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1 Introduction

The knowledge that a physical theory possesses a symmetry is a powerful thing. It is

frequently so restrictive that solutions to the theory may be constructed using group theory

alone. A large symmetry can however be a double-edged sword, its complexity can prove

an obstruction to its usefulness. It was conjectured over a decade ago that the non-

linear realisation of the generalised Kac-Moody algebra e11 is an extension of maximal

supergravity relevant to M-theory [1]. The non-linear realisation of e11 is formulated using

a coset group element whose parameters are the vielbein eµ
m, the three-form Aµ1µ2µ3 ,

the six-form Aµ1...µ6 , the dual graviton Aµ1...µ8,ν as well as infinitely many more fields.
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To simplify calculation the infinite dimensional sub-algebra may be consistently truncated

to a finite dimensional algebra. The non-linear realisation of the truncated symmetry

possesses a group element parameterised by only a subset of the original fields. For example

the consistent truncation to the three fields eµ
m, Aµ1µ2µ3 and Aµ1...µ6 leads to a non-

linear realisation that gives the bosonic sector of eleven dimensional supergravity [2]. Even

very large truncations of the Kac-Moody algebra can retain information related to their

embedding within the full Kac-Moody algebra. For example one of the largest truncations

is to restrict e11 to an sl(2,R) sub-algebra, greatly simplifying the non-linear realisation and

yet this truncation encodes the pp-wave, the M2 brane, the M5 brane and the KK6 brane

solutions of eleven dimensional supergravity. A Lagrangian formulation for g+++ algebras,

including e11, has been constructed [3] and it was shown that the fields for these 1
2 -BPS

solutions were exact solutions of the equations of motion for the constructed Lagrangian. It

was realised in [4] that a group element appearing in the non-linear realisation of sl(2,R) ⊂
e11, which is parameterised by eµ

m and just one other tensor field, could be written in a

way which encoded the 1
2 -BPS solutions of eleven-dimensional supergravity as well as those

of the type IIA and type IIB string theories. Previously the Lagrangian for the non-linear

realisation of e10 had been found in [5] and used to show the appearance of an e10 symmetry

in the vicinity of a cosmological singularity. The solution to the equations of motion for the

sl(2.R) ⊂ e11 Lagrangian described a null geodesic on the coset space SL(2,R)
SO(1,1) . One might

wonder why such large truncations do not trivialise the E11 symmetry; they do not as

the metric for the supergravity solution is determined by the embedding of the particular

sl(2,R) ⊂ e11. Despite the truncation to a finite dimensional sub-algebra information from

the full Kac-Moody algebra concerning the embedding of the sub-algebra is retained and

used to construct the metric.

By truncating the algebra one loses some of the power of the symmetry to identify

complex solutions. It is therefore interesting to carry out the non-linear realisation and

identify the null geodesic solutions on larger coset groups. Truncations of e11 to sub-

algebras larger than sl(2,R) including sl(3,R), sl(4,R), sl(5,R) and so(4, 4) lead to coset

groups whose null geodesics encode bound states of branes [6–9]. The dyonic membrane [10]

and other bound state solutions were encoded as a group element in [6]. It was subsequently

shown in [7] that these solution-encoding group elements could be systematically derived

from a Lagrangian formulated on cosets of groups embedded in E11. The dyonic membrane

in eleven space-time dimensions, for example, is encoded by a null geodesic on the coset
SL(3,R)
SO(1,2) [7]. Many further examples of bound states were constructed in this fashion in type

IIA and type IIB string theory in [9].

Ultimately one might aspire to work with the full non-linear realisation of e11. A step-

ping stone in this direction would be the complete understanding of the solutions described

by null geodesics on cosets of affine groups embedded in e11. The associated solution would

be described by infinitely many parameters and would approach the complexity of the full

non-linear realisation of e11. Early work on affine cosets in this setting was carried out

in [11] where the cosets on A++
D−2, the over-extension of SL(D − 1,R), were investigated

by restricting the algebra to an interesting infinite subset of generators which were argued

to correspond to polarised Gowdy cosmologies. The role of the affine group E9 which is a
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sub-group of both E10 and E11 was elegantly investigated in [12], where it was shown that

the Weyl reflections of affine SL(2,R) contained within E9 discretely mapped supergravity

solutions to exotic supergravity solutions. This infinite dimensional solution generating

group was identified as the Geroch group [13–15] which was originally discovered as a

solution-generating group in four-dimensional gravity. An affine sl(2,R) sub-group within

E9 was shown to act similarly on the M2 and M5 branes of M-theory as well as the gravita-

tional sector [12]. The infinite towers of solutions are constructed using the Weyl reflections

of affine sl(2,R) which form a discrete sub-algebra of A+
1 . In light of the recent successes in

associating bound state solutions of supergravity and string theory with continuous trans-

formations of sub-groups within E11, it is timely to investigate whether one can associate

gravitational bound states with sub-groups of A+++
D−3 . In this paper we will consider bound

states associated with pairs of real roots within an affine sl(3,R) sub-algebra of A+++
D−3 and

seek to verify whether or not these putative bound states are solutions of the equations

of motion of the Einstein-Hilbert action. The focus of the paper will be on working with

mixed-symmetry tensors using only standard tools from field theory, namely the covariant

derivative and the Hodge dual. We will find that these tools are too restrictive and that

the SL(3,R) structure of the solutions cannot be captured in this way. To overcome this

problem we will consider a multi-form exterior derivative and higher derivative actions

that do preserve the group structure of the coset model solution. The use of multiforms

will lead us to conclude that these bound states cannot be dualised via the Hodge dual to

solutions of the vacuum Einstein equations. The dual graviton bound states are solutions

to the Einstein equations in the presence of a non-trivial stress-energy tensor and precise

matter terms are identified.

At first sight this appears to be a surprising result. After all the Geroch group gen-

erates continuous sets of solutions of the Einstein-Hilbert action under the action of affine

sl(2,R) [15]. The Geroch group acts, at the level of solutions, directly on scalar fields

appearing upon dimensional reduction of the Einstein-Hilbert action to two dimensions,

whereas the symmetries investigated in the present work are conjectured to be symmetries

of the actions directly inD dimensions [16]. By comparison with the e11 conjecture [1] which

states that the non-linear realisation of e11 gives the extension of supergravity in eleven

dimensions to M -theory, one might expect that the non-linear realisation of A+++
D−3 will cor-

respond to an extension of Einstein gravity. In this paper we look at the simplest sl(2,R)

and sl(3,R) sub-algebras of A+++
D−3 . In the first case no extension of the Einstein-Hilbert

action is required, but in the second case the SL(3,R) group action requires additional

matter terms to be added to the action. The analogy with supergravity is that while the

membrane or fivebrane are solutions of the equations of motion coming from the bosonic

part of the supergravity action without the Chern-Simons term, the dyonic membrane [10]

which encodes an SL(3,R) group action [6, 7] is a solution to the equations of motion (for

all values of the interpolating parameter) only when the Chern-Simons term is included. It

is still expected that the bound state can be dualised to a solution of the Einstein-Hilbert

action, after all the bound states we will construct are generated by the A+
2 Geroch group

of five-dimensional gravity. The resolution is that the Hodge dual must be generalised

to take account of the affine structure using the techniques given in [12]. The generalised
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Figure 1. The Dynkin diagram for A+++
D−3 where D > 3.

dualisation technique will introduce compensating matrices and modify the metric and will

not be considered in the present paper.

In this paper we investigate the class of generalised Kac-Moody algebras denoted

A+++
D−3 , the very-extended algebra whose non-linear realisation was proposed to describe

an extension of gravity [16] and further investigated in [17]. An infinite tower of roots was

identified within A+++
8 ⊂ E11 in [18] associated with dual gravitons and dual actions for

each of these dual fields were constructed in [19, 20]. Before we describe our investigation

it will be useful to motivate the study of these algebras and explain their connection to

e11. The Dynkin diagram for this class of algebras is shown in figure 1. For the case where

D = 4 the Geroch group A+
1 is manifestly embedded within A+++

1 and encoded in the

Dynkin diagram by a special double bond between nodes three and four. The non-linear

realisation of A+++
D−3 is a theory containing only gravitational degrees of freedom. Deletion

of node D − 1 in figure 1 leaves the Dynkin diagram of E+++
D−4 ≡ ED−1. The En series of

symmetries that appear upon compactification of eleven dimensional bosonic supergravity

all appear in this manner by deleting node D − 1 from the A+++
D−3 Dynkin diagram to give

the hidden En symmetry that appears upon dimensional reduction to 12 −D dimensions

as summarised in table 1. The dimensional reduction of A+++
D−3 is akin to Kaluza-Klein di-

mensional reduction: a purely gravitational theory in D+ 1 dimensions whose dimensional

reduction gives a gravitational theory and a gauge theory in D-dimensions as well as a

tower of KK states.

When D = 12 the relevant algebra is A+++
9 which upon dimensional reduction leaves

a theory with a manifest E11 symmetry which is conjectured to be M-theory. Moreover

E+++
8 ≡ E11 ⊃ A+++

8 , while E++
8 ≡ E10 ⊃ A++

8 and E+
8 ≡ E9 ⊃ A+

8 ⊃ E8 which identifies

a sequence of inclusions of infinite algebras terminating with the finite algebra E8:

A+++
9 ⊃ E11 ⊃ A+++

8 ⊃ E10 ⊃ A++
8 ⊃ E9 ⊃ A+

8 ⊃ E8. (1.1)

The fact that E11 lies between A+++
9 and A+++

8 in this sequence coupled with the expec-

tation that the A+++
D−3 is associated to a gravitational theory provides new directions to

investigate E11 and this motivates the focus in the present paper on A+++
D−3 algebras.

Our main aim in this work is to use the non-linear realisation to investigate continuous

solution generating sub-algebras within A+++
D−3 . Although we are ultimately motivated to

understand the non-linear realisation of the affine sub-groups we will in this paper iden-

tify finite sub-algebras which are embedded within A+++
D−3 and which may be combined to

give a set of continuous transformations which cover a set of solutions generated by an

affine group. We will identify truncations of the algebra in the first instance to sl(2,R)

– 4 –
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D Dynkin diagram of A+++
D−3 Following the deletion of node (D − 1)

12
1 2 3 4 5 6 7 8 9 10 11

12

1 2 3 4 5 6 7 8 9 10

11

E11

11
1 2 3 4 5 6 7 8 9 10

11

1 2 3 4 5 6 7 8 9

10

E10

10
1 2 3 4 5 6 7 8 9

10

1 2 3 4 5 6 7 8

9

E9

9
1 2 3 4 5 6 7 8

9

1 2 3 4 5 6 7

8

E8

8
1 2 3 4 5 6 7

8

1 2 3 4 5 6

7

E7

7
1 2 3 4 5 6

7

1 2 3 4 5

6

E6

6
1 2 3 4 5

6

1 2 3 4

5

D5

5
1 2 3 4

5

1 2 3

4

A4

4
1 2 3

4

1 2

3

A2 ×A1

Table 1. The decomposition of A+++
D−3 containing the ED−1 series of algebras.
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sub-algebras encoding gravity solutions and in the second instance to sl(3,R) sub-algebras

which we will interpret as bound states of pp-waves, KK-branes and other exotic gravita-

tional objects. An infinite set of sequential sl(3,R) sub-algebras will be presented which

telescopically contain the real roots of an affine sl(3,R)+. For the case when D = 11 we

find that the null geodesic motion on the cosets of SL(3,R) reproduce the gravitational

tower of solutions identified in [12] up to a Lorentz transformation, but now the continu-

ous interpolation between these solutions is identified as a solution to an extension of the

Einstein-Hilbert action. A corollary of the work presented here is that the M2-M5 infinite

tower of solutions found in [12] may be understood to originate from the (gravitational)

Geroch group acting within A+++
9 .

The paper is organised as follows in section 2 we define the algebra A+++
D−3 and interpret

each of the roots as Young tableaux carrying the symmetries of their associated generator.

In section 3 we set up our notation by briefly reviewing the construction of the sigma model

for bound states found in [7]. In section 4 the main body of our work is presented. In section

4.1 the null geodesic motion on cosets of SL(2,R) and SL(3,R) embedded within A+++
D−3 are

studied. We give particular emphasis to understanding the appearance of the fundamental

gravitational solutions, the pp-wave and the KK(D− 5) brane, before we investigate more

exotic solutions including the interpolating SL(3,R) gravitational solutions. These one

dimensional coset-model solutions do not lift in a trivial way to solutions of the Einstein-

Hilbert action, so in section 5 we investigate the supergravity dictionary used for mixed-

symmetry fields and identify gravity and exotic matter actions which do admit the full

interpolation as a solution to their D-dimensional equations of motion. In section 6 we

focus on the problem of dualising these exotic actions to the Einstein-Hilbert action and

understanding why the full interpolating solution is lost. Section 7 is devoted to a discussion

of the results.

2 The A+++
D−3 algebra

The collection of very-extended Kac-Moody algebras A+++
D−3 where D ≥ 4 has a root space

spanned by the simple roots {α1,α2, . . . ,αD} which may be conveniently embedded in

RD. Let {e1, e2, . . . , eD} be an orthonormal basis for RD and an embedding of the basis

of the root space is

αi = ei − ei+1 where i < D

αD = eD +

D∑
i=3

ei (2.1)

For root vectors α ≡
∑D

i=1 aiei and β ≡
∑D

i=1 biei the inner product on the root space is

given by

〈α,β〉 =
D∑
i=1

aibi −
1

D − 2

D∑
j=1

aj

D∑
k=1

bk (2.2)

One can confirm that this inner product acting on the positive simple roots embedded in

RD reproduces the Cartan matrix of A+++
D−3 when D ≥ 4.

– 6 –
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An indefinite Kac-Moody algebra may be decomposed into an infinite set of highest

weight representations of a classical Lie algebra each labelled by the level at which they

occur in the decomposition. A+++
D−3 may be decomposed into a set of highest weight rep-

resentations of SL(D,R) corresponding to nodes 1 to D − 1 in figure 1.1 and the level

specified by a single integer. If a generic root of the algebra is given by β ≡
∑

i≤Dmiαi
in the simple root basis then the decomposition amounts to partitioning the root coeffi-

cients (m1,m2, . . . ,mD) into two sets of labels (m1,m2, . . . ,mD−1) and (mD). The first

set labels a highest weight representation of SL(D,R); the D − 1 numbers are the coeffi-

cients of the root β̂ =
∑

i≤D−1miαi associated to the highest weight in the representation.

The remaining integer mD is called the level in the decomposition and labels where each

representation of SL(D,R) occurs in the decomposition of A+++
D−3 .

The example of A+++
8 , occurring when we choose D = 11, is relevant to M-theory and

we will emphasise this particular example. Its field content at low levels was first found

in [21]. At levels 0 and 1 of the decomposition of A+++
8 into representations of SL(11,R)

Ka
b and Ra1···a8,b are associated with the KK-wave and KK6 brane solutions of M-theory.

Indeed when D = 11 the inner product (2.2) coincides with the inner product of E11

embedded in R11 and the algebra A+++
8 is a sub-algebra of E11. The results in this paper

will be readily adapted to A+++
8 . For the case of A+++

8 the low level roots are shown in

table 2 up to level m11 = 3 which was produced using [22]. These same representations at

levels 0, 1, 2 and 3 occur within the decomposition of E11 but at levels 0, 3, 6 and 9 and

the pattern continues for all higher levels i.e. an SL(11,R) representation at level m11 in

the decomposition of A+++
8 is also always found at level 3m11 in the decomposition of E11.

