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Heteroepitaxial self-assembled quantum dots (SAQDs) will allow breakthroughs
in electronics and optoelectronics. SAQDs are a result of Stranski–Krastanow
growth, whereby a growing planar film becomes unstable after an initial wetting
layer is formed. Common systems are GexSi1�x=Si and InxGa1�xAs/GaAs: For
applications, SAQD arrays need to be ordered. The roles of crystal anisotropy,
random initial conditions and thermal fluctuations in influencing SAQD order
during early stages of SAQD formation are studied through a simple stochastic
model of surface diffusion. Surface diffusion is analyzed through a linear and
perturbatively non-linear analysis. The role of crystal anisotropy in enhancing
SAQD order is elucidated. It is also found that SAQD order is enhanced when the
deposited film is allowed to evolve at heights near the critical wetting surface
height that marks the onset of non-planar film growth.
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INTRODUCTION

Heteroepitaxial self-assembled quantum dots (SA-
QDs) represent an important step in the advancement
of semiconductor fabrication at the nanoscale that will
allow breakthroughs in optoelectronics and electron-
ics.1–14 SAQDs are the result of a transition from 2D
growth to 3D growth in strained epitaxial films such as
SixGe1�x=Si and InxGa1�xAs/GaAs: This process is
known as Stranski–Krastanow growth or Volmer–
Webber growth.3,15–17 In applications, order of SAQDs
is a key factor. There are two types of order, spatial and
size. Spatial order refers to the regularity of SAQD dot
placement, and it is necessary for nano-circuitry
applications. Spatial order might also play a role in the
optical spectra of coupled quantum dots that are dis-
cussed in Refs. 1 and 2. Size order refers to the unifor-
mity of SAQD size which determines the voltage and/or
energy level quantization of SAQDs. It is reasonable to
expect that these type of order are linked, and it is
important to understand the factors that determine
SAQD order. Further understanding should help in the
design and simulation of both spontaneous ‘‘bottom up’’
self-assembly and directed or guided self-assembly to

enhance SAQD order.18–25 Order prediction inherently
involves the modeling of stochastic processes. Recently,
SAQD order has been modeled using a deterministic
model with stochastic initial conditions in the linear
approximation.26,27 This model was based on previous
nucleationless models of SAQD formation.28–31 Here,
this method of modeling SAQD order is improved by
incorporating stochastic thermal fluctuations in the
surface diffusion. Thus, the previously deterministic
governing equations become stochastic. The final order
predictions are qualitatively the same as for the previ-
ous linear model, but they are quantitatively different.
Additionally, preliminary non-linear modeling results
are presented. One non-linear model approximates a
1D surface, but incorporates the stochastic thermal
fluctuations. The second non-linear model is of a 2D
surface, but it is only implemented as a deterministic
model at present.

In the previous work using a linear deterministic
model with stochastic initial conditions,26,27 it was
found that peaks in the linear dispersion relation
can be used to predict and explain order. It was also
found that only anisotropic models give rise to dis-
persion relations with discrete peaks, thus explain-
ing why elastic anisotropy contributes to SAQD
order as previously reported.30,32–34 The dispersion
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relation was then used to generate a spectrum
function in the linear approximation, and the spec-
trum function in turn could be used to define and
predict two correlation lengths that grow as the
square root of time. These correlation lengths were
identified as the key quantities describing SAQD
order. Using equations for these correlation lengths,
we found that growth of SAQDs with an average film
height near the critical 2D–3D transition height
might enhance order, although practical limitation
of producing ordered arrays of SAQDs were also
noted. Although the incorporation of a wetting po-
tential is possibly controversial, it appears to pro-
duce the correct phenomenology, and it may possibly
be a mathematical surrogate for more complicated
processes such as stabilization by intermixing.35 See
Refs. 27–31 and 36 for further discussion. In Ref. 27,
it was also shown that the modeling/order prediction
method could easily be applied to a large class of
models, but the simplest model that produced
Stranski–Krastanow growth was used as an exam-
ple. Additionally, various mathematical issues such
as convergence and precise definitions of the corre-
lation functions as either spatial averages or
ensemble averages was treated. Readers interested
in these more technical details are referred to Ref. 27.

