
result, we conclude that our method adheres to all requirements as stated in the in-
troduction: it is simple, easily implementable, and effective. In addition, our method
takes into account system variation. Even though our focus was on the MMCA
domain, our approach is general enough to be applicable in other domains as well.

Second, we have explored the JIT communication problem, that requires high ser-
vice utilization on the one hand, and short service response time on the other. Using a
BBM method, the waiting time is zero. However, service utilization decreases when
the communication time between client and server increases. By applying existing
prediction methods to this problem, service utilization can be increased. However, at
the same time, the average waiting time of video frames increases even faster. This
can be explained by the fact that existing prediction methods do not pay attention
to peaks in the service processing time. For this reason, we have developed two
innovative policies, BLM and PP. Using the first policy, cumulative waiting times are
avoided by postponing transmission of a new job when a peak is detected. The second
policy is used to predict possible peaks. If we can predict the moment when a peak
occurs, then we can send new jobs at the right time. Combining these two policies
with any of the existing prediction methods described in this paper, we achieve our
final model to solve the just-in-time communication problem.

Our JIT model is validated in our experiments. Moreover, we have extensively
investigated the gain of our final model related to the BBM method, as well as the
prediction methods without incorporating our newly developed policies. From our
experimental results we conclude that our final model strongly outperforms the other
methods. Specifically, we have observed that, in comparison to other methods, our
final model improves server utilization from 85 to 98%, and reduces the average
waiting time per frame by a factor of 250.

The work described in this paper is part of a larger strive to bring the benefits
of high-performance computing to the multimedia community. One important aim,
in this respect, is to make large-scale distributed multimedia applications variability
tolerant by way of controlled adaptive resource utilization. This raises the need



Multimed Tools Appl (2012) 59:941–971 967

for new stochastic control methodologies that react to the continuously changing
circumstances in large-scale Grid systems. Whereas the current paper focuses on
optimization of resource utilization under a rather static repetitive workload, whilst
taking into account system variations, further sources of variability exist.

First, in MMCA applications the amount of data that needs to be processed often
changes wildly over time. For one, this is because data compression techniques cause
video streams to have variable bit rates. Also, in certain specific settings, cameras
may only start producing data after motion has been detected. In other cases, such
as iris scans performed at airports, the amount of data to be analyzed depends on
external variations.

Second, MMCA algorithms themselves are a source of variability. While many
algorithms working on the pixel values in images and video streams have predictable
behavior, algorithms working on derived structures, such as feature vectors describ-
ing part of the content of an image, often are data-driven. A common example is
support vector machine (SVM) based classification, which tries to find an optimal
separation in high-dimensional clouds of labeled data points. The identification of
all support vectors that fully describe the separation depends on the positioning
of the labeled data points in the high-dimensional space. Consequently, the time
required to find all support vectors is largely data dependent. In the near future we
will incorporate such sources of variability in our current optimization method. In
addition, we will test our method on a much larger scale for a much larger variety of
state-of-the-art multimedia applications. The presented example applications merely
represent two of these.

Acknowledgements This work is supported by the Netherlands Organisation for Scientific Re-
search (NWO), GLANCE project 643.000.602: “JADE-MM: Adaptive High-Performance Multime-
dia Computing”.

Open Access This article is distributed under the terms of the Creative Commons Attribution
Noncommercial License which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.

References

1. Berman F, Wolski R, Casanova HWC (2003) Adaptive computing on the grid using apples. IEEE
TPDS 14(4):369–382

2. Brown R (1959) Statistical forecasting for inventory control. McGraw-Hill New York
3. Brown RG (1963) Smoothing, forecasting and prediction of discrete time series. Prentice-Hall
4. Cascaval C, DeRose L, Padua D, Reed D (2000) Compile-time based performance prediction.

