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HYBRID EXCHANGE CORRELATION FUNCTIONALS 

AND POTENTIALS: 

CONCEPT ELABORATION 

A. V. Arbuznikov UDC 539.192 

This paper deals with hybrid functionals that contain exact exchange energy and are the most popular and 

effective functionals in modern density functional theory. Emphasis is laid on generalization of the notion 

of a “hybrid functional,” which arises from the introduction of the spatial dependence of the exact exchange 

admixture (local hybrid functionals). Problems inherent in hybrid functionals are considered along with 

problems inherent in a wider class of so-called orbital-dependent functionals. In particular, the technique 

for constructing the local and multiplicative potentials, including the optimized effective potential method, 

is considered in detail. The theoretical approaches under study are illustrated by calculations of atomization 

molecular energies and magnetic resonance parameters. 

Keywords: density functional theory, hybrid functional, local hybrid functional, localized local hybrid 

potential, optimized effective potential method, atomization energy, chemical screening constant, g tensor. 

INTRODUCTION 

Over the past decade or two, density functional theory (DFT) has become one of the most popular methods of 

electronic structure calculations of atoms, molecules, clusters, solids, etc. [1, 2]. The growing popularity of DFT is primarily

determined by the combination of high accuracy, occasionally exceeding the accuracy of strict many-particle methods, and 

rather moderate requirements to computational resources, which today allow calculations for large systems of interest in 

nanotechnology, namely, biologically active molecules containing hundreds of atoms, etc.  

Modern DFT is based on two Hohenberg–Kohn’s theorems [3]. The first theorem sets one-to-one correspondence 

between the electron density of a many-electron system in the ground state and the “external” potential, i.e., the electrostatic

potential of nuclei, which are immobile within the framework of the adiabatic approximation, and the external static electric 

field. The second Hohenberg–Kohn theorem is essentially the variational principle formulated in terms of electron density as 

a basic quantity. In contrast to the many-electron wave function (r1, r2, …, rN; 1, 2, …, N) (where ri = (xi, yi, zi) are the 

spatial coordinates of an electron with the index i; i is its spin variable; and N is the number of electrons in the system), 

including a lot of redundant information, the electron density  

1 1 2 1 2 1 2 1 2 2 1( ) ( , , , ; , , , ) ( , , , ; , , , )N N N N N NN d d d dr r r r r r r r r  (1) 

is primarily attractive because it is easily perceivable (corresponds to the intuitive concepts of the electronic structure of 

atoms, molecules, etc.) and relatively simple from mathematical viewpoint (determined by a triplet of spatial variables). 

From the viewpoint of practical calculations, however, the situation is much more problematic. Regretfully, an 
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equation similar to the Schrödinger equation with electron density instead of the many-electron wave function has not yet 

been formulated. The major difficulty lies in impossibility of expressing the kinetic energy of the system with an acceptable 

accuracy in terms of density alone (the fundamental Thomas–Fermi model [4, 5] failed to provide an accuracy needed for real 

chemical applications). The Kohn–Sham formalism proved to be a solution to this problem [6]. In this formalism, an 

imaginary many-electron system is introduced which has the same electron density distribution as the real system in question, 

but differs from it in the absence of interelectron interaction. This fictitious “noninteracting” system is described by a single-

determinantal wave function composed of the (Kohn Sham) one-electron orbitals occ

1
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N

i i
r  (Nocc is the number of occupied 

spatial orbitals among which there may be recurrent doubly occupied orbitals) with which the total electron energy of a real

system can be recorded as  
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where ZK is the charge on an (immobile) nucleus with the index K, and RK are the spatial coordinates of this nucleus; the 

electron density is defined as  

occ
2

=1

( ) | ( ) | .
N

i
i

r r  (3) 

In the right part of (2), the first term, Ts, describes the kinetic energy of a noninteracting system; the second term, Vne, is the 

attraction of electrons to nuclei; and J is the classic contribution of electron repulsion to the energy. Finally, Exc, which is 

called an exchange correlation functional, is the residue of the electron energy of the real system, namely, the “nonclassic” 

contribution of interelectron interaction to the potential energy and the difference between the kinetic energies of the real and 

imaginary systems: 

xc ( ) ( ).ee sE V J T T  (4) 

DFT is an essentially strict theory provided that an exact exchange correlation functional is known. Regretfully, an 

“ideal” functional of this kind is inaccessible; construction of increasingly exact approximations to Exc remains the central 

problem of modern density functional theory. The exchange correlation functional is virtually “the core of DFT” because it 

eventually affects the predictive strength and efficiency of the theory. 

This work does not claim to give a full description of the evolution of the exchange correlation functionals. Instead 

we attempt to trace the origin of so-called hybrid functionals and prospects for their development because these are now the 

most popular and effective functionals. We also try to understand reasons for their success and to demonstrate several pitfalls

in their realization, which often escape the attention of researchers. This work deals with problems inherent in hybrid 

functionals and orbital-dependent functionals, which have recently become reliable tools of applied DFT; in particular, this 

work considers in detail the technique for constructing the local and multiplicative potentials, including the optimized 

effective potential method and its approximate versions. To avoid cumbersome equations we give all relations for the case of 

real orbitals, response functions, etc. (which can be readily generalized to complex objects). Here we consider only finite 

systems (atoms, molecules, clusters, etc.).  

