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Abstract

Background: The genesis of severe fatigue and disability in people following acute pathogen invasion involves the
activation of Toll-like receptors followed by the upregulation of proinflammatory cytokines and the activation of
microglia and astrocytes. Many patients suffering from neuroinflammatory and autoimmune diseases, such as
multiple sclerosis, Parkinson’s disease and systemic lupus erythematosus, also commonly suffer from severe disabling
fatigue. Such patients also present with chronic peripheral immune activation and systemic inflammation in the guise
of elevated proinflammtory cytokines, oxidative stress and activated Toll-like receptors. This is also true of many patients
presenting with severe, apparently idiopathic, fatigue accompanied by profound levels of physical and cognitive
disability often afforded the non-specific diagnosis of chronic fatigue syndrome.

Discussion: Multiple lines of evidence demonstrate a positive association between the degree of peripheral immune
activation, inflammation and oxidative stress, gray matter atrophy, glucose hypometabolism and cerebral hypoperfusion
in illness, such as multiple sclerosis, Parkinson’s disease and chronic fatigue syndrome. Most, if not all, of these
abnormalities can be explained by a reduction in the numbers and function of astrocytes secondary to peripheral
immune activation and inflammation. This is also true of the widespread mitochondrial dysfunction seen in
otherwise normal tissue in neuroinflammatory, neurodegenerative and autoimmune diseases and in many
patients with disabling, apparently idiopathic, fatigue. Given the strong association between peripheral immune
activation and neuroinflammation with the genesis of fatigue the latter group of patients should be examined
using FLAIR magnetic resonance imaging (MRI) and tested for the presence of peripheral immune activation.

Summary: It is concluded that peripheral inflammation and immune activation, together with the subsequent
activation of glial cells and mitochondrial damage, likely account for the severe levels of intractable fatigue and
disability seen in many patients with neuroimmune and autoimmune diseases.This would also appear to be the
case for many patients afforded a diagnosis of Chronic Fatigue Syndrome.

Keywords: Immune, Inflammation, Oxidative stress, Toll-like receptor, Fatigue, Mitochondria, Multiple sclerosis,
Chronic fatigue syndrome, Parkinson’s disease
Background
There is copious evidence establishing the causative role
of peripheral immune activation and inflammation, evi-
denced by elevated levels of proinflammatory cytokines in
the genesis of debilitating fatigue in neuro-inflammatory,
autoimmune and inflammatory disorders [1,2]. Activation
of pathogen recognition receptors by pathogen associated
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molecular patterns leads to the production of nuclear
factor NF-kappaB and subsequent production of proin-
flammatory cytokines by the myeloid differentiation pri-
mary response gene (88) (MYD88), which is a universal
adapter protein that is used by almost all Toll-like re-
ceptors (TLRs) in dependent and independent pathways
[3-5]. Systemic inflammatory stimuli, resulting from the
presence of proinflammatory cytokines in the periph-
eral circulation, enter the brain via a number of routes
[1,6] activating microglia and astrocytes inducing the pro-
duction of proinflammatory cytokines and other neuro-
toxins leading to an environment of neuroinflammation
[7,8]. This sequence of events ultimately underpins the
This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
iginal work is properly credited. The Creative Commons Public Domain
g/publicdomain/zero/1.0/) applies to the data made available in this article,

https://core.ac.uk/display/81623914?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:Mikebe@BarwonHealth.org.au
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/


Morris et al. BMC Medicine  (2015) 13:28 Page 2 of 23
genesis of fatigue and other signs and symptoms associ-
ated with acute pathogen invasion [1,9,10]. Many people
suffering from a range of neuroimmune and autoimmune
diseases also suffer from debilitating or intractable fatigue.
The existence of chronically activated immune and

inflammatory pathways in the periphery and their causa-
tive role in the genesis of neuroinflammation has been
established in a range of neuroinflammatory and neurode-
generative diseases, such as multiple sclerosis, Alzheimer’s
and Parkinson’s disease [11-16]. Many individuals with
neuroinflammatory and neurodegenerative diseases also
suffer from fatigue. For example, upwards of 80% of
multiple sclerosis patients suffer from fatigue [17]. A
study by Beiske and Svensson reported that between
37% and 57% of patients with Parkinson’s disease also
experience incapacitating fatigue [18]. Fatigue is one of
the characteristics of major depression [19,20]. Chronic
systemic inflammation and the presence of activated
microglia are also found in patients with major depression
[19-22]. Chronic systemic inflammation and immune
activation is also an invariant finding in many patients
diagnosed with chronic fatigue syndrome (CFS) even
without evidence of increased pathogen load [17].
Severe chronic fatigue is also experienced by many

people with an autoimmune disease. Thus, upwards of
67% of people with Sjogren's syndrome [23], 76% of pa-
tients with systemic lupus erythromatosis (SLE) [24] and
70% of people with rheumatoid arthritis [25] suffer incap-
acitating levels of fatigue. Peripheral systemic inflamma-
tion and immune activation, as evidenced by elevated
levels of proinflammatory cytokines and other inflam-
mogens, is seen in patients with rheumatoid arthritis
[26,27], SLE [28,29] and Sjogren's syndrome [30,31]. It
is interesting to note that neurological sequelae are seen
in up to 80% of patients with SLE and 70% of patients
with primary Sjögren's syndrome [32,33]. In addition,
the presence of neuroinflammation, in the shape of ac-
tivated microglia, has been confirmed in patients with
SLE [34]. Neurological complications are also common-
place in patients with rheumatoid arthritis [35].
The question arises as to the factors involved in creating

a chronically activated immune system in these patients.
While there is some evidence linking viral infections to
the development of multiple sclerosis [36,37], the situ-
ation in Parkinson’s disease is different, where there is
considerable evidence suggesting environmental toxins
in the etiopathogenesis of the illness [38]. One of the key
drivers in the development of chronic immune activation
in the absence of bacteria or virus infection is the develop-
ment of chronic inflammation as evidenced by elevated
levels of cytokines and oxidative and nitrosative stress
(O and NS) and characterized by activated NF-kappaB
[6,39]. Indeed, the production of proinflammatory cyto-
kines and other inflammatory molecules by macrophages
and other sentinel cells, even in the absence of pathogen
invasion, and the subsequent activation of NF-kappaB are
early events in the genesis of chronic inflammation
[40,41]. Activation of this transcription factor leads to the
upregulation of cytokines and O and NS [6,42-44]. These
players can engage in a feed-forward manner to maintain
and amplify chronic inflammation and immune activation
in a TLR radical cycle [4].
Briefly, elevated levels of proinflammatory cytokines can

amplify the activity of NF-kappaB by stimulating the ca-
nonical pathway leading to a cycle of mutually elevated
activity [45,46]. The relation between O and NS and NF-
kappaB is a little more complex, but the upregulation of O
and NS can directly increase the activity of NF-kappaB
[47]. Moreover, O and NS may damage lipids, proteins and
DNA, leading to the formation of redox-derived damage-
associated molecular pattern molecules (DAMPs) [48,49].
Once formed, these redox-derived DAMPS engage with
TLRs further amplifying production of NF-kappaB, cyto-
kines and O and NS [4,50]. Hence, chronic inflammation
and immune activation can be maintained and amplified by
engagement of TLRs by DAMPS [4].
Chronically elevated levels of NF-kappaB, proinflam-

matory cytokines and O and NS, in turn, lead to a dis-
ruption of epithelial tight junctions in the intestine
allowing translocation of gram-negative bacteria, contain-
ing lipopolysaccharides, into the circulation, which can
further amplify the TLR-radical cycle by acting as a
pathogen-associated molecular pattern (PAMP) [1].
Translocation of bacterial lipopolysaccharides (LPS) from
the gut and engagement with TLRs, due to a state of in-
creased intestinal permeability driven by the effector mol-
ecules of chronic inflammation is another cause of
chronic immune activation that may play a role in major
depression, CFS, neuro-inflammatory disorders and some
systemic autoimmune disorders [6,7]. For example, further
evidence of chronic immune activation in these neuroim-
mune and autoimmune illnesses is provided by data dem-
onstrating TLR activation and upregulation in multiple
sclerosis (MS) [51] and SLE [52].
Given the established association between chronic