Languages and compilers for parallel computing, pp 365–379
5. Curnow H, Wichmann B (1976) A synthetic benchmark. Comput J 19(1):43–49
6. Dobber M, Koole G, van der Mei R (2004) Dynamic load balancing for a grid application. In:

Proc. international conference on high performance computing (HiPC), vol 1, pp 342–352
7. Dobber M, Mei Rvd, Koole G (2007) A prediction method for job running times on shared

processors: survey, statistical analysis and new avenues. Perform Eval 64:755–781
8. Dongarra J, Martin J, Worlton J (1987) Computer benchmarking: paths and pitfalls. IEEE

Spectrum 24(7):38–43
9. Fahringer T (1994) Evaluation of benchmark performance estimation for parallel Fortran pro-

grams on massively parallel SIMD and MIMD computers. In: IEEE proceedings of the 2nd
Euromicro workshop on parallel and distributed processing, pp 449–456

10. Farmer J, Sidorowich J (1987) Predicting chaotic time series. Phys Rev Lett 59(8):845–848



968 Multimed Tools Appl (2012) 59:941–971

11. Geusebroek JM, Burghouts GJ, Smeulders AWM (2005) The Amsterdam library of object
images. Int J Comput Vis 61(1):103–112

12. Grelck C (2000) Array padding in the functional language SAC. In: Proc. international confer-
ence on parallel and distributed processing techniques and applications (PDPTA), vol 5, pp 2553–
2560

13. Guim F, Goyeneche A, Corbalan J, Labarta J, Terstyansky G (2006) Grid computing per-
formance prediction based in historical information. In: Proceedings of the 7th IEEE/ACM
international conference on grid computing

14. Harchol-Balter M, Downey AB (1997) Exploiting process lifetime distributions for dynamic load
balancing. ACM Trans Comput Syst 15(3):253–285

15. Hauptmann A, Baron RV, Chen MY, Christel M, Duygulu P, Huang C, Jin R, Lin WH, Ng T,
Moraveji N et al (2003) Informedia at TRECVID 2003: analyzing and searching broadcast news
video. In: Proc. of TRECVID

16. Hockney R, Berry M (1994) Public international benchmarks for parallel computers. Tech. rep.,
PARKBENCH Committee: Report-1

17. Holt CC (1957) Forecasting trends and seasonals by exponentially weighted moving averages.
ONR Memorandum, vol 52

18. Jain R (1991) The art of computer systems performance analysis. John Wiley & Sons
19. Knuth DE (1998) The art of computer programming, vol 3: sorting and searching. Addison

Wesley Longman Publishing Co., Inc. Redwood City, CA
20. Kurowski K, Oleksiak A, Nabrzyski J, Kwiecien A, Wojtkiewicz M, Dyczkowski M, Guim F,

Corbalan J, Labarta J, Supercomputing P (2005) Multi-criteria grid resource management using
performance prediction techniques. In: Proceeding of the coregrid integration workshop

21. Kushner HJ, Yin G (2003) Stochastic approximation and recursive algorithms and applications.
Springer-Verlag

22. Lee J, Asanovic K (2006) METERG: measurement-based end-to-end performance estimation
technique in QoS-capable multiprocessors. In: Proceedings of the 12th IEEE real-time and
embedded technology and applications symposium, pp 135–147

23. Maggs BM, Matheson LR, Tarjan RE (1995) Models of parallel computation: a survey and
synthesis. In: Proc. international conference on system sciences, vol 2, pp 61–70

24. Moore M, Sztipanovitz J, Karsai G, Nichols J (1997) A model-integrated program synthesis
environment for parallel/real-time image processing. In: Parallel and distributed methods for
image processing. Proceedings of SPIE, vol 3166, pp 31–45

25. Nadeem F, Prodan R, Fahringer T, Iosup A (2008) A framework for resource availability char-
acterization and online prediction in the grids. In: CoreGRID integration workshop, pp 209–224

26. Pimentel A (1998) A computer architecture workbench. Ph.D. thesis, University of Amsterdam,
The Netherlands

27. Qiao Y, Dinda P (2003) Network traffic analysis, classification, and prediction. Tech. rep.,
Northwestern University

28. Saavedra-Barrera RH, Smith AJ, Miya E (1989) Machine characterization based on an abstract
high-level language machine. IEEE Trans Comput 38(12):1659–1679