LOCAL AND SEMILOCAL DENSITY FUNCTIONALS 

Before describing the density functionals it is necessary to introduce several additional definitions. The spin density 

functional theory (SDFT) is a natural generalization of DFT for describing open-shell systems or any systems in an external 

magnetic field. In this theory, the exchange-correlation energy is defined by two variables, namely, by electron densities with

spins  ( ) and  ( ):

xc xc[ ; ],E E  (5) 
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where* 
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The introduction of dimensionless spin polarization  is an alternative method for including spin effects in calculations: 

( ) ( )
( ) .

( )

r r
r

r
 (8) 

It can easily be seen that the pair of variables ( ; ) is quite equivalent to the pair ( ; ). Naturally, in closed-shell systems, 

 =  = /2 (or  = 0) at each point of space. 

Using the variational principle for energy functional (2) and imposing an additional condition of orthonormal 

orbitals yields Kohn–Sham one-electron equations (similar in form to Hartree–Fock equations [7]): 

21
( ) ( ) ( ),

2
s i i iv r r r  (9) 
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is the Kohn–Sham potential, and  

xc
xc ( )

( )

E
r

r
 (11) 

is the exchange correlation potential defined as a functional derivative [8] of the exchange correlation functional with respect

to density**.  

In the local density approximation (LDA) [9-13], which has recently been widely used for a long time, the exchange 

correlation functional was recorded as an integral of a certain function of spatial variables. The latter, in turn, is only 

determined by electron density (and spin polarization) at a given point: 

LDA LDA LDA
xc xc xc[ ( ); ( )] [ ( ); ( )] ( ) .E d e dr r r r r r r  (12) 

The integrand functions 
LDA
xc  and 

LDA
xce  are two alternative definitions of the exchange correlation energy density (

LDA
xce  is 

often called, more explicitly, energy density per electron); here we use the first definition (
LDA
xc ).

LDA naturally appeared in electron gas theory (see, e.g., [14]) and proved a very effective method for describing 

solids as three-dimensional periodic systems. On the other hand, LDA is a rather rough approximation for describing finite 

objects (atoms and molecules), whose electron density distribution has almost nothing in common with that in a 

homogeneous electron gas. Before starting to discuss more exact methods, it should be noted that it is common practice to 

divide all exchange correlation functionals into groups of “exchange” and “correlation” functionals: 

xc x c ,E E E  (13) 

and model each contribution separately. Strictly speaking, this division is rather conventional and even partly equivocal [15] 

and is dictated mainly by practical considerations of convenience (for discussion, see the next section). Nevertheless, based 

                                                          

*The density  can also be obtained directly from (1) if integration (summation) over the spin variable 1 is not 

carried out. 

**For open-shell systems described within the spin-unrestricted Kohn–Sham method, two coupled-perturbed 

equations appear instead of one equation (9): one for spin , and the other, for spin , which accordingly include different 

spin-dependent exchange correlation potentials xc, xc, .
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on the known expansion in a series of the reciprocal powers of the Seitz radius 

1/ 3
3

4
sr  for the homogeneous electron 

gas energy (see Eq. (3.37) from [14]) in LDA one can naturally determine the local exchange energy (often called “Slater 

exchange” [10] and designated as 
S
x ,E  although it was suggested by Dirac [9]), which is attractive in having a very simple 

expression: 

LDA S LDA LDA
x x x, x,

, ,

[ ( )] ,E E E dr r  (14) 

where 

1/ 3
LDA 4 / 3
x, x x

3 3
( ), 0.9305257

2 4
C Cr  (15) 

In contrast to Ex, the correlation energy Ec of a homogeneous electron gas [11-14] cannot be reproduced in analytical form. 

The most popular parametrizations of Ec, VWN* [12] and PW91 [13], are constructed by analytically interpolating the results 

of Monte Carlo stochastic simulation of electron correlation [16]. 

Since the mid-1980s, DFT became even more popular as a quantum chemical-method because of the appearance of 

the generalized gradient approximation (GGA) [17-20], which substantially increased the accuracy of description. In the 

GGA, the exchange correlation functional includes not only electron density, but also information about its inhomogeneity in 

the form of the absolute value of the density gradient:  

GGA GGA
xc xc [ ( ),| ( ) |; ( ),| ( ) |] .E dr r r r r  (16) 

More recently, a number of new GGA functionals were created and allowed higher accuracy of calculations of definite 

properties of molecular systems** [21-25]. Within the framework of the GGA, the most popular functionals are Becke’s 

exchange functional (B88) [20], Handy–Cohen’s “optimized exchange” [26]; Lee–Yang–Parr’s (LYP) [21, 22] and Perdew–

Wang’s correlation functionals (PW91) [13, 23, 24], and Perdew–Burke–Ernzerhof’s (PBE) exchange correlation functional 

[25].  

Further development of the exchange correlation functionals followed two main trends: inclusion of the new 

inhomogeneity parameters of electron density or addition of the exact (Hartree–Fock) exchange energy. The first direction 

was called “meta-GGA” (or MGGA) [27-35] and used, along with the density gradient, the Laplacian of density 2  and/or 

the positively defined local density of kinetic energy ***  
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Thus, the meta-GGA functional can be recorded in general form as  

MGGA MGGA 2 2
xc xc [ ( ),| ( ) |, ( ), ( ); ( ),| ( ) |, ( ), ( )] .E dr r r r r r r r r  (18) 

                                                          

*As a matter of fact, there are two versions of the VWN parametrization: the “standard” VWN-5 parametrization, 

recommended for use in the original work, and VWN-3, which is used more rarely. 