inflammation and the genesis of incapacitating fatigue
[1], the TLR-radical cycle can potentially explain the
development of incapacitating fatigue in patients suffering
from these and other illnesses. This association may be
explained by chronically increased levels of proinflamma-
tory cytokines and reactive oxygen and nitrogen species
(ROS/RNS) produced by the TLR-radical cycle upon
stimulation by PAMPs and DAMPs [4]. We have reviewed
previously that some proinflammatory cytokines, including
IL-1β, TNF-α and IL-6, and increased O and NS processes
may cause fatigue in some vulnerable individuals [1,4,6,7].
Mitochondrial dysfunction likely plays a major role in
the progression of MS. Electron transport chain (ETC)
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complex I, complex III and complex IV activity is
grossly reduced in normal appearing gray matter and in
normal tissue within the motor cortex in patients suf-
fering from this illness [53,54]. There is also direct evi-
dence of globally impaired energy production and
longitudinal depletion of ATP levels leads to increased
levels of physical disability [55]. Multiple lines of evidence
demonstrate the existence of mitochondrial dysfunction in
many, but by no means all, patients afforded a diagnosis
of CFS [56]. These abnormalities include loss of mito-
chondrial membrane integrity and oxidative corruption of
translocatory proteins [57,58]. Other findings include ab-
normal muscle mitochondrial morphology and defective
aerobic metabolism uncharacteristic of muscle disuse [59].
Several other teams have reported significant downregu-
lation of oxidative phosphorylation in striated muscle
[60,61]. Complex I deficiency is seen in the frontal cortex
and substantia nigra of Parkinson’s disease patients [62],
and this defect is also observed in peripheral tissues, such
as skeletal muscle [63], strongly indicating a widespread
reduction in complex I activity in Parkinson’s disease.
Impaired complex III function has also been reported
in the platelets and lymphocytes of patients with this
illness [64]. There is also accumulating evidence that
inflammation and subsequent mitochondrial dysfunction
drive the symptoms of major depression [65,66]. Localized
or global mitochondrial dysfunction is also an invariant
feature of autoimmune diseases. Persistent mitochondrial
membrane hyperpolarization and increased O and NS
production combined with depleted levels of glutathione
and ATP is an invariant characteristic of T cells in SLE
[67,68]. The release of DAMPS into the systemic circu-
lation, consequent to necrosis, acts as a mechanism by
which localized mitochondrial pathology can lead to
self-perpetuating systemic inflammation which, in turn,
amplifies mitochondrial dysfunction in a vicious feed-
forward loop [56,69]. The association between chronic
oxidative stress, systemic inflammation and mitochondrial
dysfunction and chronic oxidative stress is also firmly
established in Sjogren's syndrome [70]. There is also evi-
dence of widespread nitric oxide (NO)-induced inhibition
of complex III and V of the ETC in patients with rheuma-
toid arthritis [71,72]. The causative role of chronic
inflammation and oxidative stress and mitochondrial dys-
function is explained by the presence of elevated levels of
ROS and RNS in such environments. These entities cause
damage to proteins, DNA and lipid membranes [56]. NO
and peroxynitrite have the capacity to inhibit crucial en-
zymes within the ETC and can inactivate crucial en-
zymes in the tricarboxylic acid cycle leading to, often
critical, reductions in the generation of ATP [7]. Perox-
ynitrite, in particular, also has a destructive influence
on the mitochondrial membrane leading to the loss of
potential difference between the outer and inner
membrane needed to manufacture ATP [7]. The prod-
ucts of lipid peroxidation driven by elevated levels of
ROS are also toxic to mitochondrial membranes. It is
noteworthy that inhibition of the ETC leads to the for-
mation of even higher concentrations of oxygen radical
species which, in turn, leads to further impairment of
mitochondrial function [7]. Needless to say there are nu-
merous studies demonstrating that the origin of severe in-
tractable fatigue seen in people with syndromic
mitochondrial diseases lies in mitochondrial pathology
and depleted generation of ATP. The reader is referred
to the work of [56] for further details.
In this narrative review we will review the evidence

pertaining to the genesis of intractable debilitating fatigue
in multiple sclerosis, Parkinson’s disease, SLE, Sjogren’s
disease, rheumatoid arthritis, major depression and CFS
with a view of forming a conclusion as to whether such
evidence justifies the viewpoint that the debilitating
fatigue commonly suffered by those patients diagnosed
with various illnesses is immune, inflammation or O
and NS-mediated either directly or indirectly by caus-
ing abnormalities such as mitochondrial dysfunctions
and central, neuropathological or functional processes
[56,73-75]. These specific disorders were selected as
examples along a spectrum of imbalance involving various
degrees of activation of immune-inflammatory and O
and NS pathways, and mitochondrial and brain meta-
bolic dysfunctions in systemic auto-immune, immune-
inflammatory and neurodegenerative disorders. Figure 1
shows the underlying processes and pathways associated
with secondary fatigue, which we will discuss in the
following sections.

Multiple sclerosis
Fatigue in MS
Fatigue is recognized as one of the most disabling and
common symptoms of MS affecting up to 80% of sufferers
[17,76,77]. Numerous studies have demonstrated that
the Expanded Disability Status Score (EDSS) correlates
positively with patient self-reported fatigue scores using
a variety of fatigue scales in patients with MS [78-81].

Immune activation, chronic inflammation and mitochondrial
dysfunction
Chronic activation of the peripheral immune system is a
characteristic observation in MS patients. Many studies
report elevated levels of activated Th17 and Th1 T cells,
and impaired function of regulatory T cells [17,82,83].
The evidence demonstrating an associative relationship
between chronic activation of the immune system and
the genesis of neuroinflammation is strong in MS due to
the proven effectiveness of rituximab [84] and natalizumab
[85], which are monoclonal antibodies which primarily tar-
get leucocytes but significantly reduce objective markers of



Figure 1 Pathways associated with secondary fatigue. Prolonged and or excessive stimulation of membrane bound Toll-like receptors (TLRs)
results in the production of pro-inflammatory cytokines (PICs) and reactive oxygen and nitrogen species (ROS/RNS) at sufficiently high concentrations
to cause macromolecule damage leading to the production of redox-derived damage-associated molecular patterns (DAMPs). The presence of such
DAMPs leads to chronic engagement of TLRs and a spiraling, self-amplifying pattern of increasing ROS/RNS and PICs in a TLR radical cycle. Increasing
levels of ROS/RNS damage mitochondrial lipids and proteins leading to dissipation of the mitochondrial membrane potential and inhibition of the
electron transport chain. This leads to compromised oxidative phosphorylation and the production of ROS making another major contribution to
the inflammatory milieu and another element in the development of a vicious spiral of bioenergetics decline. Elevated levels of PICs in the periphery
activate microglia and astrocytes in the brain leading to the production of elevated PICs and ROS/RNS causing mitochondrial and metabolic
dysfunction. This figure is original.
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disease activity in the central nervous system (CNS) [86].
It is also noteworthy that increased levels of TNF-α in the
periphery are often predictive of the development of active
disease. Peripheral TNF-α levels are also predictive of
disability levels as estimated by the EDSS [87-89]. Periph-
eral levels of this and other cytokines correlate positively
with fatigue severity which affects the vast majority of
people with this illness [17,90-92]. TLR4 receptors are also
upregulated in the brain and peripheral immune system in
patients with MS [93-95]. There is also copious evidence
indicating that chronic systemic inflammation and oxida-
tive stress play a causative role in the etiopathogenesis of
MS [96-98]. Elevated markers of chronic inflammation
and oxidative stress are found in the brain, cerebrospinal
fluid (CSF) and various blood compartments [82,99]. Oxi-
dative stress levels increase quite dramatically during
relapses but drop to barely detectable levels in patients
during the remission phase [100]. It is also noteworthy
that levels of chronic inflammation and oxidative stress
in the CSF and blood correlate positively and significantly
with disability levels as estimated by EDSS [101,102].
Finally, the extent of gadolinium-enhanced lesions appears
to correlate significantly and positively with levels of
oxidative stress [102].
It appears that although the genesis of pathology in

early disease is mainly driven by inflammation [103],
mitochondrial dysfunction likely plays a pivotal role in
disease progression. Oxidative damage to mitochondrial
DNA and impaired complex 1 activity is a characteristic
finding in active MS lesions [104], but complex I, complex
III and complex IV activity is also reduced in normal
appearing gray matter and in normal tissue within the
motor cortex [53,54,105].
The use of nuclear magnetic resonance (NMR) spec-

troscopy has found direct evidence of globally impaired
energy production and increased lactate production in