The new result presented here is mainly the
mentioned incorporation of thermal fluctuation to
seed quantum dot formation, as opposed to the
somewhat artificial assumption of a random
roughness initial condition that is chosen more or
less arbitrarily. One product of the present work is a
formula to choose this initial roughness to give a
nearly equivalent disordering effect as thermal
fluctuations; however, a deterministic model will
never be a true substitute for a stochastic one. The
outcomes of the stochastic model are qualitatively
similar to the previous deterministic model, but
quantitatively distinct. In addition to the stochastic
linear model of SAQD order, preliminary results of
non-linear models are presented. These models ap-
pear to corroborate the linear model predictions but
also give a more complete picture of the time evo-
lution of SAQD order. The current model predicts
that order will be fairly poor under most growth
conditions. This seems to be in agreement with most
experiments, for example Refs. 16 and 37–40. The
basic phenomenology appears to be more or less in
agreement with observations; however, more
quantitative reporting of experimentally observed
order would facilitate future comparisons.

The rest of this article is organized as follows.
Section �Physical Model� presents the stochastic
governing equations and physical causes of SAQD
formation. Section �Linear Stochastic Model� pre-
sents the linearization of the model presented in
Section �Physical Model� along with the extraction of
order predictions and application to growth near the
critical film height using parameters appropriate to
Ge/Si SAQDs. Section �Perturbatively Non-Linear-
models� presents preliminary non-linear modeling

results. Section �Conclusions� presents the conclu-
sion. Finally, Appendix A presents the derivation of
the time evolution equation of the spectrum function.

PHYSICAL MODEL

The formation and growth of SAQDs is modeled in
a fashion similar to Refs. 20,28–30 and 41. The film
surface is described by the film height as a function of
the lateral position,HðxÞ: The film height evolves via
surface diffusion that is driven by a diffusion poten-
tial, lðxÞ: The film surface grows with a velocity
normal to its surface that is given by

mnðxÞ ¼nzðxÞ
@HðxÞ
@t

¼rS � DrSlðxÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2XDkbT
p

gðx; tÞ
h i

� � �

� � � þ nzðxÞQ;

(1)

where D is the surface diffusivity; nzðxÞ is the
z-component of the surface normal vector, n̂ðxÞ;rS is
the surface gradient;rS� is the surface divergence; Q
is the flux of new material onto the surface; and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2XDkbT
p

gðx; tÞ is the fluctuation of the surface dif-
fusion. Note that the surface diffusivity is assumed
to be a scalar; thus, it is isotropic. A limited discus-
sion of diffusional anisotropy appears in Ref. 27, and
full development is in progress. The surface diffusion
fluctuation is chosen to give a steady state that is
consistent with the Gibbs distribution for a qua-
dratic potential.42 In Ref. 42, there is a slope-
dependent intensity factor, but here that factor is
neglected for simplicity and because it has no effect
to linear order. gðx; tÞ is a time fluctuating white
noise (or the derivative of a Brownian process)43,44 so
that it has zero mean gðx; tÞh i ¼ 0; where . . .h i de-
notes the ensemble average, and it has a sharply
peaked correlation function, gðx; tÞgðx0; t0Þh i ¼
~Id2ðx� x0Þdðt� t0Þ :~I is the rank 2 identity matrix,
and d(x) is the Dirac Delta function. Eq. 1 is inter-
preted as an Îto stochastic differential equation.*

The diffusion potential is derived from the total
free energy. The details of the derivation are covered
in Ref. 27, and only the most important points are
reviewed here. The total free energy is assumed to
have two parts, elastic energy and a term that is a
combined surface energy and substrate wetting en-
ergy F ¼ F elast: þ F sw: The second part F sw is an
integral over the horizontal coordinate x of an areal
energy density,

F sw ¼
Z

x�plane

d2xFsw HðxÞ;rHðxÞð Þ:

The areal energy density, Fsw, is in turn a func-
tion of the film height, HðxÞ; and the film height
gradient, rHðxÞ: From this total free energy, one

*Because the noise term is additive and not multiplicative, it does
not matter whether Eq. 1 is interpreted as an Îto stochastic
equation or Stratonovich stochastic equation.43,44
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can find the diffusion potential lðxÞ by taking the
variational derivative with respect to film height
and multiplying by the atomic volume, X,

lðxÞ ¼ X xðxÞ þ Fð10Þ
sw ðxÞ � r � F

ð01Þ
sw ðxÞ

h i

: (2)

xðxÞ is the elastic energy density at the film surface.