Reproducing all the information of table 2 is computationally challenging. A very effi-

cient way to reproduce the highest weight representations appearing in the decomposition

relies on the embedding of the root space within RD advocated in equation (2.1). The

choice of the embedding is such that the covariant and contravariant index structure of the

SL(D,R) highest weight representations associated to each of the generators is encoded

in the coefficients of the ei in a manner that we will now describe. Each highest weight

SL(D,R) representation may be represesented by a Young tableau whose columns are an-

tisymmetrised and whose rows have widths wi where 1 ≤ i ≤ D and wi ≤ wi+1. For a root

of A+++
D−3 associated with a highest weight representation, the Young tableau carrying the

symmetries of the associated generator has rows of width wi, running from the bottom row

of width w1 up to the top row of width wD, which may be read from the root by virtue of

the embedding in RD

β ≡
∑
i≤D

miαi =
∑
i≤D

wiei. (2.3)

The roots at level zero which make up the algebra of SL(D,R) provide an immediate, but

isolated, puzzle for the preceding definition. Namely these roots have the form ei − ej
which we interpret as a Young tableau having an i’th row of width one but a j’th row

of width negative one. The interpretation is best stated in terms of the generator index

structure and a negative coefficient indicates covariant indices on the tensor component

while a positive index indicates contravariant indices. The root ei − ej is associated to

the generator Ki
j whose commutator relations are those of the positive generators of the

– 7 –
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sl(D,R) algebra. The simple root at level one αD as given in equation (2.1) has a mixed-

symmetry sl(D,R) generator Ra4a5...aD,bD . The gauge field associated to this generator

has the index structure of a dual graviton, which one may see by dualising the first set of

(D − 3) indices to find a tensor field related to the vielbein. The highest weight Young

table has two columns of D − 3 and D boxes:

D D

D-1

...

5

4

. (2.4)

The Young table above is associated to the particular generator R456...D,D, in what follows

we will frequently drop the labels in the Young table where we refer to the unique highest

weight. The lower weights arise following commutation with the Ki
j generators of sl(D,R).

For D = 4 the level one Young tableau has the same structure as the metric representing

a symmetric two tensor, while for D > 4 the level one Young tableaux are hooked. The

associated gauge field component A456...D,D is dualised on its antisymmetric D− 3 indices

to Ai,D where i ∈ {1, 2, 3} which, as we will see, may be associated to the vielbein. The

field appearing at level one is therefore referred to as the dual graviton.

The embedding of equation (2.1) into RD furnishes a simple method to uncover the

non-trivial commutators of the low-level generators which we will now outline. The com-

mutators of the Kac-Moody algebra are controlled by the Serre relations, these relations

may be recast as an algebraic condition on the root length squared [6]. The commutator

of two generators associated to the distinct roots α and β is either trivial or gives rise

to a new generator in the algebra depending upon the length squared of the sum of the

roots (α+ β)2:

[Eα, Eβ] =

{
0 if (α+ β)2 > 2 and

Eα+β if (α+ β)2 ≤ 2.
(2.5)

The generator structure for Eα+β may be read directly from the root α + β using equa-

tion (2.3). For example we asserted earlier that the generators Ki
j associated to the roots

ei − ej gave rise to the algebra of sl(D,R) - we can now confirm this assertion using the

inner product (2.2). To find the general commutator let α ≡ ei − ej and β ≡ ek − el. As

(α+β)2 = (ei− ej + ek − el)2 = 4− 2δjk − 2δil the commutator is only non-trivial if i = l

or j = k. Note that if both i = l and j = k then the roots are non-distinct as α = β and

the commutator is trivially zero. Consequently we may write the commutator relation for

the level zero roots as:

[Ki
j ,K

k
l] = δilK

k
j − δkjKi

l. (2.6)

The minus sign difference between the terms follows from the antisymmetry of the Lie

bracket. The commutators above are recognisable as the commutators of the generators

associated to the positive roots of sl(D,R).

– 8 –
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A necessary criterion for existence of roots (up to root multiplicity or outer multiplicity)

may be summarised as: if β2 = 2, 0,−2,−4, . . .1 then β is a root in the root lattice of A+++
D−3 .

One may find the SL(D,R) Young tableaux at level L by noting that the nested commutator

of L copies of the level one generator whose Young tableau has D− 2 boxes will consist of

Young tableaux with L(D−2) boxes. By drawing all the tableaux formed of L(D−2) boxes

and projecting out all those whose associated root length squared is greater than two one

arrives at a close approximation of the algebraic content of A+++
D−3 . It is, perhaps, simpler

to find one Young tableau at each level whose length squared is two and then construct the

other Young tableaux at level L by moving the Young tableaux boxes between columns - a

transformation which has a simple impact on the root length squared. The movement of a

Young tableau box by one column to the left has the effect of lowering the associated root

length squared by two, as can be quickly verified, using (2.2). Consequently the reverse

manoeuvre of transferring a box one column to the right raises the root length squared by

two. Using these rules on a Young tableau, whose associated root length squared is known,

one can quickly construct all Young tableaux in the decomposition at a particular level

together with their associated root length squared but without computation. Additionally

there always exists a root at any level L whose generator has the symmetries of the highest

weight Young table

D D . . . D D D

D-1 D-1 . . . D-1 D-1

...
... . . .

...
...

4 4 . . . 4 4

3 3 . . . 3

(2.7)

where there are (L − 1) columns of height (D − 2), one column of height (D − 3) and

a single column of height one, whose length squared for any dimension D ≥ 4 is always

two. The Young tableaux represented in (2.7) exist within the affine subalgebra A+
D−3 ⊂

A+++
D−3 . The construction, in this way, of the Young tableaux in the decomposition of

A+++
8 may be confirmed at low levels by comparison with table (2). As one can see this

construction is almost sufficient to reproduce the decomposed algebra. However the reader

will notice that the information in the column headed mu which gives the outer multiplicity

of the generators (the number of copies of a particular generator) has not been reproduced.

The outer multiplicity is particularly crucial when it is zero, as then, contrary to our

expectations, the generator does not appear within the algebra, however the calculation of

outer multiplicity is time-consuming. It would be very useful to find a quick computation

to determine whether the outer multiplicity of a generator is zero.

The highest weight generator corresponding to the deleted node defining the level has

a Young tableau containing (D − 2) boxes. Consequently a generator appearing at level

L has a Young tableau formed of L(D − 2) boxes, as the generator is defined by L nested

1In a simply-laced algebra all the simple roots have the same normalisation, which we have chosen to

be
√

2 here, consequently all roots have an even length-squared which is less than or equal to two.
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commutators involving level one generators. Note that the inner product of two roots at

levels L1 and L2 in the decomposition is given by:〈
αL1 ,βL2

〉
=
∑
i

w(α)iw(β)i − L1L2 (D − 2) (2.8)

where αL1 =
∑

iw(α)iei and βL2 =
∑

iw(β)iei.

3 The coset model for gravitational solutions

In this paper we will be using the coset model approach developed in [7] to construct

gravitational solutions from the A+++
D−3 algebras. We will restrict our interest to cosets

of A1 and A2 sub-groups embedded in A+++
D−3 . The work of [7] describes a method that

associates a one-dimensional solution of M-theory and string theory to a null geodesic

motion on cosets SL(n,R)/H where the algebra of H is the fixed point set under some

generalised involution.

3.1 The generalised involution Ω

The Chevalley-Cartan involution ΩC is defined on a semisimple Lie algebra g of the group

G by

ΩC(Hi) = −Hi, ΩC(Ei) = −Fi and ΩC(Fi) = −Ei (3.1)

where we have used the Chevalley basis to present the algebra so that Hi indicates the

Cartan sub-algebra, Ei are the generators associated to the positive simple roots, Fi the

generators associated to the negative simple roots and the index i ∈ {1, 2, 3, . . . R} where

R is the rank of the Lie algebra. The Chevalley-Cartan involution action on the remainder

of the algebra is derived from its action on the generators associated to the simple roots as

ΩC([Ei, Ej ]) = [ΩC(Ei),ΩC(Ej)] ≡ ΩC(Ei+j) (3.2)

ΩC([Fi, Fj ]) = [ΩC(Fi),ΩC(Fj)] ≡ ΩC(−Fi+j)

where we have defined Ei+j ≡ [Ei, Ej ] and −Fi+j ≡ [Fi, Fj ]. The algebra g = k ⊕ p is

split into a part which is fixed under the involution k and the complement p. The basis

generators of k are (with normalisation) ki ≡ 1
2(Ei − Fi) while the algebra p has basis

elements Pi ≡ 1
2(Ei + Fi) and Hi. The group K(G), found by exponentiating the ΩC-

invariant k, is the maximal compact sub-group of G.

A more general involution2 Ω can be defined by its action on the Cartan and simple

root generators [3]

Ω(Hi) = −Hi, Ω(Ei) = −εiFi and Ω(Fi) = −εiEi (3.3)

where εi is either −1 or +1. Collecting the R values εi as a vector ε we can write the

Chevalley-Cartan involution as ε = (+,+, . . . ,+). In the case of g = sl(3,R) the Chevalley-

Cartan involution generates the coset SL(3,R)/SO(3), while the involutions with ε = (−,+)

2The involutions and invariant algebras depend on whether the time dimension is contained within the

brane and we will assume a (1, D − 1)-signature metric in this paper. For the group theoretic description

of alternative signature M-theories of Hull [23] we refer the reader to [24].
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and (−,−) both generate SL(3,R)/SO(1, 2). For the general normal real form An(n)
∼=

sl(n + 1,R) each of the possible K(G) constructed in this way, which are SO(p, q) with

p+ q = n+ 1, can be obtained by taking the involution with ε = (+, . . .+,−p,+, . . . ,+).

3.2 Solutions as null-geodesics on cosets

We define a map from the real line parameterised by ξ into the coset G
K(G) in the Borel gauge

g = exp

(
n∑
i=1

φiHi

)
exp

( ∑
Eα∈∆+

CαEα

)
(3.4)

where φi ≡ φi(ξ), Cα = Cα(ξ), Hi are the Cartan sub-algebra generators and the second

summation runs over the generators of the numerator algebra g associated with the set of

postive roots ∆+. We can decompose the Maurer-Cartan form

∂ξgg
−1 = Qξ + Pξ (3.5)

into components of the fixed point algebra Qξ and the complement in g denoted Pξ. The

Lagrangian for this model

L = η−1 (Pξ|Pξ) (3.6)

where (M |N) = Tr(MN) is the Killing form for G and η is the lapse function encoding

reparameterisation invariance. The Lagrangian is invariant under global G transformations

and local K(G) transformations. Its equations of motion are

∂ξPξ − [Qξ,Pξ] = 0 (3.7)

(Pξ|Pξ) = 0 (3.8)

where the first set comes from variation of the coset representative g and the second is due

to variation of the lapse function η. The solution to these equations is a null geodesic on

a coset. The null geodesics encode all the 1
2 -BPS solutions [3, 4, 25] as well as the bound

state solutions in supergravity, string theory and M-theory [6–9].The bound state solutions

possess a manifest global G symmetry which permutes the branes in the bound state and a

local K(G) whose compact symmetries interpolate continuously between brane solutions [7],

the group element associated to the remaining symmetries in K(G) are responsible for shifts

in the gauge field, Ehlers transformations on the gauge fields and the Cartan sub-algebra

acts as a conformal transformation on the metric, for a review of these ideas see [26] and

the references therein.

4 Null geodesics on cosets of SL(2,R) and SL(3,R)

Our aim in this work is to understand the continuous symmetries within A+++
D−3 Kac-

Moody algebras when truncated to sl(2,R) and sl(3,R) sub-algebras. The relevant cosets

are SL(2,R)
SO(1,1) and SL(3,R)

SO(1,2) and solutions encoding the null geodesic motion on the coset are

presented in [7]. The major technical challenge is the extension of the dictionary, that

associates null geodesics on cosets with supergravity solutions, to include objects whose
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associated guaged field is a mixed-symmetry tensor. All the gravitational solutions asso-

ciated with real roots of A+++
D−3 have mixed-symmetry tensor fields. We commence this

section with the mapping to the well-known pp-wave and KK(D − 5) brane.

4.1 SL(2,R)/SO(1, 1): the pp-wave and KK(D-5) brane

The algebra of sl(2,R) consists of a one-dimensional Cartan sub-algebra spanned by H and

a generator E associated with a positive root and its negative root counterpart F . The

coset representative in the Borel gauge of SL(2,R)
K , where K is either SO(1, 1) or SO(2), is

g = exp(φH)exp(CE). (4.1)

The null geodesic solution [3] is given by

φ =
1

2
lnN and C = ±N−1 +K (4.2)

where K is a constant and N ≡ a+ bξ with a and b real constants. The solution has

Pξ = e2φ∂ξC = ±N∂ξN−1. (4.3)

where we choose to work with the positive sign in the following. The field φ, as it premul-

tiplies an element of the Cartan sub-algebra H embedded in A+++
D−3 , encodes the vielbein

components. More precisely the vielbein eî
j = (e−h)̂i

k
(e−h)k

j
where hi

j is the coefficient

of the generator Ki
j in the coset representative g and i < k ≤ j. We will discuss the con-

struction of the vielbein in detail below but we also refer the reader to section 2 of [27] for

a detailed argument. The dependece of h on ξ will depend crucially upon the embedding

of the Cartan sub-algebra H of sl(2,R) into the Cartan sub-algebra of A+++
D−3 .

By establishing a dictionary one identifies Pξ with a field strength whose index struc-

ture will depend upon the embedding of the positive generator E in A+++
D−3 . Let us fix

the prescription for identifying one-dimensional solutions in this way by considering the

examples of the pp-wave and the KK(D − 5) brane.

The pp-wave. To identify an SL(2,R) root system we need find only a single real root

in the root system of A+++
D−3 . Consider a positive root α of the SL(D,R) sub-group singled

out under the decomposition of A+++
D−3 carried out in section 2. In the ei basis we have

α = ei − ej for 1 ≤ i < j ≤ D (4.4)

and it is associated to the generator Ki
j and has associated Cartan sub-algebra element

H = Ki
i−Kj

j . Let us commence with the case where the index i is timelike but all other

indices are spacelike. This defines the involution on the sl(D,R) algebra to be

Ω(Ka
a+1) =

{
−Ka+1

a for 1 ≤ a < i and

Ka+1
a for i ≤ a < D.

(4.5)

The sub-algebra fixed by Ω is so(1, 1). We can now use the solution for the null geodesic

given in equations (4.2), (4.3), and originally found in [3], to read off the line element.

– 12 –
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It would however be helpful to illuminate why one may “read off” the vielbein com-

ponents. Consider the introduction of a translation generator3 Pî whose commutator with

sl(D,R) is [28]

[Pî,K
j
k] = δj

î
Pk. (4.6)

Conjugation of the translation generator by a representative element of the coset SL(D,R)

having diagonal hi
i and off-diagonal Aj

k fields non-zero gives4

gPm̂g
−1 = exp

(
hi
iKi

i

)
exp
(
Aj

kKj
k

)
Pm̂exp

(
−AjkKj

k

)
exp
(
− hiiKi

i

)
(4.7)

= exp
(
hi
iKi

i

)
[Pm̂ −Ajkδjm̂Pk +

1

2!
Aj

kδjm̂Al
nδlkPn − . . .]exp

(
− hiiKi

i

)
(4.8)

= exp
(
hi
iKi

i

)
[(e−A)m̂

k
Pk]exp

(
− hiiKi

i

)
(4.9)

= (e−A)m̂
k
(Pk − δikhiiPi +

1

2!
δikhi

iδji hj
jPj − . . .) (4.10)

= (e−A)m̂
k
(e−h)k

k
Pk (4.11)

Now we see that the combined exponentials act on Pk as a vielbein:

eî
j ≡ (e−A)̂i

k
(e−h)k

j
(4.12)

where h is diagonal and k > i. If we had repeated the conjugation of Pm̂ without any

off-diagonal contributions to the vielbein (i.e. Aj
k = 0) then we would have found

eî
j ≡ (e−h)̂i

j
. (4.13)

Returning to the example we may now read off the non-trivial components of the

vielbein for the solution

eî
i = N−

1
2 , eĵ

j = N
1
2 and eî

j = (e−A)̂i
j

= −Aî
j (4.14)

where i and j now take fixed values given by the choice of root and i < j. The field Ai
j

is determined from the null geodesic motion on the coset. Pξ = N∂ξN
−1 is identified with

the components of a field strength for Ai
j as follows

Fξi
j ≡ ∂[ξAi]

j = N∂ξN
−1. (4.15)

With this definition we have differentiated between the sets of (antisymmetrised) coordi-

nates, after all one may wonder why we have assumed that the exterior derivative hits

the first set of indices on A and not the second. It is also worth emphasising that with

this definition we are treating Ai
j as a scalar object under the covariant derivative as the

dictionary identifies components of F with the components of a one-form. We only have

a vector field strength, which we identified with a component of the Maurer-Cartan form.