Morris et al. BMC Medicine  (2015) 13:28 Page 5 of 23
the CSF [106-108]. In a longitudinal study, progressive
central depletion of ATP over a three year period corre-
lated positively and significantly with increased indices of
physical disability as measured by EDSS changes, which
strongly suggests a global impairment of ATP synthesis in
MS [108].

Neuroimaging and neuropathology
Until recently, all studies investigating the phenomena
had failed to find any significant correlation between
increasing self-reported fatigue during the performance
of sustained cognitive tasks and changes in brain activity
using any neuroimaging modality [109]. It has been argued
that this situation has arisen because self-reported fatigue
is not an objective or accurate indicator of cognitive
performance in the first place [109]. However, the first
evidence displaying a positive relationship between cogni-
tive fatigue and changes in brain activity during a task was
provided in a recent study [109]. While the relationship
between self-reported fatigue and neuroimaging changes
is still a matter of considerable debate, the positive associ-
ation between changes in brain activity and objective mea-
sures of cognitive fatigue is generally accepted [110,111].
The bulk of evidence demonstrates that these changes
in activity occur in several areas of the brain with most
studies reporting this phenomenon in the basal ganglia
and the prefrontal cortex [109]. Overall, the results of
these studies have been interpreted as support for the
hypothesis that the origin of fatigue seen in patients
with MS and other neurological diseases arises as a
result of failure of integrative processes within the basal
ganglia which normally coordinate inputs from the limbic
system and outputs to the motor cortex [109,112]. MS
was once considered to be a disease of white matter but
there is now overwhelming evidence that gray matter
pathology occurs early in the disease often before the
advent of white matter involvement [113,114]. Conven-
tional magnetic resonance imaging (MRI) is of limited
value in revealing gray matter pathology but newer MRI
approaches based on FLAIR technology and NMR spec-
troscopy appear to display adequate sensitivity [114,115].
Gray matter atrophy occurs in very early stages of disease
and is seen in people with clinically isolated syndrome
(CIS) [115-117]. Indeed, this phenomenon is detected in
people with first attack MS [118]. The extent of gray
matter atrophy correlates significantly and positively with
the degree of physical disability and cognitive impairment
seen in many patients with this illness [119,120]. It is
noteworthy that reduced gray matter perfusion is seen
in very early disease without any loss of volume or
other visible sign of gray matter (GM) pathology [121].
Cortical inflammation and metabolic abnormalities, such
as reduced choline and N-acetyl aspartamine levels, are
also evident in early MS without evidence of any kind of
gray or white matter abnormalities [114,119,122]. Other
studies, when viewed as a whole, have established a clear
relationship between global or localized gray matter
atrophy and hypoperfusion in the development of fatigue
[123-126]. Other observations include an association
between fatigue and glucose hypometabolism in the basal
ganglia and frontal cortex [127-129] and a decreased
N-acetyl aspartamine/creatine ratio in the basal ganglia,
suggestive of gliosis [130].
Finally, Calabrese et al. reported a positive association

between increased fatigue and widespread atrophy of the
basal ganglia and prefrontal cortex [131]. It is tempting
to speculate that these observations could arise from
astrogliosis and underlying loss of astrocyte numbers and
the normal regulatory functions of the surviving astrocyte
population. Recent evidence indicates that reactive astro-
gliosis may play a major causative role in the development
and progression of MS [132,133]. It is also worthy of note
that astrocyte loss is a characteristic feature of this disease
[134]. Protoplasmic astrocytes are primarily found in gray
matter and form the vast bulk of cells located in this tissue
[135]. These glial cells in particular have crucial roles in
coordinating neurometabolic and neurovascular coupling
and, hence, the delivery of oxygen and energy to neurons
[136,137]. Given that astrocytes form the vast bulk of gray
matter it seems likely that the loss of gray matter seen very
early in the development of the disease is due to loss of
astrocytes [138]. It is also interesting that the magnitude
of gray matter loss correlates positively with severity of
inflammation [138]. The presence of reactive astrogliosis
would suggest that the regulatory performance of the
remaining astrocytes could be compromised and, thus,
would go some way to explaining the abnormalities in
perfusion and glucose metabolism and the development
of fatigue seen in these studies. This state of affairs could
explain, in part, the regulatory dysfunction seen in the
basal ganglia which seems to underpin the observations
surrounding the changes in brain activity and the develop-
ment of cognitive fatigue noted earlier.

Chronic fatigue syndrome
Fatigue in chronic fatigue syndrome
Pathological levels of fatigue unrelated to activity and
not relieved by rest is a mandatory requirement for a
diagnosis of chronic fatigue syndrome under the current
internationally accepted diagnostic guidelines [139]. The
original diagnostic criteria contained another mandatory
element, namely a clinical picture whereby the patient’s
global symptoms represent a unitary illness with a single
pathogenesis and pathophysiology. It is more likely that a
diagnosis of CFS represents a spectrum of illnesses where
different pathophysiological processes converge to produce
a very similar phenotype [140]. Hence, any information
regarding immune abnormalities, chronic inflammation,
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mitochondrial dysfunction and neuroimaging should be
viewed with these issues in mind [141].