**The accuracy of calculation of various properties (atomization energies of molecules in the equilibrium state, 

barriers of reactions, geometrical parameters, vibrational frequencies, optical properties, magnetic resonance parameters, etc.)

generally differs substantially between functionals. Therefore, preference should be given to the functional that yields the 

highest accuracy of calculation for the property. 

***The phrase “positively defined” is needed in view of the fact that any energy density in general and the kinetic 

energy density in particular are basically ambiguous. For example, identical results will evidently be provided by integration 

over the entire space of the expression 
,occ ,occ

2 2

=1 =1

*(1 )
| ( ) | ( ) ( )

2 2 i

N N

i i

i i

r r r  for any value of the parameter  (see 

below). 
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From practical viewpoint, today the Tao–Perdew–Staroverov–Scuseria (TPSS) functional is the most effective 

functional from this class [35].  

The second trend, namely, addition of exact exchange led to the creation of especially effective hybrid functionals, 

which are considered in the next section of this paper.  

The LDA, GGA, and meta-GGA functionals are generally classified as “semilocal”; the density of exchange 

correlation energy in them is given in terms of the function that depends, at each point of space, on the value of electron 

density and its derivatives (and also, possibly, on  (17)) obtained exclusively for that point (Eq. (18)). In other words, in 

contrast to the essentially nonlocal exact exchange (see below), the semilocal xc contains no integration over the other 

independent set of spatial coordinates.  

Finally, it is worth mentioning that direct modeling of exchange correlation potentials avoiding the stage of energy 

functionals is possible [36-40]. Model potentials of this kind are constructed based on the principle of their correct behavior 

both in the infinitely remote (asymptotic) region and in the (sub)valent and core regions. This makes it possible to reproduce,

with a high degree of accuracy, “responsive” molecular properties such as the vertical excitation energy, dipole polarizability

and hyperpolarizability, vertical ionization potential, and electron affinity. The major disadvantages of this approach are 

limited generality and applicability; since the energy functional is unknown, the total energy and hence the thermochemical 

properties of molecular systems cannot be obtained with these potentials.  

TRADITIONAL (“GLOBAL”) HYBRID FUNCTIONALS 

It is widely known that the exchange energy of electrons with the same spin (or so-called “Fermi correlation,” which 

is a direct consequence of the Pauli principle) is the predominant contribution to the total exchange correlation energy (85-

95% of the latter). Therefore, it would be reasonable to expect good results if the rough semilocal exchange functional is 

replaced with an exact (Hartree–Fock) equation for exchange energy,  
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, ,
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2 | |
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E d d
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and further modeled with the density functionals relative to the small “residue,” i.e., Coulomb correlation energy Ec (Eq. 

(13))*.  

It should be emphasized that exact exchange (19) has a number of advantages over any semilocal exchange 

functional; the major advantage is total elimination of the absurd, nonphysical “self-interaction.” This effect can readily be 

understood from (2): for one-electron systems (for example, for the hydrogen atom or 2H  molecular ion) the classical 

electron repulsion energy J( ) should be completely compensated by the exchange correlation energy Exc (in other words, the 

“delocalized” position of an electron cannot be interpreted in the static sense because the electron cannot experience 

electrostatic repulsion from itself lying at a different point of space at a different moment of time!). As a matter of fact, in any 

of the semilocal exchange functionals mentioned in the previous section, self-interaction is compensated only partially**. 

The presence of self-interaction is also detrimental to description of many-electron systems, and especially to description of 

nonthermochemical properties that are sensitive to the subtle features of electron density distribution [41, 42]. Elimination of

self-interaction by explicitly subtracting it [43] is quite effective [44], but has one important drawback, namely, the scheme of

[43] is not invariant under the unitary transformations of the occupied one-electron orbitals.  

The ability of exact exchange (19) to fully compensate self-interaction follows from its definition. This property can 

also directly provide a regular asymptotic behavior of the corresponding exchange correlation potentials, which is especially 

                                                          

*Here and below, summation over occupied orbitals is designated for brevity as “occ” (occupied). 

**Self-interaction can be eliminated from the correlation functionals (“self-correlation”) much more easily, which 

was achieved in several functionals [33-35] using the kinetic energy density  (Eq. (17)). 
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important for correct description of a number of properties calculated within the framework of linear response theory and/or 

second order perturbation theory (polarizability, magnetic resonance parameters, etc.).  

Regretfully, with all positive features of exact exchange, attempts to construct an exchange correlation functional in 

the form of  

exact
xc x c ,E E E  (20) 

proved inapplicable to description of chemical bonds in molecules [45] and gave acceptable results only for one-center 

systems (atoms, ions) [46-48]. This situation can be explained in the following way. In DFT, the (Coulomb) correlation 

energy, modeled with the correlation functionals Ec, is generally implied to be only its dynamic (short-range) component 
d
c ,E

which is responsible for lower probability of situations in which electrons with opposite spins approach one another to short 

distances*. Another type of correlation is nondynamic (long-range) correlation, which is especially pronounced in description 

of homolytic dissociation of molecules. Let us consider the simple two-electron case, namely, the dissociated H2 molecule. 

There are two interpretations of the nondynamic correlation: one pertains to real space and the other, to Hilbert space. In the 

first interpretation, the energy gain 
nd
cE  arises from further decrease in Coulomb repulsion of electrons due to the higher 

probability of occurrence of one electron near, say, the “right” nucleus (if the dissociated molecule is considered to be 

orientated “horizontally”) provided that another electron lies near the “left” nucleus**. In Hilbert space of many-electron 

wave functions, the one-configuration 
2

(1 )g  description of an “extended” H2 molecule is evidently inadequate; the 

contribution of the excited configuration 
2

1 u  to the exact wave function increases with the internuclear distance (in the limit 

of complete dissociation, the 
2

1 g  and 
2

1 g  configurations become degenerate, and their contributions become identical). 