29. Sauer C, Mani Chandi K (1981) Computer systems performance modeling. Prentice-Hall Series
in Advances in Computing Science and Technology, Prentice-Hall

30. Schutte K, van Kempen GMP (1997) Optimal cache usage for separable image processing
algorithms on general purpose workstations. IEEE Trans Signal Process 59(1):113–122

31. Seinstra F, Snoek C, Koelma D, Geusebroek J, Worring M (2005) User transparent parallel
processing of the 2004 NIST TRECVID data set. In: Proceedings of the international parallel &
distributed processing symposium (IPDPS)

32. Seinstra FJ, Geusebroek JM, Koelma D, Snoek CGM, Worring M, Smeulders AWM (2007)
High-performance distributed image and video content analysis with parallel-horus. IEEE Mul-
timed 14(4):64–75

33. Seinstra FJ, Koelma D, Geusebroek JM (2002) A software architecture for user transparent
parallel image processing. Parallel Comput 28(7–8):967–993

34. Shumway R, Stoffer D (2006) Time series analysis and its applications: with R examples. Springer
Texts in Statistics

35. Smith W, Foster I, Taylor V (2004) Predicting application run times using historical information.
J Parallel Distrib Comput 64:1007–1016

36. Snoek CGM, van Gemert J, Geusebroek JM, Huurnink B, Koelma D, Nguyen G, De Rooij O,
Seinstra F, Smeulders A, Veenman C et al (2005) The MediaMill TRECVID 2005 semantic video
search engine. In: Proceedings of the 3rd TRECVID workshop



Multimed Tools Appl (2012) 59:941–971 969

37. Snoek CGM, Worring M, Geusebroek JM, Koelma DC, Seinstra FJ, Smeulders AWM (2006)
The semantic pathfinder: using an authoring metaphor for generic multimedia indexing. IEEE
Trans Pattern Anal Mach Intell 28(10):1678–1689

38. Sonmez O, Yigitbasi N, Epema D, Iosup A (2009) Trace-based evaluation of job runtime and
queue wait time predictions in grids. HPDC

39. Steen A (1990) Is it really possible to benchmark a supercomputer? A graded approach to
performance measurement. In: van der Steen A (ed) Evaluating Supercomputers: strategies
for exploiting, evaluating and benchmarking computers with advanced architectures, chap 14,
pp 190–212. Chapman and Hall

40. Veeravalli B, Chen L, Kwoon H, Whee G, Lai S, Hian L, Chow H (2006) Design, analysis, and
implementation of an agent driven pull-based distributed video-on-demand system. Multimed
Tools Appl 28(1):89–118

41. Weicker R (1984) Dhrystone: a synthetic systems programming benchmark. Commun ACM
27(10):1013–1030

42. Winters PR (1960) Forecasting sales by exponentially weighted moving averages. Manage Sci
6(3):324–342

43. Wolski R (1997) Forecasting network performance to support dynamic scheduling usingthe
network weather service. In: Proc. international conference on high performance computing
(HiPC), pp 316–325

44. Wolski R, Spring N, Hayes J (1999) The network weather service: a distributed resource perfor-
mance forecasting service for metacomputing. J Future Gener Comp Sy 15:757–768

45. Wu Y, Yuan Y, Yang G, Zheng W (2007) Load prediction using hybrid model for computational
grid. IEEE/ACM international workshop on grid computing, pp 235–242

46. Xu Z, Zhang X, Sun L (1996) Semi-empirical multiprocessor performance predictions. J Parallel
Distrib Comput 39(1):14–28

47. Yang R, van der Mei RD, Roubos D, Seinstra FJ, Koole GM (2008) On the optimization of
resource utilization in distributed multimedia applications. In: Proceedings of the 8th IEEE
international symposium on cluster computing and the grid (CCGrid). Lyon, France, pp 358–
365