Immune activation, chronic inflammation and mitochondrial
dysfunction
Numerous research teams have reported a wide range of
peripheral immune abnormalities in people afforded a
diagnosis of CFS [1,142,143]. The presence of circulating
activated Th1, Th2 and Th17 Tcells have all been detected.
Recent evidence has challenged the view that people
with CFS display immune abnormalities consistent with
a Th2 pattern of T cell differentiation, and now data
reveal that while some patients present with a Th2 pro-
file and a preponderance of anti-inflammatory cytokine
production, others present with a Th1 or possibly Th17
profile, with the synthesis of proinflammatory cytokines
being dominant [144-146]. Elevated levels of TNF-α and
IL-1B are, in fact, particularly commonplace observations
in patients recruited into studies using the internationally
agreed [139] diagnostic guidelines [144,147-151]. We have
reviewed previously that patients with CFS and Myalgic
Encephalomyelitis (ME) show different cytokine profiles,
for example, a Th1-like pattern, with increased levels of
IFN-γ, IL-2, IL-12 and IL-2 receptor, or a Th2-like pattern,
with increased levels of IL-10, IL-4 and IL-5, or combina-
tions thereof [1]. Two recent studies reported evidence
of activated TLR4 receptors [152-154]. The causative
relationship between chronic inflammation and the devel-
opment of fatigue is perhaps strongest in patients afforded
a diagnosis of CFS, with many studies demonstrating a
significant positive correlation between surrogate markers
of inflammation, oxidative stress and symptom severity
[17,155-159]. Miwa and Fujita (2010) demonstrated that a
rapid decline in inflammation and oxidative stress of
patients corresponded with a decline in severity of fatigue
and amelioration of their entire symptom profile [160].
Markers of chronic inflammation and oxidative imbalance
have also been detected in skeletal muscle and levels of
oxidative stress in this patient population correlated posi-
tively with objective measures of muscle fatigability [161].
Numerous authors have reported abnormalities consistent
with mitochondrial dysfunction in patients afforded a
diagnosis of CFS [56]. These abnormalities include loss of
mitochondrial membrane integrity and oxidative corrup-
tion of translocatory proteins [57,58,162]. Other findings
include abnormal muscle mitochondrial morphology and
defective aerobic metabolism uncharacteristic of muscle
disuse [59,163]. Several other teams utilizing 31-P NMR
spectroscopy have reported significant down regulation of
oxidative phosphorylation [60,61,164-167]. Other studies
reported the presence of abnormal lactate responses to
exercise indicative of a shift to glycolytic energy gener-
ation in at least some patients with a CFS diagnosis [168].
In a recent review, Filings and others [169] conclude that
there was ample evidence of mitochondrial dysfunction
and impaired bioenergetics performance in patients
afforded a diagnosis of CFS, but once again it was
confined to patients diagnosed according to internation-
ally agreed criteria and not apparent in all patients [169].
Defects in oxidative phosphorylation and ATP generation
have also been revealed in exercise testing with the pattern
of physiological responses being characteristic of mito-
chondrial dysfunction [170]. Exercise performance was
examined in a cohort of CFS patients and a loss in the
linear relationship between heart rate and cardiac output
and the dissipation of oxygen concentration gradient
between venous and arterial blood characteristic of
mitochondrial dysfunction was reported [171]. Finally,
authors ultilizing NMR spectroscopy have reported that
some patients with CFS display significantly elevated
ventricular lactate levels, again suggestive of a shift
towards aerobic glycolysis [159,172,173].

Neuroimaging and neuropathology
There is now considerable neuroimaging evidence demon-
strating impaired blood flow in the cortex and cerebellum
in many patients with a diagnosis of CFS [174-176]. Other
studies report loss of gray matter volume [177-179]. Inter-
estingly, this phenomenon has also been observed in
patients given a primary diagnosis of fibromyalgia which is
held by many to be an overlapping illness. Kuchina et al.
reported that patients displayed levels of gray matter loss
which were some three times greater than expected for
their age [180]. Another study using 3-T voxel-based
morphometry MRI reported reduced occipital lobe gray
and white matter volume in the CFS group [181]. Cook
and fellow workers, using functional MRI (fMRI) reported
a significant positive association between perceived sever-
ity of fatigue and responsiveness in the cingulate frontal,
temporal and cerebellar regions [182]. Another research
team demonstrated impaired fMRI activation in the
dorsolateral, dorsomedial and prefrontal cortices during a
fatigue provocation task [183]. Glucose hypometabolism,
especially in the prefrontal cortex, has also been demon-
strated [184,185]. Finally Barden et al. [186] once again
using 3 T MRI-based morphometric analysis reported evi-
dence of astrocyte dysfunction and failure of autoregula-
tory mechanisms in patients in their trial cohort [186].

Parkinson’s disease
Fatigue in Parkinson’s disease
Pathological fatigue, often described as a state of over-
whelming exhaustion not necessarily related to physical
effort, is recognized as a major, and possibly the most
common, non-motor symptom of Parkinson’s disease
[187,188] and often presents an insurmountable problem
for patients and their caregivers [189,190]. Profound
fatigue is experienced by some 82% of patients with
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advanced (HY stage 5) disease and the prevalence of fatigue
increases with disease severity [191]. Although fatigue has
been clearly established as an independent non-motor
symptom of Parkinson’s disease, it is often confused with
depression or excessive daytime sleepiness in clinical prac-
tice [189]. Some authors have actually adduced evidence
indicating that fatigue could even be a pre-motor feature
of Parkinson’s disease [192,193]. Schifitto et al. reported
the presence of fatigue in just over a third of untreated
non-depressed patients [194]. Furthermore, several other
authors have reported that pathological levels of fatigue
occur in non-depressed patients who are also untroubled
by sleep problems [187,189].

Immune activation, inflammation and mitochondrial
dysfunction
Numerous authors have reported that the serum and CSF
of Parkinson’s disease patients contain elevated levels of
activated CD4 and CD8 T cells and IL-1β, TNF-α, and
IL-2 [195-199]. Increased frequencies of activated CD4+

T cells expressing the programmed death receptor Fas
[198] and increased numbers of IFN-γ-producing Th1
cells, decreased numbers of IL-4-producing Th2 cells, and
an overall decrease in CD4+CD25+ T cells have been
found in the peripheral blood compartment of patients
with this illness [200]. Studies have demonstrated that
elevated peripheral cytokine production influences the
progression of this illness. Parkinson patients display
increased serum levels of TNF-α and TNF-α receptor 1
when compared to healthy control subjects, which makes
an independent contribution to the pathogenesis of this
illness [197,201,202]. It is also noteworthy that elevated
plasma IL-6 concentrations significantly and positively
correlate with increased risk of developing the illness [203].

Neuropathy and functional central processes
The increased frequencies of activated peripheral and
memory T-cell subsets and activated T cells in the sub-
stantia nigra indicate the putative roles of T cells in the
progression of Parkinson’s disease. There is also evidence
that the balance of regulatory or effector T lymphocytes
at inflammatory foci can either attenuate or exacerbate
neuroinflammation and, hence, the subsequent develop-
ment of neurodegeneration [13].
The intimate association between Parkinson’s disease and

chronic inflammation has been revealed in different studies
[204-208]. It is now recognized that chronic systemic in-
flammation plays a major role in the pathophysiology of
Parkinson’s disease [209,210]. Nitrated proteins, DNA dam-
age and lipid peroxidation bear testimony to the presence
of elevated oxidative and nitrosative species [211,212]. The
detection of extracellular HMGB1 and corrupted protein,
DNA and lipid derived entities suggests substantial DAMP
activity [213]. The weight of evidence indicates that the
engagement of high-mobility group protein B1 (HMGB1)
and alpha synuclein plays a major part in exacerbating the
pathology of Parkinson’s disease [214,215]. Due to its
modified conformation alpha synuclein behaves as a
DAMP by activating TLR4 receptors on microglia result-
ing in the release of a plethora of neurotoxic entities, toxic
molecules, including O and NS and proinflammatory cy-
tokines and prostaglandin E2 (PGE2), thereby exacerbat-
ing neuro-inflammation [216,217].
Mitochondrial dysfunction in Parkinson’s disease in the

shape of Complex I (CI) impairment has been suggested
to be one of the fundamental causes of the illness [218,219].
This complex I deficiency is seen in the frontal cortex
and substantia nigra in the patients [62], and in peripheral
tissues, such skeletal muscle [220-222] and platelets
[63,223,224], strongly indicating a widespread reduction
in complex I activity in Parkinson’s disease. This defect is
likely due to oxidative damage to complex 1 and possibly
mis-assembly, as this latter phenomenon has been observed
in isolated Parkinson’s disease brain mitochondria [225].
This complex I inhibition can induce the degeneration
of neurons via a number of different mechanisms, such
as excitotoxicity and increased oxidative stress [226]. A
decrease in complex III function has also been reported
in the platelets and lymphocytes of patients with this
illness [64,223]. An association between the level of
impairment of mitochondrial complex III assembly lead-
ing to a subsequent increase in ROS production and the
development of Parkinson’s disease has also been reported
[227]. This elevation in free radical production and release
likely stems from the increased leakage of electrons from
complex III. An alternative, but not mutually exclusive,
explanation is that the inhibition of complex III assembly
results in a severe reduction in the levels of functional
complex I in mitochondria [228], again leading to an
increase in ROS production via complex I deficiency. It
is also noteworthy that the complex I and II electron
acceptor ubiquinone is also reduced in the mitochondria
of patients with Parkinson’s disease [229].