Thus, the decreased energy 
nd
cE  can be interpreted as admixing of the low-lying excited configurations. This effect is 

obviously expected not only for dissociated molecules, but also for many transition metal compounds, where the effects of 

quasidegeneration are especially pronounced. 

By definition, exact exchange (19) includes only the Fermi electron correlation with identical spins, and hence (20) 

has no nondynamic Coulomb correlation. It is important to emphasize that exact exchange is essentially nonlocal. This 

becomes quite evident if we rewrite (19) to obtain an equation that resembles (12), (14), (16), and (18):  

exact exact exact
x x, x,

, ,

( ) ,E E dr r  (21) 

where  

occ
exact
x

,

( ) ( )1
( ) ( ) ( )

2 | |

i j

i j

i j

d
r r

r r r r
r r

 (22) 

is the exact exchange energy density. A comparison of Eq. (22) with Eqs. (14), (16), and (18) shows that these equations are 

quite different. In contrast to the exchange energy density in LDA, GGA, or meta-GGA, the exact exchange energy density at 

each point of space conveys information (integrated over the second independent set of spatial variables (r )) about the 

behavior of the one-electron orbitals over entire real space.

As opposed to the case of exact exchange 
exact
x ,E  the semilocal exchange functionals (denoted for brevity as 

DFT
x ,E

where DFT = LDA, GGA, MGGA) can effectively take into account nondynamic correlation. Therefore, (13) can be 

conventionally rewritten as [26, 49]: 

                                                          

*The Coulomb correlation of electrons with identical spins makes a much lower contribution, but is also included in 

several models (e.g., [27]). 

**“Left-right correlation.” 
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DFT DFT exact nd DFT
xc x c x c c ;E E E E E E  (23) 

in other words, it will be more appropriate to interpret the exchange density functionals as the functionals that describe 

electron exchange together with nondynamic correlation: 

DFT exact nd
x x c .E E E  (24) 

The property of the exchange functionals expressed by (24) follows exactly from the local nature of these functionals (for 

details of this discussion, see [49]). Also, it should be noted that partitioning (24) is of methodological rather than practical

importance because it is difficult to separate exchange from nondynamic correlation explicitly.

Summarizing the aforesaid and comparing (20) and (23), one can easily see that the former is free from any 

nonphysical self-interaction and contains no nondynamic correlations, while the latter contains both. Consequently, a correct 

choice of a combination of the right parts of (20) and (23) could be a compromise to ensure balance between the elimination 

of self-interaction and the inclusion of nondynamic correlation. The simplest choice is a linear combination, naturally leading 

to the notion of a hybrid exchange correlation functional  

hybr exact DFT
xc 0 x 0 x c 0(1 ) , 0 1.E a E a E E a  (25) 

In this form (with 
DFT LDA
x xE E  and a0 = 0.5) the hybrid functional was introduced by Becke in 1993 [50]. He used a 

different theoretical rationale for the hybrid functional, which was based on the adiabatic binding formalism of Kohn Sham's 

fictitious system (in which interelectron interaction was absent) with a real system [51].  

The hybrid functional based on Becke's three-parameter scheme (B3) became one of the most popular functionals 

[52]:  

hybr exact LDA B88 LDA GGA
xc 0 x 0 x x x c c c

0 x c

(1 ) ,

0.2, 0.72, 0.81,

E a E a E a E E a E

a a a
 (26) 

where 
B88
xE  is the gradient correction to the exchange energy taken from the B88 functional [20], and 

GGA
cE  is the 

gradient correction to the correlation energy*. The numerical parameters a0, ax, and ac were obtained by fitting the 

thermochemical data obtained by using functional (26) to the corresponding experimental data. In [52] for 
GGA
cE  we used 

PW91
cE  [23, 24]. Later it appeared [53] that a combination of the B3 scheme with the LYP correlation functional [21, 22] led 

to slightly more exact results**. The successful use of B3LYP initiated the development of new hybrid functionals. Of hybrids 

that appeared recently one can mention the Becke-97 (B97) [54] and Hamprecht Cohen Tozer Handy (HCT ) functionals 

[55]. The major disadvantage of these functionals is that they are overcrowded with the empirical (fitting) parameters while 

the accuracy of the description of molecular systems is moderate (e.g., B97 includes 10 parameters, and HCTC includes 15). 

On the other hand, there were quite opposite attempts such as the PBE0PBE functional [56]. This functional has no fitting 

parameters, and a functional of the form of (25) is used for which the choice of the value of a0 was based on certain general 

theoretical analysis [57]. Nevertheless, the B3LYP three-parameter functional remained the most popular exchange 

                                                          

*In GGA, the exchange (correlation) functional is generally represented as the sum of two terms: 
GGA LDA GGA
xc xc xcE E E .

**Strictly speaking, for the LYP correlation functional, there is no explicit gradient correction 
LYP
cE ; therefore, one 

can use the following artificial method. The correlation energy is formally recorded as 
LYP LDA
c c

LYP
cE E E . After that, in 

(26) we perform a substitution 
LYP
cca E LDA

c

LYP
c ca EE , where for 

LDA
cE  one can use 

VWN
cE  [12]. The uncontrollable 

alternative versions in using the two different versions of the VWN parametrization (see footnote * on p. S4) in different 

quantum-chemical programs are often a source of confusion and irreproducible results obtained by using the B3LYP 

functional. 
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correlation functional ever used in DFT for solving physicochemical problems*; this is a good compromise between the small 

number of empirical fitting parameters and the wide spectrum of properties it describes (with high accuracy). 

