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1. Introduction

Variational inequality was initially studied by Stampacchia [1] in 1964. In order to study
many kinds of problems arising in industrial, physical, regional, economical, social, pure,
and applied sciences, the classical variational inequality problems have been extended
and generalized in many directions. Among these generalizations, variational inclusion
introduced and studied by Hassouni and Moudafi [2] is of interest and importance. It
provides us with a unified, natural, novel innovative, and general technique to study a wide
class of the problems arising in different branches of mathematical and engineering sciences
(see, e.g., [3–7]).
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Next, the development of variational inequality is to design efficient iterative
algorithms to compute approximate solutions for variational inequalities and their gen-
eralizations. Up to now, many authors have presented implementable and significant
numerical methods such as projection method, and its variant forms, linear approximation,
descent method, Newton’s method and the method based on the auxiliary principle
technique. In particular, the method based on the resolvent operator technique is a
generalization of the projection method and has been widely used to solve variational
inclusions.

Some new and interesting problems, which are called the systems of variational
inequality problems, were introduced and studied. Pang [8], Cohen and Chaplais [9],
Bianchi [10], and Ansari and Yao [11] considered some systems of scalar variational
inequalities and Pang showed that the traffic equilibrium problem, the spatial equilibrium
problem, the Nash equilibrium, and the general equilibrium programming problems
can be modelled as variational inequalities. He decomposed the original variational
inequality into a system of variational inequalities which are easy to solve and studied
the convergence of such methods. Ansari et al. [12] introduced and studied a system of
vector variational inequalities by a fixed point theorem. Allevi et al. [13] considered a
system of generalized vector variational inequalities and established some existence results
under relative pseudomonotonicity. Kassay and Kolumbán [14] introduced a system of
variational inequalities and proved an existence theorem by the Ky Fan lemma. Kassay et
al. [15] studied Minty and Stampacchia variational inequality systems with the help of the
Kakutani-Fan-Glicksberg fixed point theorem. Peng [16, 17] Peng and Yang [18] introduced
a system of quasivariational inequality problems and proved its existence theorem by
maximal element theorems. Verma [19–23] introduced and studied some systems of
variational inequalities and developed some iterative algorithms for approximating the
solution for this system of generalized nonlinear quasivariational inequalities in Hilbert
spaces. J. K. Kim and D. S. Kim [24] introduced a new system of generalized nonlinear
quasivariational inequalities and obtained some existence and uniqueness results of
solution for this system of generalized nonlinear quasivariational inequalities in Hilbert
spaces. Cho et al. [25] introduced a new system of nonlinear variational inequalities and
proved some existence and uniqueness theorems of solutions for the system of nonlinear
variational inequalities in Hilbert spaces. As generalizations of system of variational
inequalities, Agarwal et al. [26] introduced a system of generalized nonlinear mixed
quasivariational inclusions and investigated the sensitivity of solutions for this system
of generalized nonlinear mixed quasivariational inclusions in Hilbert spaces. Kazmi and
Bhat [27] introduced a system of nonlinear variational-like inclusions and gave an
iterative algorithm for finding its approximate solution. It is known that accretivity of the
underlying operator plays indispensable roles in the theory of variational inequality and its
generalizations.

In 2001, Huang and Fang [28] were the first to introduce generalized m-accretive
mapping and give the definition of the resolvent operator for generalized m-accretive
mappings in Banach spaces. They also proved some properties of the resolvent operator for
generalized m-accretive mappings in Banach spaces. Subsequently, Fang and Huang [29],
Yan et al. [30], Fang et al. [31], Lan et al. [32, 33], Fang and Huang [34], and Peng et
al. [35] introduced and investigated many new systems of variational inclusions involving
H-monotone operators and (H,η)-monotone operators in Hilbert spaces, generalized m-
accretive mappings, H-accretive mappings and (H,η)-accretive mappings in Banach spaces,
respectively.
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In 2004, Verma in [36, 37] introduced new notions of A-monotone and (A, η)-
monotone operators and studied some properties ofA-monotone and (A, η)-monotone oper-
ators in Hilbert spaces. In [38], Lan et al. first introduced a new concept of (A, η)-accretive
mappings, which generalizes the existing monotone or accretive operators and studied some
properties of (A, η)-accretive mappings and defined resolvent operators associated with
(A, η)-accretive mappings. They also investigated a class of variational inclusions using the
resolvent operator associated with (A, η)-accretive mappings. Subsequently, Lan [39], by
using the concept of (A, η)-accretive mappings and the new resolvent operator technique
associated with (A, η)-accretive mappings, introduced and studied a system of general
mixed quasivariational inclusions involving (A, η)-accretive mappings in Banach spaces and
constructed a perturbed iterative algorithm with mixed errors for this system of nonlinear
(A, η)-accretive variational inclusions in q-uniformly smooth Banach spaces.

On the other hand, the fuzzy set theory introduced by Zadeh [40] has emerged as
an interesting and fascinating branch of pure and applied sciences. The application of the
fuzzy set theory can be found in many branches of regional, physical, mathematical, and
engineering sciences (see [41–45] and the references therein).

In 1989, Chang and Zhu [46] first introduced the classes of variational inequalities for
fuzzy mappings. In subsequent years, several classes of variational inequalities, variational
inclusions, and complementarity problems for fuzzy mappings were investigated by many
authors, in particular, by Chang and Haung [47, 48], Lan et al. [49], Noor [50–52], Noor and
Al-said [53], and many others.

Recently, Lan and Verma [54], by using the concept of (A, η)-accretive mappings,
the resolvent operator technique associated with (A, η)-accretive mappings, introduced and
studied a new class of nonlinear fuzzy variational inclusion systems with (A, η)-accretive
mappings in Banach spaces and construct some new iterative algorithms to approximate the
solutions of the nonlinear fuzzy variational inclusion systems.

Inspired and motivated by recent research works in these fields, in this paper,
we introduce and study a new system of nonlinear fuzzy variational inclusions with
(A, η)-accretive mappings in Banach spaces. By using the resolvent operator associated
with (A, η)-mappings due to Lan et al. and Nadler’s fixed points theorem, we construct
some new iterative algorithms for approximating the solutions of this system of nonlinear
fuzzy variational inclusions in Banach spaces and prove the existence of solutions and the
convergence of the sequences generated by the algorithms in q-uniformly smooth Banach
spaces. The results presented in this paper improve and extend the corresponding results of
[29–35, 38, 39, 55–60] and many other recent works.

2. Preliminaries

Let X be a real Banach space with dual space X∗, 〈·, ·〉 be the dual pair between X and X∗,
2X denote the family of all nonempty subsets of X, and let CB(X) denote the family of all
nonempty closed bounded subsets of X. The generalized duality mapping Jq : X → 2X

∗
is

defined by

Jq(x) =
{
f∗ ∈ X∗ :

〈
x, f∗〉 = ‖x‖q,

∥∥f∗∥∥ = ‖x‖q−1
}
, ∀x ∈ X, (2.1)

where q > 1 is a constant. In particular, J2 is the usual normalized duality mapping.
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It is known that, in general, Jq(x) = ‖x‖q−2J2(x) for all x /= 0 and Jq is single valued if
X∗ is strictly convex. In the sequel, we always assume that X is a real Banach space such that
Jq is single-valued. If X is a Hilbert space, then J2 becomes the identity mapping on X.

The modulus of smoothness of X is the function ρX : [0,∞) → [0,∞) defined by

ρX(t) = sup
{
1
2
(∥∥x + y

∥∥ + ∥∥x − y
∥∥) − 1 : ‖x‖ ≤ 1,

∥∥y∥∥ ≤ t

}
. (2.2)

A Banach space X is said to be uniformly smooth if

lim
t→ 0

ρX(t)
t

= 0. (2.3)

X is called q-uniformly smooth if there exists a constant c > 0 such that

ρX(t) ≤ ctq, ∀q > 1. (2.4)

Note that Jq is single-valued if X is uniformly smooth. Concerned with the
characteristic inequalities in q-uniformly smooth Banach spaces, Xu [61] proved the
following result.

Lemma 2.1. A real Banach spaceX is q-uniformly smooth if and only if there exists a constant cq > 0
such that, for all x, y ∈ X,

∥∥x + y
∥∥q ≤ ‖x‖q + q〈y, Jq(x)〉 + cq

∥∥y∥∥q. (2.5)

Definition 2.2. A set-valuedmapping T : X → 2X is said to be ξ-Ĥ-Lipschitz continuous if there
exists a constant ξ > 0 such that

Ĥ
(
T(x), T

(
y
))

≤ ξ
∥∥x − y

∥∥, ∀x, y ∈ X, (2.6)

where Ĥ : 2X × 2X → R ∪ {+∞} is the Hausdorff pseudo-metric, that is,

Ĥ(A,B) = max

{
sup
x∈A

d(x, B), sup
y∈B

d
(
y,A
)}

, ∀A,B ∈ 2X, (2.7)

where d(u,K) = infv∈K‖u − v‖.

It should be pointed that if domain of Ĥ is restricted to closed bounded subsetsCB(X),
then Ĥ is the Hausdorff metric.
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Lemma 2.3 (see [62]). Let (X, d) be a complete metric space and let T : X → CB(X) be a set-valued
mapping satisfying

Ĥ
(
T(x), T

(
y
))

≤ kd
(
x, y
)
, ∀x, y ∈ X, (2.8)

where k ∈ (0, 1) is a constant. Then the mapping T has a fixed point in X.

Lemma 2.4 (see [62]). Let (X, d) be a complete metric space and let T : X → CB(X) ba a set-valued
mapping. Then for any ε > 0 and any x, y ∈ X, u ∈ T(x), there exists v ∈ T(y) such that

d(u, v) ≤ (1 + ε)Ĥ
(
T(x), T

(
y
))
. (2.9)

Definition 2.5. LetX be a q-uniformly smooth Banach space, T,A : X → X and let η : X×X →
X be single-valued mappings.

(i) T is said to be accretive if

〈
T(x) − T

(
y
)
, Jq
(
x − y

)〉
≥ 0, ∀x, y ∈ X; (2.10)

(ii) T is said to be strictly accretive if T is accretive and

〈
T(x) − T

(
y
)
, Jq
(
x − y

)〉
= 0 (2.11)

if and only if x = y;

(iii) T is said to be r-strongly accretive if there exists a constant r > 0 such that

〈
T(x) − T

(
y
)
, Jq
(
x − y

)〉
≥ r
∥∥x − y

∥∥q, ∀x, y ∈ X; (2.12)

(iv) T is said to bem-relaxed accretive if there exists a constant m > 0 such that

〈
T(x) − T

(
y
)
, Jq
(
x − y

)〉
≥ −m

∥∥x − y
∥∥q, ∀x, y ∈ X; (2.13)

(v) T is said to be (ζ, ς)-relaxed cocoercive if there exist constants ζ, ς > 0 such that

〈
T(x) − T

(
y
)
, Jq
(
x − y

)〉
≥ −ζ

∥∥T(x) − T(y)
∥∥q + ς

∥∥x − y
∥∥q, ∀x, y ∈ X; (2.14)

(vi) T is said to be γ-Lipschitz continuous if there exists a constant γ > 0 such that

∥∥T(x) − T
(
y
)∥∥ ≤ γ

∥∥x − y
∥∥, ∀x, y ∈ X; (2.15)

(vii) η is said to be τ-Lipschitz continuous if there exists a constant τ such that

∥∥η(x, y)∥∥ ≤ τ
∥∥x − y

∥∥, ∀x, y ∈ X; (2.16)
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(viii) η(·, ·) is said to be ε-Lipschitz continuous in the first variable if there exists a constant
ε > 0 such that

∥∥η(x, u) − η
(
y, u
)∥∥ ≤ ε

∥∥x − y
∥∥, ∀x, y, u ∈ X; (2.17)

(ix) η(·, u) is said to be (ρ, ξ)-relaxed cocoercive with respect to A if there exist constants
ρ, ξ > 0 such that

〈
η(x, u) − η

(
y, u
)
, Jq
(
A(x) −A

(
y
))〉

≥ −ρ
∥∥η(x, u) − η(y, u)

∥∥q + ξ
∥∥x − y

∥∥q, ∀x, y, u ∈ X.
(2.18)

In a similar way to (viii) and (ix), we can define the Lipschitz continuity of the
mapping η(·, ·) in the second variable and relaxed cocoercivity of η(u, ·)with respect to A.