Neuroimaging and neuropathology
An almost bewildering array of neuroimaging abnormalities
have been observed in patients with Parkinson’s disease and
overall it is now clear that the various manifestations of
the disease cannot be attributed to basal ganglia dysfunc-
tion alone [230,231]. Numerous studies employing voxel
based morphometry have revealed a global pattern of gray
matter loss and conformational abnormalities in Parkinson
patients [232,233]. These gray matter changes are associ-
ated with cognitive and memory impairments which are
seen in patients with very early disease [234,235]. Nagano-
Saito and others reported that gray matter density displayed
a positive and significant correlation in the dorsolateral
prefrontal cortex and parahippocampal gyrus [236]. Loss
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of gray matter volume is apparent in treatment naive
patients, once again bearing testimony to the existence of
these abnormalities at the earliest stages of the disease
[237]. The use of NMR spectroscopy has revealed neu-
rometabolic abnormalities particularly a decrease in N-
acetyl aspartate levels [238]. Finally, the use of the same
technique has revealed the existence of widespread
mitochondrial dysfunction in the brains of people with
Parkinson’s disease even in the absence of any overt
clinical manifestations [239]. Treatment naïve patients
also display glucose hypometabolism in the dorsal pons,
putamen and ventral thalamus [240-242]. Positron emis-
sion tomography (PET) imaging has revealed cortical
hypometabolism in Parkinson’s disease. The severity and
topography of glucose hypometabolism in the frontal and
occipital cortex seen even in prodromal patients [243]
intensifies and involves the lateral parietal and prefrontal
cortices [242,244,245] and may also include the medial
frontal and occipital regions [243,246] in patients with
mild cognitive impairment (MCI). The severity and loca-
tion of this hypometabolism may reflect the degree and
extent of cognitive dysfunction [243,245,247,248]. The
widespread cortical hypo-perfusion reported by many
authors is also apparent at very early stages of disease and
also appears to be related to the development of cognitive
dysfunction [246,249,250].

Major depressive disorder
Fatigue in depression
Fatigue of variable severity occurs in practically 100%
of people with a diagnosis of depression [251,252]. It is
worthy of note, however, that a systematic review reported
that almost 80% of patients still experienced chronic
debilitating levels of exhaustion following treatment of
their depression [253]. This is perhaps to be expected
given that several studies have now demonstrated that
antidepressants have no positive modulatory effects on
fatigue [254-257].

Immune activation, inflammation and mitochondrial
dysfunction
The existence of increased levels of circulatory proinflam-
matory cytokines in these patients is now a textbook truism
[20]. The picture regarding patterns of cytokine imbalance
is complex with elevated levels of anti-inflammatory cyto-
kines often reported [258]. There is copious evidence of
chronically activated T cells with Th1, Th2 and Th17
patterns of differentiation [20,259,260]. It is worthy of
note, however, that T cells appear to be dysfunctional,
displaying an overall pattern of abnormalities consistent
with a state of anergy [261]. Until recently, evidence of
TLR activation in depression was limited to an animal
model [262] but recently a study reported elevated levels
of TLR4 in the brains of depressed patients displaying
suicidal ideation [263]. Chronic systemic inflammation
and oxidative stress play a major role in the etiology of
depression [19,20]. Elevated levels of redox-damaged
DAMPs, including oxidized low density lipoprotein,
oxidized phospholipids, and malondialdehyde (MDA)-
adducts are also consistently found in patients suffering
from this illness [48]. Compromised epithelial barrier
integrity is also a finding in depression and the resulting
bacterial translocation into the systemic circulation is
intimately involved in the pathogenesis of the disease
[20,155]. Mitochondrial dysfunction affects neuronal
function, synaptic plasticity, energy metabolism and
neurotransmitter release and, hence, it is not surprising
that there is increasing evidence that mitochondrial
dysfunction and inflammation drive the symptoms of
major depression [65,66]. Gardner and Boles highlighted
the fact that research has failed to confirm a consistent
relationship between serotonin levels and depression and
that compromised bioenergetics should become a focus of
research into the pathogenesis of the illness [264].

Neuroimaging and neuropathology
Hamilton and fellow workers reported the results of their
meta-analysis of studies ultilizing various modalities of
functional neuroimaging in patients with depression [265].
These authors concluded that a synthesis of the studies
revealed a pattern of higher baseline neural activity in the
pulvinar nucleus [265]. They further reported that studies
ultilizing negative stimuli demonstrated a significantly
greater neural response in certain areas of the brain, such
as the amygdala, and lower responses in other regions,
such as the prefrontal cortex, possibly indicating impaired
contextual processing and reappraisal of visceral inputs
[265]. In another meta-analysis, Kempton and others
reported that patients with a diagnosis of depression and
bipolar disorder displayed increased rates of hyperintensi-
ties in subcortical gray matter and increased volume of
the lateral ventricles compared to healthy controls [266].
Interestingly, this meta-analysis also revealed distinct dif-
ferences in neuroimaging abnormalities between depres-
sion and bipolar disorder, with the former having reduced
rates of hyper-intensities in white matter and smaller basal
ganglia and hippocampi compared to bipolar patients
[266]. There is evidence that patients in a state of depres-
sion display reduced gray matter volume in the hippocam-
pus compared to healthy controls or patients in remission
[267]. Other investigators analyzing studies involving
voxel based morphometric analysis have reported more
widespread loss of gray matter in many different areas of
the brain, especially in the prefrontal cortex [268-270]. It
is noteworthy that gray matter reduction is evident in
patients with first episode depression [271]. Impaired
perfusion in frontotemporal regions has been reported
[272] and a recent study has reported global cerebral
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hypoperfusion [273]. Interestingly, the degree of hypo-
perfusion in the prefrontal cortex correlates positively
with the severity of depressive symptoms in patients with
Alzheimers disease [274]. Another research group has
recently reported that regional cerebral blood flow abnor-
malities in the prefrontal cortex and anterior cingulate
cortices reverse during remission [275]. Glucose hypome-
tabolism has been demonstrated in depressed patients
both in the prefrontal cortex [276] and in several other
regions [277]. An intriguing connection between glucose
hypometabolism was proposed in a study by Hirono and
others, who reported a positive significant association
with the presence and severity of depressive symptoms
in Alzheimer patients and decreased glucose metabolism
in the frontal lobe [278]. Finally, the presence of activated
microglia in patients suffering from depression has
been established via the use of in vivo non-invasive
neuroimaging [279].

Systemic lupus erythematosus
Fatigue in SLE
Fatigue is an extremely common and disabling symptom
affecting some 80% of patients with SLE [280]. Fatigue
severity scores are significantly higher than population
norms and similar to levels seen in patients with MS
and Lyme disease [281,282]. Chronic debilitating fatigue
is a major cause of morbidity in patients with SLE [283],
that decreases quality of life [284-286] and increases work
disability [287,288]. The aerobic capacity of patients with
mild SLE is comparable to that observed in patients with
severe cardiopulmonary disease [289-291]. Disease activity
appears to be a major factor in the genesis of fatigue
although this relationship is not evident in all studies
[280,283,292,293].