We do not construct a full [2,1] field strength tensor and for the moment the extra indices

3We have adopted a hatted index to indicate a curved space-time coordinate while an unhatted index

to indicate a flat tangent space coordinate as in [7].
4We remain in the Borel gauge for the group element so that k > j.
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on A play no role. We may put all sets of indices on an equal footing by forming the [2,2]

field strength Fξi
ξj = Dξ(N∂ξN−1) ≡ D[ξ(∂[ξAi]

j]), where there is no summation over the

repeated ξ indices and the derivative D is covariant with respect to the vielbein encoded

in the Cartan sub-algebra of the coset. However in order to find the off-diagonal vielbein

components we will immediately remove the second derivative and the covariant deriva-

tive plays no role in this solution. It will however be important in later mixed symmetry

solutions that we will develop. We may return to equation (4.15). As Ai
j = Ai

j(ξ) then

∂[ξA
j
i] = ∂ξAi

j . It is useful to embed the field strength in space-time using the vielbein

so that

Fξ̂î
ĵ = eî

kel
ĵFξ̂k

l = ∂ξ̂N
−1. (4.16)

Hence Aî
ĵ = N−1 + c, with some constant c. Consequently Aî

j = ek̂
jAî

k̂ = N−
1
2 (1 + cN)

and so the off-diagonal component of the vielbein is

eî
j = −N−

1
2 (1 + cN). (4.17)

Imposing that the solution is asymptotically flat fixes c = −1 and writing N = 1 + K

we have:

eî
i =

1√
1 +K

, eĵ
j =
√

1 +K and eî
j =

K√
1 +K

. (4.18)

This gives non-trivial metric components

gî̂i = − 1

1 +K
+

K2

1 +K
= −(1−K) (4.19)

gîĵ = K (4.20)

gĵĵ = (1 +K) (4.21)

and the line element

ds2 = −(1−K)(dti)2 + 2Kdtidxj + (1 +K)(dxj)2 + dykdylη
(D−2)
kl (4.22)

= 2Kdu2 − 2dudv + dykdylη
(D−2)
kl (4.23)

where u = 1√
2
(t + x) and u = 1√

2
(t − x) are light cone coordinates. The linear function

N(ξ) once embedded in space-time becomes a linear function of one of the transverse yk

coordinates. A crucial step in deriving the one-dimensional solution was the assumption

that N was a harmonic function of the single variable. Once the fields of the solution have

been embedded in space time it is clear that all D−2 transverse coordinates are equivalent.

Hence it is possible to promote the linear function N to be a harmonic function in the

transverse D − 2-dimensional sub-space. Choosing N to have the form

N = 1 +
M

rD−4
, (4.24)

where r2 =
∑D−2

k=1 (yk)2, gives a single centre pp-wave solution of eleven dimensional super-

gravity found in [29] and found in the case of general relativity in D = 4 in [30].
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The KK monopole. Let us consider a second example of a solution derived from a

single root. We will derive the KK(D − 5) monopole from a real root at level one in the

decomposition of A+++
D−3 . This example will be the prototype for associating solutions to

roots in the remainder of this paper. Let us consider the root whose generator has the

Young table shown in equation (2.4). The SL(2,R) coset representative is again of the

form shown in equation (4.1) but now we take the level one root to be the single positve

root of an SL(2,R) embedded in A+++
D−3 . The generators are

H = −(K1
1 +K2

2 +K3
3) +KD

D and E = R456...D,D. (4.25)

We will work with the involution with ε = (−), where the sub-group is SO(1, 1), by choosing

x4 to be the time dimension. We note that we could have picked any one of x4, x5, . . . x(D−1)

to be the temporal coordinate while ensuring that Ω(E) = F , however if we had picked

xD to be temporal as the index appears twice in the generator E we would have found

Ω(E) = −F and the local sub-group would have been SO(2).

The field A456...D,D is related by Hodge duality to a vielbein field Aî
D where i ∈

{1, 2, 3}. Once again we will use the null geodesic motion to find an expression for the

off-diagonal components of the vielbein in terms of N , the linear function encoding the

solution. As we suggested earlier we may simply take covariant derivatives, indicated here

by D, on all sets of indices

Fξ456...D,ξD = Dξ(NDξN−1) ≡ DξDξA456...D,D. (4.26)

The non-trivial diagonal elements of the vielbein are

eî
i = N

1
2 for i ∈ {1, 2, 3} and eD̂

D = N−
1
2 . (4.27)

Upon using the diagonal vielbein to embed the field strength in space-time we have

Fξ̂4̂5̂6̂...D̂,ξ̂D̂ = Dξ̂(Dξ̂N
−1) ≡ Dξ̂Dξ̂A4̂5̂6̂...D̂,D̂ (4.28)

where we have made use of the identity Dξ̂(eî
i) = 0. Before carrying out the Hodge

dualisation it will be useful to pick an embedding of ξ̂ identifying the parameter with one

of the three tranverse directions labelled by {1̂, 2̂, 3̂} - for this example we will pick ξ̂ = 1̂.

Next we Hodge dualise the first set of indices to get

?1F1̂4̂5̂6̂...D̂,ξ̂D̂ ≡ F2̂3̂,1̂D̂ = −D1̂(N∂1̂N
−1) ≡ D1̂∂[2̂A3̂],D̂ (4.29)

⇒ ∂1̂N = ∂[2̂A3̂]
D̂. (4.30)

We have implicitly used Dξ̂(gµ̂ν̂) = 0 to derive the expressions above. Had we embedded

the solution with ξ̂ = 2̂ or ξ̂ = 3̂ we would have found

−∂2̂N = ∂[1̂A3̂]
D̂ or (4.31)

∂3̂N = ∂[1̂A2̂]
D̂, (4.32)

– 15 –



J
H
E
P
0
7
(
2
0
1
4
)
1
1
5

respectively. The three individual one-dimensional scalars Aî
D̂ may be collected together

to form a three-dimensional vector AD and simultaneously N may be made a harmonic

function both of which are now dependent on three coordinates. We emphasise that this

enhancement of the fields is an application of the symmetry of the background metric in

the three transverse directions labelled by {1̂, 2̂, 3̂}. We are left with a single equation in

the three dimensional subspace

∇N = ∇ ∧AD̂ (4.33)

which, in the Euclidean signature, is the equation defining a Taub-NUT [31, 32] or the

generalised Gibbons-Hawking instanton metric [33, 34] on the four-dimensional Euclidean

subspace spanned by x1̂, x2̂, x3̂ and xD̂. Explicitly we suppose N takes the form N = 1+ 2K
r

and then upon changing to spherical coordinates we find Aφ = 2K cos θ up to a function

of φ and the non-trivial vielbein components are

er̂
r = N

1
2 , eθ̂

θ = N
1
2 , eφ̂

φ = N
1
2 , eφ̂

D = 2KN−
1
2 cos θ and eD̂

D = N−
1
2 . (4.34)

The metric is the Euclidean Taub-NUT metric embedded in a D-dimensional Minkowski

space-time discovered in [35, 36]:

ds2 = N(dr2 + r2dθ2 + r2 sin2 θdφ2) +N−1(dxD + 2K cos θdφ)2 + dΣ(1,D−5). (4.35)

To avoid a conical singularity dxD is periodically identified. When D = 5 this is the

KK-monopole metric, for D > 5 we refer to this as the KK(D − 5) brane which upon

dimensional reduction along dxD gives a (D − 5) brane metric.

The Young tableaux appearing at level L and associated to real roots shown in equa-

tion (2.7) all have a two-dimensional transverse space. It will benefit us to return to

equation (4.33) and investigate the solution when it is smeared down to two dimensions.

Let us suppose we smear the solution along x3 so that N and Aî
D̂ depend only on x1 and

x2. The components of equation (4.33) become:

∂2̂A3̂
D̂ = ∂1̂N, ∂1̂A3̂

D̂ = −∂2̂N and ∂1̂A2̂
D̂ = ∂2̂A1̂

D̂. (4.36)

The last equation trivialises the field strength component F1̂2̂
D̂, while the first pair are the

Cauchy-Riemann equations for an analytic function

f = N + iA3̂
D̂. (4.37)

Smearing the harmonic function N to two dimensions we have

N = 1 +K ln (r2) = 1 +K ln (zz̄) = 1 +K ln (z) +K ln (z̄) (4.38)

where z = x1 + ix2 and

f = 1 +K ln (z) +K ln (z̄) + iA3̂
D̂ (4.39)

will be holomorphic if A3̂
D̂ = −iK ln ( zz̄ ) = 2Kθ, where θ is the argument of z. We note

that |f |2 = N2 + 4K2θ2. Given the distinguished transverse space the appearance of

holomorphic functions to describe co-dimension two solutions is not surprising - they will

be a feature of the higher level solutions as well.
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4.2 SL(2,R)/SO(1, 1): higher level solutions

In this section we will truncate A+++
D−3 to sl(2,R) sub-algebras using roots of higher level.

The null geodesic motion on these cosets will encode the solutions generated by the Geroch

group - in particular we will reproduce the infinite tower of gravitational solutions found

in [12] and in so doing we shall understand the appearance of holomorphic functions that

describe the solution.

The A+++
D−3 algebra contains infinitely many positive real roots associated with gener-

ators having the symmetries of the Young table in equation (2.7). There are a set of roots

of this type occurring at each level L which can be expressed in the ei basis using only

e3, e4, . . . eD as

α = ei − ej + L

(
D∑
k=3

ek

)
(4.40)

where i, j ∈ {3, . . . , D} and i 6= j. Let the specific α with i = D and j = 3 be the positive

simple root of an SL(2,R) embedded within A+++
D−3 . The generators of SL(2,R) in terms of

the generators of A+++
D−3 are

H = −L(K1
1 +K2

2)−K3
3 +KD

D, (4.41)

E = R345...D| ... |345...D|456...D|D and (4.42)

F = R345...D| ... |345...D|456...D|D. (4.43)

In the previous section the level one root of the above type was shown to be associated with

the KK(D − 5) brane. In that case the solution was constructed from the level one root

α = e4 + e5 + . . .+ eD−1 + 2eD (4.44)

and one of the set of coordinates {x4, x5, . . . , xD−1} was chosen to be timelike. The involu-

tion Ω is chosen so that it acts on the generator R45...(D−1)D|D as Ω(R45...(D−1)D|D) =

R45...(D−1)D|D and the involution invariant sub-algebra is SO(1, 1). For the higher

level roots

α = (L− 1)e3 + L(e4 + e5 + . . .+ eD−1) + (L+ 1)eD (4.45)

choosing one of the coordinates {x4, x5, . . . , xD−1} to be timelike implies that the involution

acts on the associated element of the algebra as

Ω(E) = (−1)L+1F where t ∈ {x4, x5, . . . , xD−1} (4.46)

where we have used the notation of equations (4.42) and (4.43) to indicate the positive and

negative generators. The sub-algebra left invariant under the involution will consequently

be SO(1, 1) for odd L and SO(2) for even L. Of course by choosing x3 or xD to be the sole

timelike coordinate the situation is reversed as the involution then acts as

Ω(E) = (−1)LF where t ∈ {x3, xD}. (4.47)
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We will focus our attention on null geodesics on SL(2,R)
SO(1,1) and will differentiate in the following

between odd and even level roots where needed.

To construct the solutions in the previous section we made use of a coset model dic-

tionary which identified the field multiplying the level one generator in the Maurer-Cartan

form with the [(D − 2)|1]-form field strength Fξ34...D|D which could then be dualised. We

therefore propose an extension of the dictionary which includes higher level objects ap-

pearing at arbitrary level L and identifies them with a democratic field strength. These

would be associated with a [(D − 1)| . . . |(D − 1)|(D − 2)|2]-form field strength which we

can convert into a [1| . . . |1|2|2]-form field strength through by dualisation of the first L sets

of indices. The procedure for this is simply the application of covariant derivatives which

are anti-symmetrised with each set of indices giving the dictionary defining components of

tensors on the geodesic

Fξ3...D|...|ξ3...D|ξ4...D|ξD = Pξ3...D|...|ξ3...D|ξ4...D|ξD ≡ DLξ Pξ. (4.48)

In order to Hodge dualise this field strength we identify the coset coordinate ξ with a

dimension in the transverse space (x1, x2) and embed the field strength in space-time using

the diagonalised vielbein (see equation (4.13)) which is derived from the Cartan element

in equation (4.41). The non-trivial vielbein components are

e1̂
1 = N

L
2 , e2̂

2 = N
L
2 , e3̂

3 = N
1
2 and eD̂

D = N−
1
2 . (4.49)

The field strength is then dualised over its first L sets of indices, and the remaining D

index is raised. The dualisation is sensitive to the choice of temporal coordinate in the

background space-time. All the solutions associated to the positive root α give product

space-time manifolds of the form M4 ⊗ ND−4, where M4 is a four-dimensional manifold

and ND−4 is a (D − 4)-dimensional manifold which is not warped in the solution. The

coordinates of ND−4 are {x4, x5, . . . , xD−1} and the dualised field strength depends upon

whether ND−4 has Euclidean or Minkowski signature. When N is Minkowski the dualised

field strength is given by

F2̂|...|2̂|2̂3̂|1̂
D̂ = (−1)(D−1)(L−1)DL

1̂
(NP1̂) for ξ̂ = 1̂ and (4.50)

F1̂|...|1̂|1̂3̂|2̂
D̂ = (−1)D(L−1)DL

2̂
(NP2̂) for ξ̂ = 2̂. (4.51)

While if N is Euclidean (so that either x3 or xD is the sole temporal coordinate) then the

dual field strength is

F2̂|...|2̂|2̂3̂|1̂
D̂ = (−1)D(L−1)DL

1̂
(NP1̂) for ξ̂ = 1̂ and (4.52)

F1̂|...|1̂|1̂3̂|2̂
D̂ = (−1)(D−1)(L−1)DL

2̂
(NP2̂) for ξ̂ = 2̂. (4.53)

The signs of the pair of equations in each case have switched if N is chosen to have

Euclidean rather than Minkowski signature. From the null geodesic motion on SL(2,R)
SO(1,1) we

have Pξ = N∂ξN
−1 and the set of equations above may be summarised by

Fĵ|...|ĵ|ĵ3̂|̂i
D̂ = κ(ε̂iĵ)

LDL+1
î

N where

{
κ = −(−1)D(L−1) if N is Euclidean

κ = (−1)(D−1)(L−1) if N is Minkowski
(4.54)
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where î, ĵ ∈ {1̂, 2̂} and ε̂iĵ is the Levi-Civita symbol in the two-dimensional sub-space with

coordinates (x1, x2), normalised such that ε1̂2̂ = 1. The dual field strengths are derivatives

of the off-diagonal components of the vielbein A3̂|
D̂

Fĵ|...|ĵ|ĵ3̂|̂i
D̂ = DîD

L−1
ĵ
D[ĵA3̂]

D̂ = DîD
L
ĵ
A3̂

D̂ (4.55)

where we have assumed that A3̂
D̂ is dependent on only the transverse coordinates x1 and

x2. The combination of equations (4.54) and (4.55) give a monopole-like partial differential

equation of order L+1 to solve for A3̂
D̂ which may be trivially solved for a one-dimensional

harmonic function N .