Definition 2.6. Let X be a q-uniformly smooth Banach space, η : X × X → X and let H,A :
X → X be three single-valued mappings. Set-valued mapping M : X → 2X is said to be

(i) accretive if

〈
u − v, Jq

(
x − y

)〉
≥ 0, ∀x, y ∈ X, u ∈ Mx, v ∈ My; (2.19)

(ii) η-accretive if

〈
u − v, Jq

(
η
(
x, y
))〉

≥ 0, ∀x, y ∈ X, u ∈ Mx, v ∈ My; (2.20)

(iii) strictly η-accretive ifM is η-accretive and the equality holds if and only if x = y;

(iv) r-strongly η-accretive if there exists a constant r > 0 such that

〈
u − v, Jq

(
η
(
x, y
))〉

≥ r
∥∥x − y

∥∥q, ∀x, y ∈ X, u ∈ Mx, v ∈ My; (2.21)

(v) α-relaxed η-accretive if there exists a constant α > 0 such that

〈
u − v, Jq

(
η
(
x, y
))〉

≥ −α
∥∥x − y

∥∥q, ∀x, y ∈ X, u ∈ Mx, v ∈ My; (2.22)

(vi) m-accretive ifM is accretive and (I + λM)(X) = X for all λ > 0, where I denotes the
identity operator on X;

(vii) generalizedm-accretive if M is η-accretive and (I + λM)(X) = X for all λ > 0;

(viii) H-accretive ifM is accretive and (H + λM)(X) = X for all λ > 0;

(ix) (H,η)-accretive if M is η-accretive and (H + λM)(X) = X for all λ > 0.

Remark 2.7. The following should be noticed.

(1) The class of generalized m-accretive operators was first introduced by Huang and
Fang [28] and includes that of m-accretive operators as a special case. The class of
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H-accretive operators was first introduced and studied by Fang and Huang [63]
and also includes that of m-accretive operators as a special case.

(2) When X = H is a Hilbert space, (i)–(ix) of Definition 2.6 reduce to the definitions
of monotone operators, η-monotone operators, strictly η-monotone operators,
strongly η-monotone operators, relaxed η-monotone operators, maximal monotone
operators, maximal η-monotone operators, H-monotone operators, and (H,η)-
monotone operators, respectively.

Definition 2.8. Let A : X → X, η : X × X → X be two single-valued mappings and let
M : X → 2X be a set-valued mapping. Then M is said to be (A, η)-accretive with constant m
ifM ism-relaxed η-accretive and (A + λM)(X) = X for all λ > 0.

Remark 2.9. For appropriate and suitable choices of m, A, η, and the space X, it is easy to
see that Definition 2.8 includes a number of definitions of monotone operators and accretive
operators (see [38]).

In [38], Lan et al. showed that (A + ρM)−1 is a single-valued operator if M : X → 2X

is an (A, η)-accretive mapping and A : X → X an r-strongly η-accretive mapping. Based
on this fact, we can define the resolvent operator R

η,A

M,ρ associated with an (A, η)-accretive
mapping M as follows.

Definition 2.10. Let A : X → X be a strictly η-accretive mapping and let M : X → 2X be an
(A, η)-accretive mapping. The resolvent operator Rη,A

M,ρ : X → X associated with A and M is
defined by

R
η,A

M,ρ(x) =
(
A + ρM

)−1(x), ∀x ∈ X. (2.23)

Proposition 2.11 (see [38]). Let X be a q-uniformly smooth Banach space, let η : X × X → X be
τ-Lipschitz continuous, let A : X → X be a r-strongly η-accretive mapping and let M : X → 2X

be an (A, η)-accretive mapping with constant m. Then the resolvent operator R
η,A

M,ρ : X → X is
(τq−1/(r − ρm))-Lipschitz continuous, that is,

∥∥∥Rη,A

M,ρ(x) − R
η,A

M,ρ

(
y
)∥∥∥ ≤ τq−1

r − ρm

∥∥x − y
∥∥, ∀x, y ∈ X, (2.24)

where ρ ∈ (0, r/m) is a constant.

In what follows, we denote the collection of all fuzzy sets on X by F(X) = {A | A :
X → [0, 1]}. A mapping S from X to F(X) is called a fuzzy mapping. If S : X → F(X) is
a fuzzy mapping, then the set S(x) for any x ∈ X is a fuzzy set on F(X) (in the sequel we
denote S(x) by Sx) and Sx(y) for any y ∈ X is the degree of membership of y in Sx. For any
A ∈ F(X) and α ∈ [0, 1], the set

(A)α = {x ∈ X : A(x) ≥ α} (2.25)

is called a α-cut set of A.
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A fuzzy mapping S : X → F(X) is said to satisfy the condition (∗) if there exists a
function a : X → [0, 1] such that for each x ∈ X the set

(Sx)a(x) :=
{
y ∈ X : Sx

(
y
)
≥ a(x)

}
(2.26)

is a nonempty closed and bounded subset of X, that is, (Sx)a(x) ∈ CB(X).
By using the fuzzy mapping S satisfying the condition (∗) with corresponding

function a : X → [0, 1], we can define a set-valued mapping S as follows:

S : X −→ CB(X), x −→ (Sx)a(x). (2.27)

In the sequel, S, T , L, D, G, W , and K are called the set-valued mappings induced by the
fuzzy mappings S, T, L, D, G, W, and K, respectively.

3. A New System of Fuzzy Variational Inclusions

In this section, we introduce some systems of fuzzy variational inclusions q-uniformly
smooth Banach spaces X and their relations.

Let X1 be a q1-uniformly smooth Banach space with q1 > 1, let X2 be a q2-uniformly
smooth Banach space with q2 > 1, let E, P : X1×X2 → X1, F,Q : X1×X2 → X2,A1 : X1 → X1,
A2 : X2 → X2, f, p, l : X1 → X1, g, h, k : X2 → X2, η1 : X1 × X1 → X1, η2 : X2 × X2 → X2

be single-valued mappings, and let S,T,L,D : X1 → F(X1) and G,W,K : X2 → F(X2)
be fuzzy mappings. Further, suppose that M : X1 × X1 → 2X1 and N : X2 × X2 → 2X2

are any nonlinear operators such that for all z ∈ X1, M(·, z) : X1 → 2X1 is an (A1, η1)-
accretive with f(x) − y ∈ dom(M(·, z)) for all x, y ∈ X1 and for all t ∈ X2, N(·, t) : X2 → 2X2

is an (A2, η2)-accretive with g(u) ∈ dom(N(·, t)) for all u ∈ X2. Now, for given mappings
ã, b̃, c̃, d̃ : X1 → [0, 1] and ẽ, f̃ , g̃ : X2 → [0, 1], we consider the following system.

System 3.1. For any given a ∈ X1, b ∈ X2, λ1 > 0, λ2 > 0, our problem is as follows:
Find x, z, u, v,m ∈ X1 and y,w, t, s ∈ X2 such that Sx(u) ≥ ã(x), Tx(v) ≥ b̃(x), Lx(z) ≥

c̃(x), Dx(m) ≥ d̃(x), Gy(w) ≥ ẽ(y),Wy(t) ≥ f̃(y), Ky(s) ≥ g̃(y), and

⎧
⎨
⎩
a ∈ E

(
p(x), w

)
+ P(l(z), t) + λ1M

(
f(x) − v, x

)
,

b ∈ F
(
u, h
(
y
))

+Q(m, k(s)) + λ2N
(
g
(
y
)
, y
)
.

(3.1)

This system is called a system of nonlinear fuzzy variational inclusions involving (A, η)-accretive
mappings in uniformly smooth Banach spaces.

Remark 3.2. For appropriate and suitable choices ofX1,X2, q1, q2, E, P , F,Q,A1,A2, f , g, h, k,
l, p, η1, η2, S, T, L, D, G, W, K, M, N, ã, b̃, c̃, d̃, ẽ, f̃ , and g̃ one can obtain many known and
new classes of (fuzzy) variational inequalities and (fuzzy) variational inclusions as special
cases of System 3.1.

Now, we consider some special cases of System 3.1.
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System 3.3. Let S, T, L,D : X1 → CB(X1) and G,W,K : X2 → CB(X2) be classical set-valued
mappings and let M, N, f , g, E, P , F, Q, p, l, h, k be the mappings as in System 3.1. Now,
by using S, T , L, D, G, W , and K, we define fuzzy mappings S,T,L,D : X1 → 2X1 and
G,W,K : X2 → 2X2 as follows:

Sx = χS(x), Tx = χT(x), Lx = χL(x)

Dx = χD(x),Gx = χG(x), Wx = χW(x), Kx = χK(x),
(3.2)

where χS(x), χT(x), χL(x), χD(x), χG(x), χW(x), and χK(x) are the characteristic functions of the
sets S(x), T(x), L(x), D(x), G(x),W(x), and K(x), respectively.

It is easy to see that S, T, L, and D are fuzzy mappings satisfying the condition (∗)
with constant functions ã(x) = 1, b̃(x) = 1, c̃(x) = 1, d̃(x) = 1 for all x ∈ X1, respectively,
and G, W, and K are fuzzy mappings satisfying the condition (∗) with constant functions
ẽ(y) = 1, f̃(y) = 1, g̃(y) = 1 for all y ∈ X2, respectively. Also

(S)ã(x) =
(
χS(x)

)
1 =
{
r ∈ X1 : χS(x)(r) = 1

}
= S(x),

(T)b̃(x) =
(
χT(x)

)
1 =
{
r ∈ X1 : χT(x)(r) = 1

}
= T(x),

(L)c̃(x) =
(
χL(x)

)
1 =
{
r ∈ X1 : χL(x)(r) = 1

}
= L(x),

(D)d̃(x) =
(
χD(x)

)
1 =
{
r ∈ X1 : χD(x)(r) = 1

}
= D(x),

(G)ẽ(y) =
(
χG(y)

)
1 =
{
t ∈ X2 : χG(y)(t) = 1

}
= G
(
y
)
,

(W)f̃(y) =
(
χW(y)

)
1 =
{
t ∈ X2 : χW(y)(t) = 1

}
= W

(
y
)
,

(K)g̃(y) =
(
χK(y)

)
1 =
{
t ∈ X2 : χK(y)(t) = 1

}
= K
(
y
)
.

(3.3)

Then System 3.1 is equivalent to the following:
Find x, z, u, v,m ∈ X1, y,w, t, s ∈ X2 such that u ∈ S(x), v ∈ T(x), z ∈ L(x), m ∈ D(x),

w ∈ G(y), t ∈ W(y), s ∈ K(y), and

⎧
⎨
⎩
a ∈ E

(
p(x), w

)
+ P(l(z), t) + λ1M

(
f(x) − v, x

)
,

b ∈ F
(
u, h
(
y
))

+Q(m, k(s)) + λ2N
(
g
(
y
)
, y
)
.

(3.4)

System 3.3 is called a system of nonlinear set-valued variational inclusions with (A, η)-
accretive mappings.