Immune activation, inflammation and mitochondrial
dysfunction
There is extensive evidence of activated T cells in the
peripheral immune system of patients with SLE [294].
Elevated levels of proinflammatory cytokines play a key
role in the pathophysiology of SLE [295]. Salbry et al.
[296] reported a significant positive correlation between
levels of TNF-α and IL-6 and objective markers of
disease activity [296]. The weight of evidence indicates
that significantly elevated levels of proinflammatory cyto-
kines in the systemic circulation also plays a causative role
in the development of systemic inflammation [297,298].
The presence of a chronic inflammatory state in people
suffering from SLE has been reported by several research
teams [28,299]. Wang and colleagues reported a signifi-
cant positive correlation between elevated markers of O
and NS with disease activity in this illness [300]. A range
of TLRs are involved in initiating and maintaining the
pathology of SLE, including TLR4, TLR3, TLR9 and
TLR7 [301,302]. Impaired clearance of apoptopic cells
is a pathological feature of SLE and, hence, the blebs
and modified cellular contents act as autoantigens and
are recognized by the immune system as DAMPS with the
resultant activation of TLRs especially TLR4 [303,304].
The impaired clearance of these cells sets off a sequence
of biochemical events allowing the escape of extramatrix
debris once again acting as an autoantigen and recognized
as a DAMP with the consequent activation of TLR4 and,
indeed, a range of other TLRs as well [304]. Interestingly,
polymorphisms in TLR4 (and CD14) genes are now
thought to play a significant role in the etiopathogenesis
of SLE. Persistent mitochondrial membrane hyperpolari-
zation, increased O and NS production combined with
depleted levels of glutathione and ATP is characteristic of
T cells in SLE [67,68]. This environment sensitizes T cells
towards necrotic cell death and the consequent release of
DAMPS into the blood stream affords a mechanism by
which localized mitochondrial pathology can lead to self-
perpetuating systemic inflammation [69,305].

Neuroimaging and neurological abnormalities
Neurological symptoms in SLE are commonplace, affect-
ing upwards of 80% of sufferers [32]. These neurological
abnormalities occur even in the absence of the various
systemic disease manifestations [306]. Voxel based mor-
phometric analysis revealed widespread gray matter volume
reduction in patients diagnosed with SLE [307-309]. Other
studies have revealed the presence of white matter hyper-
intensities, whose prevalence in an individual is predictive
of disease progression [309-311]. The presence and severity
of fatigue in patients with SLE is associated with white
matter hyperintensities [312]. These authors reported that
the White Matter Hyperintesity score correlated positively
and significantly with fatigue severity [312]. The patho-
physiology of ‘neuropsychiatric’ Lupus is mediated by
cytokines, complement components and autoantibodies
leading to the development of neuroinflammation and,
ultimately, apoptosis of neurons and glial cells [313-316].
It is perhaps no surprise that the presence of activated
microglia have been confirmed in patients with SLE [34].

Sjogren's syndrome
Fatigue in Sjogren's syndrome
Fatigue and pain are, again, the most common extra-
glandular symptoms of Sjogren's syndrome [317,318]. A
total of 70% of patients with Sjogren’s syndrome suffer
from fatigue and many patients state that fatigue is one
of the most disabling symptoms of their disease [319].
There are a number of studies reporting a significant
positive association between the severity of fatigue expe-
rienced by patients and various surrogate markers of
disease activity [320-322]. The fatigue levels are associ-
ated with higher sicca symptoms, lower salivary volume,
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increased serum anti-Sjögren’s syndrome A antigen, im-
munoglobulin G (IgG) and proinflammatory cytokine levels
[323]. Further evidence suggesting cytokine involvement in
the genesis of fatigue was provided by Norheim and fellow
workers who reported that patients’ fatigue levels were
reduced by some 50% following blockade of IL-1β [324].

Immune activation, inflammation and mitochondrial
dysfunction
Predictably there is copious evidence demonstrating the
existence of a chronically activated innate immune system
in patients diagnosed with this illness [325]. There is a
wealth of data demonstrating disturbed cytokine net-
works [326], with cytokines secreted by activated Th1
and Th17 T cells being commonly detected in various
blood compartments [327,328]. Epithelial cell activation
leading to TLR upregulation is considered by many to
be a pivotal early event in the pathogenesis of Sjogren's
syndrome [329,330]. A range of TLRs, including TLR2,
TLR3 and TLR4, are chronically up-regulated in sufferers
of this illness [329,331]. Chronic systemic inflammation is
an almost invariant finding in Sjogren's syndrome patients
[332]. The existence of chronically elevated O and NS and
subsequent oxidative stress has also been repeatedly dem-
onstrated in patients with this disease [70,333]. The link be-
tween mitochondrial dysfunction and chronic oxidative
stress is now firmly established in Sjogren's syndrome [70].

Neuroimaging and neurological abnormalities
A wide range of abnormalities in the central and periph-
eral nervous system occur in up to 70% of patients with
Sjogren's syndrome, which may precede diagnosis in over
90% of cases [33,334,335]. Those interested in the details
of these neurological abnormalities are invited to consult
an excellent review by Tobon et al. [33]. There is some
evidence that CNS pathology is immune mediated [336]
and many patients display abnormalities on MRI with
increased signaling intensity in T2 weighted images being
the commonly noted finding [337,338]. These white mat-
ter hyperintensities (WMH) are indicative of widespread
hypoperfusion [336,339-341]. Voxel based morphometry
has once again revealed a global pattern of gray matter
volume loss [340,342] and very recently loss of cerebral
white matter was observed for the first time [343].

Rheumatoid arthritis
Fatigue in rheumatoid arthritis
Patients with rheumatoid arthritis commonly complain
of severe intractable fatigue with prevalence rates of up
to 80% depending on definitions of fatigue used [344]. A
study employing a fatigue measuring instrument reported
that 40% of patients with rheumatoid arthritis experienced
unremitting severe fatigue of the same level and pattern as
fatigue experienced by patients with a diagnosis of chronic
fatigue syndrome [345]. From a patient perspective fatigue
is often described as extreme, unremitting and unrelated
to activity and is associated with a failure to perform
routine daily activities and non-refreshing sleep which,
when considered together, are more debilitating than pain
[346,347]. Reducing inflammation with disease modifiers
significantly reduces fatigue [348]. Considerable evidence
now exists demonstrating that the severity of fatigue expe-
rienced by patients suffering from this disease correlates
significantly and positively with levels of disease activity
[349,350].

Immune activation, inflammation and mitochondrial
dysfunction
Numerous research teams have adduced evidence of a
chronically activated immune system in rheumatoid
arthritis patients as evidenced by significantly increased
serum Th1, Th2 and Th17 cytokines [351-353]. Blockade
of Th1 and Th17 cytokines can result in significant clinical
benefit in patients with rheumatoid arthritis, strongly
indicating their role as causative agents in the disease
[354,355]. The frequency of Th17 T cells and associated
cytokines strongly correlates with a poor prognosis which
again suggests that these entities play a major causative
role [356]. There is also good evidence that the use of
biologic agents results in significant improvements in
fatigue, strongly implicating elevated levels of these
species in the genesis of intractable fatigue in patients
with rheumatoid arthritis [357,358]. There is also con-
siderable evidence demonstrating the activation and
upregulation of TLRs in this disease with upregulated
TLR2, TLR3 and TLR4 being commonplace findings
[359-361]. Rheumatoid arthritis is recognized as being
a systemic inflammatory condition [359] and chronic
inflammation and accompanying oxidative stress play a
causative role in the illness [362,363]. Perhaps unsur-
prisingly then, it has been demonstrated that levels of
inflammation correlate positively with measures of dis-
ease activity [364]. The positive association between
inflammation and fatigue genesis is evidenced by the
fact that reducing inflammation with disease modifiers
significantly reduces fatigue [348]. The effector molecules
of chronic inflammation and oxidative stress can induce
irreversible genetic changes and one such change, muta-
tions in p53, has been suggested as a ‘turning point’ in
converting a state of chronic inflammation into chronic
disease [365]. There is evidence of somatic mutations in
the mitochondrial DNA (mtDNA) within synoviocytes of
rheumatoid arthritis patients which may confer immuno-
genicity on mtDNA derived proteins which consequently
adopt the character of DAMPS and be one of such entities
thought to play a major role in the etiopathogenesis of this
disease [366]. A positive association has been reported in
these cells between the extent of these mutations and the
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expression of cyclo-oxygenase 2 (COX-2), prostaglandin
(PG)E2 and IL-8 [367]. The existence of these inflam-
matory markers is highly suggestive of NO-induced
inhibition of complex III and V of the electron transport
chain [72,368].