48. Yang R, van der Mei RD, Roubos D, Seinstra FJ, Koole GM, Bal H (2008) Modeling “Just-in-
Time” communication in distributed real-time multimedia applications. In: Proceedings of the
8th IEEE international symposium on cluster computing and the grid (CCGrid). Lyon, France,
pp 518–525

49. Zhang Y, Sun WYI (2008) Predict task running time in grid environments based on cpu load
predictions. FGCS 24(6):489–497

Ran Yang received her Master of Science degree from VU University Amsterdam, the Netherlands
in 2004. Then she joined industry for 1 year. Since 2006, she is a PhD researcher in Faculty of Sciences
in VU University Amsterdam, The Netherlands and PNA2 (Probability and Stochastic Networks)
department in CWI (Centre of Mathematics and Computer Science), Amsterdam, The Netherlands.



970 Multimed Tools Appl (2012) 59:941–971

Robert D. van der Mei is the leader of the research cluster Probability, Networks and Algorithms
(PNA), the leader of the research theme Societal Logistics within CWI, and a (part-time) full
professor at the VU University, Amsterdam. Before going to academia, he has been working for
over a decade as a consultant and researcher in the ICT industry, working for PTT, KPN, AT&T
Bell Labs and TNO ICT. He has been a member of the editorial board of Performance Evaluation
and the AEUE Journal on Electronics and Communications, and is currently serving the Editorial
board of the journal ICST Transactions on Network Optimization and Control. He is a co-founder
and board member of the national expertise centre E-Quality on performance and Quality of Service
(QoS) issues in ICT, which aims to enhance the transfer of knowledge transfer between the Dutch
ICT industry and the leading knowledge institutes in the field of Quality of service (QoS) in the
Netherlands. He is also a co-founder and general chair of the recently recognized ICT Innovation
Platform (IIP) “Vital ICT Infrastructures”, a platform for exchanging knowledge and experience
in the area of QoS of ICT systems between academia a wide range of ICT companies. He is a
co-founder and board member of the recently recognized Dutch Mathematics cluster Stochastics—
Theoretical and Applied Research (STAR). His research interests include performance modeling
and scalability analysis of ICT systems, logistics, grid computing, revenue management, sensor
networks and queueing theory. He is the (co-)author of over 90 papers in journals and refereed
proceedings.

Dennis Roubos (1982) received his M.Sc. degree in Business Mathematics and Informatics from
the VU University Amsterdam, The Netherlands. In 2010 he received his Ph.D. degree from the
same university for his Ph.D. research on “The application of Approximate Dynamic Programming
techniques”. His research interests are mainly, but not limited to, Markov decision processes, and in
particular, Approximate Dynamic Programming and Reinforcement Learning. His interests are both
on the theoretical part as well on the application part, and he likes to apply optimization techniques
in call centers, health care, and computer science.



Multimed Tools Appl (2012) 59:941–971 971

Frank J. Seinstra is an assistant professor in the Department of Computer Science at VU University
Amsterdam, working in the High Performance Distributed Systems research group headed by Prof.
H.E. Bal. In 2003, he received his Ph.D. degree from the University of Amsterdam for his research
on “User Transparent Parallel Image Processing”. His current research efforts are focused on the
design of programming models for large-scale heterogeneous parallel and distributed systems.

Henri E. Bal is a full professor in the Department of Computer Science at VU University
Amsterdam, where he heads the High Performance Distributed Systems research group. His
research interests include parallel and distributed computing, mobile computing, programming
languages, and compiler design. He is the initiator of several high-performance distributed systems
for computer science research in The Netherlands (e.g. DAS-3 and DAS-4). He is the author of three
books on compiler design, programming languages, and distributed systems programming.


	Resource optimization in distributed real-time multimedia applications
	Abstract
	Introduction
	Related work
	General: proposed approaches
	Resource utilization (RU) problem
	JIT communication problem

	Detail: method formulation
	Resource utilization (RU) problem
	Approximating the optimal (L,n)

	JIT communication problem
	Preliminaries
	Method


	Experimental setup
	Example applications

	Numerical results
	Resource utilization (RU) problem
	JIT communication problem

	Conclusions and future work
	References