System 3.4. If T : X1 → X1 is a single-valued mapping, then System 3.3 collapses to the
following system of nonlinear variational inclusions:

Find x, z, u,m ∈ X1, y,w, t, s ∈ X2 such that u ∈ S(x), z ∈ L(x), m ∈ D(x), w ∈ G(y),
t ∈ W(y), s ∈ K(y), and

⎧
⎨
⎩
a ∈ E

(
p(x), w

)
+ P(l(z), t) + λ1M

(
f(x) − T(x), x

)
,

b ∈ F
(
u, h
(
y
))

+Q(m, k(s)) + λ2N
(
g
(
y
)
, y
)
.

(3.5)
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System 3.5. If Xi = Hi (i = 1, 2) are two Hilbert spaces, S : H1 → H1 and G : H2 → H2 are
two single-valued mappings, p = h = l = k ≡ I(: the identity mapping), λ1 = λ2 = 1, T ≡ 0(:
the zero mapping), a = b = 0, M(x, y) = M(x) for all (x, y) ∈ H1 × H1, N(x, y) = N(x) for
all (x, y) ∈ H2 ×H2, then System 3.4 reduces to the following system:

Find (x, y, z,m, t, s) such that (x, y) ∈ H1×H2, z ∈ L(x),m ∈ D(x), t ∈ W(y), s ∈ K(y),
and

⎧
⎨
⎩
0 ∈ E

(
x,y
)
+ P(z, t) +M

(
f(x)

)
,

0 ∈ F
(
x, y
)
+Q(m, s) +N

(
g
(
y
))
.

(3.6)

System 3.5 was introduced and studied by Peng and Zhu in [59].

System 3.6. If a = b = 0, λ1 = λ2 = 1, and P = Q ≡ 0, then System 3.3 can be replaced by the
following:

Find u ∈ S(x), v ∈ T(x) and w ∈ G(y) such that

⎧
⎨
⎩
0 ∈ E

(
p(x), w

)
+M

(
f(x) − v, x

)
,

0 ∈ F
(
u, h
(
y
))

+N
(
g
(
y
)
, y
)
,

(3.7)

which is studied by Lan and Verma [54].

System 3.7. If T : X1 → X1 is a single-valued mapping, then System 3.6 collapses to the
following system of nonlinear variational inclusions:

Find x, u ∈ X1, y,w ∈ X2 such that u ∈ S(x), w ∈ G(y) and

⎧
⎨
⎩
0 ∈ E

(
p(x), w

)
+M

(
f(x) − T(x), x

)
,

0 ∈ F
(
u, h
(
y
))

+N
(
g
(
y
)
, y
)
,

(3.8)

which is studied by Lan and Verma [54].

System 3.8. If p = h ≡ I, T ≡ 0, M(x, y) = M(x) for all (x, y) ∈ X1 × X1, N(x, y) = N(x) for
all (x, y) ∈ X2 × X2, S : X1 → X1, and G : X2 → X2 are identity mappings, then System 3.7
reduces to the following system:

Find (x, y) ∈ X1 ×X2 such that

⎧
⎨
⎩
0 ∈ E

(
x,G
(
y
))

+M
(
f(x)

)
,

0 ∈ F
(
S(x), y

)
+N
(
g
(
y
))
.

(3.9)

System 3.8 is investigated by Jin [55]when S and G are the identity mappings.

System 3.9. If f − T = g ≡ I, P = Q ≡ 0, λ1 = λ2 = 1, S : X1 → X1, and G : X2 → X2 are two
single-valued mappings, then System 3.4 is equivalent to the following:
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Find (x, y) ∈ X1 ×X2 such that

⎧
⎨
⎩
a ∈ E

(
p(x), G

(
y
))

+M(x, x),

b ∈ F
(
S(x), h

(
y
))

+N
(
y, y
)
,

(3.10)

which is introduced and studied by Lan [39]when S and G are identity mappings.

System 3.10. When p = h = S = G ≡ I, a = b = 0, System 3.9 can be replaced to the following:
Find (x, y) ∈ X1 ×X2 such that

⎧
⎨
⎩
0 ∈ E

(
x, y
)
+M(x, x),

0 ∈ F
(
x, y
)
+N
(
y, y
)
,

(3.11)

which is studied by Jin [56].

System 3.11. If Xi = Hi (i = 1, 2) is two Hilbert spaces, M(x, y) = M(x) for all (x, y) ∈
H1×H1 andN(x, y) = N(x) for all (x, y) ∈ H2×H2, then System 3.7 reduces to the following
generalized system of set-valued variational inclusions:

Find x, u ∈ H1, y,w ∈ H2 such that u ∈ S(x), w ∈ G(y), and

⎧
⎨
⎩
0 ∈ E

(
p(x), w

)
+M

(
f(x) − T(x)

)
,

0 ∈ F
(
u, h
(
y
))

+N
(
g
(
y
))
,

(3.12)

which is studied by Lan et al. [57] when M, N are A-monotone mappings and there exists
single-valued mapping ψ : H1 → H1 such that ψ(x) = f(x) − T(x) for all x ∈ H1.

System 3.12. If g = p = h = f − T ≡ I, then System 3.11 collapses to the following system of
nonlinear variational inclusions:

Find (x, y) ∈ H1 ×H2, u ∈ S(x), w ∈ G(y) such that

⎧
⎨
⎩
0 ∈ E(x,w) +M(x),

0 ∈ F
(
u, y
)
+N
(
y
)
,

(3.13)

which is considered by Huang and Fang [28].

System 3.13. If S : H1 → H1 and G : H2 → H2 are two single-valued mappings, then
System 3.12 is equivalent to the following:

Find (x, y) ∈ H1 ×H2 such that

⎧
⎨
⎩
0 ∈ E

(
x,G
(
y
))

+M(x),

0 ∈ F
(
S(x), y

)
+N
(
y
)
,

(3.14)
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which is investigated by Fang et al. [31] and Peng et al. [35], Fang andHuang [34], and Verma
[36] with S = G ≡ I.

System 3.14. If M(x) = ∂ϕ(x) and N(y) = ∂φ(y) for all x ∈ H1 and y ∈ H2, where ϕ :
H1 → R∪{+∞} and φ : H2 → R∪{+∞} are two proper, convex, and lower semicontinuous
functionals, and ∂ϕ and ∂φ denote subdifferential operators of ϕ and φ, respectively, then
System 3.13 reduces to the following system:

Find (x, y) ∈ H1 ×H2 such that

⎧
⎨
⎩

〈
E
(
x,G
(
y
))
, s − x

〉
+ ϕ(s) − ϕ(x) ≥ 0, ∀s ∈ H1,

〈
F
(
S(x), y

)
, t − y

〉
+ φ(t) − φ

(
y
)
≥ 0, ∀t ∈ H2,

(3.15)

which is called a system of nonlinear mixed variational inequalities. Some special cases of System
3.7 can be found in [22]. Further, if S = G ≡ I, then System 3.7 reduces to the system of
nonlinear variational inequalities considered by Cho et al. [25].

System 3.15. If M(x) = ∂δK1(x) and N(y) = ∂δK2(y) for all x ∈ K1 and y ∈ K2, where
K1 and K2 are nonempty closed convex subsets of H1 and H2, respectively, and δK1 and δK2

denote indicator functions ofK1 andK2, respectively, then System 3.14 becomes the following
problem:

Find (x, y) ∈ K1 ×K2 such that

⎧
⎨
⎩
〈E
(
x,G
(
y
))
, s − x〉 ≥ 0, ∀s ∈ K1,

〈F
(
S(x), y

)
, t − y〉 ≥ 0, ∀t ∈ K2,

(3.16)

which is the just system in [24]when S and G are singlevalued and S = G ≡ I.

System 3.16. If H1 = H2 = H, K1 = K2 = K, E(x,G(y)) = ρ1G(y) + x − y, and F(S(x), y) =
ρ2S(x) + y − x for all x, y ∈ H, where ρ1 > 0 and ρ2 > 0 are two constants, then System 3.15 is
equivalent to the following:

Find an element (x, y) ∈ K ×K such that

⎧
⎨
⎩
〈ρ1G

(
y
)
+ x − y, s − x〉 ≥ 0, ∀s ∈ K,

〈ρ2S(x) + y − x, t − y〉 ≥ 0, ∀t ∈ K,
(3.17)

which is the system of nonlinear variational inequalities considered by Verma [22] with S =
G.

Remark 3.17. If x = y, S = G and ρ1 = ρ2, then System 3.16 reduces to the following classical
nonlinear variational inequality problem:

Find an element x ∈ K such that

〈S(x), z − x〉 ≥ 0, ∀z ∈ K. (3.18)
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4. Existence Theorems
In this section, we prove the existence theorem for solutions of Systems 3.1. For our main
results, we have the following lemma which offers a good approach to solve System 3.1.

Lemma 4.1. Let Xi, Ai, ηi, λi (i = 1, 2), E, F, P , Q, S, T, L, D, G, W, K, M, N, f , g, h, p, l,
k, a, and b be the same as in System 3.1. Then, for any given x, z, u, v,m ∈ X1 and y,w, t, s ∈ X2,
(x, y, z, t,m, s, u, v,w) is a solution of System 3.1 if and only if

f(x) = v + R
η1,A1

M(·,x),ρ1

[
A1
(
f(x) − v

)
−
ρ1
λ1

(
E
(
p(x), w

)
+ P(l(z), t) − a

)]
,

g
(
y
)
= R

η2,A2

N(·,y),ρ2

[
A2
(
g
(
y
))

−
ρ2
λ2

(
F
(
u, h
(
y
))

+Q(m, k(s)) − b
)]
,

(4.1)

where ρ1 > 0 and ρ2 > 0 are two constants.

Proof. The conclusion follows directly from Definition 2.10 and some simple arguments.

From Lemma 4.1, we have the following.

Theorem 4.2. Let X1 and X2 be the same as in Lemma 4.1, let S,T,L,D : X1 → F(X1) and
G,W,K : X2 → F(X2) be fuzzy mappings satisfying the condition (∗) with the corresponding
functions ã, b̃, c̃, d̃, ẽ, f̃ and g̃, respectively, S, T, L,D : X1 → CB(X1), and let G,W,K : X2 →
CB(X2) be ξ-Ĥ1-Lipschitz continuous, ζ-Ĥ1-Lipschitz continuous, γ-Ĥ1-Lipschitz continuous,
�-Ĥ1-Lipschitz continuous, ξ′-Ĥ2-Lipschitz continuous, ζ′-Ĥ2-Lipschitz continuous, and γ ′-Ĥ2-
Lipschitz continuous, respectively, where Ĥi is the Hausdorff pseudometric on 2Xi for i = 1, 2. Assume
that ηi : Xi × Xi → Xi is τi-Lipschitz continuous, Ai : Xi → Xi is ri-strongly ηi-accretive and βi-
Lipschitz continuous for i = 1, 2, p, l : X1 → X1 are δ1-Lipschitz continuous, and δ2-Lipschitz
continuous, respectively, h, k : X2 → X2 are π1-Lipschitz continuous and π2-Lipschitz continuous,
respectively, f : X1 → X1 is (κ, e1)-relaxed cocoercive, μ-Lipschitz continuous and g : X2 → X2 is
(σ, e2)-relaxed cocoercive, ε-Lipschitz continuous. Suppose that M(·, z) : X1 → 2X1 is an (A1, η1)-
accretive operator with constant m1 for all z ∈ X1 and N(·, t) : X2 → 2X2 is an (A2, η2)-accretive
operator with constant m2 for all t ∈ X2, and E, P : X1 × X2 → X1 are two single-valued mappings
such that E(·, y) and P(·, y) are ν1-Lipschitz continuous and ν2-Lipschitz continuous in the first
variable, respectively, E(x, ·), P(x, ·) are ι1-Lipschitz continuous ι2-Lipschitz continuous in the second
variable, respectively, for all (x, y) ∈ X1 × X2, and E(p1(·), y) is (θ1, s1)-relaxed cocoercive with
respect to f ′, where f ′ : X1 → X1 is defined by f ′(x) = A1 ◦ (f(x) − v) = A1(f(x) − v) for
all x ∈ X1, b̃ : X1 → [0, 1] and Tx(v) ≥ b̃(x). Further, suppose that F,Q : X1 × X2 → X2

are two nonlinear mappings such that F(·, y), Q(·, y) are ρ1-Lipschitz continuous and ρ2-Lipschitz
continuous in the first variable, respectively, F(x, ·) and Q(x, ·) are υ1-Lipschitz continuous and υ2-
Lipschitz continuous in the second variable, respectively, and F(x, h(·)) is (θ2, s2)-relaxed cocoercive
with respect to g ′, where g ′ : X2 → X2 is defined by g ′(x) = A2 ◦ g(x) = A2(g(x)) for all x ∈ X2.