The hybrid functionals owe much of their success not only to their unique ability to predict thermochemical results 

and molecular structure, but even, occasionally, to the unique chance they give us in our efforts to obtain acceptable accuracy

in calculations of more “delicate” properties that are sensitive to the subtle details of electron density distribution**. These

are, e.g., the parameters of nuclear magnetic resonance (NMR) and electronic paramagnetic resonance (EPR) of transition 

metal complexes. As examples we can cite the iron (57Fe) and ruthenium (103Ru) chemical shifts in the corresponding 

complex compounds [58, 59], as well as the electronic g tensors of metal complexes from the first transition row [60]. 

As mentioned above, the hybrid functionals are associated with an undesirable effect of “hyperparametrization.” It 

appeared that there was a radically different way, leading to generalization of the notion “hybrid functional” analyzed in this

work. We emphasize that the traditional hybrid functionals (25) and (26) are called below “global hybrid functionals” (global 

hybrids for brevity); under “globality” we understand the constancy of the parameter a0, which determines the value of exact 

exchange 
exact
xE  (19).

LOCAL HYBRID FUNCTIONALS 

In his pioneering work on hybrid functionals [50], Becke stated that the same energy fraction of exact exchange over 

the entire real space (a0 = 0.5 and 0.2 in (25) and (26), respectively) could only be regarded as a first approximation. In 

quantum-chemical calculations, this “first approximation” became widespread practice. Recently, it was suggested that the 

constancy of the exact exchange admixture should be rejected, which led to the appearance of a new notion  the “local 

hybrid functional” [61]. In this concept, the exchange correlation functional is recorded as  

loc=hybr exact DFT DFT
xc x, x, c

,

( ) ( ) [1 ( )] ( ) ,E g g d Er r r r r  (27) 

where 
exact
x,  is the exact exchange energy density defined in (22). Thus, the exact exchange admixture becomes spatially 

dependent. The function g , which controls the value of this admixture, is called the local mixing function (LMF). Evidently, 

the LMF should satisfy the condition  

 0 ( ) 1.g r  (28) 

In the previous section, balance between the elimination of self-interaction and inclusion of nondynamic correlation was 

given as one of the reasons for success of the (global) hybrids. Obviously, local hybrid (27) can in principle provide subtler 

“adjustment” of this balance provided that the choice of LMF is correct and physically determined***. For LMF, the authors 

of [61] offered the ratio of “Weizsäcker kinetic energy density” W to the local kinetic energy density :

W, ( )
( ) ( ),

( )
g

r
r r

r
 (29) 

where 

2

W,

| ( ) |1
( ) ,

8 ( )

r
r

r
 (30) 

                                                          

*Citation of B3LYP amounts to dozens of thousands. 

**The total energy of the system is a “too highly integrated” characteristic in this sense; one can easily imagine a 

situation in which the local variations of density, balanced in a certain way, do not cause any pronounced changes in energy. 

***The particular case of the LMF is the constant (g(r) = const = a0), which corresponds to the local hybrid (27) 

degenerated into the global one (25), (26). 
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and (r) is defined by (17). LMF (29) satisfies condition (28); according to the definitions of W,  and , it is nonnegative 

and vanishes at those points at which electron density is locally homogeneous:  = 0. Then W,  never exceeds  and 

becomes equal to it in those regions of space in which the contribution to electron density is due only to one of the occupied 

orbitals, i.e., where the contribution from the other orbitals is vanishingly small: 

2
,occ( ) | ( ) | , 1 .k k Nr r  (31) 

The latter condition is satisfied for the asymptotic region of any molecular system (in this case, k = N ,occ; i.e., the density is 

determined by only the highest occupied molecular orbital (HOMO)) and, identically, for any system containing no more 

than one electron with spin  and one electron with spin . Systems of this kind include not only the hydrogen atom or the 

2H  molecular ion (for which the given situation is desirable because it corresponds to 100 % exact exchange and hence to 

complete elimination of self-interaction), but also (regretfully) any two-electron closed-shell system (e.g., the neutral 

hydrogen molecule H2, helium atom, etc.). Thus, in these two-electron systems, a local hybrid with LMF (29) always 

degenerates into a global hybrid with a0 = 1.  

It was shown [61] that the local hybrid functionals with LMF (29) allow one to obtain quite acceptable results. Good 

results were obtained for the energy of three-electron bonds in 2He , 2Ne , 2Ar , 2 2(H O) ,  and other symmetrical radical 

cations and for the barrier height in hydrogen atom transfer reactions, that is, for those properties that cannot be readily 

reproduced within the framework of DFT with the traditional semilocal functionals or global hybrids. At the same time, the 

fundamental properties used in computational thermochemistry, namely, the atomization energy of molecules could not be 

reproduced satisfactorily; for the standard G2-1 set of 55 molecules and radicals [62, 63], the mean absolute deviation from 

the experimental values was 13-20 kcal/mol (which depended on the 
DFT
x  and 

DFT
c  used), but these values exceeded the 

values obtained, e.g., with BLYP [20-22] and B3LYP [21, 22, 52] functionals several fold.  