F
ðmnÞ
sw indicates the mth derivative with respect to H

and the nth derivative with respect to rH:
F
ð10Þ
sw ðxÞ ¼ @HðxÞFsw HðxÞ;rHðxÞð Þ and each vector

component of Fð01Þ
sw ðxÞ is Fð01Þ

sw ðxÞ
h i

i
¼ @ rHðxÞ½ �i

Fsw HðxÞ;rHðxÞð Þ: This diffusion potential (Eq. 2) is
a general form for any surface diffusion model that
incorporates the non-local elastic energy density and
a local areal energy density such as a surface energy
(even one with orientation dependence/faceting)29

and a wetting energy.29–31,36** In Refs. 26 and 27 a
simple model is analyzed that includes elastic
anisotropy, a constant surface energy density, c, and
a substrate wetting energy density, WðHÞ: For this

simple model, Fsw ¼ 1þ rHðxÞð Þ2
h i1=2

cþW HðxÞð Þ;
and the resulting diffusion potential is

lðxÞ ¼ X xðxÞ � cjðxÞ þW0ðHðxÞÞ½ �; (3)

where jðxÞ is the total curvature, and W0ðHÞ is just
the derivative of the wetting potential. A more
extensive discussion of different possibilities for Fsw

is discussed in Ref. 27.

LINEAR STOCHASTIC MODEL

Stochastic terms that fluctuate in time lead to
stochastic differential equation that are often diffi-
cult so solve with either analytic techniques or
numerical simulation.43,44 Linear stochastic differ-
ential equations, however, are much easier to solve.
In fact, their solution is not very different from the
solution of linear deterministic (or ordinary) differ-
ential equations with stochastic initial conditions.
The linear model is naturally more approximate than
the non-linear model, but it represents an important
first step, and its solution can facilitate the develop-
ment and interpretation of non-linear models.

To model the development of SAQD order, the
growth dynamics are linearized producing a linear
dispersion relation (Section �Linearized Model�).
Then, the spectrum function is calculated based on
the governing linear equations and the dispersion
relation (Section �Spectrum Function�). The expres-
sion for the spectrum function is then applied to the
simple diffusion potential (Eq. 3) for a (100) surface
of a cubic crystal (Section �Application to (100)
Surfaces�). Application of this method generally (to
other surfaces or crystals) is outlined in Ref. 27. In
this part of the calculation, crystal anisotropy can
play an important role in the diffusion dynam-

ics and development of SAQD order.26,27,30,45 For
simplicity, it is assumed that only elasticity has a
strong anisotropic effect. A more detailed analysis of
other anisotropic effects can be very cumbersome.27

Using the specific dispersion relation, we derive
formulas for the correlation lengths that quantify
SAQD order and the real-space correlation function.
Finally, the correlation function and the correlation
lengths are applied to a numerical example of Ge
dots on a Si substrate. In this example, order pre-
dictions and dependence of order on average film
height is compared with previous deterministic
models.

Linearized Model

Equations 1 and 2 are linearized about the aver-
age film height (denoted �HÞ for the case of zero
deposition rate (Q = 0). Thus, the following analysis
would correspond to a fast deposition and then an
anneal. Other growth cases, such as constant
deposition rate, can be analyzed in a similar fash-
ion, but they are beyond the scope of the present
work. Following Refs. 31 and 46, the total film
height is the average film height plus small fluctu-
ations (Fig. 1),

Hðx; tÞ ¼ �Hþ hðx; tÞ:

Due to translational invariance of the governing
equations, the Fourier components of hðx; tÞ evolve
independently in the linear model. Also, the non-
local nature of the elastic energy makes calculations
using Fourier components (spectral methods) easier
than using hðx; tÞ: Fourier transforms use the
convention, f ðxÞ ¼

R

d2keik�xfk and fk ¼ ð2pÞ�2
R

d2xe�ik�xfðxÞ: hk is the Fourier transform of hðxÞ;
where k is the corresponding wave vector.