We may unsmear the one-dimensional equation to two dimensions5 by taking advantage

of the symmetry between the x1 and x2 coordinates in the metric (see equation (4.49)) for

the objects associated to arbitrary level L generators of A+++
D−3 . The constraint, coming

from the null geodesic motion on the coset, that N is a harmonic function is maintained

so that N is a harmonic function in the two transverse dimensions (x1, x2) and takes the

form N = a+ b ln(r) where r2 ≡ (x1)2 + (x2)2. The consistent two-dimensional version of

equations (4.54) and (4.55) gives

DîDĵ1Dĵ2 . . .DĵLA3̂
D̂ = κ(ε̂i1ĵ1)(ε̂i2ĵ2) . . . (ε̂iLĵL)DîDî1Dî2 . . .DîLN (4.56)

where în, ĵn ∈ {1̂, 2̂} for 0 < n ≤ L and n ∈ Z. For guidance in determining solutions

to this equation we isolate the terms with only partial derivatives, having integrated both

sides with respect to xi and setting the constant to zero, we have

∂ĵ1∂ĵ2 . . . ∂ĵLA3̂
D̂ = κ(ε̂i1ĵ1)(ε̂i2ĵ2) . . . (ε̂iLĵL)∂î1∂î2 . . . ∂îLN (4.57)

which have a convenient set of solutions that can be summarised for the odd and even

levels as

Odd L : A3̂
D̂ = κ(−1)

L+1
2 B (4.58)

Even L : A3̂
D̂ = κ(−1)

L
2N (4.59)

where B is the harmonic conjugate of N such that ∂iB = εij∂jN . Equation (4.57) gives

2L equations to solve each of which is idential to one of the L+ 1 equations of the form

∂n
1̂
∂L−n

2̂
A3̂

D̂ = κ(−1)L−n∂n
2̂
∂L−n

1̂
N (4.60)

where 0 ≤ n ≤ L for n ∈ Z. Consider first the case when L is even: upon substitution of

A3̂
D̂ = κ(−1)

L
2N , by virtue of the commutativity of the partial derivative, there remain

only L
2 independent equations to solve (those for which 0 ≤ n < L

2 ). As N is harmonic in

(x1, x2) we have ∂2
1̂
N = −∂2

2̂
N and by applying this identity m = L

2 − n times we see the
L
2 equations are all solved identically:

∂n
1̂
∂L−n

2̂
A3̂

D̂ = κ(−1)
L
2 ∂n

1̂
∂L−n

2̂
N = κ(−1)

L
2

+m∂n+2m
1̂

∂L−n−2m
2̂

N = κ(−1)L−n∂n
2̂
∂L−n

1̂
N.

(4.61)

5In section 4.1 we were able to unsmear the one-dimensional KK-monopole solution to three dimensions

due to the isometries of the metric in {x1, x2, x3}.
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For odd values of L we substitute equation (4.58) into (4.57) to obtain

κ(εĵL îL)(−1)
L+1
2 ∂ĵ1∂ĵ2 . . . ∂ĵL−1

∂îLN = κ(ε̂i1ĵ1)(ε̂i2ĵ2) . . . (ε̂iLĵL)∂î1∂î2 . . . ∂îLN (4.62)

which simplifies to (dropping constant terms)

(−1)
L−1
2 ∂ĵ1∂ĵ2 . . . ∂ĵL−1

N = (ε̂i1ĵ1)(ε̂i2ĵ2) . . . (ε̂iL−1ĵL−1
)∂î1∂î2 . . . ∂îL−1

N (4.63)

where, as L − 1 is even, these equations are identical to the set obtained for even L and

shown to be identities in equation (4.61).

The proof that equations (4.58) and (4.59) are solutions of equation (4.57) relied solely

upon the fact that partial derivatives commute. The covariant derivatives of the full equa-

tion (4.56) do not in general commute. However if the harmonic function N is further

constrained to be a holomorphic or anti-holomorphic function in the complex variables

z = x1 + ix2 or z̄ = x1 − ix2 then the component of the curvature tensor R1̂2̂1̂2̂ in the

transverse space vanishes for arbitrary level (see appendix B) and the covariant derivatives

in these coordinates do commute. This observation guarantees that the equations for the

dual field strength may be rearranged so that they take the form

Dn
1̂
DL−n

2̂
A3̂

D̂ = κ(−1)L−nDn
2̂
DL−n

1̂
N (4.64)

where 0 ≤ n ≤ L for n ∈ Z. We note that D1̂D1̂N = −D2̂D2̂N and so the arguments

for the partial derivatives acting on the harmonic function carry across to the covariant

derivatives acting on the (anti-)holomorphic function and the vielbein component A3̂
D̂ is

given by equations (4.58) and (4.59) for the odd and even level fields.

The form of the full metric depends on the whether the dual gravtion field appears at

an even or odd level in the decomposition of A+++
D−3 .

4.2.1 SL(2,R)/SO(1, 1): arbitrary even levels

The even level root given in equation (4.40) is associated with a coset SL(2,R)/SO(1, 1) if

the temporal coordinate is xi or xj and consequently the flat D − 4-dimensional space N
is Euclidean. Hence from equation (4.54) we have κ = (−1)(1−D) and from equation (4.59)

A3̂
D̂ = (−1)(1−D+L

2
)N . For the example with i = D and j = 3 we have

ds2 = NL
(

(dx1̂)2 + (dx2̂)2
)

+N(dx3̂)2 −N−1(dxD̂ −A3̂
D̂dx3̂)2 + dΣ2

(D−4) (4.65)

when xD is the temporal coordinate, and

ds2 = NL
(

(dx1̂)2 + (dx2̂)2
)
−N(dx3̂)2 +N−1(dxD̂ −A3̂

D̂dx3̂)2 + dΣ2
(D−4) (4.66)

when x3 is the temporal coordinate. The only non-zero components of the Einstein tensor

for this metric are proportional to
(

(∂1N)2 + (∂2N)2
)

when N is harmonic. For all levels,

except the level 0 solution which trivially satisfies the Einstein equations, this becomes a

vacuum solution when N is (anti-)holomorphic.
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4.2.2 SL(2,R)/SO(1, 1): arbitrary odd levels

The odd level root given in equation (4.40) is associated with a coset SL(2,R)/SO(1, 1) if

the temporal coordinate is neither xi or xj but one of the set {x4, x5, . . . , xD−1} and the

flat D − 4-dimensional space-time N is Minkowski. Hence from equation (4.54) we have

κ = 1 and from equation (4.58) A3̂
D̂ = (−1)

L+1
2 B where ∂1̂B = ∂2̂N and ∂2̂B = −∂1̂N .

For the example with i = D and j = 3 we have

ds2 = NL
(

(dx1̂)2 + (dx2̂)2
)

+N(dx3̂)2 +N−1
(
dxD̂ −AD̂

3̂
dx3̂
)2

+ dΣ2
(1,D−5). (4.67)

The only non-zero components of the Einstein tensor for this metric are again proportional

to
(

(∂1N)2 + (∂2N)2
)

. Taking N to be (anti-)holomorphic ensures this is a solution to the

vacuum Einstein equations.

4.3 SL(3,R)/SO(1, 2): composite gravitational solutions

In this section we will construct what we will refer to as bound states of KK-monopoles

consisting of pairs of the solutions described in section 4.2. To do this we will truncate

A+++
D−3 to sl(3,R) sub-algebras whose simple positive roots consist of two real roots which

individually are the simple positive roots of two of the sl(2,R) sub-algebras discussed in

section 4.1 and 4.2.

Bound states of two KK-monopoles, just as for the dyonic membrane - the bound state

of the membrane and fivebrane in supergravity [10] discussed in the context of E11 in [6, 7],

correspond to null geodesics on the coset of SL(3,R)
SO(1,2) . The algebra sl(3,R) has non-trivial

commutators

[H1, E1] = 2E1, [H1, E2] = −E2, [H1, E12] = E12

[H2, E1] = −E1, [H2, E2] = 2E2, [H1, F12] = −F12 (4.68)

[E1, E2] = E12

[F1, F2] = −F12

and the sub-algebra so(1, 2) is invariant under the involution Ω which acts as Ω(E1) = F1,

Ω(E2) = −F2, Ω(E12) = F12, Ω(H1) = −H1 and Ω(H2) = −H2. There are three canonical

sl(2,R) sub-algebras within sl(3,R) and truncation to any of these three sub-algebras leaves

one of two cosets either SL(2,R)
SO(1,1) or SL(2,R)

SO(2) . For the involution given above the subsets of

generators {E1, H1, F1} and {E12, H1 + H2, F12} defines the coset SL(2,R)
SO(1,1) and correspond

to KK-monopole solutions and other solutions as described in section 4.1 and 4.2, while

the generators {E2, H2, F2} and the involution define an SL(2,R)
SO(2) coset whose geodesics we

have not discussed in detail in the present paper. In this way the full solution related to

the null geodesic on the full coset SL(3,R)
SO(1,2) is understood to correspond to a bound state of

a pair of KK-monopole and similar objects. There are two harmonic functions N1 and N2

which are used to define the solution and related to each other by

N2 = sin2(β) + cos2(β)N1 (4.69)
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where β ∈ R, each of which may be thought of as the harmonic function defining the

SL(2,R) coset solutions of the previous sections. The parameter β encodes the action of

the generator of the compact symmetry in so(1, 2) which transforms the charges of the

harmonic functions.6

Bound states consisting of two KK-monopoles. We will construct the bound state

solutions which possess a common two-dimensional transverse space whose simple positive

roots both appear at level one in the decomposition of A+++
D−3 . Since sl(3,R) cannot be

constructed from level one roots in A+++
1 this is only applicable for algebras with D ≥ 5

and the solutions we find will be five-dimensional solutions embedded in a D-dimensional

background, that is space-time manifolds found are product manifolds of the form M5 ⊗
ND−5, where the dimension of the manifold is indicated by the subscript label and ND−5

is either a Euclidean or a Minkowski space. Consider the pair of real level one roots of

A+++
D−3 given by

α1 = eD − e3 +
D∑
i=3

ei (4.70)

α2 = eD−1 − eD +
D∑
i=3

ei (4.71)

and note that these satisfy

〈α1,α2〉 = −1 (4.72)

and so are the simple positive roots of an sl(3,R) sub-algebra whose third positive root is

α1 +α2 = eD−1 − e3 + 2

D∑
i=3

ei. (4.73)

They have the Cartan elements

H1 = −
(
K1

1 +K2
2 +K3

3

)
+KD

D (4.74)

H2 = −
(
K1

1 +K2
2 +KD

D

)
+K(D−1)

(D−1) (4.75)

and the three positive generators for this example are

E1 = R4...D|D, E2 = R3...(D−1)|(D−1) and E12 = [E1, E2] = −R3...D|4...D|(D−1). (4.76)

Imposing the involution to act as Ω(E1) = F1 and Ω(E2) = −F2 is equivalent to set-

ting xD−1 to be the temporal coordinate. Bound state solutions are identified with null-

geodesics on cosets of SL(3,R)
SO(1,2) where the representative coset group element is expressed as

g = exp(φ1H1 + φ2H2) exp(C1E1 + C2E2 + C12E12)

6See section 3.6 of [7] for a discussion of the action of the compact transformations of the sub-group

SO(1, 2).

– 22 –



J
H
E
P
0
7
(
2
0
1
4
)
1
1
5

where φ1, φ2, C1, C2 and C12 are functions of the null geodesic parameter ξ. These brane

coset models were first solved for bound state solutions in [7] where the ansatz φ1 = 1
2 lnN1

and φ2 = 1
2 lnN2 is used. The diagonal portion of the metric for our bound state as

ds2
diagonal = N1N2

(
(dx1̂)2+ (dx2̂)2

)
+N1(dx3̂)2−N−1

2 (dxD̂−1)2 +
N2

N1
(dxD̂)2 + dΩ2

(D−5).

(4.77)

where N1 = a + bξ, N2 = c + dξ and ξ is the parameter labelling translations along the

null geodesic. As for the sl(2,R) case described in detail earlier the Maurer-Cartan form

is split as ∂ξgg
−1 = Pξ + Qξ where Qξ indicates generators of the so(2, 1) algebra of the

isometry group of the coset. The remainder of the coset is spanned by the Cartan elements

H1, H2 and H12 and S1 ≡ 1
2(E1−F1), S2 ≡ 1

2(E2 +F2) and S12 ≡ 1
2(E12−F12), where F1,

F2 and F12 are the generators associated to the negative roots −α1, −α2 and −α12. The

coefficients of the S1, S2 and S12 generators in the Maurer-Cartan form are found [7] to be

Pξ,1 = −
√
α

b

∂ξN1

N1

√
N2

, Pξ,2 = −
√
α

d

∂ξN2

N2

√
N1

and Pξ,12 = −
√
d

b

∂ξN1√
N1N2

, (4.78)

where α = N2∂ξN1 −N1∂ξN2 = bc − ad. The form of these Pξ,i are chosen so that terms

in the square root correspond to functions of the parameter β which is mapped between

[0, π/2] by the compact local symmetry. Specifically the harmonic functions are N1 = 1+qξ

and N2 = 1 + qξ cos2 β so that α = q sin2 β. Each Pξ corresponds to a dual-gravity field

whose construction is given by the same dictionary used in the previous sections:

Fξ4...D|D = Pξ,1,
Fξ3...D−1|D−1 = Pξ,2 and (4.79)

Fξ4...D|ξ3...D|D−1 = DξPξ,12.

We first identify ξ with one of the transverse coordinates x1 or x2. After dualisations and

transformations, which are identical to those performed in previous sections, the dual field

strengths are, when ξ is identified with x1,

F2̂3̂
D̂ = sin(β)

∂1̂N1

N2
= D2̂(A1)3̂

D̂, (4.80)

F2̂D̂
D̂−1 = (−1)D tan(β)

∂1̂N2

N1
= D2̂(A2)D̂

̂(D−1) and (4.81)

F2̂|2̂3̂
D̂−1 = (−1)D cos(β)D1̂D1̂N1 = D2̂D2̂(A12)3̂

̂(D−1). (4.82)

As with the previous examples, the one-dimensional solutions may be unsmeared using the

symmetry of the transverse directions to two-dimensional fields which are functions of x1

and x2. The full equations are then

Fî3̂
D̂ = sin(β)

ε̂iĵ∂ĵN1

N2
= Dî(A1)3̂

D̂ (4.83)

FîD̂
D̂−1 = (−1)D tan(β)

ε̂iĵ∂îN2

N1
= Dî(A2)D̂

D̂−1 (4.84)

Fî3̂
D̂−1 = (−1)D cos(β)ε̂i1ĵ1 ε̂i2ĵ2Dĵ1

Dĵ2
N1 = Dî1

Dî2
(A12)3̂

D̂−1. (4.85)
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An integrability condition on these equations is provided, in the two dimensional space, by

dA1 = sin(β)
∗dN1

N2
(4.86)

⇒ 0 = ddA1 = sin(β) d

(
∗dN1

N2

)
(4.87)

or, in components,

0 = εki∂k∂i(A1)3̂
D̂ = sin(β)εkiεij∂k

(
∂jN1

N2

)
(4.88)

so that, in order for this system to be integrable we need:

∂i

(
∂iN1

N2

)
= 0 (4.89)

with summation over i implied. If we take N1 to be harmonic and N2 to limit to N1 as

described by (4.69) the integrability condition reduces to:

(∂1N1)2 + (∂2N1)2 = 0. (4.90)

This is solved by taking N1, and subsequently N2, to be (anti-)holomorphic,7 which was the

same condition required for the component KK-monopole solutions to be vacuum Einstein

solutions. The holomorphic functions N1 = 1 + f(z) and N2 = 1 + cos2(β)f(z) have dual

gravity fields given by

(A1)3̂
D̂ = B1 sinβ (4.91)

(A2)D̂
D̂−1 = (−1)DB2 tanβ (4.92)

(A12)3̂
D̂−1 = (−1)(D+1)N1 cosβ (4.93)

where

∂iB1 = εij
∂jN1

N2
(4.94)

∂iB2 = εij
∂jN2

N1
(4.95)

When β = π
2 this reduces to a single KK-monopole solution, while when β = 0 we find a

level two object as described section 4.1. One can solve equations (4.91) and (4.92) to find

(A1)3̂
D̂ = i tan(β)sec(β) ln(N2) and (4.96)

(A2)D̂
D̂−1 = i(−1)D sin(β)cos(β) ln(N1). (4.97)

7This integrability condition can also be satisfied for arbitrary harmonic functions N1 and N2 when they

are harmonic conjugates. However, the only pair of harmonic functions which would limit to each other as

described by equation (4.69) are constant functions.
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In the case of anti-holomorphic functions where f = f(z̄) the A1 and A2 solutions are

simply the opposite sign of those above. Including the off-diagonal dual gravity fields we

find the metric

ds2 =N1N2

(
(dx1̂)2 + (dx2̂)2

)
+N1(dx3̂)2 + dΩ2

|D−5| (4.98)

−N−1
2

(
dxD̂−1 − (A2)D̂

D̂−1dxD̂ − (A12)3̂
D̂−1dx3̂

)2

+
N2

N1

(
dxD̂ − (A1)3̂

D̂dx3̂
)2
.