Recently, we showed [64] that better agreement of atomization energy with experiment was obtained by simply 

scaling LMF (29),  

( ) ( ), 1.g tr r  (32) 

The best results were obtained with  = 0.48 when local exchange was combined with the local correlation 
DFT LDA
x x(

[9, 10], 
DFT VWN
c c  [12]). With LMF (32) one could also obtain high accuracy for the barrier heights of reactions [65]. 

Therefore, this function may be considered a breakthrough in the development of local hybrid functionals (see the “Brief 

summary of the results” section). The only serious disadvantage of LMF (32) is the loss of the regular asymptotic behavior of 

the potentials corresponding to the local hybrid functionals of this kind. In the asymptotic region, the exact exchange 

admixture reached 0.48, but not 1, and elimination of self-interaction, therefore, was incomplete (this leads to worse results in

description of the nonthermochemical properties calculated with second order perturbation theory or linear response theory). 

To eliminate this disadvantage we offered a new type of local mixing functions, which differed radically from (29) and (32) 

[66]. Instead of t  (29) we suggested using the dimensionless gradient of electron density as a basic variable  

2 1/ 3 4 / 3 4 / 3

| ( ) | | ( ) | | ( ) |
( ) .

2 ( ) ( ) 2(3 ) ( ) 6.1873 ( )F

s
k

r r r
r

r r r r
 (33) 

Based on (33) and exponentially decreasing density of finite systems in the asymptotic region, s  changes from zero to 

infinity; therefore, suitable continuous, monotonous mapping of ray [0; ) to a segment [0;1] could be a candidate for LMF. 

We considered the following functional forms as LMFs: sm/(  + sm), [s/(  + s)]m, [1 – exp(– s)]m, [erf( s)]m, [th( s)]m,

[(2/ )arc tan( s)]m, (m = 1, 2), etc. (s = s , s ) with a positive variable  parameter. All these provide comparable levels of 

thermochemical accuracy when local exchange is combined with correlation of LYP [21, 22] in functional (27). The best 

results were obtained for the following choice of LMF [66]: 

2
( ) [ /( )] .g s s s  (34) 
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Fig. 1. Local mixing functions (LMF) of two 

types for the carbon monosulfide molecule (the t

and s variables are determined by the conditions 

of (29) and (33), respectively). Calculation with 

the LDA functional (S-VWN) in the cc-pVQZ 

basis. The LMF values correspond to the axis 

that connects the nuclei.  

LMF (34) permits the same level of accuracy as LMF (32) in obtaining atomization energies, and is advantageous in having a 

regular asymptotic behavior of local hybrids (27) constructed from it. 

As an illustration, Fig. 1 shows LMFs of both types for the carbon monosulfide molecule (the calculated values of 

LMF lie on the axis through the carbon and sulfur nuclei). It can readily be seen that both (t- and s-dependent) LMFs reflect 

the shell structure of atoms in the molecule, but they do it in qualitatively different ways; t-LMF has a maximum on the 

nuclei, while s-LMF has a minimum (it is not clear as yet which is preferable). This difference in the asymptotic behavior of 

the two local mixing functions is evident from Fig. 1.  

It should be mentioned that the conceptually local hybrid functional (27) is close to the nondynamic correlation 

model recently suggested by Becke [67, 68]. For closed-shell systems, the exchange correlation energy functional in the latter 

formally coincides with (27) (LMF is much more complex in form than (29), (32), or (33)). 

Discussing the local hybrid functionals, it should be mentioned that the definition of the exchange energy density is 

ambiguous, which concerns both 
exact
x,  and 

DFT
x,  (see footnote *** on p. S4). To any energy density  ( (r)dr = E) one can 

add a certain “calibrating” function , whose integral over the entire space is zero; then the function  can evidently 

be regarded as the density of the same energy (or one can transform the integral using “three-dimensional integration by 

parts” and obtain another density equation, see below). A method for constructing an “unambiguous” exchange correlation 

energy density was offered in [69], but this method is of conceptual rather than practical value. The ambiguity, however, does 

not seem to be a serious obstacle to wide use of the local hybrid functionals (especially in those cases when 
DFT
x,  is a smooth 

function 
LDA
x,  (15)) and can be reformulated as the problem of selecting an appropriate LMF; but this requires strict 

definition of the exchange energy density, which should be followed in all constructions. 

The discussion above implicitly implied self-consistent solutions of (9) and (10) with the exchange correlation 

potential defined by (11). As will be shown below, derivation of potential (11) is often a serious (technical and conceptual) 

problem; therefore, “non-self-consistent” calculation of the total energies is common practice in preliminary evaluation of the

quality of the new exchange correlation functionals of different types (16), (18), (25), (27). Density is substituted into Eq. (2), 

where Exc is the functional of interest to us, and, if necessary, we also substitute into this equation the individual orbitals 

obtained in self-consistent calculation (9) with a potential corresponding to any other functional that is “simpler” from the 

viewpoint of calculating the functional derivative such as LDA (14), (15). “Non-self-consistent” calculations of this kind, 
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which may be called “post-LDA” in this case, certainly give lower accuracy. However, their precision is high enough to 

obtain the general idea about the “thermochemical advantages” of the new functional. This method is applicable only to the 

total energy calculations; evaluation of any other property requires knowledge of the corresponding potential because the 

latter remains the only method of conveying the information about this functional, for example, in the form of one-electron 

orbitals and their energies, which are solutions of (9) later employed in property calculations using perturbation theory. At the

same time, derivation of potential (11) is a nontrivial problem every time when the functional involves not only density and 

its derivatives, but also “orbital-dependent contributions” such as the local density of kinetic energy (17) or exact exchange 

energy (19) (and/or the density of the latter (22)).  