In addition, if there exist constants ρ1 ∈ (0, r1/m1) and ρ2 ∈ (0, r2/m2) such that

∥∥∥Rη1,A1

M(·,x),ρ1(z) − R
η1,A1

M(·,y),ρ1(z)
∥∥∥ ≤ ς

∥∥x − y
∥∥, ∀x, y, z ∈ X1, (4.2)

∥∥∥Rη2,A2

N(·,x),ρ2(z) − R
η2,A2

N(·,y),ρ2(z)
∥∥∥ ≤ ϑ

∥∥x − y
∥∥, ∀x, y, z ∈ X2, (4.3)
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ς + ζ +
q1
√
1 − q1e1 +

(
cq1 + q1κ

)
μq1 < 1,

ϑ +
q2
√
1 − q2e2 +

(
cq2 + q2σ

)
εq2 < 1,

q1
√
β
q1
1

(
μ + ζ

)q1 − q1
ρ1
λ1

(
−θ1ν1q1δ1q1 + s1

)
+
cq1ρ1

q1ν1
q1δ1

q1

λ1
q1

<
τ
1−q1
1 λ1

ρ1

(
r1 − ρ1m1

)
χ1 − ν2δ2γ,

q2
√
β
q2
2 εq2 − q2

ρ2
λ2

(−θ2υ1
q2π1

q2 + s2) +
cq2ρ2

q2υ1
q2π1

q2

λ2
q2

<
τ
1−q2
2 λ2

ρ2

(
r2 − ρ2m2

)
χ2 − υ2π2γ

′,

(4.4)

where

χ1 = 1 −
(
ς + ζ +

q1
√
1 − q1e1 +

(
cq1 + q1κ

)
μq1

)
−
ρ2τ

q2−1
2

(
ρ1ξ + ρ2�

)

λ2
(
r2 − ρ2m2

) ,

χ2 = 1 −
(
ϑ +

q2
√
1 − q2e2 +

(
cq2 + q2σ

)
εq2
)
−
ρ1τ

q1−1
1 (ι1ξ′ + ι2ζ

′)

λ1
(
r1 − ρ1m1

) ,

(4.5)

λ1, λ2 are the same as in System 3.1, and cq1 , cq2 are two constants guaranteed by Lemma 2.1, then
System 3.1 admits a solution.

Proof. For any given ρ1 > 0 and ρ2 > 0, define mappings Φρ1 : X1 × X1 × X1 × X2 × X2 → X1

and Ψρ2 : X1 ×X1 ×X2 ×X2 → X2 as follows:

Φρ1(x, z, v, t,w)

= x − f(x) + v + R
η1,A1

M(·,x),ρ1

[
A1
(
f(x) − v

)
−
ρ1
λ1

(
E
(
p(x), w

)
+ P(l(z), t) − a

)]
,

Ψρ2

(
u,m, s, y

)

= y − g
(
y
)
+ R

η2,A2

N(·,y),ρ2

[
A2
(
g
(
y
))

−
ρ2
λ2

(
F
(
u, h
(
y
))

+Q(m, k(s)) − b
)]

(4.6)

for all (x, y, z, t,m, s, u, v,w) ∈ X1 ×X2 ×X1 ×X2 ×X1 ×X2 ×X1 ×X1 ×X2, where a ∈ X1 and
b ∈ X2 are the same as in System 3.1, and let ã, b̃, c̃, d̃ : X1 → [0, 1] and ẽ, f̃ , g̃ : X2 → [0, 1] be
mappings such that Sx(u) ≥ ã(x), Tx(v) ≥ b̃(x), Lx(z) ≥ c̃(x), Dx(m) ≥ d̃(x), Gy(w) ≥ ẽ(y),
Wy(t) ≥ f̃(y), andKy(s) ≥ g̃(y).

Now, define a norm ‖ · ‖∗ on X1 ×X2 by

‖(u, v)‖∗ = ‖u‖ + ‖v‖, ∀(u, v) ∈ X1 ×X2. (4.7)

It is easy to see that (X1 × X2, ‖ · ‖∗) is a Banach space (see [34]). For any given ρ1 > 0 and
ρ2 > 0, define a mapping Qρ1,ρ2 : X1 ×X2 ×X1 ×X1 ×X1 ×X1 ×X2 ×X2 ×X2 → X1 ×X2 by

Qρ1,ρ2

(
x, y, z, u, v,m, s, t,w

)
=
(
Φρ1(x, z, v, t,w),Ψρ2

(
u,m, s, y

))
(4.8)
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for all (x, y, z, u, v,m, s, t,w) ∈ X1 ×X2 ×X1 ×X1 ×X1 ×X1 ×X2 ×X2 ×X2 and let

Rρ1,ρ2

(
x, y
)
=
{
Qρ1,ρ2

(
x, y, z, u, v,m, s, t,w

)
:

Sx(u) ≥ ã(x),Tx(v) ≥ b̃(x),Lx(z) ≥ c̃(x),Dx(m) ≥ d̃(x),Gy(w) ≥ ẽ
(
y
)
,

Wy(t) ≥ f̃
(
y
)
,Ky(s) ≥ g̃

(
y
)
, where ã, b̃, c̃, d̃ : X1 → [0, 1],

ẽ, f̃ , g̃ : X2 → [0, 1]
}

(4.9)

for all (x, y) ∈ X1 × X2. Then, for any given (x, y), (x′, y′) ∈ X1 × X2, ε > 0 and
Qρ1,ρ2(x, y, z, u, v,m, s, t,w) ∈ Rρ1,ρ2(x, y), there exists (z, u, v,m, s, t,w) ∈ X1 × X1 × X1 ×
X1 ×X2 ×X2 ×X2 such that

Sx(u) ≥ ã(x), Tx(v) ≥ b̃(x), Lx(z) ≥ c̃(x), Dx(m) ≥ d̃(x),

Gy(w) ≥ ẽ
(
y
)
, Wy(t) ≥ f̃

(
y
)
, Ky(s) ≥ g̃

(
y
)
,

(4.10)

where ã, b̃, c̃, d̃ : X1 → [0, 1], ẽ, f̃ , g̃ : X2 → [0, 1] and (4.6) holds. SinceSx(u) ≥ ã(x),Tx(v) ≥
b̃(x),Lx(z) ≥ c̃(x),Dx(m) ≥ d̃(x),Gy(w) ≥ ẽ(y),Wy(t) ≥ f̃(y),Ky(s) ≥ g̃(y), that is, u ∈
S(x) ∈ CB(X1), v ∈ T(x) ∈ CB(X1), z ∈ L(x) ∈ CB(X1), m ∈ D(x) ∈ CB(X1), w ∈ G(y) ∈
CB(X2), t ∈ W(y) ∈ CB(X2), s ∈ K(y) ∈ CB(X2), it follows from Lemma 2.4 that there
exist u′ ∈ S(x′), v′ ∈ T(x′), z′ ∈ L(x′), m′ ∈ D(x′), w′ ∈ G(y′), t′ ∈ W(y′), s′ ∈ K(y′), that
is, Sx′(u′) ≥ ã(x′),Tx′(v′) ≥ b̃(x′),Lx′(z′) ≥ c̃(x′),Dx′(m′) ≥ d̃(x′),Gy′(w′) ≥ ẽ(y′),Wy′(t′) ≥
f̃(y′),Ky′(s′) ≥ g̃(y′) such that

∥∥u − u′∥∥ ≤ (1 + ε)Ĥ1
(
S(x), S

(
x′)), ∥∥v − v′∥∥ ≤ (1 + ε)Ĥ1

(
T(x), T

(
x′)),

∥∥z − z′
∥∥ ≤ (1 + ε)Ĥ1

(
L(x), L

(
x′)), ∥∥m −m′∥∥ ≤ (1 + ε)Ĥ1

(
D(x), D

(
x′)),

∥∥w −w′∥∥ ≤ (1 + ε)Ĥ2
(
G
(
y
)
, G
(
y′)), ∥∥t − t′

∥∥ ≤ (1 + ε)Ĥ2
(
W
(
y
)
,W
(
y′)),

∥∥s − s′
∥∥ ≤ (1 + ε)Ĥ2

(
K
(
y
)
, K
(
y′)).

(4.11)

Letting

Φρ1

(
x′, z′, v′, t′, w′)

= x′ − f
(
x′) + v′ + R

η1,A1

M(·,x′),ρ1

[
A1
(
f
(
x′) − v′) − ρ1

λ1

(
E
(
p
(
x′), w′) + P

(
l
(
z′
)
, t′
)
− a
)]
,

Ψρ2

(
u′, m′, s′, y′)

= y′ − g
(
y′) + R

η2,A2

N(·,y′),ρ2

[
A2
(
g
(
y′)) − ρ2

λ2

(
F
(
u′, h
(
y′)) +Q

(
m′, k

(
s′
))

− b
)]
,

(4.12)
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we have

(
Φρ1

(
x′, z′, v′, t′, w′),Ψρ2

(
u′, m′, s′, y′)) = Qρ1,ρ2

(
x′, y′, z′, u′, v′, m′, s′, t′, w′). (4.13)

Now, it follows from (4.2) and Proposition 2.11 that

∥∥Φρ1(x, z, v, t,w) −Φρ1

(
x′, z′, v′, t′, w′)∥∥

≤
∥∥x − x′ −

(
f(x) − f

(
x′))∥∥ + ∥∥v − v′∥∥

+
∥∥∥∥R

η1,A1

M(·,x),ρ1

[
A1
(
f(x) − v

)
−
ρ1
λ1

(
E
(
p(x), w

)
+ P(l(z), t) − a

)]

−Rη1,A1

M(·,x′),ρ1

[
A1
(
f
(
x′) − v′) − ρ1

λ1

(
E
(
p
(
x′), w′) + P

(
l
(
z′
)
, t′
)
− a
)]∥∥∥∥

≤
∥∥x − x′ −

(
f(x) − f

(
x′))∥∥ + ∥∥v − v′∥∥

+
∥∥∥∥R

η1,A1

M(·,x),ρ1

[
A1
(
f(x) − v

)
−
ρ1
λ1

(
E
(
p(x), w

)
+ P(l(z), t) − a

)]

−Rη1,A1

M(·,x),ρ1

[
A1
(
f
(
x′) − v′) − ρ1

λ1

(
E
(
p
(
x′), w′) + P

(
l
(
z′
)
, t′
)
− a
)]∥∥∥∥

+
∥∥∥∥R

η1,A1

M(·,x),ρ1

[
A1
(
f
(
x′) − v′) − ρ1

λ1

(
E
(
p
(
x′), w′) + P

(
l
(
z′
)
, t′
)
− a
)]

−Rη1,A1

M(·,x′),ρ1

[
A1
(
f
(
x′) − v′) − ρ1

λ1

(
E
(
p
(
x′), w′) + P

(
l
(
z′
)
, t′
)
− a
)]∥∥∥∥

≤
∥∥x − x′ −

(
f(x) − f

(
x′))∥∥ + ∥∥v − v′∥∥ + ς

∥∥x − x′∥∥

+
τ
q1−1
1

r1 − ρ1m1

∥∥∥∥A1
(
f(x) − v

)
−
ρ1
λ1

(
E
(
p(x), w

)
+ P(l(z), t) − a

)

−
(
A1
(
f
(
x′) − v′) − ρ1

λ1

(
E
(
p
(
x′), w′) + P

(
l
(
z′
)
, t′
)
− a
))∥∥∥∥

≤
∥∥x − x′ −

(
f(x) − f

(
x′))∥∥ + ∥∥v − v′∥∥ + ς

∥∥x − x′∥∥

+
τ
q1−1
1

r1 − ρ1m1

{
ρ1
λ1

[∥∥E(p(x), w) − E
(
p(x), w′)∥∥ + ∥∥P(l(z), t) − P

(
l(z), t′

)∥∥

+
∥∥P(l(z), t′) − P

(
l
(
z′
)
, t′
)∥∥]

+
∥∥∥∥A1
(
f(x) − v

)
−A1

(
f
(
x′) − v′) − ρ1

λ1

(
E
(
p(x), w′) − E

(
p
(
x′), w′))

∥∥∥∥
}
.