Neuroimaging and neuropathology
There is no direct evidence supporting the existence of
chronically activated microglia and neuroinflammation
in patients with rheumatoid arthritis, but neurological
sequelae are commonplace and the role of chronic systemic
inflammation in establishing such sequelae is accepted [35].
Wartoloska et al. reported widespread cortical atrophy in
their patients with rheumatoid arthritis using unbiased
voxel morphometric analysis and a pattern of increased
gray matter density in subcortical areas notably the basal
ganglia with the latter finding being suggestive of decreased
dopamine levels [369]. An earlier MRI imaging study by
Bekkelund and fellow workers also detected cortical atro-
phy in rheumatoid arthritis patients but only in those with
longstanding disease [370].

Cross-talk peripheral and CNS inflammation
There is now copious evidence that chronic or intermit-
tent inflammation, as observed in the abovementioned
systemic disorders, can worsen or trigger neuroinflam-
matory or neurodegenerative processes via the induction
of primed microglia [8,12]. Briefly, prolonged or inter-
mittent peripheral inflammation and immune activation
act to prime microglia which thereafter become exquisitely
sensitive to future inflammatory stimuli [8]. Once microglia
have achieved this sensitized status, subsequent peripheral
inflammation and proinflammatory cytokine production
mediated by a number of insults (for example, biotoxin
exposure or pathogen invasion) provokes an exaggerated
response from microglia and the production of excessive
concentrations of neurotoxic molecules, such as nitric
oxide, peroxinitrite, prostaglandins, cyclo-oxygenase 2 and
cytokines [6,7]. The secretion of these neurotoxins and
alarmins leads to the activation of astrocytes and the
combined activation of these glial cells provokes dys-
regulation of brain homeostasis, development of chronic
neuroinflammation and neurotoxicity. Both humoral and
neuroendocrine routes mediate proinflammatory signaling
to the brain. The neural route operates via the dorsal
motor nucleus of the afferent vagus nerve [6]. The
humoral route is facilitated by circulating proinflamma-
tory cytokines that communicate their presence to the
brain via direct and indirect routes. Such pathways involve
engagement with specific transporters in the blood brain
barrier (BBB), the activation of endothelial cells and
macrophages, creating a mirror pattern of production
on the adluminal side of the BBB, and passive diffusion
into areas of the brain lacking a functional BBB (for
example, circumventricular organs) and thereafter into the
glial limitans [1]. The cumulative effects of proinflamma-
tory cytokines and activated astrocytes cause disruption of
the BBB allowing abnormally high numbers of activated
T cells and B-cells to circulate between the peripheral
immune system and the brain, acting as more channels
of communication between the peripheral and central
immune system [13]. It should be noted that cytokines
are able to diffuse from the CNS into the bloodstream
as well [13]. Finally, the presence of proinflammatory
cytokines in the brain activates the hypothalamus instigat-
ing the cholinergic anti-inflammatory pathway designed
to terminate the immune response [1,6]. These processes
are depicted in Figure 2.

ASIA syndrome and sex effects
All disorders reviewed here, except Parkinson’s disorder,
are more frequent in women than in men. For example,
in patients with rheumatoid arthritis a four to five
greater incidence is found in women than in men when
less than 50 years old, whereas these differences are
less pronounced in 60- to 70-year old individuals. The
female predilection is also observed in depression, CFS,
MS, Sjogren’s syndrome and systemic lupus erythemato-
sus [371-375]. In Parkinson’s disorder the male/female
incidence rate ratio is 1.6 to 1 [376]. One main difference
between Parkinson’s disease and the other disorders
discussed here is that the autoimmune component is less
pronounced in Parkinson’s disease. An increased inci-
dence rate in women is observed in most autoimmune
disorders [371]. Nevertheless, also in Parkinson’s disease
autoantibodies are observed and they are associated with
specific symptom profiles, including depression [377]. It is
argued that these sex-related differences in incidence may
be explained by endogenous sex-hormones.
Estrogen, progesterone and testosterone play important

immunomodulatory roles and influence the quantity and
pattern of cytokine secretion by antigen presentation cells
and T lymphocytes and immunoglobulin production by B
cells. Sex hormones also regulate the Th1/Th2 balance of
the immune system, the production of regulatory T cells
and the functionality of granulocytes and natural killer
cells [378,379]. An interested reader is referred to an
excellent review by [380] for a detailed consideration of
the mechanistic effects of sex hormones on individual
classes of immune cells. In the light of the discussion
above, it also seems noteworthy that estrogen is neuro-
protective in many animal models of neuroimmune and
neurodegenerative disorders essentially by down regulating
the expression of neuroinflammatory genes in glial cells,
such as those coding for elements of the complement
system, proinflammatory cytokines and TLRs [381]. Thus,
excessive estrogens but less androgens may favor activa-
tion of B cells, a Th2-like response and increased numbers



Figure 2 This figure describes the putative role of immune brain communication in the pathogenesis of severe intractable fatigue.
Toll-like receptors (TLRs) on antigen presentation cells (APCs) may be activated by pathogen- or damage-associated molecular patterns (PAMPs/
DAMPs) leading to the activation of nuclear factor-κB (NF-κB) and the subsequent upregulation of pro-inflammatory cytokines (PICs), including
interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α, and reactive oxygen and nitrogen species (ROS/RNS). These radical species may further
damage macromolecules, increasing levels of redox-derived DAMPs which further engage TLRs in a self-sustaining cycle. PIC signals reach the
brain via the afferent arm of the vagus nerve, engagement with transporters in the blood brain barrier (BBB) and passive diffusion. Inflammatory
signaling from the periphery activates microglia which produce a range of neurotoxic molecules activating astrocytes causing a loss of brain
homoeostasis and disruption of the BBB. The latter allows abnormally high numbers of activated T and B cells and macrophages to circulate
between the periphery and the brain. This figure is original.
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of autoimmune cells and, thus, autoimmune responses
[371]. Nevertheless, the precise effects of sex- or gender-
related factors on the increased incidence of autoimmune-
related disorders has remained elusive. Future research
should delineate not only sex but also gender-related
effects according to the gendered innovations approach
[382].
These parameters and elevated number of circulating

T cells seen in premenopausal women may be one reason
for the powerful prolonged activation of inflammatory
pathways and adverse reactions to aluminum adjuvants
seen in women following administration of a range of
vaccines [383,384]. The engagement of TLR receptors by
aluminum, as well as the activation of the NLP3 inflam-
masome, could create a state of chronic inflammation
and oxidative stress in a person with functional poly-
morphisms in immune genes as discussed above and,
hence, could be a cause of Autoimmune Inflammatory
Syndrome Induced by Adjuvants (ASIA), alternatively
known as Schoenfield’s Syndrome [385-387]. The acti-
vation of TLR4 by silicon [388] could also explain the
connection of this element with the development of
ASIA and the chronic activation of TLRs can potentially
explain many environmental contributions to the ‘mosaic
of autoimmunity’ [389].
Sex effects may also determine responsivity to drug