The linearized diffusion potential is calculated
following Ref. 27. Linearizing the surface-wetting
part of the diffusion potential, Eq. 2 and taking the
Fourier transform, one gets26

lsw;lin;k ¼ X Fð20Þ
sw þ k � ~Fð02Þ

sw � k
� �

hk;

where the F
ðmnÞ
sw terms are the derivatives of

FswðH;rHÞ; evaluated for a perfectly flat surface of
height �H: They are constants in the following

Fig. 1. Evolving film surface. Total height is average ð �HÞ plus fluc-
tuations h.

**It is possible that the wetting potential is simply an approxi-
mation to the stabilizing effect of intermixing.35
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analysis because they depend only on the average
film height �H: The first superscript indicates the
mth derivative of Fsw with respect to H: The second
index indicates the nth derivative with respect to
rH: Evaluated for a perfectly flat surface of height
�H; F

ðmnÞ
sw ¼ @m

H@
n
rHFsw H;rHð Þ

�

�

H¼ �H;rH¼0
: The elastic

energy density at the film surface is calculated as in
Refs. 27, 47 and 48, where the bimaterial (film +
substrate) is approximated as an elastically homo-
geneous material to simplify calculations.� The
resulting elastic energy density to linear order is
xlin;k ¼ �Ehk

khk so that the elastic energy is propor-
tional to the wavenumber k ¼ kk k and the Fourier
component hk; and it has a prefactor that depends on
the wave vector direction, hk: Thus, the total linear-
ized diffusion potential in reciprocal space is

llin;k ¼ X �Ehk
kþ Fð20Þ

sw þ k � ~Fð02Þ
sw � k

� �

hk: (4)

Linearizing the dynamic evolution, Eq. 1, and
plugging in Q = 0 and llin;k;

@thkðtÞ ¼ rkhkðtÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2XDkbT
p

ik � gkðtÞ½ �; (5)

rk ¼ �k2DX �Ehk
kþ Fð20Þ

sw þ k � ~Fð02Þ
sw � k

� �

; (6)

where gkðtÞ is the Fourier transform of gðx; tÞ: It has
zero ensemble mean, gkðtÞh i ¼ 0; and a sharply
peaked two-point correlation function, gkðtÞgk0 ðt0Þ

�h i ¼
~Ið2pÞ�2d2ðk� k0Þdðt� t0Þ:� The growth rate of each
Fourier component, rk; is dubbed the dispersion
relation.

Spectrum Function

Equations 5 and 6 can be solved as a system of
uncoupled linear stochastic ordinary differential
equations with constant coefficients43,44 because the
Fourier components, hk; evolve independently to
linear order. One could assume that there are both
stochastic initial conditions and thermal fluctua-
tions; however, the purpose here is to analyze the
impact of just the thermal fluctuations on order. It
is assumed the film is perfectly flat at t = 0, and that
the instability is seeded by just the thermal noise.
Thus, initially, hkð0Þ ¼ 0 for all k; and to linear
order, the ensemble average film height fluctuation
remains zero for all time. However, the spectrum
function, CkðtÞ provides the lowest order non-trivial
statistical description of film height fluctuations,
and it is used to predict the order of SAQD arrays in
a fashion similar to Refs. 26 and 27. By taking the
inverse Fourier transform of the spectrum function,
one can predict the real-space correlation function

(Section �Spectrum and Correlation Function�). A
more complete picture of the interrelations between
the spectrum function, the real-space correlation
functions and other correlation functions is pre-
sented in Ref. 27.

Taking the ensemble average of Eq. 5, we find

@t hkðtÞh i ¼ rk hkðtÞh i þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2XDkbT
p

ik � gkðtÞh i½ �:

The surface diffusion thermal fluctuation is
mean-zero (Section �Linearized Model�), and the
initial surface height fluctuation is mean-
zero, hkð0Þh i ¼ 0; thus, hkðtÞh i ¼ 0 for all time.

Starting from the linearized governing equation
and initial conditions, one can derive an evolution
equation for the spectrum function that is both lin-
ear and deterministic (Appendix A),

@tCkðtÞ ¼ 2rkCkðtÞ þ
k2

ð2pÞ2
2XDkbTð Þ: (7)

Using the initial condition that Ckð0Þ ¼ 0;

CkðtÞ ¼
DXkbT

ð2pÞ2rk

k2 e2rkt � 1
� �

: (8)

The spectrum function CkðtÞ is the average value
one would expect if one extracts from a simulation
or experiment the film height power spectrum,
ð2pÞ2 hkðtÞj j2=Area � CkðtÞ: 27