(4.14)
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Thus, by Lemma 2.1, we have

∥∥x − x′ − (f(x) − f(x′))
∥∥q1

≤
∥∥x − x′∥∥q1 − q1

〈
f(x) − f

(
x′), Jq1

(
x − x′)〉 + cq1

∥∥f(x) − f(x′)
∥∥q1 .

(4.15)

Since f is (κ, e1)-relaxed cocoercive and μ-Lipschitz continuous, we conclude that

∥∥x − x′ − (f(x) − f(x′))
∥∥q1 ≤ ∥∥x − x′∥∥q1 − q1e1

∥∥x − x′∥∥q1 + (cq1 + q1κ
)
μq1
∥∥x − x′∥∥q1

=
(
1 − q1e1 +

(
cq1 + q1κ

)
μq1
)∥∥x − x′∥∥q1 .

(4.16)

By (4.11) and ζ-Ĥ1-Lipschitz continuity of T ,

∥∥v − v′∥∥ ≤ (1 + ε)Ĥ1
(
T(x), T

(
x′)) ≤ ζ(1 + ε)

∥∥x − x′∥∥. (4.17)

Since E(x, ·) is ι1-Lipschitz continuous in the second variable and G is ξ′-Ĥ2-Lipschitz
continuous, by (4.11), we have

∥∥E(p(x), w) − E
(
p(x), w′)∥∥ ≤ ι1

∥∥w −w′∥∥ ≤ ι1(1 + ε)Ĥ2
(
G
(
y
)
, G
(
y′))

≤ ι1ξ
′(1 + ε)

∥∥y − y′∥∥.
(4.18)

Since P(x, ·) is ι2-Lipschitz continuous in the second variable, W is ζ′-Ĥ2-Lipschitz
continuous, p2 is δ2-Lipschitz continuous, P(·, y) is ν2-Lipschitz continuous in the first
variable, and L is γ-Ĥ1-Lipschitz continuous, using (4.11), we deduce that

∥∥P(l(z), t) − P
(
l(z), t′

)∥∥ ≤ ι2
∥∥t − t′

∥∥ ≤ ι2(1 + ε)Ĥ2
(
W
(
y
)
,W
(
y′))

≤ ι2ζ
′(1 + ε)

∥∥y − y′∥∥,
(4.19)

and also

∥∥P(l(z), t′) − P
(
l
(
z′
)
, t′
)∥∥ ≤ ν2

∥∥l(z) − l
(
z′
)∥∥ ≤ ν2δ2

∥∥z − z′
∥∥

≤ ν2δ2(1 + ε)Ĥ1
(
L(x), L

(
x′))

≤ ν2δ2γ(1 + ε)
∥∥x − x′∥∥.

(4.20)
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Again, by Lemma 2.1, it follows that

∥∥∥∥A1(f(x) − v) −A1(f(x′) − v′) −
ρ1
λ1

(E(p(x), w′) − E(p(x′), w′))
∥∥∥∥
q1

≤
∥∥A1(f(x) − v) −A1(f(x′) − v′)

∥∥q1 − q1
ρ1
λ1

×
〈
E
(
p(x), w′) − E

(
p
(
x′), w′), Jq1

(
A1
(
f(x) − v

)
−A1

(
f
(
x′) − v′))〉

+ cq1
ρ1

q1

λ1
q1

∥∥E(p(x), w′) − E(p(x′), w′)
∥∥q1 .

(4.21)

Since A1 is β1-Lipschitz continuous, f is μ-Lipschitz continuous, and T is ζ-Lipschitz
continuous, by (4.11), we get

∥∥A1
(
f(x) − v

)
−A1

(
f
(
x′) − v′)∥∥ ≤ β1

∥∥f(x) − f
(
x′) − (v − v′)∥∥

≤ β1
(∥∥f(x) − f

(
x′)∥∥ + ∥∥v − v′∥∥)

≤ β1
(
μ + ζ(1 + ε)

)∥∥x − x′∥∥.
(4.22)

Since E(p(·), y) is (θ1, s1)-relaxed cocoercive with respect to f ′, where f ′(x) = A1 ◦ (f(x) −
v) = A1(f(x) − v), E(·, y) is ν1-Lipschitz continuous in the first variable and p is δ1-Lipschitz
continuous, we have

〈
E
(
p(x), w′) − E

(
p
(
x′), w′), Jq1

(
A1
(
f(x) − v

)
−A1

(
f
(
x′) − v′))〉

≤ −θ1
∥∥E(p(x), w′) − E(p(x′), w′)

∥∥q1 + s1
∥∥x − x′∥∥q1

≤ −θ1ν1q1
∥∥p(x) − p(x′)

∥∥q1 + s1
∥∥x − x′∥∥q1

≤
(
−θ1ν1q1δ1q1 + s1

)∥∥x − x′∥∥q1 ,

(4.23)

and also

∥∥E(p(x), w′) − E
(
p
(
x′), w′)∥∥ ≤ ν1

∥∥p(x) − p
(
x′)∥∥ ≤ ν1δ1

∥∥x − x′∥∥. (4.24)

Hence, using (4.21)–(4.24), we have

∥∥∥∥A1(f(x) − v) −A1(f(x′) − v′) −
ρ1
λ1

(E(p(x), w′) − E(p(x′), w′))
∥∥∥∥
q1

≤
(
β1

q1
(
μ + ζ(1 + ε)

)q1 − q1
ρ1
λ1

(
−θ1ν1q1δ1q1 + s1

)
+
cq1ρ1

q1ν1
q1δ1

q1

λ1
q1

)∥∥x − x′∥∥q1 ,
(4.25)

where cq1 is the constant as in Lemma 2.1. Using (4.14)–(4.20), and (4.25), it follows that

∥∥Φρ1(x, z, v, t,w) −Φρ1

(
x′, z′, v′, t′, w′)∥∥ ≤ ϕ1(ε)

∥∥x − x′∥∥ + φ1(ε)
∥∥y − y′∥∥, (4.26)
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where

ϕ1(ε) = ς + ζ(1 + ε) +
q1
√
1 − q1e1 +

(
cq1 + q1κ

)
μq1 +

ρ1τ
q1−1
1

(
ν2δ2γ(1 + ε) + ψ1(ε)

)

λ1
(
r1 − ρ1m1

) ,

ψ1(ε) =
q1
√
β1

q1
(
μ + ζ(1 + ε)

)q1 − q1
ρ1
λ1

(
−θ1ν1q1δ1q1 + s1

)
+
cq1ρ1

q1ν1
q1δ1

q1

λ1
q1

,

φ1(ε) =
ρ1τ

q1−1
1 (ι1ξ′ + ι2ζ

′)(1 + ε)

λ1
(
r1 − ρ1m1

) .

(4.27)

Similarly, for any (u,m, s, y), (u′, m′, s′, y′) ∈ X1×X1×X2×X2, it follows from (4.3) and
Proposition 2.11 that

∥∥Ψρ2

(
u,m, s, y

)
−Ψρ2

(
u′, m′, s′, y′)∥∥

≤
∥∥y − y′ −

(
g
(
y
)
− g
(
y′))∥∥

+
∥∥∥∥R

η2,A2

N(·,y),ρ2

[
A2
(
g
(
y
))

−
ρ2
λ2

(
F
(
u, h
(
y
))

+Q(m, k(s)) − b
)]

−Rη2,A2

N(·,y′),ρ2

[
A2
(
g
(
y′)) − ρ2

λ2

(
F
(
u′, h
(
y′)) +Q

(
m′, k

(
s′
))

− b
)]∥∥∥∥

≤
∥∥y − y′ −

(
g
(
y
)
− g
(
y′))∥∥

+
∥∥∥∥R

η2,A2

N(·,y),ρ2

[
A2
(
g
(
y
))

−
ρ2
λ2

(
F
(
u, h
(
y
))

+Q(m, k(s)) − b
)]

−Rη2,A2

N(·,y),ρ2

[
A2
(
g
(
y′)) − ρ2

λ2

(
F
(
u′, h
(
y′)) +Q

(
m′, k

(
s′
))

− b
)]∥∥∥∥

+
∥∥∥∥R

η2,A2

N(·,y),ρ2

[
A2
(
g
(
y′)) − ρ2

λ2

(
F
(
u′, h
(
y′)) +Q

(
m′, k

(
s′
))

− b
)]

−Rη2,A2

N(·,y′),ρ2

[
A2
(
g
(
y′)) − ρ2

λ2

(
F
(
u′, h
(
y′)) +Q

(
m′, k

(
s′
))

− b
)]∥∥∥∥

≤
∥∥y − y′ −

(
g
(
y
)
− g
(
y′))∥∥ + ϑ

∥∥y − y′∥∥

+
τ
q2−1
2

r2 − ρ2m2

∥∥∥∥A2
(
g
(
y
))

−
ρ2
λ2

(
F
(
u, h
(
y
))

+Q(m, k(s)) − b
)

−
(
A2
(
g
(
y′)) − ρ2

λ2

(
F
(
u′, h
(
y′)) +Q

(
m′, k

(
s′
))

− b
))∥∥∥∥
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≤
∥∥y − y′ −

(
g
(
y
)
− g
(
y′))∥∥ + ϑ

∥∥y − y′∥∥ + τ
q2−1
2

r2 − ρ2m2

×
{
ρ2
λ2

(∥∥F(u, h(y)) − F
(
u′, h
(
y
))∥∥ + ∥∥Q(m, k(s)) −Q

(
m′, k(s)

)∥∥

+
∥∥Q(m′, k(s)

)
−Q
(
m′, k

(
s′
))∥∥)

+
∥∥∥∥A2
(
g
(
y
))

−A2
(
g
(
y′)) − ρ2

λ2

(
F
(
u′, h
(
y
))

− F
(
u′, h
(
y′)))

∥∥∥∥
}
.

(4.28)

Thus, by Lemma 2.1, we have

∥∥y − y′ − (g(y) − g(y′))
∥∥q2

≤
∥∥y − y′∥∥q2 − q2〈g

(
y
)
− g
(
y′), Jq2

(
y − y′)〉 + cq2

∥∥g(y) − g(y′)
∥∥q2 .

(4.29)

Since g is (σ, e2)-relaxed cocoercive and ε-Lipschitz continuous, we have

∥∥y − y′ − (g(y) − g(y′))
∥∥q2 ≤ ∥∥y − y′∥∥q2 − q2e2

∥∥y − y′∥∥q2 + (cq2 + q2σ
)
εq2
∥∥y − y′∥∥q2

=
(
1 − q2e2 +

(
cq2 + q2σ

)
εq2
)∥∥y − y′∥∥q2 .