We recall the construction of the harmonic functions in equation (4.69) of the model and

find that when β = π/2 the harmonic function N2 = 1 and we recover the individual root

solution corresponding to α1 = (D, 3)1. When β = 0 only the A12 gauge field is present

and N1 = N2 ≡ N leaves us with precisely the sl(3,R) model solution with the level 2 root

α12 = α1 + α2. The metric in equation (4.98) with (anti-)holomorphic N1 and N2 has

a vanishing Ricci scalar for all β values (see appendix B) and has a vanishing curvature

tensor at the endpoints which correspond with the level 1 and level 2 solutions. However

the bound state is not a solution to the vacuum Einstein equations for β taking values in

the open set (0, π2 ). In sections 5 and 6, by considering the lift of the sigma-model to D

dimensions, we will investigate this obstruction to the full interpolating bound state being

a solution to the Einstein-Hilbert action.

4.4 SL(3,R)/SO(1, 2): composite gravitational solutions with arbitrary levels

The above construction can be generalised to include arbitrary level roots and we present

here the sl(3,R) model which has simple real roots found at arbitrary level L1 and L2 = 1

which will possess an so(1, 2) invariant sub-algebra and whose associated solutions have a

common two dimensional transverse space. Taking

α1 = eD − e3 + L1

D∑
i=3

ei and (4.99)

α2 = eD−1 − eD +
D∑
i=3

ei, (4.100)

whose inner product is −1, the algebra associated with these roots

Hα1 = −(K1
1 +K2

2) +K3
3 −KD

D, Hα2 = −(K1
1 +K2

2 +KD
D)−KD−1

D−1

E1 = RD|4...D|(3...D)1|...|(3...D)L1−1 , E2 = RD−1|3...D−1 (4.101)

E12 = RD−1|4...D|(3...D)1|...|(3...D)L1

leads us to identify the Pi fields from the coset model equations of motion with fields

FD|ξ4...D|(ξ3...D)1|...|(ξ3...D)L1−1
= DL1−1

ξ Pξ,1 (4.102)

FD−1|ξ3...D−1 = Pξ,2 (4.103)

FD−1|ξ4...D|(ξ3...D)1|...|(ξ3...D)L1
= DL1

ξ Pξ,12. (4.104)
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We may now employ the same techniques from previous sections to obtain the differential

equations which describe our dual gravity fields and unsmear these to find

Fî3̂|(̂i)1|...|(̂i)L1−1

D̂ = sin(β)DL1−1

î

(
∂îN1

N2

)
= (ε̂iĵ)

L1DL1

ĵ
(A1)D̂

3̂
(4.105)

FîD̂
ˆD−1 = tan(β)

∂îN2

N1
= ε̂iĵDĵ(A2)

ˆD−1

D̂
(4.106)

Fî3̂|(̂i)1|...|(̂i)L1

ˆD−1 = cos(β)DL1+1

î
N1 = (ε̂iĵ)

L1+1DL1+1

ĵ
(A12)

ˆD−1
3̂

. (4.107)

As we had found in the sl(3,R) model above, these equations only have complex solutions

where N1 and N2 are (anti-)holomorphic functions. The methods used to find arbitrary

level solutions in previous sections are still valid since D1̂D1̂N = −D2̂D2̂N for harmonic

functions N and R1̂2̂1̂2̂ = 0. We therefore find that

A1 = (i)L1tan(β)sec(β) LogN2 (4.108)

A2 = isin(β)cos(β) LogN1 (4.109)

A12 = (i)L1+1cos(β)N1 (4.110)

when N1 and N2 are holomorphic. When they are anti-holomorphic every i is replaced

by −i. We note that these solutions are valid for odd and even L1 when the involution is

correctly chosen so that Ω(E1) = F1 and Ω(E2) = −F2.

We must now specify the level L1 and find the appropriate involution in order to build

the full solutions. This requires us to consider the odd and even L1 separately. For odd

L1 the involution required has t = xD−1 and for even L1 t = xD so that the full set of

solutions of this form are given by

ds2 = NL1
1 N2

(
dx2

1 + dx2
2

)
+N1dx

2
3 + (−1)L1N−1

2 (dxD−1 +A2dxD +A12dx3)2

+(−1)L1+1N2

N1
(dxD +A1dx3)2 + dΩ2

(D−5). (4.111)

5 The supergravity dictionary and multiforms

The dimensional reduction to three-dimensions of a D-dimensional theory allows the re-

maining part of the theory to be expressed in terms of scalars that parameterise a coset.

The scalars of a general theory arise from both the gravity and the matter sectors of the

theory, however upon dimensional reduction some information and structure of the D-

dimensional theory is lost. In particular, without this D-dimensional information, there is

no information in the three-dimensional theory concerning the index-structure of the D-

dimensional field strength which sources any scalar field. In the present paper we face the

problem of lifting the one-dimensional coset invariant Lagrangian to D-dimensions where

the fields are mixed-symmetry tensors of GL(D,R). For the coset SL(3,R)
SO(1,2) the invariant

Lagrangian (3.6) is

L = −2(∂ξφ1)2 − 2(∂ξφ2)2 + 2(∂ξφ1)(∂ξφ2) +
1

2
(Pξ,1)2 − 1

2
(Pξ,2)2 +

1

2
(Pξ,12)2 (5.1)
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where we have set the lapse function η to minus one and ξ denotes the single spatial

coordinate. The φi encode the diagonal components of the vielbein from which the diag-

onal entries of the D-dimensional metric may be reconstructed. The φi terms lift to the

Ricci scalar constructed from the diagonal entries of the D-dimensional metric as shown

in appendix C. The remaining Pξ,i terms correspond to kinetic terms for the three mixed

symmetry fields associated with the Borel sub-algebra of sl(3,R) being considered. As

commented upon in the earlier sections there is an ambiguity in identifying Pξ,i with D-

dimensional field strengths: the supergravity dictionary for mixed symmetry fields remains

to be written. Consider the example embedded at levels zero, one and two of the decom-

position of the A+++
D−3 algebra where the mixed-symmetry gauge fields are Aµ1...µD−3|ν and

Aµ1...µD−2|ν1...νD−3|ρ (indices labelled with the same letter are implicitly antisymmetrised).

Let the notation Ω[a1|a2|...|an] denote the space of mixed-symmetry forms having the sym-

metry of the Young tableau with n columns of heights a1, a2, . . . an where a1 ≥ a2 ≥ . . . an
i.e. Aµ1...µD−3|ν ∈ Ω[D−3|1] and Aµ1...µD−2|ν1...νD−3|ρ ∈ Ω[D−2|D−3|1]. The exterior derivative

acts on the space of mixed-symmetry tensors as

d : Ω[a1|a2|...|an] → Ω[a1+1|a2|...|an] ⊕ Ω[a1|a2+1|...|an] ⊕ . . .Ω[a1|a2|...|an+1] ⊕ Ω[a1|a2|...|an|1] (5.2)

by introducing a partial derivative which is projected with the symmetries of each of the

multi-form spaces [37–41]. We include the possibility indicated by the last multi-form space

in the sequence above that the derivative is not-antisymmetrised with respect to any of

the indices of the multi-form that it acts on. For example the exterior derivative acts on

level one multiform components to define a set of field strength components within three

different spaces of mixed symmetry forms

d : (Aµ2...µD−2|ν2)→


∂µ1Aµ2...µD−2|ν2 ∈ Ω[D−3|1]

∂ν1Aµ2...µD−2|ν2 ∈ Ω[D−2|2]

∂ρAµ2...µD−2|ν2 ∈ Ω[D−2|1|1]

. (5.3)

Unlike form fields, where the exterior derivative takes p-form gauge fields to p + 1-form

fields strengths, a multi-form gauge field is mapped to multiple multi-form field strengths.

It is therefore ambiguous which higher-dimensional field strength components should be

preferred in the supergravity dictionary and equated with Pξ,1 and Pξ,2. We will argue

that there is a minimal consistent way to identify Pξ,i which is indicated by the embedding

of the sl(3,R) into the algebra of A+++
D−3 and our guiding principle will be to ensure that

the equations for Pξ which reflect the sl(3,R) structure are maintained by the dictionary.

For a representative coset element

g = exp(φ1H1 + φ2H2) exp(C1E1 + C2E2 + C12E12) (5.4)

we compute

Pξ,1 = exp (2φ1 − φ2)∂ξC1,

Pξ,2 = exp (2φ2 − φ1)∂ξC2 and (5.5)
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Pξ,12 = exp (φ1 + φ2)(∂ξC12 −
1

2
∂ξC1C2 +

1

2
∂ξC2C1)

= exp (φ1 + φ2)∂ξC12 −
1

2
Pξ,1C2 +

1

2
Pξ,2C1.

Our proposal will be most simply motivated by first considering a simple alternative dic-

tionary. Suppose that, contrary to our proposition, the multiforms were treated as form

fields by declaring that a set of their antisymmetric indices are in the priveleged position of

being space-time form indices while the remaining indices are treated as internal indices.

For example suppose that we treat Aµ1...µD−3|ν as a D−3 form (carrying an internal vector

index) and Aµ1...µD−2|ν1...νD−3|ρ as a D−2 form with corresponding field strengths given by

F[D−2|1] ≡ (D − 2)∂µ1Aµ2...µD−2|ν and (5.6)

G[D−1|D−3|1] ≡ Gµ1...µD−1|ν1...νD−3|ρ

= (D − 1)

(
∂µ1Aµ2...µD−1|ν1...νD−3|ρ

− (D − 2)

2
∂µ1Aν1...νD−3|µD−1

Aµ2µ3...µD−2|ρ

+
(D − 2)

2
∂µ1Aµ2µ3...µD−2|ρAν1...νD−3|µD−1

)
. (5.7)

The definition of G[D−1,D−3,1] is found using

[Ra1a2...aD−3|b, Rc1c2...cD−3|d] = Ra1...aD−3d|c1...cD−3|b −Rc1...cD−3b|a1...aD−3|d + . . . (5.8)

where the ellipsis indicates level two generators in the full A+++
D−3 algebra beyond the trun-

cation to the sl(3,R) algebra encoding the bound state we are considering here. The gauge

transformations are:

δAµ1...µD−3|ν = (D − 3)∂µ1Λµ2...µD−3|ν (5.9)

δAµ1...µD−2|ν1...νD−3|ρ = (D − 2)∂µ1Λµ2...µD−2|ν1...νD−3|ρ (5.10)

− (D − 4)(D − 3)

2
(∂µ1Λµ2...µD−3|ρAν2...νD−3|µD−2

+Aµ1...µD−3|ρ∂ν1Λν2...νD−3|µD−2
)

By comparison with the expression for Pξ,12 in equation (5.5) we see that while Pξ,2 is

identified with a component of F[D−2|1], Pξ,1 would be identified with 2∂µ1Aν1...νD−3|µ2 ≡
F[D−3|2]. The dictionary is not well defined at level one as the two level one fields are

treated differently. Consider instead the proposition that the exterior derivative acts on

level two multiform fields in the following minimal manner

d : Ω[D−2|D−3|1] → Ω[D−1|D−3|1] ⊕ Ω[D−2|D−2|1] ⊕ Ω[D−2|D−3|2] (5.11)

we refer to this as a minimal action when we neglect the mapping into the multiforms

with the symmetries of four column wide Young tableaux. At level one we consider the

full mapping:

d : Ω[D−3|1] → Ω[D−2|1] ⊕ Ω[D−3|2] ⊕ Ω[D−3|1|1] (5.12)
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so that in both cases the derivative is distributed across three sets of indices. Consider a

five-dimensional example8 constructed using the Borel sub-algebra

H1 = −(K1
1 +K2

2)−K3
3 +K5

5,

H2 = −(K1
1 +K2

2)−K5
5 +K4

4, (5.13)

E1 = R45|5, E2 = R34|4 and E12 = R345|45|4

where the involution Ω is chosen to be consistent with taking x4 as the single temporal

coordinate. The field strengths are exterior derivatives of multiform tensors Aµ1µ2|ν and

Aµ1µ2µ3|ν1ν2|ρ and the dictionary identifies Pξ with components across different multiform

spaces which reduce to a sum of vectors as

Pξ,1 = Fξ45|5 + F45|ξ5 + F45|5|ξ ≡ dξA45|5, (5.14)

Pξ,2 = Fξ34|4 + F34|ξ4 + F34|4|ξ ≡ dξA34|4 and (5.15)

Pξ,12 = Gξ345|45|4 +G345|ξ45|4 +G345|45|ξ4 ≡ dξA345|45|4. (5.16)

Now, as vectors,

Fξ45|5 = F45|ξ5 = F45|5|ξ = ∂ξ(A45|5) (5.17)

whereas upon the lift to five dimensions these components, while all equal, arise from three

different multiform field strengths. While at level two we have

Gξ345|45|4 ≡ ∂ξA345|45|4 −
1

2
F45|ξ5A34|4 +

1

2
Fξ34|4A45|5 (5.18)

= G345|ξ45|4 ≡ ∂ξA345|45|4 −
1

2
Fξ45|5A34|4 +

1

2
F34|4|ξA45|5 (5.19)

= G345|45|ξ4 ≡ ∂ξA345|45|4 −
1

2
F45|5|ξA34|4 +

1

2
F34|4|ξA45|5 (5.20)

consequently

Pξ,12 = dξA345|45|4

− 1

2
(Fξ45|5 + F45|ξ5 + F45|5|ξ)A34|4 +

1

2
(Fξ34|4 + F34|ξ4 + F34|4|ξ)A45|5 (5.21)

= dξC12 −
1

2
Pξ,1C2 +

1

2
Pξ,2C1

where the partial derivative is understood to distribute as the component of an exte-

rior derivative across the multiform fields. While the dictionary definition contains a

redundancy in the three-fold generation of field strengths from a single gauge field it

has the advantage that it reproduces the non-trivial structure equation (5.21) of the

sl(3,R) sub-algebra.