Application to (100) Surfaces

The spectrum function time dependence, Eq. 8, is
now applied to (100) surfaces of cubic crystals using
the simple diffusion potential, Eq. 3. Anisotropy
plays an important role in order development, and for
simplicity only elastic anisotropy is included. From
this analysis, the two correlation lengths are found,
and then the correlation function. Finally, a numer-
ical example of Ge dots on a Si substrate is presented.
The dependence of order on film height is investi-
gated and compared and contrasted with the similar
dependence from the previous deterministic model.27

Spectrum and Correlation Function

If rk is peaked at wave vectors kn; corresponding
to some reciprocal lattice vectors, then a quasiperi-
odic arrangement of SAQDs can form during the
initial stages of growth.26,27 This quasiperiodicity is
demonstrated by applying the linearized simple
diffusion potential, Eq. 3, along with elastic anisot-
ropy, xðxÞ, to Ge deposited on Si with a (100) sub-
strate surface. For a (100) surface of a crystal with
cubic symmetry, xlin;k ¼ �E0� 1� eA sin2ð2hkÞ

� �

khk

is a very good fit to a full elasticity calculation,
where E0� is the lastic energy prefactor for hk ¼ 0�;
and eA ¼ E0� � E45�ð Þ=E0� is an elastic anisotropy
factor.27 The resulting linear diffusion potential in
reciprocal space is27

�Ref. 46 treats a bimaterial, but an elastically isotropic one.

�Note that because gðx; tÞ is real, gkðtÞ ¼ g�kðtÞ�; where ‘‘*’’ in-
dicates complex conjugate. Thus, gkðtÞgk0 ðt0Þh i ¼ ~Ið2pÞ�2d2ðkþ k0Þ
dðt� t0Þ; as well.
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llin;k ¼ X �E0� 1� eA sin2ð2hkÞ
� �

kþ ck2 þW00ð �HÞ
� �

hk;

where c is the surface energy density, and W00ðHÞ is
the second derivative of the wetting potential. One
can see that this is a special case of Eq. 4.

The corresponding dispersion relation is

rk ¼ DXk2 E0� 1� eA sin2ð2hkÞ
� �

k� ck2 �W00ð �HÞ
� �

;

assuming that diffusivity is isotropic as in Refs. 26
and 27.

From this dispersion relation, characteristic
lengths and times can be found along with details of
the early film evolution behavior. A characteristic
wavenumber and time can be defined, kc ¼ E0�=c and

tc ¼ c3ðDXE4
0� Þ:Also, the strength of the wetting term

W00ð �HÞ can be expressed as a dimensionless variable,

b ¼ cW00ð �HÞ=E2
0� : A detailed analysis26,27, 29,31 shows

that a large value of W00ð �HÞ such that b > 1/4 stabi-
lizes a flat film to linear order in hk; while a small
value of W00ð �HÞ such that b < 1/4 is insufficient
to stabilize a flat film for all possible fluctuations,
hk: For sufficiently small b; rk has four peaks
along the four 100h i directions, corresponding to
hk ¼ 0�; 90�; 180� and 270� and k ¼ a0kc: a0 ¼
3þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9� 32b
p� �

=8 is a convenient dimensionless
quantity. Thus, the four peaks occur at
k1 ¼ a0kci;k2 ¼ a0kcj;k3 ¼ �a0kci and k4 ¼ �a0kcj:
Expanding rk in the vicinity of peak n,

rk � r0 �
1

2
rkðkk � a0kcÞ2 �

1

2
r?k2

?; (9)

where ki is the component of k parallel to kn; and k?
is the component of k perpendicular to kn:r0 ¼ 1

4 t�1
c

a2
0 a0 � 2bð Þ; rk ¼ t�1

c k�2
c 3a0 � 4bð Þ; and r? ¼ 8eAa0t�1

c
k�2

c :
Equation 9 is used to find an approximate

expression for the spectrum function CkðtÞ:rk

appears inside an exponential; thus, for sufficiently

large values r0t, the exponential term in the vicinity
of the peaks will dominate over all other contribu-
tions to the spectrum function. Thus, CkðtÞ will have
the approximate form of four gaussians each cen-
tered around the four peak locations, kn: For suffi-
ciently narrow gaussians, the prefactor can be
approximated by its value at the peak. Thus,