(4.30)

Since F(·, y) is ρ1-Lipschitz continuous in the first variable and S is ξ-Ĥ1-Lipschitz
continuous, by (4.11), we obtain

∥∥F(u, h(y)) − F
(
u′, h
(
y
))∥∥ ≤ ρ1

∥∥u − u′∥∥ ≤ ρ1(1 + ε)Ĥ1
(
S(x), S

(
x′))

≤ ρ1ξ(1 + ε)
∥∥x − x′∥∥.

(4.31)

Since Q(x, ·) is υ2-Lipschitz continuous in the second variable, k is π2-Lipschitz continuous,
Q(·, y) is ρ2-Lipschitz continuous in the first variable, D is �-Ĥ1-Lipschitz continuous, and
K is γ ′-Ĥ2-Lipschitz continuous, using (4.11), we conclude that

∥∥Q(m, k(s)) −Q
(
m′, k(s)

)∥∥ ≤ ρ2
∥∥m −m′∥∥

≤ ρ2(1 + ε)Ĥ1
(
D(x), D

(
x′))

≤ ρ2�(1 + ε)
∥∥x − x′∥∥,

(4.32)

∥∥Q(m′, k(s)
)
−Q
(
m′, k

(
s′
))∥∥ ≤ υ2

∥∥k(s) − k
(
s′
)∥∥

≤ υ2π2
∥∥s − s′

∥∥

≤ υ2π2(1 + ε)Ĥ2
(
K
(
y
)
, K
(
y′))

≤ υ2π2γ
′(1 + ε)

∥∥y − y′∥∥.

(4.33)
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Again, by Lemma 2.1, it follows that

∥∥∥∥A2(g(y)) −A2(g(y′)) −
ρ2
λ2

(F(u′, h(y)) − F(u′, h(y′)))
∥∥∥∥
q2

≤
∥∥A2(g(y)) −A2(g(y′))

∥∥q2

− q2
ρ2
λ2

〈
F
(
u′, h
(
y
))

− F
(
u′, h
(
y′)), Jq2

(
A2
(
g
(
y
))

−A2
(
g
(
y′)))〉

+ cq2
ρ2

q2

λ2
q2

∥∥F(u′, h(y)) − F(u′, h(y′))
∥∥q2 .

(4.34)

Since A2 is β2-Lipschitz continuous and g is ε-Lipschitz continuous, we have

∥∥A2
(
g
(
y
))

−A2
(
g
(
y′))∥∥ ≤ β2

∥∥g(y) − g
(
y′)∥∥ ≤ β2ε

∥∥y − y′∥∥. (4.35)

Since F(u, h(·)) is (θ2, s2)-relaxed cocoercive with respect to g ′ = A2 ◦ g, F(x, ·) is υ1-Lipschitz
continuous in the second variable, and h is π1-Lipschitz continuous, we get

〈
F
(
u′, h
(
y
))

− F
(
u′, h
(
y′)), Jq2

(
A2
(
g
(
y
))

−A2
(
g
(
y′)))〉

≤ −θ2
∥∥F(u′, h(y)) − F(u′, h(y′))

∥∥q2 + s2
∥∥y − y′∥∥q2

≤ −θ2υ1
q2
∥∥h(y) − h(y′)

∥∥q2 + s2
∥∥y − y′∥∥q2

≤ (−θ2υ1
q2π1

q2 + s2)
∥∥y − y′∥∥q2 ,

(4.36)

∥∥F(u′, h
(
y
))

− F
(
u′, h
(
y′))∥∥ ≤ υ1

∥∥h(y) − h
(
y′)∥∥

≤ υ1π1
∥∥y − y′∥∥.

(4.37)

Therefore, it follows from (4.34)–(4.37) that

∥∥∥∥A2(g(y)) −A2(g(y′)) −
ρ2
λ2

(F(u′, h(y)) − F(u′, h(y′)))
∥∥∥∥
q2

≤
(
β2

q2εq2 − q2
ρ2
λ2

(−θ2υ1
q2π1

q2 + s2) +
cq2ρ2

q2υ1
q2π1

q2

λ2
q2

)∥∥y − y′∥∥q2 ,
(4.38)

where cq2 is the constant as in Lemma 2.1. From (4.28)–(4.33), and (4.38), it follows that

∥∥Ψρ2

(
u,m, s, y

)
−Ψρ2

(
u′, m′, s′, y′)∥∥ ≤ ϕ2(ε)

∥∥x − x′∥∥ + φ2(ε)
∥∥y − y′∥∥, (4.39)
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where

ϕ2(ε) =
ρ2τ

q2−1
2

(
ρ1ξ + ρ2�

)
(1 + ε)

λ2
(
r2 − ρ2m2

) ,

φ2(ε) = ϑ +
q2
√
1 − q2e2 +

(
cq2 + q2σ

)
εq2 +

ρ2τ
q2−1
2

(
υ2π2γ

′(1 + ε) + ψ2
)

λ2
(
r2 − ρ2m2

) ,

ψ2 =
q2
√
β2

q2εq2 − q2
ρ2
λ2

(−θ2υ1
q2π1

q2 + s2) +
cq2ρ2

q2υ1
q2π1

q2

λ2
q2

.

(4.40)

It follows from (4.26) and (4.39) that

∥∥Φρ1(x, z, v, t,w) −Φρ1

(
x′, z′, v′, t′, w′)∥∥ + ∥∥Ψρ2

(
u,m, s, y

)
−Ψρ2

(
u′, m′, s′, y′)∥∥

≤ ω(ε)
(∥∥x − x′∥∥ + ∥∥y − y′∥∥),

(4.41)

where ω(ε) = max{ϕ1(ε) + ϕ2(ε), φ1(ε) + φ2(ε)}. Using (4.8) and (4.41), we deduce that

∥∥Qρ1,ρ2(x, y, z, u, v,m, s, t,w) −Qρ1,ρ2(x
′, y′, z′, u′, v′, m′, s′, t′, w′)

∥∥
∗

≤ ω(ε)
∥∥(x, y) − (x′, y′)

∥∥
∗,

(4.42)

that is,

sup
Qρ1 ,ρ2 (x,y,z,u,v,m,s,t,w)∈Rρ1 ,ρ2 (x,y)

d
(
Qρ1,ρ2

(
x, y, z, u, v,m, s, t,w

)
,Rρ1,ρ2

(
x′, y′))

≤ ω(ε)
∥∥(x, y) − (x′, y′)

∥∥
∗.

(4.43)

Similarly, we have

sup
Qρ1 ,ρ2 (x

′,y′,z′,u′,v′,m′,s′,t′,w′)∈Rρ1 ,ρ2 (x
′,y′)

d
(
Qρ1,ρ2

(
x′, y′, z′, u′, v′, m′, s′, t′, w′),Rρ1,ρ2

(
x, y
))

≤ ω(ε)
∥∥(x, y) − (x′, y′)

∥∥
∗.

(4.44)

By (4.43), (4.44), and the definition of Hausdorff pseudo-metric, we have

Ĥ
(
Rρ1,ρ2

(
x, y
)
,Rρ1,ρ2

(
x′, y′)) ≤ ω(ε)

∥∥(x, y) − (x′, y′)
∥∥
∗, ∀

(
x, y
)
,
(
x′, y′) ∈ X1 ×X2. (4.45)

Letting ε → 0, one has

Ĥ
(
Rρ1,ρ2

(
x, y
)
,Rρ1,ρ2

(
x′, y′)) ≤ ω

∥∥(x, y) − (x′, y′)
∥∥
∗, ∀

(
x, y
)
,
(
x′, y′) ∈ X1 ×X2, (4.46)
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where

ω = max
{
ϕ1 + ϕ2, φ1 + φ2

}
, (4.47)

ϕ1 = ς + ζ +
q1
√
1 − q1e1 +

(
cq1 + q1κ

)
μq1 +

ρ1τ
q1−1
1

(
ν2δ2γ + ψ1

)

λ1
(
r1 − ρ1m1

) ,

ψ1 =
q1
√
β1

q1
(
μ + ζ

)q1 − q1
ρ1
λ1

(
−θ1ν1q1δ1q1 + s1

)
+
cq1ρ1

q1ν1
q1δ1

q1

λ1
q1

,

φ2 = ϑ +
q2
√
1 − q2e2 +

(
cq2 + q2σ

)
εq2 +

ρ2τ
q2−1
2

(
υ2π2γ

′ + ψ2
)

λ2
(
r2 − ρ2m2

) ,

ϕ2 =
ρ2τ

q2−1
2

(
ρ1ξ + ρ2�

)

λ2
(
r2 − ρ2m2

) ,

φ1 =
ρ1τ

q1−1
1 (ι1ξ′ + ι2ζ

′)

λ1
(
r1 − ρ1m1

)

(4.48)

and ψ2 is the constant as in (4.40). From (4.4), we know that 0 ≤ ω < 1 and so it follows
from (4.46) that Rρ1,ρ2 : X1 × X2 → X1 × X2 is a contractive mapping. Hence Lemma 2.3
implies that Rρ1,ρ2 has a fixed point in X1 × X2; that is, there exists a point (x∗, y∗) ∈ X1 ×
X2 such that (x∗, y∗) ∈ Rρ1,ρ2(x

∗, y∗). Now, it follows from (4.6), (4.8), and Lemma 4.1 that
(x∗, y∗, z∗, u∗, v∗, m∗, n∗, t∗, w∗) is a solution of System 3.1 and this is the desired result. This
completes the proof.

By using Theorem 4.2, we can derive the following.

Theorem 4.3. Let Xi, Ai, ηi (i = 1, 2), S, T, L, D, G, W, K, S, T , L, D, G, W , K, M, N, E, P ,
F, Q, p, l, h, k, f ′, and g ′ be the same as in Theorem 4.2. Assume that f : X1 → X1 is κ-strongly
accretive μ-Lipschitz continuous and g : X2 → X2 is σ-strongly accretive ε-Lipschitz continuous.

Further, if there exist constants ρ1 ∈ (0, r1/m1) and ρ2 ∈ (0, r2/m2) such that (4.2) and (4.3)
hold and

ς + ζ +
q1
√
1 − q1κ + cq1μ

q1 < 1,

ϑ +
q2
√
1 − q2σ + cq2ε

q2 < 1,

q1
√
β1

q1
(
μ + ζ

)q1 − q1
ρ1
λ1

(
−θ1ν1q1δ1q1 + s1

)
+
cq1ρ1

q1ν1
q1δ1

q1

λ1
q1

<
τ
1−q1
1 λ1

ρ1

(
r1 − ρ1m1

)
χ1 − ν2δ2γ,

q2
√
β2

q2εq2 − q2
ρ2
λ2

(−θ2υ1
q2π1

q2 + s2) +
cq2ρ2

q2υ1
q2π1

q2

λ2
q2

<
τ
1−q2
2 λ2

ρ2

(
r2 − ρ2m2

)
χ2 − υ2π2γ

′,

(4.49)
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where

χ1 = 1 −
(
ς + ζ +

q1
√
1 − q1κ + cq1μ

q1
)
−
ρ2τ

q2−1
2

(
ρ1ξ + ρ2�

)

λ2
(
r2 − ρ2m2

) ,

χ2 = 1 −
(
ϑ +

q2
√
1 − q2σ + cq2ε

q2
)
−
ρ1τ

q1−1
1 (ι1ξ′ + ι2ζ

′)

λ1
(
r1 − ρ1m1

) ,

(4.50)

λ1, λ2 are the same as in System 3.1, and cq1 , cq2 are two constants guaranteed by Lemma 2.1, then
System 3.1 admits a solution.