The redundancy in the dictionary permits us to prefer a set of field strengths, that is

as the components of each field strength are equal, for example Fξ45|5 = F45|ξ5 = F45|5|ξ =

8As the bound states are product spaces in which only a five-dimensional sub-manifold has a non-trivial

metric, we will not lose any generality by focussing on a five-dimensional example.
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−1
3 sinβ∂ξN

−1
1 , we may eliminate field strengths algebraically in the action. In practise

we may return to treating a set of indices in a priveleged manner, at least for identifying

a D-dimensional action whose equations of motion are satisfied by the null geodesic on
SL(3,R)
SO(1,2) . For example the case where the derivative is antisymmetrised with the leading

column of each Young tableau has the action

S1 =

∫
R ? I− 1

2
F[D−2|1] ∧ ?F[D−2|1] −

1

2
G[D−1|D−3|1] ∧ ?G[D−1|D−3|1] (5.22)

where Fξ4...D|D] = Pξ,1, Fξ3...(D−1)|(D−1)] = Pξ,2, G[ξ3...D|4...D|(D−1)] = Pξ|12, ? denotes

the Hodge dual on the form indices, while the remaining internal indices on the kinetic

terms are contracted with the metric. The equations of motion for the metric, A[D−3|1]

and A[D−2|D−3|1] from (5.22) are satisfied for all points on the interpolating bound state

described by a null-geodesic on SL(3,R)
SO(1,2) , that is by the non-zero field strength components

Fξ4...(D−1)D|D = − sinβ ∂ξN
−1
1 ,

Fξ3...(D−2)(D−1)|(D−1) = − tanβ ∂ξN
−1
2 and (5.23)

Gξ3...D|4...D|(D−1) = − cosβ
∂ξN1

N1N2

where N1 = 1+Qξ, N2 = 1+Qξ cos2 β and ξ labels a single transverse direction either ξ = 1

or ξ = 2, see appendix D to see the equations of motions satisfied in the five-dimensional

case. Furthermore the field strength components may be unsmeared to two-dimensions and

still satisfy the equations of motion of the above action. The unsmearing takes advantage of

the spherical symmetry in the two transerse directions, in this case the solution is described

as above in equation (5.23) but allowing ξ ∈ {1, 2} and redefining N1 = 1 + Q ln (r) and

N2 = 1 +Q ln (r) cos2 β where r ≡
√

(x1)2 + (x2)2.

Similarly one could have considered the actions

S2 =

∫
R ?2 I−

1

2
F[D−3|2] ∧ ?2F[D−3|2] −

1

2
G[D−2|D−2|1] ∧ ?2G[D−2|D−2|1]. (5.24)

where ?2 indicates the Hodge dual on the second set of indices of the field strength, or

S3 =

∫
R ?3 I−

1

2
F[D−3|1|1] ∧ ?3F[D−3|1|1] −

1

2
G[D−2|D−3|2] ∧ ?3G[D−2|D−3|2]. (5.25)

and ?3 indicates the Hodge dual on the third set of indices of the field strength. Each

action has equations of motion solved by fields encoded in the null geodesic on SL(3,R)
SO(1,2) .

6 An obstruction to an A+++
D−3 symmetry of Einstein-Hilbert action

The algebra A+++
8 ⊂ E11 was first identified with an extended symmetry of gravity in [16].

An action for the D-dimensional dual graviton was given in [1] and investigated further

in [17]. The reason A+++
D−3 is relevant to gravity is apparent: the fields associated with the

fundamental generators of the algebra are of the correct index type to be associated with
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the vielbein at level zero and with the dual graviton at level one, all other generators in

the algebra are constructed by taking commutators of this pair. It is also evident that a

traceless, massless field associated with Rµ1...µD−3|ν carries D
2 (D− 3) degrees of freedom as

does the D-dimensional graviton. But one may wonder whether a theory containing both

fields is a theory of a single graviton or a pair of gravitons. In the first case one would

expect to identify components of gµν and Aµ1...µD−3|ν by duality relations, and solutions

of exotic gravity and matter actions would be mapped to solutions of the Einstein-Hilbert

action. Consequently we face the puzzle of how to dualise the exotic actions of the previous

section, which admit the full interpolating bound state of dual gravitons as a solution, to the

Einstein-Hilbert action. We are aware from the discussion in the first half of the paper that

the dualisation of the bound state solution, using only the Hodge dual on spacetime, is not

a solution of the Einstein-Hilbert action apart from at the end points of the interpolation.

We therefore expect to find that the action (5.22) is only equivalent to the Einstein-Hilbert

action when β = 0, π2 that is at the end points of the interpolation. In this section we will

show that this is the case and show that the full interpolating solution is preserved when

we treat the mixed-symmetry fields as multiforms.

The prototype bound state solution encoded as a null geodesic on SL(3,R)
SO(1,2) is the dyonic

membrane of supergravity [10]. The equation of motion for Aµ1µ2µ3 has contributions

from the Chern-Simons term and it is precisely the interpolating parts of the bound state

where the Chern-Simons term has an active role. In the present context, where we have

shown that the end-points of the interpolating gravitational bound state are solutions to

Einstein-Hilbert gravity but the interpolating points are not solutions, we anticipate that

the full interpolating bound state will be a solution of the Einstein-Hilbert action with an

additional Chern-Simons-like term.

Commencing with the D-dimensional action:

S1 =

∫
R ? I− 1

2
F[D−2|1] ∧ ?F[D−2|1] −

1

2
G[D−1|D−3|1] ∧ ?G[D−1|D−3|1] (6.1)

where R is the Ricci curvature formed from the fields associated with the Cartan sub-

algebra, i.e. from the diagonal part of the metric, ? indicates the Hodge dual and ∧ the

exterior product on the form indices (all other indices are contracted using the metric).

To make the connection with the Einstein-Hilbert action one must dualise the higher rank

mixed symmetry field strengths at the level of the action to find an action for the viel-

bein. The dualisation would be carried out in two steps with the first step eliminating

A[D−2,D−3,1] and introducing a new non-zero component of A[D−3,1], the second step would

replace A[D−3,1] with vielbein components corresponding to off-diagonal components of the

metric. To dualise G[D−1|D−3|1] on its first set of indices alone we introduce a Lagrange

multiplier χ via the term

− χ[D−3|1](dG[D−1|D−3|1] − Y · (F[2|D−3]F[D−2|1])) (6.2)

to the action (5.22), where F[2|D−3] has components 2∂µ1Aν1...νD−3|µ2 , d indicates an exterior

derivative which acts only on the first set of form indices in G, i.e.

dG = ∂µ1Gµ2...µD|ν1...νD−3|ρdx
µ1 ∧ dxµ2 ∧ . . . dxµD ⊗ dxν1 ∧ . . . dxνD−3 ⊗ dxρ
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and Y denotes the young projector that projects into Ω[D|D−3|1]. The Lagrange multiplier

χ[D−3|1] is introduced to dualise only one set of indices: in terms of components the first

term above is −χν1...νD−3|ρ∂µ1Gµ2...µD|ν1...νD−3|ρ, i.e. the terms above each have D antisym-

metric ‘µ indices’ which are dual to χ[D−3|1], which is a scalar in the ‘µ indices’. After

carrying out the dualisation χ[D−3|1] will be identified, by assumption, with additional

components of A[D−3|1], the level one field. Varying the action with respect to χ gives

the term in brackets above which is identically zero (when treating the fields as forms).

Varying the action with respect to G gives the algebraic identity:

F[1|
D−3|1] ≡ dχ[D−3|1] = ?G[D−1|

D−3|1]. (6.3)

This is a component of a new one-form field strength and not a component of F[D−2|1] and

is related to A[D−3|1] by

Fµ1|ν1...νD−3|ρ ≡ ∂µ1Aν1...νD−3|ρ. (6.4)

This observation is already enough to motivate treating the fields as multiforms. However

we understand from the previous section that components of Fµ1|ν1...νD−3|ρ and Fµ1ν1...νD−3|ρ
are equal and one may take advantage of this to identify a new non-zero component of

F[D−2|1] in the action. Substituting our dualisation and identity into the action we find

S1 =

∫
R ? I− 1

2
F[D−2|1] ∧ ?F[D−2|1] +A[D−3|1]Y · (F[2|D−3]F[D−2|1]). (6.5)

After dualising G, the bound state solution has non-zero field strength components given

by (see equation (5.23))

Fξ4...(D−1)D|D = − sinβ ∂ξN
−1
1 ,

Fξ3...(D−2)(D−1)|(D−1) = − tanβ ∂ξN
−1
2 and (6.6)

Fξ′4...D|(D−1) = cosβ
∂ξN1

N1N2

where ξ′ 6= ξ and ξ, ξ′ ∈ {1, 2}. These components now fail to solve the metric’s equation

of motion for the full interpolation, but do solve it at the end points. We have erred

in our dualisation. The source of our mistake is the elimination of A[D−3|D−2|1] in the

Bianchi identity for G. While we have attempted to treat it as a (D − 3)-form so that

d2A[D−3|D−2|1] = 0 the structure of the algebra necessitates that it is a multi-form field

such that dnA[D−3|D−2|1] = 0 only for n ≥ 4. Modifying the Lagrange multiplier term

in (6.2) to include the second derivatives on A[D−2|D−3|1] and integrating by parts gives

+ F[1|
D−3|1]

(
G[D−1|D−3|1] − Y ·

(
dA[D−2|D−3|1]

− 1

2
F[D−3|2]A[D−3|1] +

1

2
F[D−2|1]A[D−3|1]

))
.

(6.7)

Repeating the dualisation fails to eliminate A[D−2|D−3|1] from the action and we are left with

S′1 =

∫
R ? I− 1

2
F[D−2|1] ∧ ?F[D−2|1]

−F[1|
D−3|1]dA[D−2|D−3|1] −A[D−3|1]Y · (F[2|D−3]F[D−2|1]) (6.8)

– 32 –



J
H
E
P
0
7
(
2
0
1
4
)
1
1
5

where for the bound state we have

A[D−2|D−3|1] =
1

2
cosβ

(
1

N2
+

1

N1 cos2 β

)
. (6.9)

This action does admit the full interpolating bound state as a solution to its equations of

motion, see appendix D for the five-dimensional equations of motion. We note that due

to the contraction of indices the Chern-Simons term contributes to the metric equation

of motion.

Following the proposal that the mixed-symmetry fields must be treated as multiforms

to preserve the solutions under dualisation, there is no possibility to remove A[D−2|D−3|1]

without considering a higher derivative action. The required Bianchi identity is fourth

order in derivatives:

d3(G[D−2|D−3|1]) =
1

2
d(Y · (−F[D−2|2]F[D−3|2] + F[D−2|2]F[D−2|1])). (6.10)

The Bianchi identity is trivially zero for functions of one variable but contributes for

functions of two variables. Generically as d2G ∈ Ω[D−1|D−2|2] then d3G ∈ Ω[D|D−2|2] ⊕
Ω[D−1|D−1|2] ⊕ Ω[D−1|D−2|3]. A Lagrange multiplier would exist in the (thrice) dual space

Ω[0|2|D−2]⊕Ω[1|1|D−2]⊕Ω[1|2|D−3] which is the same space in which d2Ω[D−3|1|0] exists. The

appropriate Lagrange multiplier term is

d2χ[D−3|1|0]

(
d3(G[D−1|D−2|2])−

1

2
Y · (F[D−2|2]F[D−3|2] − F[D−2|2]F[D−2|1])

)
(6.11)

where Y acts so that the appropriate Young tableau symmetries are projected onto the

product of multiforms. Now the Lagrange multiplier term is a six-derivative term and

the non-trivial fields for the bound state will only solve the equations of motion of an

action in which all terms are also six-derivative terms, that is the level one field strength

would be F[D−2|2|1] with components ∂ρ∂ν1∂µ1Aµ2...µD−2|ν2 and the level zero field associated

to the diagonal part of the vielbein would have an equivalent six-derivative term. The

precise form of the term can be reconstructed from a six-derivative sigma-model9 where

the Lagrangian is

L′ = −(D2Pξ|D2Pξ) (6.12)

where D denotes the extension of the distributive multiform derivative d to a covariant

derivative - however for notational simplicity in the following we will work in local coordi-

nates in which the connection vanishes. For the six derivative version of the Ricci scalar

we find

R6 ≡− 2∂µ∂
µ∂ν∂

ν∂κ∂
λhλ

κ + 2∂µ∂
µ∂ν∂

ν∂κ∂
κhλ

λ + 4∂µ∂ν∂
κhκ

λ∂µ∂ν∂λhσ
σ (6.13)

− 4∂µ∂ν∂κhλ
σ∂µ∂ν∂λhσ

κ + 2∂µ∂ν∂κhλ
κ∂µ∂ν∂σhσ

λ − ∂µ∂ν∂κhλσ∂µ∂ν∂κhσλ

− ∂µ∂ν∂κhλλ∂µ∂ν∂κhσλ

where indices have been raised and lowered with the diagonal metric (4.77) encoded in the

coefficients Cartan sub-algebra. It is not clear to the authors that this term has a simple

9In the same way that the Ricci scalar is found from the two-derivative sigma-model in appendix C.
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geometrical expression. For example the equivalent four-derivative set of terms are not

related to the Gauss-Bonnet gravity terms.

The 3D-dimensional six-derivative action after dualisation is

S =

∫ ∫ ∫
R6 ?1 ?2 ?3 I−

1

2
F[D−2|2|1] ∧3 ?1 ?2 ?3F[D−2|2|1] (6.14)

+
1

2
F[D−2|2|1] ∧3 (Y · (F[D−2|2]F[D−3|2]F[D−2|2]F[D−2|1]))

where Y is the appropriate Young tableau projector, ∧3 denotes the triple wedge product

applied to each of the three sets of indices and ?i denotes the Hodge dual on the i’th set

of antisymmetric indices. One might hope to continue the dualisation in the same manner

by constructing the field strength with derivatives on each set of indices of A[D−3|1], i.e.

F[D−2|2] and construct a four derivative term, nested within a further two derivatives, in

the action with a Lagrange multiplier and the Bianchi identity for F[D−2|2] generically∫
d2

∫ ∫
dχ[1|D−3]d(F[D−2|2]) (6.15)

The field is self-dual when dualisation is carried out over all sets of indices. Restricting to

a dualisation over a single index requires the term∫ ∫
d4

∫
χ[1|

1](d(F[D−2|1])− F[D−3|2]) (6.16)

so that dχ[1|
1] = ?1F[D−2|

1] but the field A[D−3|1] remains present in the action.

7 Discussion

In this paper we have investigated the gravitational solutions associated to real roots of

A+++
D−3 algebras. For the case when D = 11 the solutions we have presented here are also

present in the non-linear realisation of e11 which is conjectured to be the extension of

supergravity relevant to M-theory [1]. Such affine classes of solutions have been studied

before [11, 12] and it has been shown that the Weyl reflections of A+
1 (the Geroch group

of four-dimensional gravity), are not only relevant to the gravitational sector of M-theory

but also to the M2-M5 branes as well [12]. This work established solutions for every co-

dimension two object which is predicted to exist in M-theory from E11. In the present work

we have understood each solution within the gravity tower sub-sector of [12] in terms of a

null geodesic motion on coset SL(2,R)
SO(1,1) . The single brane solutions presented here are much

more limited than those constructed in [12]. In the present work we have attempted to

generate solutions for mixed-symmetry fields by using multiple covariant derivatives on the

mixed-symmetry tensors - a consequence of this was that the tower of solutions presented

here are defined in terms of holomorphic functions whereas the solutions constructed in [12]

are defined by harmonic functions. At low levels of A+++
D−3 the solutions include the pp-wave

and the KK(D − 5)-brane. For a different choice of real form of A+++
D−3 the KK(D − 5)-

brane solution is the Euclidean Taub-NUT solution, which is a solution of four dimensional

gravity theory trivially embedded in a D-dimensional Minkowski spacetime. Similarly the
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co-dimension two solutions investigated in this paper all possess a large transverse isometry

and we may regard them as five-dimensional gravity solutions trivially embedded in a D-

dimensional background.