CkðtÞ �
DXkbT

ð2pÞ2r0

a0kcð Þ2e2r0t � � �

�
X

4

n¼1

e
�1

2L
2
k kk�k0ð Þ2�1

2L
2
?k2
? ;

(10)

where

Lk ¼
ffiffiffiffiffiffiffiffiffi

2rkt
q

¼ k�1
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð6a0 � 8bÞðt=tcÞ
p

; (11)

L? ¼
ffiffiffiffiffiffiffiffiffiffi

2r?t
p

¼ k�1
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

16ea0ðt=tcÞ
p

: (12)

Lk and L? are the two correlation lengths that arose
from models with deterministic evolution and sto-
chastic initial conditions. They are measures of how
spatially ordered an array of SAQDs is. The dis-
tance over which one can expect an array of SAQDs
to appear periodic is about twice the smaller of the
two correlation lengths, usually L?:

26,27 Figure 2
shows an example of a film surface with the corre-
lation length indicated. The approximate spectrum
function, Eq. 10, is only valid when a0kcLk � 1; and
a0kcL? � 1: Of course, when this is not the case,
order will be very poor. Thus, Eqs. 10–12 are useful
for quantifying order when it is good, and they are
able to indicate when order is poor.

The spectrum function, Eq. 10, is very similar to
the spectrum function for the deterministic case
with stochastic initial conditions characterized by a
noise amplitude D2.26,27 If the noise amplitude is set
to be

Fig. 2. (a) Film height and (b) spectrum function of the �H ¼ 1:1Hc simulation discussed in Section �2D Non-Linear Deterministic Model� at the
end time, t = 255tc. The drawn circle in (a) has a radius equal to L^ calculated from the spectrum function (b).
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D2 ¼ DXkbT a0kcð Þ2=r0;

then the two cases are equivalent to linear order,
when one performs these similar expansions. Often,
one uses deterministic evolution equations with
stochastic initial conditions as approximations to
stochastic evolution equations. By performing a
suitable linear analysis as done here, perhaps one
can find an appropriate initial condition for such
approximations. Note that D2 has dimensions of
[length]4, and the size of fluctuations in a discreti-
zation procedure changes with the discretization
length scale. The spectral methods used here handle
this problem fairly easily as one can coarse-grain a
model by simply discarding fast oscillating noise
components. A spatial discretization, such as finite
differencing or the finite element method makes
quantitative implementation of white noise more
complicated.

As with the deterministic model,26,27 one can take
the inverse Fourier transform of the spectrum func-
tion to obtain the real-space correlation function,

CðDxÞ ¼DXkbT a0kcð Þ2

pr0LkL?
e2r0t � � �

� e
�1

2 Dx2=L2
kþDy2=L2

?

� �

cosða0kcDxÞ � � �
"

þ e
�1

2 Dx2=L2
?þDy2=L2

k

� �

cosða0kcDyÞ
#

(13)

The correlation function, CðDxÞ; is a good predic-
tor of the autocorrelation when the sampled or
simulated area is very large.27

Numerical Example and Film Height Dependence

In Ref. 27, it was found that for reasonably soft
wetting potentials, there can be some enhancement
to spatial order when annealing takes place for films
with heights, �H; that are only just above critical film
height for unstable 3D growth. This finding was
based on an assumption that the order that develops
during the initial stages of growth is a meaningful
order estimate. This assumption is justified to an
extent by published numerical simulations30,31,49–51

and is further justified by initial non-linear modeling
results in Section �Perturbatively Non-Linearmod-
els�. In Ref. 27, the correlation lengths were found
using parameters appropriate to Ge deposited on Si.
A condition for the end of the linear evolution regime
was taken to be when the r.m.s. film height fluctu-
ation exceeded the atomic scale, the height of one
monolayer. The r.m.s. height fluctuation is just
hr:m:s: ¼ C 0ð Þ½ �1=2; using Eq. 13. The time at which
this condition was satisfied, tlarge, was recorded, and
the smaller correlation length, L? was calculated for
this time. These predicted tlarge values and the
number of correlated dots in a row were graphed

versus the dimensionless wetting potential strength
for b ¼ 0 . . . 0:25: It was found that the calculated
time tlarge and the calculated correlation length di-
verge as b! 0:25:

The same procedure is now followed for the
present model for Ge on Si with temperature
T = 600�C. All values are the same as for the cal-
culations in Ref. 27. The results are graphed in
Fig. 3. When compared with the results from the
deterministic model with stochastic initial condi-
tions27, one finds that the effect of thermal fluctua-
tions in the surface diffusion are actually more
disruptive to order than assuming an initial surface
with atomic scale roughness. The qualitative trends
are the same, however, and the divergence in cor-
relation length as b! 0:25 is observed. As dis-
cussed in Ref. 27, one should take care interpreting
this result, and there are of course practical limi-
tations. The order enhancing effect of near critical
growth has not been experimentally observed (or
looked for), and there may be practical limitation to
implementing near critical growth as a method to
enhance order such as the requirement for precise
deposition control.

PERTURBATIVELY NON-LINEAR MODELS

The order estimates presented in Refs. 26 and 27
and Section �Numerical Example and film height
dependence� are based on the order that develops
before fluctuations become large. The significance of
these calculations is based on the following obser-
vations:

1. Order increases during the linear stage of growth
as t1/2 (Eqs. 11 and 12).

2. Order does not increase forever. If it did, growing
perfectly ordered arrays of dots would be trivial.
Also, qualitative analysis of numerical simula-
tions bears this out. 30,31,49–51

It is, of course, worthwhile to extend the method of
quantifying and predicting order to non-linear
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Fig. 3. tlarge/tc and L^/L0 versus the dimensionless wetting parame-
ter b for Ge/Si at T = 600�C as discussed in Section �Numerical
Example and Film Height Dependence�.
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models. Non-linear stochastic modeling can be very
cumbersome and difficult to implement, but some
preliminary results are presented here. The same
system as in Section �Numerical Example and film
height dependence� and Ref. 27 is modeled here, and
the same parameters are used.

1D Multiscale–Multitime Expansion

First, the results of a 1D non-linear model with
stochastic evolution is presented. As a first attempt
at non-linear modeling, two approximations are
made. First, the elastic and surface energy parts are
completely linearized. Second, the wetting poten-
tial, WðHÞ; is treated using a multiscale–multitime
expansion.31,52 Full details of the model are omitted
out of space considerations and because these are
preliminary results.

Based on Ref. 29, the wetting potential is chosen to
be WðHÞ ¼ 2:314� 10�6=H erg/cm2 with H in cm.
This gives a critical film height of four monolayers
= 1.132 nm. The simulated film has an average film
height of �H ¼ 1:358 nm giving b = 0.1447. The sim-
ulation cell size is 19.68 lm, large enough to hold
513 dots of average size L0 ¼ 2p=k0 ¼ 38:4 nm: The
multiscale–multitime expansion uses an expansion
in a scale variable e to create a perturbation-like
series. Additionally, fast oscillating Fourier compo-
nents of WðHÞ are discarded so that the natural
length scale is the average size of a single dot, L0. To
fourth order in e, one obtains a set of two coupled
partial differential equations.31,52 These equations
are solved using Stochastic Euler numerical inte-
gration 43,44 implemented with Mathematica.53

Computational efficiency is greatly enhanced by the
multiscale–multitime expansion, but of course,
accuracy and fidelity to the original model is par-
tially sacrificed. Correlation lengths are calculated
from the peak widths of the spectrum function (Dk),
using Lcor ¼ 1=Dk: The number of dots in a row that
form a recognizably periodic structure is #dots ¼
2Lcor=L0: The time evolution of this number is plot-
ted for both the linear model and the stochastic
simulation (Fig. 4). The linear model has a correla-
tion length that grows indefinitely. The non-linear
model has a correlation length that grows to a peak
value and then shrinks. In this case, the onset of
ripening ruins the SAQD order. The onset of ripen-
ing in this model corresponds to the ‘‘blow-up solu-
tion’’ in Ref. 31.