Theorem 4.4. Let Xi, Ai, ηi (i = 1, 2), p, l, h, k, f , g, F, Q, M, N, and P be the same as in
Theorem 4.2. Assume that T : X1 → X1 is ζ-Lipschitz continuous, and S, L,D : X1 → CB(X1)
and G,W,K : X2 → CB(X2) are ξ-Ĥ1-Lipschitz continuous, γ-Ĥ1-Lipschitz continuous, �-Ĥ1-
Lipschitz continuous, ξ′-Ĥ2-Lipschitz continuous, ζ′-Ĥ2-Lipschitz continuous, and γ ′-Ĥ2-Lipschitz
continuous, respectively. Suppose that E : X1 × X2 → X1 is a single-valued mapping such that
E(·, y) is ν1-Lipschitz continuous in the first variable and E(x, ·) is ι1-Lipschitz continuous in the
second variable for all (x, y) ∈ X1 × X2, and E(p(·), y) is a (θ1, s1)-relaxed cocercive mapping with
respect to f ′ = A1 ◦ (f −T) defined by f ′(x) = A1 ◦ (f(x)−T(x)) = A1(f(x)−T(x)) for all x ∈ X1.
If there exist constants ρ1 ∈ (0, r1/m1) and ρ2 ∈ (0, r2/m2) such that conditions (4.2)–(4.4) hold,
then System 3.4 has a solution (x∗, y∗, z∗, u∗, m∗, s∗, t∗, w∗).

Theorem 4.5. Let Xi, Ai, ηi (i = 1, 2), p, l, h, k, E, F, P , Q, M, N, S, T , L, D, G, W , and K
be the same as in Theorem 4.4. Suppose that f : X1 → X1 is κ-strongly accretive and μ-Lipschitz
continuous and g : X2 → X2 is σ-strongly accretive and ε-Lipschitz continuous. If there exist
constants ρ1 ∈ (0, r1/m1) and ρ2 ∈ (0, r2/m2) such that conditions (4.2), (4.3), and (4.49) hold,
then System 3.3 has a solution (x∗, y∗, z∗, u∗, m∗, s∗, t∗, w∗).

5. Iterative Algorithm and Convergence

In this section, motivated by Theorems 4.2 and 4.4, Lemmas 4.1 and 2.4, we construct the
following iterative algorithms for approximating solutions of Systems 3.1 and 3.3 and discuss
the convergence analysis of the algorithms.

Algorithm 5.1. Let Xi, Ai, ηi, λi (i = 1, 2), E, P , F, Q, p, l, h, k, f , g, M, N, S, T, L, D, G,
W, K, S, T , L, D, G, W , K, a and b be the same as in System 3.1. For any given (x0, y0) ∈
X1 × X2, ã, b̃, c̃, d̃ : X1 → [0, 1] and ẽ, f̃ , g̃ : X2 → [0, 1] for all n ≥ 0 and an element
(x, y, z, u, v,m, s, t,w) ∈ X1 × X2 × X1 × X1 × X1 × X1 × X2 × X2 × X2, define the iterative
sequence {(xn, yn, zn, un, vn,mn, sn, tn,wn)}∞n=0 by

xn+1 = (1 − αn)xn + αn

(
xn − f(xn) + vn + R

η1,A1

M(·,xn),ρ1
(Θn)

)
+ αnen + rn,

yn+1 = (1 − αn)yn + αn

(
yn − g

(
yn

)
+ R

η2,A2

N(·,yn),ρ2
(Ωn)

)
+ αnfn + kn,

Sxn(un) ≥ ã(xn), ‖un − u‖ ≤
(
1 +

1
1 + n

)
Ĥ1(S(xn), S(x)),
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Txn(vn) ≥ b̃(xn), ‖vn − v‖ ≤
(
1 +

1
1 + n

)
Ĥ1(T(xn), T(x)),

Lxn(zn) ≥ c̃(xn), ‖zn − z‖ ≤
(
1 +

1
1 + n

)
Ĥ1(L(xn), L(x)),

Dxn(mn) ≥ d̃(xn), ‖mn −m‖ ≤
(
1 +

1
1 + n

)
Ĥ1(D(xn), D(x)),

Gyn(wn) ≥ ẽ
(
yn

)
, ‖wn −w‖ ≤

(
1 +

1
1 + n

)
Ĥ2
(
G
(
yn

)
, G
(
y
))
,

Wyn(tn) ≥ f̃
(
yn

)
, ‖tn − t‖ ≤

(
1 +

1
1 + n

)
Ĥ2
(
W
(
yn

)
,W
(
y
))
,

Kyn(sn) ≥ g̃
(
yn

)
, ‖sn − s‖ ≤

(
1 +

1
1 + n

)
Ĥ2
(
K
(
yn

)
, K
(
y
))
,

(5.1)

where

Θn = A1
(
f(xn) − vn

)
−
ρ1
λ1

(
E
(
p(xn), wn

)
+ P(l(zn), tn) − a

)
,

Ωn = A2
(
g
(
yn

))
−
ρ2
λ2

(
F
(
un, h

(
yn

))
+Q(mn, k(sn)) − b

)
,

(5.2)

ρ1 and ρ2 are constants, {αn} is a sequence in [0, 1] with
∑∞

n=0 αn = ∞, and {(en, fn)}∞n=0 and
{(rn, kn)}∞n=0 are two sequences in X1 ×X2 to take into account a possible inexact computation
of the resolvent operator point satisfying the following conditions:

en = e′n + e′′n, fn = f ′
n + f ′′

n,

lim
n→∞

∥∥(e′n, f ′
n)
∥∥
∗ = 0,

∞∑
n=0

∥∥(e′′n, f ′′
n

)∥∥
∗ < ∞,

∞∑
n=0

‖(rn, kn)‖∗ < ∞.

(5.3)

Algorithm 5.2. Assume that Xi, Ai, ηi, λi (i = 1, 2), E, P , F, Q, p, l, h, k, f , g, M, N, S, T , L, D,
G, W , K, a and b are the same as in System 3.4. For any given (x0, y0) ∈ X1 × X2, n ≥ 0 and
an element (x, y, z, u,m, s, t,w) ∈ X1 × X2 × X1 × X1 × X1 × X2 × X2 × X2, define the iterative
sequence {(xn, yn, zn, un,mn, sn, tn,wn)}∞n=0 by

xn+1 = (1 − αn)xn + αn

(
xn − f(xn) + T(xn) + R

η1,A1

M(·,xn),ρ1

(
Θ′

n

))
+ αnen + rn,

yn+1 = (1 − αn)yn + αn

(
yn − g

(
yn

)
+ R

η2,A2

N(·,yn),ρ2
(Ωn)

)
+ αnfn + kn,

un ∈ S(xn), ‖un − u‖ ≤
(
1 +

1
1 + n

)
Ĥ1(S(xn), S(x)),
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zn ∈ L(xn), ‖zn − z‖ ≤
(
1 +

1
1 + n

)
Ĥ1(L(xn), L(x)),

mn ∈ D(xn), ‖mn −m‖ ≤
(
1 +

1
1 + n

)
Ĥ1(D(xn), D(x)),

wn ∈ G
(
yn

)
, ‖wn −w‖ ≤

(
1 +

1
1 + n

)
Ĥ2
(
G
(
yn

)
, G
(
y
))
,

tn ∈ W
(
yn

)
, ‖tn − t‖ ≤

(
1 +

1
1 + n

)
Ĥ2
(
W
(
yn
)
,W
(
y
))
,

sn ∈ K
(
yn

)
, ‖sn − s‖ ≤

(
1 +

1
1 + n

)
Ĥ2
(
K
(
yn

)
, K
(
y
))
,

(5.4)

where Θ′
n = A1(f(xn) − T(xn)) − (ρ1/λ1)(E(p(xn), wn) + P(l(zn), tn) − a), Ωn, ρ1, ρ2, {αn},

{(en, fn)}∞n=0 and {(rn, kn)}∞n=0 are the same as in Algorithm 5.1.

Remark 5.3. If en = fn = 0 for all n ≥ 0, L = D = W = K ≡ 0, P = Q ≡ 0, a = b = 0,
and λ1 = λ2 = 1, then Algorithms 5.1 and 5.2 reduce to Algorithms 4.1 and 4.2 of [38]. In
particular, when we choose suitable αn, en, fn, rn, kn,Ai, ηi (i = 1, 2), E, P , F,Q, p, l, h, k, f , g,
M,N,S,T,L,D,G,W,K, S, T , L,D,G,W ,K, and the spacesX1,X2, then Algorithms 5.1 and
5.2 can be degenerated to a number of algorithms involving many known algorithms due to
classes of variational inequalities and variational inclusions (see, e.g., [38, 55, 56, 58–60] and
the references therein).

Lemma 5.4. Let {an}, {bn}, and {cn} be three nonnegative real sequences satisfying the following
condition: there exists a natural number n0 such that

an+1 ≤ (1 − tn)an + bntn + cn, ∀n ≥ n0, (5.5)

where tn ∈ [0, 1],
∑∞

n=0 tn = ∞, limn→∞bn = 0,
∑∞

n=0 cn < ∞. Then limn→ 0an = 0.

Proof. The proof directly follows from Liu [64, Lemma 2].

Theorem 5.5. Let Xi, Ai, ηi (i = 1, 2), E, P , F, Q, p, l, h, k, f , g, M, N, S, T, L, D, G, W, K, S,
T , L, D, G, W , and K be the same as in Theorem 4.2. Suppose that all the conditions of Theorem 4.2
hold. Then the iterative sequence {(xn, yn, zn, un, vn,mn, sn, tn,wn)}∞n=0 generated by Algorithm 5.1
converges strongly to a solution (x∗, y∗, z∗, u∗, v∗, m∗, s∗, t∗, w∗) of System 3.1.

Proof. It follows from Theorem 4.2 that System 3.1 has a solution
(x∗, y∗, z∗, u∗, v∗, m∗, s∗, t∗, w∗). Hence, by Lemma 4.1, we have

f(x∗) = v∗ + R
η1,A1

M(·,x∗),ρ1

[
A1
(
f(x∗) − v∗) − ρ1

λ1

(
E
(
p(x∗), w∗) + P(l(z∗), t∗) − a

)]
,

g
(
y∗) = R

η2,A2

M(·,y∗),ρ2

[
A2
(
g
(
y∗)) − ρ2

λ2

(
F
(
u∗, h

(
y∗)) +Q(m∗, k(s∗)) − b

)]
.

(5.6)
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Using (5.1), (5.6), and our assumptions, it follows that

‖xn+1 − x∗‖ ≤ (1 − αn)‖xn − x∗‖ + αn

×
(∥∥xn − x∗ −

(
f(xn) − f(x∗)

)∥∥ + ‖vn − v∗‖

+
∥∥∥∥R

η1,A1

M(·,xn),ρ1

[
A1
(
f(xn) − vn

)
−
ρ1
λ1

(
E
(
p(xn), wn

)
+ P(l(zn), tn) − a

)]

−Rη1,A1

M(·,x∗),ρ1

[
A1
(
f(x∗) − v∗) − ρ1

λ1

(
E
(
p(x∗), w∗) + P(l(z∗), t∗) − a

)]∥∥∥∥
)

+ αn‖en‖ + ‖rn‖

≤ (1 − αn)‖xn − x∗‖ + αn

×
(∥∥xn − x∗ −

(
f(xn) − f(x∗)

)∥∥ + ‖vn − v∗‖

+
∥∥∥∥R

η1,A1

M(·,xn),ρ1

[
A1
(
f(xn) − vn

)
−
ρ1
λ1

(
E
(
p(xn), wn

)
+ P(l(zn), tn) − a

)]

−Rη1,A1

M(·,xn),ρ1

[
A1
(
f(x∗) − v∗) − ρ1

λ1

(
E
(
p(x∗), w∗) + P(l(z∗), t∗) − a

)]∥∥∥∥

+
∥∥∥∥R

η1,A1

M(·,xn),ρ1

[
A1
(
f(x∗) − v∗) − ρ1

λ1

(
E
(
p(x∗), w∗) + P(l(z∗), t∗) − a

)]