HYBRID FUNCTIONALS WITH DIFFERENT METHODS OF INCLUDING THE 

SHORT- AND LONG-RANGE COMPONENTS OF INTERELECTRON INTERACTION 

In summary of this review of methods for generalizing the notion of “hybrid functional,” we briefly consider an 

interesting and original method for constructing exchange functionals (the correlation component is also considered 

independently, see above), which is now based on the idea of decomposing the repulsion energy of a pair of electrons (lying 

at points r and r ) into the “long-range” (lr) and “short-range” (sr) components [70-75] (range-separated hybrid functionals):  

1r sr
x x x .E E E  (35) 

The starting point in this method is mathematically very simple; the quantity that is inversely proportional to the 

interelectron distance is represented as the sum of two complementary contributions: 

1 erf ( | |) 1 erf ( | |)
,

| | | | | |

r r r r

r r r r r r
 (36) 

where erf is the Gaussian function of error 
2

0

erf( ) (2 / ) exp( ) ,

x

x t dt  and µ is the numerical fitting parameter. The first 

term in the right part of (36) is related to 
lr
xE  from (35), and the second, with 

sr
x .E  The Hartree–Fock (exact exchange) 

method can be used for 
lr
x ,E  and the local density approximation, for 

sr
xE *. Thus, the long-range contribution to the exchange 

energy becomes (cf. (21) and (22)):  

occ
lr
x

, ,

( ) ( )erf( | |) ( ) ( )1
.

2 | |

i j i j

i j

E d d
r r r r r r

r r
r r

 (37) 

A comparison of Eq. (37) with Eqs. (19), (21), and (22) for exact exchange shows that for  the former is reduced to the 

latter.

In every particular case, explicit equations for the short-range component of exchange energy depend on the type of 

the approximation used within the framework of DFT (LDA, GGA, etc.). These are generally rather cumbersome equations, 

which are not specified here. The required information can be found in references cited above in this section. Those 

references (and also [76]) also give the results of detailed evaluation of the ability of these functionals to reproduce different 

properties of different physicochemical objects.  

                                                          

*It should be emphasized that this method is evidently beyond the scope of the “hybrid functional” concept; in its 

original version [70], the long-range component 
lr
xE  was described in terms of the configuration interaction (CI) method. 
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EXCHANGE CORRELATION POTENTIALS OF THE ORBITAL-DEPENDENT FUNCTIONALS 

This section discusses problems of calculating the functional derivatives with respect to density (potentials) (11) of 

orbital-dependent functionals (for the sake of simplification, the spin index  is omitted every time when it is insignificant in 

the current context). Recall the definition of the functional derivative for a certain integrated functional  

2
[ ] [ ( ), ( ) |, ( ), , ( )] ,

n
E dr r r r r  (38) 

where (r) is a certain continuous function of spatial variables. An infinitely small variation of the latter, (r), leads to 

variation of the functional  

 [ ] [ ].E E E  (39) 

If E is representable as  

 v( ) ( ) ,E dr r r  (40) 

then v(r) is called the functional derivative of the E functional with respect to the  function: 

v( ) .
( )

E
r

r
 (41) 

For a composition of functionals, for example, for E[f[ ]] (E is a functional of f, whose value at each point is, in turn, a 

functional of ) the following equation is valid:  

( )
,

( ) ( ) ( )

E E f
d

f

r
r

r r r
 (42) 

which resembles the rule of complex function differentiation and can readily be generalized to complex functionals of any 

degree of “embeddedness.” 

For functional (38), the following is valid*: 

2

2
( ) ( ) ( ) ( 1) ( ).

( )

n n

n

E
r r r r

r
 (43) 

Evidently, for energy functionals LDA (14), (15) and GGA (16), as well as meta-GGA (18), derivation does not present any 

methodological problems only if the latter functionals do not contain a dependence on the kinetic energy density  (17). In 

other words, the exchange correlation potential is accessible in explicit form in all cases when the corresponding functional 

includes a dependence only on electron density and its derivatives (of any order). For brevity these functionals are called 

“pure density functionals” and designated by x ;E  here,  denotes density with its derivatives. Complications arise for -

dependent meta-GGA and hybrid (both global (25), (26) and local (27)) functionals. This is associated with the presence of 

contributions from the densities of kinetic energy  (17) and exact exchange energy 
exact
xE  (19) (exact exchange energy 

density 
exact
x  (22)) respectively, or with the presence of both, as in the case of local hybrids with t-dependent LMF (29), 

(32)). The problem lies in the fact that neither  nor 
exact
xE  (or 

exact
x )  are explicit electron density functionals** (from (17), 

                                                          

*In this scalar equation, we use an abbreviated form of the “vector” record; e.g., the term ( / ) should be 

interpreted as ( / ) / ( / ) / ( / ) / ,x y zx y z  where / ,u u u = x, y, z.