2D Non-Linear Deterministic Model

A similar result is obtained for a 2D deterministic
non-linear model. This model treats the surface
energy and wetting energy in full non-linear fash-
ion. The non-local elastic part is found to cubic order
in the film height fluctuation in h via a perturbation
series. The stochastic initial conditions are sampled
white noise with an initial atomic scale roughness,
corresponding to D2 = 0.0403 nm4.27 The critical
height for the 2D-to-3D-growth transition is
Hc ¼ 1:132 nm: Two initial average film heights are

used to investigate the trend predicted in Fig. 3,
�H ¼ 1:25Hc ¼ 1:415 nm (b = 0.1280) and �H ¼ 1:1
Hc ¼ 1:245 nm (b = 0.1878). The simulation cell size
corresponds to 17 dots squared = 289 dots. The time
evolution equations are solved using the native
numerical differential equation solver in Mathem-
atica.53 The correlation lengths versus dimension-
less time are plotted for both cases in Fig. 5. In both
cases, the correlation length increases early on
while fluctuations are small, reaches a peak value
and then decreases due to ripening. The peak value
of the correlation length is greater for the second
case with b closer to the optimal value of 1/4. The 2D
non-linear deterministic model further substanti-
ates the theory that order develops during the early
growth stages and then is diminished during rip-
ening. Furthermore, the trend predicted by the
linear order model is it least qualitatively corrobo-
rated because growth near the critical threshold
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enhances the peak order of SAQDs according to the
2D non-linear model.

CONCLUSIONS

A linear stochastic model of SAQD order has been
presented as an extension of a previous linear
deterministic model of the order of epitaxial self-
assembled quantum dots (SAQDs). In addition,
some preliminary results from non-linear stochastic
and non-linear deterministic models have been
presented to substantiate the significance of, extend
and clarify the linear models of SAQD order. The
presented numerical examples were based on a very
simple SAQD model, and there has been much
advancement in SAQD growth modeling; however,
the presented procedure should apply equally well
to a wide variety of models with various phenome-
nological assumptions and help to augment them
and quantitatively extract order predictions. The
current stochastic model should be augmented in
the future to reflect these advances. Some adapta-
tion of the method ought to apply to attempts to
engineer SAQD order as well, such as substrate
patterning or growing multilayers of SAQDs. As
with the previous deterministic model, two correla-
tion lengths are found, longitudinal Lk and trans-
verse L?: The transverse correlation length appears
to be the most limiting, and thus should be used to
estimate order. It is found that if a wetting potential
is incorporated that is sufficiently soft, growth near
the 2D–3D transition critical film height enhances
SAQD order; however, this enhancement would re-
quire very precise experimental control to imple-
ment. Nevertheless, it demonstrates how the
presented methods might apply to other attempts to
optimize SAQD growth and could help engineer
those processes. It was also found that the previous
deterministic model can be made approximately
equivalent to the present stochastic model by
choosing the appropriate initial conditions. Pre-
liminary non-linear modeling appears to corrobo-
rate these claims, at least qualitatively. A
quantitative comparison is still needed. The method
to extract SAQD order should help with phenome-
nological model development as the correlation
lengths and possibly other statistical characteriza-
tion should facilitate quantitative tuning of phe-
nomenological models to experiments. The models
presented here apply to the nucleationless mode of
SAQD formation; however, the inclusion of thermal
fluctuations in non-linear models should facilitate a
conceptual and/or mathematical unification of
models of SAQD thermal nucleation and the
nucleationless mode.
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APPENDIX A: DERIVATION OF EQ. 7

The two-point correlation function in reciprocal
space is

Ckk0 ðtÞ ¼ hkðtÞhk0 ðtÞ�h i:

Note that at time t ¼ 0;Ckk0 ð0Þ ¼ hkð0Þhk0 ð0Þ�h i ¼ 0:
The time evolution of CkkðtÞ can be found using the
stochastic chain rule (Îto�s lemma) and then taking
the ensemble average.43,44

@tCkk0 ðtÞ ¼ rk þ rk0ð ÞCkk0 ðtÞ � � � (A1)

þk � k0

ð2pÞ2
2XDkbTð Þd2ðk� k0Þ: (A2)

The thermal fluctuations only contribute if k ¼ k0:
Since initially Ckk0 ð0Þ ¼ 0; one can expect Ckk0 ðtÞ to
be non-zero only if k ¼ k0: Thus, the two-point cor-
relation function is determined completely by the
ensemble averaged spectrum function, CkðtÞ as in
Ref. 27,

Ckk0 ðtÞ ¼ CkðtÞd2ðk� k0Þ: (A3)

This results is only strictly true for the linearized
equation. From Eq. 14 the time evolution equation
of the spectrum function is found by inspection to be
Eq. 7.
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