The observation of [6] that bound-state solutions, such as the dyonic membrane, could

be described by an E11 group element led to the investigation of Lagrangians on cosets of

groups of rank two and greater [7]. It was shown that the bound state solutions could also

be understood as encoding a null geodesic motion on a coset. In both [6, 7] the solutions

were characterised by a continuous interpolating parameter that moved from one 1
2 -BPS

solution to another. By considering the sl(3,R) sub-algebras embedded within the algebra

of A+++
D−3 model we have constructed interpolating solutions which move between any two

gravitational solutions which appear at adjacent levels in the level decomposition of A+++
D−3

into representations of AD−1. Such a construction allows the possibility to, with a combi-

nation of several models in succession, interpolate between the solutions occurring at any

positive levels by means of a smooth interpolating parameter. Consider the combination

of roots

αi =



eD − e3 +

D∑
i=3

ei if i = 1

eD−1 − eD +

D∑
i=3

ei if i > 1 and i even

eD − eD−1 +

D∑
i=3

ei if i > 1 and i odd

(7.1)

with t = xD−1. Any root α12...n = α1 + α2 + . . . + αn will have inner product of −1

with αn+1. Let the involution be chosen such that the generator associated with the first

root is involution invariant while the second is not, so that the involution invariant sub-

algebra is so(1, 2). If we begin at any level m we may create a coset model which will

limit to the level m+ 1 solution from which we can construct a new model. This shows us

that by advancing the parameters in each sl(3,R) to produce the next level object we may

telescopically reach an arbitrary positive level from a series of sl(3,R) models. However the

bound states of A+++
D−3 constructed as null geodesics on SL(3,R)

SO(1,2) do not lift to interpolating

solutions of the Einstein-Hilbert action by using multiple derivatives and the Hodge dual

alone. A more general dualisation technique is required: such a generalisation of the

Hodge dual relevant to mixed-symmetry fields has been given in [12] and the application

of a sequence of dualisations (via the affine structure) and compensation matrices to the

sl(3,R) bound states presented here is expected to allow the bound states to be encoded

as solutions of the Einstein-Hilbert action. Even so the end-points of the bound states

reproduce a resticted version of the tower of gravitational bound states found in [12] which

are solutions of Einstein-Hilbert gravity at the end points of the bound states. As shown

explicitly in appendix C the bound state is a solution to a gravity and matter theory,

which may be simply constructed using the index structure of the mixed-symmetry fields

and the one-dimensional sigma-model Lagrangian. This is puzzling as one would expect

to be able to dualise the action for fields of A+++
D−3 to an action written in terms of the
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vielbein, while preserving the full interpolating solution. The loss of the full interpolating

solution is a consequence of the vanishing of terms such as d2A[D−2|...|D−2|D−3|1], while if

the field is retained in the action the full interpolating solution persists. This observation,

discussed in section 6, motivated the consideration of an extension of the exterior derivative

to a derivative which distibutes over all the indices of multiform fields [37–41]. We argued

in section 5 that such a treatment of multiform fields maintained the structure of the

equations for the null geodesic on the coset and gave a simple extension of the supergravity

dictionary to multiform field-strengths. However the introduction of multiple derivatives

which were required to be able to Hodge dualise the mixed-symmetry field strengths came at

significant cost: the integrability of the solutions in the presence of multiple derivatives lead

to solutions written in terms of holomorphic functions rather than harmonic functions. The

introduction of the multiform exterior derivative while preserving the group structure of the

coset model resulted in non-trivial Bianchi identities for mixed-symmetry field strengths.

These Bianchi identities in turn introduced Chern-Simons terms for the Hodge dualised

fields which could not be further dualised while retaining the solutions. This investigation

is in contrast to the elegent solution generating method constructed in [12], where single

derivative field strengths are dualised, not via the Hodge dual on space-time but by taking

advantage of the affine structure of the Kac-Moody algebra. The central idea is that the

Hodge dual maps pairs of solutions associated with pairs of roots (α, β) into each other

where α+ β = δ is a null root. This observation is exploited to give a definition of a dual

field which differs from the Hodge dual for the mixed-symmetry tensor field strengths:

explicilty if (α, β) is a dual pair of roots then (W (α),W (β)), where W denotes a Weyl

reflection, are dual too. This dualisation technique does not require the use of multiple

derivative field strengths nor a mutliform exterior derivative. It will prove informative to

apply the techniques of [12] for the mixed-symmetry fields to show that the gravitational

bound states presented here do have a consistent dualisation solutions of the Einstein-

Hilbert action generated by the Geroch group.

The brane coset model remains to be extended to include a generalised vielbein as ap-

pears in the non-linear realisation of l1oE11 [42] and such an extension may suggest an alter-

native interpretation for the mixed-symmetry field strengths in the supergravity dictionary.

It was argued in section 6 that the exotic gravity and matter action could not be

dualised (via the Hodge dual alone) to an action of just the Einstein-Hilbert term alone,

instead Chern-Simons-like terms will remain. It is interesting to wonder, in the context of

recent observations in massive gravity [43, 44], whether the Chern-Simons term retained

from the sl(3,R) sigma-model action might be consistently identified with a product of

vielbein components as seen in the actions of [45] - at first glance this would seem unlikely

due to the presence of derivatives in the sigma-model terms. If such a link were made the

dual graviton would be reinterpreted as a second graviton.

The initial motivation for studying A+++
D−3 algebras was that E11 is the dimensional

reduction of A+++
9 and contains A+++

8 . Consequently the M-theory bound states of branes

encoded as null geodesics on cosets of sub-groups of E11 should lift to bound states described

within the gravitational algebra A+++
9 . In the present work we explored techniques to

dualise interpolating solutions to solutions of the Einstein-Hilbert term alone but we were

unable to do so without introducing tensorial matter terms. We have given examples in
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section 6 of both matter terms and Chern-Simons terms which can be added to the Einstein-

Hilbert term so that the extended action admits full interpolating bound state solutions.

The class of solutions that we have considered has not included the dimensional lift of

the dyonic membrane. The embedding of dyonic membrane into the twelve-dimensional

theory merits a closer examination as it provides a link between bound states involving

mixed-symmetry fields in twelve dimensions and form fields in eleven dimensions and one

expects to recover a full interpolating solution in twelve dimensions. The level one and

level two generators of e11 are lifted to the A+++
9 generators

Rµ9µ10µ11 =
1

8!
εµ1...µ11R

µ1...µ8 −→ Rµ1...µ9|µ9 (7.2)

Rµ6µ7µ8µ9µ10µ11 =
1

5!11!
εµ1...µ11εν1...ν11R

ν1...ν11|µ1...µ5 −→ Rν1...ν12|µ1...µ6|ρ|σ. (7.3)

The M2-M5 tower of solutions [12] relevant to M-theory may also be re-interpreted in the

context of A+++
D−3 algebras. Via the dimensional reduction of A+++

12 it is possible to un-

derstand the affine multiplet of states including the M2 and M5 brane uncovered in [12]

as generated by the Geroch group associated to the twelve-dimensional gravitational the-

ory. The dimensional reduction of the solutions related by the Geroch group in twelve

dimensions includes all the states recognised in both the gravity tower and the M2-M5

tower of [12].

It is to be hoped that the analysis of brane solutions as null geodesics on cosets of finite

sub-groups of Kac-Moody algebras will be extended to null geodesics on cosets of affine sub-

algebras. The difference between an affine algebra and the series of sl(3,R) sub-algebras we

have investigated in the present work is seemingly small. After all the affine coset model

would be expected to describe solutions with continuous parameters that move directly

between any pair of generators appearing at any level in the algebraic decomposition, while

the sequence of sl(3,R) sub-algebras we have investigated only interpolate directly between

generators appearing at adjacent levels. However suitable combinations of interpolating

solutions encoded in sl(3,R) sub-algebras may be found that interpolate between any two

levels in the algebra. The algebra A+
2 formed by the roots α1, α2 and α0 = e3 − e10

contains all of the roots αi listed above and would include them in one model forming a

substantial subsector of M-theory.
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A Low-level roots of A+++
8

m11 Pr root vector, β β2 dim mult mu

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 11 1

0 1 0 0 0 0 0 0 0 0 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 2 120 1 1

1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 55 8 0

1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 2 1760 1 1

2 0 0 0 1 0 0 0 0 0 0 1 2 3 2 2 2 2 2 2 2 2 -4 330 185 0

2 1 0 1 0 0 0 0 0 0 0 0 1 2 2 2 2 2 2 2 2 2 -2 1485 44 1

2 0 2 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 0 1210 8 0

2 0 0 0 0 1 0 0 0 0 1 1 2 3 2 1 1 1 1 1 1 2 -2 4752 40 1

2 1 0 0 1 0 0 0 0 0 1 0 1 2 1 1 1 1 1 1 1 2 0 33033 8 1

2 0 0 0 0 0 1 0 0 1 0 1 2 3 2 1 0 0 0 0 1 2 0 20328 6 0

2 0 0 0 0 0 1 0 0 0 2 1 2 3 2 1 0 0 0 0 0 2 2 25740 1 1

2 0 1 1 0 0 0 0 0 0 1 0 0 1 1 1 1 1 1 1 1 2 2 57200 1 1

2 1 0 0 0 1 0 0 0 1 0 0 1 2 1 0 0 0 0 0 1 2 2 214500 1 1

3 0 0 0 0 0 1 0 0 0 0 2 4 6 5 4 3 3 3 3 3 3 -12 462 19852 2

3 0 0 0 0 0 0 1 0 0 1 2 4 6 5 4 3 2 2 2 2 3 -10 3168 6376 4

3 1 0 0 0 1 0 0 0 0 0 1 3 5 4 3 3 3 3 3 3 3 -10 4620 7000 6

3 0 0 0 0 0 0 0 1 1 0 2 4 6 5 4 3 2 1 1 2 3 -8 5445 1816 2

3 0 0 0 0 0 0 0 1 0 2 2 4 6 5 4 3 2 1 1 1 3 -6 7722 584 2

3 0 1 0 1 0 0 0 0 0 0 1 2 4 3 3 3 3 3 3 3 3 -8 13068 2332 5

3 0 0 0 0 0 0 0 0 2 1 2 4 6 5 4 3 2 1 0 1 3 -4 7865 120 1

3 2 0 0 1 0 0 0 0 0 0 0 2 4 3 3 3 3 3 3 3 3 -6 17160 691 2

3 0 0 2 0 0 0 0 0 0 0 1 2 3 3 3 3 3 3 3 3 3 -6 9075 712 1

3 0 0 0 0 0 0 0 0 1 3 2 4 6 5 4 3 2 1 0 0 3 0 8008 8 0

3 1 0 0 0 0 1 0 0 0 1 1 3 5 4 3 2 2 2 2 2 3 -8 47190 2116 7

3 1 1 1 0 0 0 0 0 0 0 0 1 3 3 3 3 3 3 3 3 3 -4 37752 192 3

3 0 3 0 0 0 0 0 0 0 0 0 0 3 3 3 3 3 3 3 3 3 0 15730 8 0

3 1 0 0 0 0 0 1 0 1 0 1 3 5 4 3 2 1 1 1 2 3 -6 135135 558 4

3 1 0 0 0 0 0 1 0 0 2 1 3 5 4 3 2 1 1 1 1 3 -4 177870 162 3

3 1 0 0 0 0 0 0 2 0 0 1 3 5 4 3 2 1 0 1 2 3 -4 94380 113 1

3 0 1 0 0 1 0 0 0 0 1 1 2 4 3 2 2 2 2 2 2 3 -6 205920 657 8

3 2 0 0 0 1 0 0 0 0 1 0 2 4 3 2 2 2 2 2 2 3 -4 261360 182 3

3 1 0 0 0 0 0 0 1 1 1 1 3 5 4 3 2 1 0 0 1 3 -2 394240 29 1

3 0 0 1 1 0 0 0 0 0 1 1 2 3 2 2 2 2 2 2 2 3 -4 297297 185 4

3 1 0 0 0 0 0 0 1 0 3 1 3 5 4 3 2 1 0 0 0 3 2 314600 1 1

3 1 1 0 1 0 0 0 0 0 1 0 1 3 2 2 2 2 2 2 2 3 -2 970200 44 4

3 0 1 0 0 0 1 0 0 1 0 1 2 4 3 2 1 1 1 1 2 3 -4 926640 158 4

3 2 0 0 0 0 1 0 0 1 0 0 2 4 3 2 1 1 1 1 2 3 -2 1156155 41 2

3 1 0 2 0 0 0 0 0 0 1 0 1 2 2 2 2 2 2 2 2 3 0 731808 8 1

3 0 1 0 0 0 1 0 0 0 2 1 2 4 3 2 1 1 1 1 1 3 -2 1179750 40 3

3 2 0 0 0 0 1 0 0 0 2 0 2 4 3 2 1 1 1 1 1 3 0 1470150 8 1

3 0 2 1 0 0 0 0 0 0 1 0 0 2 2 2 2 2 2 2 2 3 2 880880 1 1

3 0 1 0 0 0 0 1 1 0 0 1 2 4 3 2 1 0 0 1 2 3 -2 1359072 28 1

3 2 0 0 0 0 0 1 1 0 0 0 2 4 3 2 1 0 0 1 2 3 0 1681680 7 0

3 0 0 1 0 1 0 0 0 1 0 1 2 3 2 1 1 1 1 1 2 3 -2 2265120 40 3

3 0 1 0 0 0 0 1 0 1 1 1 2 4 3 2 1 0 0 0 1 3 0 4459455 6 1

3 0 0 1 0 1 0 0 0 0 2 1 2 3 2 1 1 1 1 1 1 3 0 2837835 8 2

3 0 0 0 2 0 0 0 0 1 0 1 2 3 1 1 1 1 1 1 2 3 0 1486485 8 1

3 2 0 0 0 0 0 1 0 1 1 0 2 4 3 2 1 0 0 0 1 3 2 5505500 1 1

3 1 1 0 0 1 0 0 0 1 0 0 1 3 2 1 1 1 1 1 2 3 0 6795360 8 2
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3 0 0 0 2 0 0 0 0 0 2 1 2 3 1 1 1 1 1 1 1 3 2 1849848 0 0

3 1 1 0 0 1 0 0 0 0 2 0 1 3 2 1 1 1 1 1 1 3 2 8494200 1 1

3 0 0 1 0 0 1 0 1 0 0 1 2 3 2 1 0 0 0 1 2 3 0 5813808 6 0

3 1 0 1 1 0 0 0 0 1 0 0 1 2 1 1 1 1 1 1 2 3 2 10900890 1 1

3 1 1 0 0 0 1 0 1 0 0 0 1 3 2 1 0 0 0 1 2 3 2 16816800 1 1

3 0 0 1 0 0 1 0 0 1 1 1 2 3 2 1 0 0 0 0 1 3 2 17571840 1 1

3 0 0 0 1 1 0 0 1 0 0 1 2 3 1 0 0 0 0 1 2 3 2 8305440 1 1

Table 2: A10 representations in A+++
8 .

B SL(3,R)/SO(1, 2) gravitational solutions Ricci scalar

In this paper we produce several solutions from the coset model which describe a five-

dimensional metric of the form

ds2 = f(z)(dx2
1 + dx2

2) + gµν(z)dxµdxν (B.1)

where z ≡ x1 + ix2, Greek indices run over coordinates x3 to x5 and we let Latin indices

represent the coordinates x1 and x2. It can be easily shown that particular components of

the Riemann tensor vanish namely

Raµνρ = 0 and (B.2)

Rµνρσ = 0. (B.3)

The first equality is true for metrics where f and the components of gµν are functions of

x1 and x2, while the second equality requires f and gµν to be (anti-)holomorphic func-

tions. It is also easy to verify that, due to the fact that the components of the metric are

holomorphic,

Rµ1ν1 = −Rµ2ν2. (B.4)

Therefore the only non-zero components of the Ricci tensor are Rab. Another direct result

of equation (B.4) is that R11 = −R22 so that all of these solutions have zero Ricci scalar.