therapy as, for example, in MS. Thus, postmenopausal
women are poorer responders to rituximab than men of
the same age [390,391]. This might seem a little counter
intuitive from the frame of reference that rituximab
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exerts its effects mainly on the B cell population and that
B cell levels do not appear to differ in postmenopausal
women and age equivalent men to any significant extent
[392]. However rituximab also exerts modulatory effects
on the T cell compartment [393]. Numerous researchers
have reported that the clinical benefits seen following
the use of rituximab in rheumatoid arthritis and other
autoimmune conditions are associated with the antibody’s
capacity to increase the expression of FOXP3 [394], sup-
press the expression of retanoic acid-like orphan receptors
ultimately suppressing the production of Th17 T cells
and IL-17 [395] and reducing the expression of cytokines
by Th1, Th2 and Th17 T cells [396]. It is possible that the
Th2 shift in the immune system seen in postmenopausal
women negates the benefits of rituximab on a Th1/Th17
biased immune system [392]. The positive benefits of
rituximab and natalizumab on MS [84,85] is probably
most easily explained by the modulatory effects of
rituximab and, likely, natalizumab on the T cell com-
partment as well as their well-documented effects on B
cell depletion.
Figure 3 This figure depicts shared pathways in the illnesses describe
Toll-like receptors 2/4 (TLR2/4) by pathogen- and damage-associated mole
(IL)-1β, tumor necrosis factor (TNF)-α and IL-6 together with elevated levels
source of secondary fatigue and together with the other cytokines acts as a se
and the provocation of metabolic dysfunction in the brain via the activation o
secondary fatigue by damaging lipids and proteins which are essential for the
chain. These actions lead to impaired mitochondrial performance which is als
mitochondrial diseases. This figure is original.
Summary and conclusion
Figure 3 shows a diagram illustrating the causal links
being described in the above sections synthesizing the
significant pathways that lead to secondary fatigue in these
different neurodegenerative and systemic (auto)immune
disorders. There is clear evidence of a positive relationship
between fatigue severity and levels of disability in MS. It is
of interest that levels of peripheral inflammation, oxidative
stress and TNF-α also display a positive correlation
with objective markers of disease activity and disability
levels and that levels of proinflammatory cytokines cor-
relate positively with levels of fatigue. The existence of
gray matter atrophy before the advent of white matter
abnormalities, and the existence of metabolic abnormal-
ities before the advent of gray matter pathology, rather
argues against the proposition that the chronic peripheral
immune activation and oxidative stress seen in early
disease is secondary to the release of inflammatory media-
tors from the CNS. These observations, coupled with data
demonstrating that the severity of neuro-inflammation
depends on the level of peripheral immune activation
d in this paper that may cause secondary fatigue. Activation of
cular patterns (PAMPs/DAMPs) leads to the production of interleukin
of reactive oxygen and nitrogen species (ROS/RNS). IL-1β is a primary
condary source of fatigue via the inhibition of mitochondrial performance
f astrocytes and microglia. ROS/RNS can also be a primary cause of
performance of mitochondria and inhibiting the electron transport
o a source of fatigue in a similar manner as found in syndromic
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and that inflammation drives the development of disease,
emphasizes the likely causative role of peripheral path-
ology. The strong association between the severity of
fatigue and disability and the level and geographical
distribution of glucose hypometabolism and gray matter
hypoperfusion strongly indicates that these elements are
driven by generic rather than disease specific pathology.
These kinds of generic abnormalities are also evident in
Parkinson’s Disease where peripheral immune activation,
oxidative stress, GM atrophy and widespread glucose
hypometabolism are all evidenced in the very earliest
stages of disease development. It is also noteworthy that
the prevalence of severe intractable fatigue increases with
the degree of disease progression and that the degree of
peripheral inflammation and levels of proinflammatory
cytokines are predictive of disease development and sever-
ity. When viewed as a whole these observations also
support the view that severe intractable fatigue results
from processes which are not disease specific but involved
in disease pathogenesis. The existence of chronic periph-
eral inflammation and immune activation together with
GM atrophy and glucose hypometabolism in patients with
first episode depression is now a textbook truism. Interest-
ingly, the pattern of neuroimaging abnormalities and GM
pathology appears to be quite distinct from that seen in
patients with neuroimmune and autoimmune diseases for
reasons which are not yet clear. This pattern of peripheral
inflammation and immune activation is also found in
autoimmune diseases with levels of oxidative stress and
proinflammatory cytokines having a causative role in the
pathophysiology of SLE and displaying positive correla-
tions with objective markers of disease severity. This is
also true of patients with Sjogren's syndrome where
objective markers of disease activity are reduced by cyto-
kine blockade. There is also evidence demonstrating that
the severity of fatigue is associated with the degree of
white matter hyperintensities in people with SLE and
evidence that the neuropathology in Sjogren's syndrome is
immune mediated. The widespread mitochondrial dys-
function seen in people with autoimmune diseases could
also make a significant contribution to the development
of fatigue. Widespread mitochondrial dysfunction, in
otherwise normal tissue, is also seen in patients with MS,
Parkinson’s disease and in many patients with apparently
idiopathic fatigue. Given that many such patients also dis-
play evidence of peripheral immune activation, oxidative
stress, gray matter pathology, glucose hypometabolism,
hypoperfusion and metabolic abnormalities in the pre-
frontal cortex, basal ganglia and elsewhere, it would seem
reasonable to investigate all such patients for the presence
of these abnormalities. Standard MRI is unlikely to be
helpful but other approaches discussed in the main body
combined with serum measures of immune activation and
oxidative stress may well bear fruit.
As these mechanisms are extensively inter-related, it
should be underscored that without a solid prospective
timeline and known systems biomedicine, it has remained
difficult to distinguish causation from association. There-
fore, future research should delineate: 1) the overwhelm-
ingly complex and dynamic interactions between these
different pathways and the intracellular networks that
modulate them; and 2) the multifactorial triggers that
cause secondary fatigue by activating the networks/
pathways in those disorders, including viral and bacterial
infections, bacterial translocation, psychosocial stressors,
exposure to adjuvants, nicotine dependence, sex- and
gender-related factors, and so on. Towards this end, a
systems biomedicine approach is essential to delineate
the genetic and molecular signature of fatigue in these
disorders and the non-linear interactions between the
many pathways, networks, and trigger and genetic factors
that underpin secondary fatigue.
Multi-targeting these interlinked dysfunctions may

show benefit in these diseases. For example, a number of
antioxidant compounds have demonstrated efficacy in
modifying pathways leading to chronic inflammation,
oxidative stress and immune dysregulation at relatively
high doses for a long duration [7]. N-acetyl-cysteine is an
example of a multi-target therapeutic approach having the
capacity to decrease the levels of ROS/RNS, increase the
levels of cellular antioxidants, such as reduced glutathione,
and normalize the production of proinflammatory cyto-
kines and immune cell functions [397]. This supplement
has demonstrated the capacity to improve fatigue and
disease activity in SLE, CFS and major and bipolar
depression [7,398]. Omega-3 polyunsaturated fatty acids
(PUFAs) and zinc are also very effective antioxidants and
anti-inflammatory compounds and supplementation has
produced clinical benefit in patients diagnosed with
depression and chronic fatigue syndrome [7,399,400].
Omega-3 PUFAs also show a clinical efficacy in SLE and
rheumatoid arthritis [398,401,402]. Curcumin, another
nutraceutical with anti-inflammatory and antioxidative
effects, is useful in the treatment of depression and
rheumatoid arthritis [403,404]. Coenzyme Q10 is another
powerful antioxidant and anti-inflammatory compound
which also has positive effects on mitochondrial function
and which displays disease modifying effects in Parkinson’s
disease and produced clinical benefit in patients with a
diagnosis of CFS [56]. Other approaches aimed at upre-
gulating antioxidant defenses include N acetylcysteine,
methylfolate and dimethyl fumarate, with the latter
displaying disease modifying properties in MS [140].
Methylfolate produces a similar quantum of benefit in
MDD as antidepressants and can often be effective in
treatment-resistant depression [140].
It is concluded that there are sufficient robust multiple

lines of evidence to support the proposition that the
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severe fatigue and profound disability experienced by
people with the neurodegenerative, neuro-immune and
autoimmune diseases discussed here is largely driven by
peripheral immune activation and systemic inflammation
either directly or indirectly by inducing mitochondrial
damage.
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