−Rη1,A1

M(·,x∗),ρ1

[
A1
(
f(x∗) − v∗) − ρ1

λ1

(
E
(
p(x∗), w∗) + P(l(z∗), t∗) − a

)]∥∥∥∥
)

+ αn

(∥∥e′n
∥∥ + ∥∥e′′n

∥∥) + ‖rn‖

≤ (1 − αn)‖xn − x∗‖ + αn

×

⎧
⎨
⎩
∥∥xn − x∗ −

(
f(xn) − f(x∗)

)∥∥ + ‖vn − v∗‖ + ς‖xn − x∗‖ +
τ
q1−1
1

r1 − ρ1m1

×
(
ρ1
λ1

(∥∥E(p(xn), wn

)
− E
(
p(xn), w∗)∥∥ + ‖P(l(zn), tn) − P(l(zn), t∗)‖

+‖P(l(zn), t∗) − P(l(z∗), t∗)‖)

+
∥∥∥∥A1
(
f(xn) − vn

)
−A1

(
f(x∗) − v∗) − ρ1

λ1

(
E
(
p(xn), w∗) − E

(
p(x∗), w∗))

∥∥∥∥
)⎫⎬
⎭

+ αn

∥∥e′n
∥∥ + ∥∥e′′n

∥∥ + ‖rn‖

≤ (1 − αn)‖xn − x∗‖ + αn

(
ϕ1(n)‖xn − x∗‖ + φ1(n)

∥∥yn − y∗∥∥) + αn

∥∥e′n
∥∥ + ∥∥e′′n

∥∥ + ‖rn‖,
(5.7)
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where

ϕ1(n) = ς + ζ

(
1 +

1
1 + n

)

+
q1
√
1 − q1e1 +

(
cq1 + q1κ

)
μq1 +

ρ1τ
q1−1
1

(
ν2δ2γ(1 + 1/(1 + n)) + ψ1(n)

)

λ1
(
r1 − ρ1m1

) ,

ψ1(n) =
q1

√√√√β
q1
1

(
μ + ζ

(
1 +

1
1 + n

))q1

− q1
ρ1
λ1

(
−θ1ν

q1
1 δ

q1
1 + s1

)
+
cq1ρ

q1
1 ν

q1
1 δ

q1
1

λ
q1
1

,

φ1(n) =
ρ1τ

q1−1
1 (ι1ξ′ + ι2ζ

′)(1 + 1/(1 + n))

λ1
(
r1 − ρ1m1

) .

(5.8)

Similarly, we have

∥∥yn+1 − y∗∥∥ ≤ (1 − αn)
∥∥yn − y∗∥∥ + αn

×
(∥∥yn − y∗ −

(
g
(
yn

)
− g
(
y∗))∥∥

+
∥∥∥∥R

η2,A2

N(·,yn),ρ2

[
A2
(
g
(
yn

))
−
ρ2
λ2

(
F
(
un, h

(
yn

))
+Q(mn, k(sn)) − b

)]

−Rη2,A2

N(·,y∗),ρ2

[
A2
(
g
(
y∗)) − ρ2

λ2

(
F
(
u∗, h

(
y∗)) +Q(m∗, k(s∗)) − b

)]∥∥∥∥
)

+ αn

∥∥fn
∥∥ + ‖kn‖

≤ (1 − αn)
∥∥yn − y∗∥∥ + αn

×
(∥∥yn − y∗ −

(
g
(
yn

)
− g
(
y∗))∥∥

+
∥∥∥∥R

η2,A2

N(·,yn),ρ2

[
A2
(
g
(
yn

))
−
ρ2
λ2

(
F
(
un, h

(
yn

))
+Q(mn, k(sn)) − b

)]

−Rη2,A2

N(·,yn),ρ2

[
A2
(
g
(
y∗)) − ρ2

λ2

(
F
(
u∗, h

(
y∗)) +Q(m∗, k(s∗)) − b

)]∥∥∥∥

+
∥∥∥∥R

η2,A2

N(·,y∗),ρ2

[
A2
(
g
(
y∗)) − ρ2

λ2

(
F
(
u∗, h

(
y∗)) +Q(m∗, k(s∗)) − b

)]

−Rη2,A2

N(·,y∗),ρ2

[
A2
(
g
(
y∗)) − ρ2

λ2

(
F
(
u∗, h

(
y∗)) +Q(m∗, k(s∗)) − b

)]∥∥∥∥
)

+ αn

(∥∥f ′
n

∥∥ + ∥∥f ′′
n

∥∥) + ‖kn‖
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≤ (1 − αn)
∥∥yn − y∗∥∥ + αn

×

⎧
⎨
⎩
∥∥yn − y∗ −

(
g
(
yn

)
− g
(
y∗))∥∥ + ϑ

∥∥yn − y∗∥∥ + τ
q2−1
2

r2 − ρ2m2

×
(
ρ2
λ2

(∥∥F(un, h
(
yn

))
− F
(
u∗, h

(
yn

))∥∥ + ‖Q(mn, k(sn)) −Q(m∗, k(sn))‖

+‖Q(m∗, k(sn)) −Q(m∗, k(s∗))‖)

+
∥∥∥∥A2
(
g
(
yn

))
−A2

(
g
(
y∗)) − ρ2

λ2

(
F
(
u∗, h

(
yn

))
− F
(
u∗, h

(
y∗)))

∥∥∥∥
)}

+ αn

∥∥f ′
n

∥∥ + ∥∥f ′′
n

∥∥ + ‖kn‖

≤ (1 − αn)
∥∥yn − y∗∥∥ + αn

(
ϕ2(n)‖xn − x∗‖ + φ2(n)

∥∥yn − y∗∥∥)

+ αn

∥∥f ′
n

∥∥ + ∥∥f ′′
n

∥∥ + ‖kn‖,
(5.9)

where

φ2(n) = ϑ +
q2
√
1 − q2e2 +

(
cq2 + q2σ

)
εq2 +

ρ2τ
q2−1
2

(
υ2π2γ

′(1 + 1/(1 + n)) + ψ2
)

λ2
(
r2 − ρ2m2

) ,

ϕ2(n) =
ρ2τ

q2−1
2

(
ρ1ξ + ρ2�

)
(1 + 1/(1 + n))

λ2
(
r2 − ρ2m2

) ,

(5.10)

and ψ2 is the same as (4.40). By (5.7) and (5.9), we obtain

∥∥(xn+1, yn+1) − (x∗, y∗)
∥∥
∗ = ‖xn+1 − x∗‖ +

∥∥yn+1 − y∗∥∥ ≤ (1 − αn)
∥∥(xn, yn) − (x∗, y∗)

∥∥
∗

+ αn max
{
ϕ1(n) + ϕ2(n), φ1(n) + φ2(n)

}∥∥(xn, yn) − (x∗, y∗)
∥∥
∗

+ αn

∥∥(e′n, f ′
n)
∥∥
∗ +
∥∥(e′′n, f ′′

n

)∥∥
∗ + ‖(rn, kn)‖∗

= (1 − (1 −ω(n))αn)
∥∥(xn, yn

)
−
(
x∗, y∗)∥∥

∗

+ αn

∥∥(e′n, f ′
n)
∥∥
∗ +
∥∥(e′′n, f ′′

n

)∥∥
∗ + ‖(rn, kn)‖∗,

(5.11)

where

ω(n) = max
{
ϕ1(n) + ϕ2(n), φ1(n) + φ2(n)

}
. (5.12)

Now, ω(n) → ω = max{ϕ1 + ϕ2, φ1 + φ2} as n → ∞, where ϕ1, ϕ2, φ1, and φ2 are the
constants as in (4.48).
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Since ω̂ = (1/2) (ω+ 1) ∈ (ω, 1), deduce that there exists n0 ≥ 1 such that ω(n) < ω̂, for
all n ≥ n0. Accordingly, it follows from (5.11) that for all n ≥ n0,

∥∥(xn+1, yn+1) − (x∗, y∗)
∥∥
∗ ≤ (1 − (1 − ω̂)αn)

∥∥(xn, yn) − (x∗, y∗)
∥∥
∗ + αn

∥∥(e′n, f ′
n)
∥∥
∗

+
∥∥(e′′n, f ′′

n

)∥∥
∗ + ‖(rn, kn)‖∗.

(5.13)

Letting

an =
∥∥(xn+1, yn+1) − (x∗, y∗)

∥∥
∗, tn = (1 − ω̂)αn,

bn =

∥∥(e′n, f ′
n

)∥∥
∗

1 − ω̂
, cn =

∥∥(e′′n, f ′′
n

)∥∥
∗ + ‖(rn, kn)‖∗,

(5.14)

then (5.13) can be written as

an+1 ≤ (1 − tn)an + bntn + cn, ∀n ≥ 0. (5.15)

Therefore, it follows from Lemma 5.4 that limn→∞an = 0 and so the sequence
{(xn, yn, zn, un, vn,mn, sn, tn,wn)}∞n=0 defined by Algorithm 5.1 converges strongly to a
solution (x∗, y∗, z∗, u∗, v∗, m∗, s∗, t∗, w∗) of System 3.1.

Theorem 5.6. Suppose that Xi, Ai, ηi (i = 1, 2), E, P , F, Q, p, l, h, k, f , g, M, N, S, T, L, D,
G, W, K, S, T , L, D, G, W , and K are the same as in Theorem 4.3. Assume that all the conditions
of Theorem 4.3 hold. Then the iterative sequence {(xn, yn, zn, un, vn,mn, sn, tn,wn)}∞n=0 generated by
Algorithm 5.1 converges strongly to the solution (x∗, y∗, z∗, u∗, v∗, m∗, s∗, t∗, w∗) of System 3.1.

Theorem 5.7. Assume thatXi,Ai, ηi (i = 1, 2), E, P , F,Q, p, l, h, k, f , g,M,N, S, T , L,D,G,W ,
and K are the same as in Theorem 4.4. Suppose that all the conditions of Theorem 4.4 hold. Then the
iterative sequence {(xn, yn, zn, un,mn, sn, tn,wn)}∞n=0 generated by Algorithm 5.2 converges strongly
to a solution (x∗, y∗, z∗, u∗, m∗, s∗, t∗, w∗) of System 3.3.

Theorem 5.8. Let Xi, Ai, ηi (i = 1, 2), E, P , F, Q, p, l, h, k, f , g, M, N, S, T , L, D, G, W ,
and K be the same as in Theorem 4.5. Suppose that all the conditions of Theorem 4.5 hold. Then the
iterative sequence {(xn, yn, zn, un,mn, sn, tn,wn)}∞n=0 generated by Algorithm 5.2 converges strongly
to a solution (x∗, y∗, z∗, u∗, m∗, s∗, t∗, w∗) of System 3.3.

Remark 5.9. The following should be noticed.

(1) Theorem 3.1 in [54] is a special case of the Theorems 4.2 and 4.3. Moreover,
Theorems 4.4 and 4.5 improve and extend Theorem 3.2 [54].

(2) In view of Remark 5.3, Theorems 5.5 and 5.6 improve and generalize Theorem 4.1
in [54]. Also, Theorems 5.7 and 5.8 are extensions of Theorem 4.2 in [54].

Remark 5.10. When M and N are (A, η)-monotone operators, A-accretive mappings, A-
monotone operators, (H,η)-accretive mappings, (H,η)-monotone operators, orH-monotone
operators, respectively, from Theorems 4.2–4.5 and 5.5–5.8, we can obtain the existence
and convergence results of solutions for Systems 3.1 and 3.4. In brief, for a suitable and
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appropriate choice of the mappings Ai, ηi (i = 1, 2), E, P , F, Q, p, l, h, k, f , g, M, N, S,
T, L, D, G, W, K, S, T , L, D, G, W , K, and the spaces X1, X2, Theorems 4.2–4.5 and 5.5–5.8
include many known results of the generalized variational inclusions as special cases (see
[29–35, 38, 39, 55–60] and the references therein).
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