For the solution presented in the first sl(3,R) model (4.98) it is easiest to transform to

z = x1 + ix2 and z̄ = x1 − ix2 where the only non-zero Ricci tensor component is

Rzz = −N3
2A
′
1 −N2

2 (N ′1)2 +N2
1

(
N1A

′
2 − (N ′2)2

)
+N1N2

(
(A′12)2 − 2A1A

′
12A

′
2 +A2

1(A′2)2 +N ′1N
′
2

)
(B.5)

where the prime indicates a derivative with respect to z. For the dual gravity fields we found

in section 4.3 each term cancels except for those which contain factors of A1. While these

terms vanish for the limits where β = 0 or π
2 they are non-zero for the interpolating metrics.

C The Ricci scalar in the sigma model

The metric is related to the fields ha
b which appear at level zero in the decomposition of

the A+++
D−3 algebra by:

gµν = (e−h)µ
a
(e−h)ν

b
ηab (C.1)

– 39 –



J
H
E
P
0
7
(
2
0
1
4
)
1
1
5

the Christoffel symbols are

Γρµν = −∂µhνρ − ∂νhµρ + ∂ρhµν (C.2)

and the Ricci scalar is

R =− 2∂κ∂
λhλ

κ + 2∂κ∂
κhλ

λ + 2∂σhλ
σ∂κhκ

λ + 4∂κhκ
λ∂λhσ

σ − 4∂σhλ
κ∂λhκ

σ (C.3)

− ∂κhλσ∂κhσλ − ∂λhκκ∂λhσσ.

The bound state of dual gravitons that we have studied in this paper have representative

coset group elements

g = exp(φ1H1 + φ2H2) exp(C1E1 + C2E2 + C12E12). (C.4)

The bound state constructed from real roots at levels one and two in the algebra decom-

position has

H1 = −(K1
1 +K2

2 +K3
3) +KD

D (C.5)

H2 = −(K1
1 +K2

2 +KD
D) +KD−1

D−1 (C.6)

and hence the non-zero components of hµ
ν are

h1
1 = h2

2 = −(φ1 + φ2), h3
3 = −φ1, hD−1

D−1 = φ2 and hD
D = φ1 − φ2 (C.7)

and consequently, for the resulting diagonal metrics,

R = −2∂ξφ1∂
ξφ1 + 2∂ξφ1∂

ξφ2 − 2∂ξφ2∂
ξφ2 − 2∂ξ∂

ξφ1 − 2∂ξ∂
ξφ2 (C.8)

where φ1 and φ2 are functions ξ which is identified with x1 or x2 (and ξ is not summed

over). The Ricci scalar is identical to the set of terms in φ1 and φ2 that appear in the brane

sigma-model Lagrangian for the SL(3,R)
SO(1,2) coset when the lapse function η is set to minus one

and the total derivative terms in the above are discarded.

D The Einstein equations for the D = 5 bound state

The equations of motion for the action in equation (5.22) when D = 5 are

0 = Rµν −
1

2
gµνR+ gµν

1

24
Fµ1µ2µ3|νF

µ1µ2µ3|ν + gµν
1

192
Gµ1µ2µ3µ4|ν1ν2|ρG

µ1µ2µ3µ4|ν1ν2|ρ

− 1

4
Fµµ2µ3|ν1Fν

µ2µ3|ν1 − 1

12
Fµ1µ2µ3|µF

µ1µ2µ3|
ν (D.1)

− 1

24
Gµµ2µ3µ4|ν1ν2|ρG

νµ2µ3µ4|ν1ν2|ρ − 1

48
Gµ1µ2µ3µ4|µν2|ρG

µ1µ2µ3µ4|
ν
ν2|ρ

− 1

96
Gµ1µ2µ3µ4|ν1ν2|ρG

µ1µ2µ3µ4|ν1ν2|
ν

0 = ∂µ3(
√
−gFµ1µ2µ3|ν)− 1

2
∂ν1(
√
−gGν1ν2ν3ν|µ1µ2|ρ)Aν2ν3|ρ (D.2)

+
1

2
∂µ3(
√
−gGµ1µ2µ3µ4|ν1ν2|ν)Aν1ν2|µ4 +

√
−g
4

Gµ1µ2µ3µ4|ν1ν2|νFν1ν2|µ3µ4

– 40 –



J
H
E
P
0
7
(
2
0
1
4
)
1
1
5

−
√
−g
6

Gν1ν2ν3ν|µ1µ2|ρFν1ν2ν3|ρ

0 = ∂µ1(
√
−gGµ1µ2µ3µ4|ν1ν2|ρ). (D.3)

The null-geodesic motion on the coset SL(3,R)
SO(1,2) parameterised by ξ = x1 is given by the line

element

ds2 = N1N2

(
(dx1)2 + (dx2)2 +

1

N2
(dx3)2 − 1

N1N2
2

(dx4)2 +
1

N2
1

(dx5)2

)
(D.4)

where N1 = 1 +Qx1 and N2 = 1 +Qx1 cos2 β and the non-zero field strength components

F1̂4̂5̂|5̂ = − sinβ ∂1̂N
−1
1 ,

F1̂3̂4̂|4̂ = − tanβ ∂1̂N
−1
2 and (D.5)

G1̂3̂4̂5̂|4̂5̂|4̂ = − cosβ
∂1̂N1

N1N2

implying the non-zero gauge-field components are

A4̂5̂|5̂ = − sinβ N−1
1 ,

A3̂4̂|4̂ = − tanβ N−1
2 and (D.6)

A3̂4̂5̂|4̂5̂|4̂ =
1

2
cosβ(

1

N2
+

1

N1 cos2 β
).

We will now show that the diagonal metric and gauge fields given satisfy the equations of

motion (D.1)–(D.3). Equation (D.3) is satisfied as N1 is a harmonic function:

0 = ∂1̂(
√
−gG1̂3̂4̂5̂|4̂5̂|4̂) = cosβ∂1̂∂1̂N1 = 0. (D.7)

Splitting equation (D.2) into the two non-trivial equations gives as the coefficient of the

variations δA4̂5̂|5̂

∂1̂(
√
−gF 1̂4̂5̂|5̂)−

√
−gG1̂3̂4̂5̂|4̂5̂|4̂F1̂3̂4̂|4̂ = − sinβ∂1̂

(
∂1̂N1

N2

)
− cosβ∂1̂N1(− tanβ ∂1̂N

−1
2 )

= 0 (D.8)

and for δA3̂4̂|4̂ we have

∂1̂(
√
−gF 1̂3̂4̂|4̂) +

√
−gG1̂3̂4̂5̂|4̂5̂|4̂F4̂5̂|1̂5̂ = tanβ∂1̂

(
∂1̂N2

N1

)
+ cosβ∂1̂N1(− sinβ ∂1̂N

−1
1 )

= 0 (D.9)

where in the final equation we note that ∂1̂N2 = cos2 β∂1̂N1. For the Einstein equa-

tions (D.1) it is notationally useful to write F 2
1 ≡ 6F1̂4̂5̂|5̂F

1̂4̂5̂|5̂, F 2
2 ≡ 6F1̂3̂4̂|4̂F

1̂3̂4̂|4̂,
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G2 ≡ 48G1̂3̂4̂5̂|4̂5̂|4̂G
1̂3̂4̂5̂|4̂5̂|4̂ and Ĝµν = Rµν − 1

2gµνR, so that the five non-trivial Einstein

equations are

Ĝ1̂1̂ = −g1̂1̂

1

4
(F 2

1 + F 2
2 +G2) + g1̂1̂

1

2
(F 2

1 + F 2
2 +G2) (D.10)

=
−1

4N2
1N

2
2

(N2
2 (∂1̂N1)2 −N1N2∂1̂N1∂1̂N2 +N2

1 (∂1̂N2)2)

Ĝ2̂2̂ = −g2̂2̂

1

4
(F 2

1 + F 2
2 +G2) (D.11)

=
1

4N2
1N

2
2

(N2
2 (∂1̂N1)2 −N1N2∂1̂N1∂1̂N2 +N2

1 (∂1̂N2)2)

Ĝ3̂3̂ = −g3̂3̂

1

4
(F 2

1 + F 2
2 +G2) + g3̂3̂

1

2
(F 2

2 +G2) (D.12)

=
1

4N2
1N

3
2

(N2
2 (∂1̂N1)2 −N2

1 (∂1̂N2)2 −N1N2∂1̂N1∂1̂N2)

Ĝ4̂4̂ = −g4̂4̂

1

4
(F 2

1 + F 2
2 +G2) + g4̂4̂

1

2
(F 2

1 + 2F 2
2 + 3G2) (D.13)

=
1

4N3
1N

4
2

(N2
2 (∂1̂N1)2 + 3N2

1 (∂1̂N2)2 +N1N2∂1̂N1∂1̂N2)

Ĝ5̂5̂ = −g5̂5̂

1

4
(F 2

1 + F 2
2 +G2) + g5̂5̂

1

2
(2F 2

1 + 2G2) (D.14)

=
1

4N4
1N

2
2

(−3N2
2 (∂1̂N1)2 +N2

1 (∂1̂N2)2 −N1N2∂1̂N1∂1̂N2)

which gives the components of the Einstein tensor corresponding to the metric of equa-

tion (D.4) and completes the proof.

The dualised action, where A[D−2|D−3|1] has not been eliminated is

S′1 =

∫
R ? I− 1

2
F[D−2|1] ∧ ?F[D−2|1] − F[1|

D−3|1]dA[D−2|D−3|1] −A[D−3|1]F[2|D−3] ∧ F[D−2|1]

(D.15)

where the metric is unchanged from equation (D.4). The equations of motion for the action

in equation (D.15) when D = 5 are

0 = Rµν −
1

2
gµνR+ gµν

1

24
Fµ1µ2µ3|νF

µ1µ2µ3|ν (D.16)

− 1

4
Fµµ2µ3|ν1Fν

µ2µ3|ν1 − 1

12
Fµ1µ2µ3|µF

µ1µ2µ3|
ν

+
1

2
√
−g

Fµ1|µ
ν2|ρ
(
∂µ2Aµ3µ4µ5|νν2|ρ −Aµ2|νν2Fµ3µ4µ5|ρ

)
+

1√
−g

Fµ1|
ν1ν2|

µ

(
∂µ2Aµ3µ4µ5|ν1ν2|ν −Aµ2|ν1ν2Fµ3µ4µ5|ν

)
0 = ∂µ3(

√
−gFµ1µ2µ3|ν)− 1

2
∂ν1(Fν2|

µ1µ2|ρAν3ν4|ρ)−
1

2
Fν2|

µ1µ2|ρFν1ν3ν4|ρ (D.17)

0 = ∂µ1(Fµ2|
ν1ν2|ρ) . (D.18)
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The dualised bound state has non-trivial field strength and gauge field components , the

non-trivial field strength components are

F1̂4̂5̂|5̂ = − sinβ ∂1̂N
−1
1 ,

F1̂3̂4̂|4̂ = − tanβ ∂1̂N
−1
2 and (D.19)

F2̂4̂5̂|4̂ ≡ F2̂|4̂5̂|4̂ = cosβ
∂1̂N1

N1N2

implying the non-zero gauge-field components are

A4̂5̂|5̂ = − sinβ N−1
1 ,

A3̂4̂|4̂ = − tanβ N−1
2 and (D.20)

A3̂4̂5̂|4̂5̂|4̂ =
1

2
cosβ

(
1

N2
+

1

N1 cos2 β

)
.

We now demonstrate that the same diagonal metric (D.4) with these gauge fields satisfy

the equations of motion (D.16)–(D.18). Equation (D.18) is trivially satisfied for all field

strength components, the least trivial equation being

∂1̂(F2̂|
4̂5̂|4̂) = ∂1̂(cosβ∂1̂N1) = 0 (D.21)

which holds as N1 is a harmonic function in x1. Equation (D.17) splits into two non-trivial

equations, the coefficient of the variations δA4̂5̂|5̂ gives

∂1̂(
√
−gF 1̂4̂5̂|5̂)− 1

2
∂1̂(F2̂|

4̂5̂|4̂A3̂4̂|4̂)− 1

2
F2̂|

4̂5̂|4̂F1̂3̂4̂|4̂ = 0 (D.22)

and the coefficient of δA3̂4̂|4̂

∂1̂(
√
−gF 1̂3̂4̂|4̂) +

1

2
F2̂|

4̂5̂|4̂F1̂4̂5̂|5̂ +
1

2
∂1̂(F2̂|

4̂5̂|4̂A4̂5̂|5̂) = 0 (D.23)

For the Einstein equations (D.16) it is notationally useful to write F 2
12 ≡ 6F2̂4̂5̂|4̂F

2̂4̂5̂|4̂ so

that the five non-trivial Einstein equations are10

Ĝ1̂1̂ =− g1̂1̂

1

4
(F 2

1 + F 2
2 + F 2

12) + g1̂1̂

1

2
(F 2

1 + F 2
2 ) (D.24)

=
−1

4N2
1N

2
2

(N2
2 (∂1̂N1)2 −N1N2∂1̂N1∂1̂N2 +N2

1 (∂1̂N2)2)

Ĝ2̂2̂ =− g2̂2̂

1

4
(F 2

1 + F 2
2 + F 2

12) + g2̂2̂

1

2
(F 2

12) (D.25)

=
1

4N2
1N

2
2

(N2
2 (∂1̂N1)2 −N1N2∂1̂N1∂1̂N2 +N2

1 (∂1̂N2)2)

Ĝ3̂3̂ =− g3̂3̂

1

4
(F 2

1 + F 2
2 + F 2

12) + g3̂3̂

1

2
(F 2

2 ) (D.26)

=
1

4N2
1N

3
2

(N2
2 (∂1̂N1)2 −N2

1 (∂1̂N2)2 −N1N2∂1̂N1∂1̂N2)

10For comparison with the previous set of Einstein equations it is useful to note that F 2
12 = −G2.
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Ĝ4̂4̂ =− g4̂4̂

1

4
(F 2

1 + F 2
2 + F 2

12) + g4̂4̂

1

2
(F 2

1 + 2F 2
2 + 2F 2

12) (D.27)

− g4̂4̂

2√
−g

F2̂|
4̂5̂|4̂
(
∂1̂A3̂4̂5̂|4̂5̂|4̂ +

1

2
F1̂3̂4̂|4̂A4̂5̂|5̂ −

1

2
F1̂4̂5̂|5̂A3̂4̂|4̂

)
=− g4̂4̂

1

4
(F 2

1 + F 2
2 + F 2

12) + g4̂4̂

1

2
(F 2

1 + 2F 2
2 + 2F 2

12)− 2g4̂4̂(F 2
12)

=
1

4N3
1N

4
2

(N2
2 (∂1̂N1)2 + 3N2

1 (∂1̂N2)2 +N1N2∂1̂N1∂1̂N2)

Ĝ5̂5̂ =− g5̂5̂

1

4
(F 2

1 + F 2
2 + F 2

12) + g5̂5̂

1

2
(2F 2

1 + F 2
12) (D.28)

− g5̂5̂

1√
−g

F2̂|
4̂5̂|4̂
(
∂1̂A3̂4̂5̂|4̂5̂|4̂ +

1

2
F1̂3̂4̂|4̂A4̂5̂|5̂ −

1

2
F1̂4̂5̂|5̂A3̂4̂|4̂

)
=− g5̂5̂

1

4
(F 2

1 + F 2
2 + F 2

12) + g5̂5̂

1

2
(2F 2

1 + F 2
12)− g5̂5̂(F 2

12)

=
1

4N4
1N

2
2

(−3N2
2 (∂1̂N1)2 +N2

1 (∂1̂N2)2 −N1N2∂1̂N1∂1̂N2)

which gives the non-zero components of the Einstein tensor corresponding to the metric of

equation (D.4) and completes the proof.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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