**According to the first Hohenberg–Kohn theorem [3], any quantity can be considered a density functional, 

including a certain Kohn–Sham orbital at an arbitrary point of space. Regretfully, this theorem does not contain any 

indications on the construction of an explicit (analytical) form of this functional. 
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(19), and (22) it can readily be seen that the dependence of these functions on the Kohn Sham orbitals occ

1
( )

N

i i
r  or their 

derivatives can never be reduced to the dependence on density or its derivatives). In the literature, the -dependent and hybrid 

functionals are called “orbital-dependent” functionals (here we use for them the general notation 
orb
xc ).E  Incidentally, from 

formal viewpoint, even equations for the total electron energy in terms of many-particle perturbation theory (e.g., second 

order Möller–Plesset theory MP2 [7]) can be assigned to orbital-dependent functionals; in this case, however, the energy 

functional includes not only occupied, but also vacant orbitals (so-called ab initio density functionals) [77-80]. Evidently, 

from any orbital-dependent functional one can always obtain its functional derivative with respect to the Kohn Sham orbitals 

(FDO)
orb
xc / .iE

Let us first consider the FDO of pure density functionals. Taking into account the explicit density equation in terms 

of orbitals (2) and the fact that xc xcv /E  is defined explicitly in terms of (43), one can record  

xc xc
xc2 ( ) 2v ( ) ( ).

( ) ( )
i i

i

E E
r r r

r r
 (44) 

In (44) we emphasize that the potential xcv  is multiplicative (the action of the potential on the orbital is reduced to 

multiplication of the latter on it); consequently, it can be rewritten in the following way: 

xc
xc

l
v ( ) .

2 ( ) ( )i i

E
r

r r
 (45) 

It is interesting to note that (45) is valid for any i occupied orbital, which reflects the known fact that in the Kohn–Sham 

formalism, the electrons belonging to different orbitals experience the action of the same potential (this seemingly trivial 

property is not observed, e.g., in the Hartree–Fock method, see below). Thus, in the case of pure density functionals, it makes

no difference whether the potential is evaluated with (43) or recalculated from FDO according to (45).  

The situation is quite different for orbital-dependent functionals. Let us consider the functionals that include the 

dependence on the local density of kinetic energy  (17) (“ -dependent” functionals; for these, we use notation 
,

xc ).E  As 

shown in [81],  

, , ,
xc xc xc

, ,
2 ,xc xc

xc

2 ( ) ( ) ( 1) ( ) ( )
( )

ˆ( ) ( ) ( ) ( ) 2[v ]( ).

n n
in

i

i i i

E

d

d

r r r r
r

r r r r r

 (46) 

The first term on the right side of (46) is the familiar multiplicative contribution to FDO (right side of (43)); the other terms 

(whose origin is associated exclusively with the dependence on ) contain the differential operators. Thus, FDO (46) is the 

result of the action of a certain nonmultiplicative, but still local operator (or “semilocal” because of the absence of integration 

over another independent set of spatial variables, see above) on the i orbital. As a result, “extraction” of the multiplicative 

potential with (45) becomes impossible. However, the mechanical substitution  

orb
xc

xc

l
v

2
i

i

E
 (47) 

implies a situation in which the electrons that occupy different orbitals travel at different external potentials, which is 

obviously a departure from the Kohn–Sham formalism (we emphasize that Eqs. (9)-(11) certainly imply that the Kohn–Sham 

potential vxc(r) is local and multiplicative).  
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Finally, let us consider hybrid functionals (beginning with global functionals, e.g., (25)) with a pure density 

functional as a contribution 
DFT

0 x c(1 ) ).a E E  Evidently, an orbital-dependent contribution, namely, exact exchange (19) 

will be a source of problems in constructing the corresponding potential. Therefore, an explicit equation for FDO is as 

follows:  

hybr
exact DFT hybrxc

0 x 0 x c xc
ˆ ˆ2 [v ]( ) 2[(1 )v ( ) v ( )] ( ) 2[v ]( ),

( )
i i i

i

E
a ar r r r r

r
 (48) 

where  

*occ
exact
x

( ) ( )
ˆ[v ]( ) ( ) .

| |

j i

i j

j

d
r r

r r r
r r

 (49) 

Equation (49) is a definition of the exact exchange operator
exact
xv̂ ,  which is nonmultiplicative and nonlocal (integrated). 

Accordingly, the entire 
hybr
xcv̂  operator in (48) is nonlocal and nonmultiplicative. As in the case of the -dependent operators, 

extraction of the Kohn–Sham potential from 
hybr
xc / iE  is impossible. It is interesting to note that if in (25) and (48) we set 

that a0 = 1 and Ec = 0 (accordingly, vc(r)  0), we obtain exactly the Hartree Fock method, in which the variational problem 

is formulated in terms of orbitals, but not electron density. Accordingly, the Hartree–Fock equations  

2 exact
x

1

1 ( )
ˆ( ) [v ]( ) ( )

2 | | | |

M
K

i i i i

K K

Z
d

r
r r r r

r R r r
 (50) 

differ from Kohn–Sham equations (9)-(11) primarily in having the nonmultiplicative and nonlocal exact exchange operator 

exact
xv̂ .  

It should be emphasized that in most modern standard quantum-chemical programs (e.g., GAUSSIAN-03 [82]) the 

hybrid potentials are realized as the 
hybr
xcv̂  nonlocal operators. A similar substitution, (47), is almost insignificant to the 

calculated total energies, while for several nonthermochemical properties, there are considerable complications, qualitatively 

changing the ultimate solution. For example, in calculations of magnetic resonance parameters such as the nuclear chemical 

screening constants [83, 84] or electronic g tensors [85], the external magnetic field considered as minor perturbation can 

give rise to the corrections to the 
exact
xv̂ operator, which are of the same order as the corrections to orbitals. In other words, in 

contrast to the local potential (11) and all other contributions to the Kohn–Sham potential (10), the exact exchange operator 

acquires linear response when an external magnetic field is applied (strictly speaking, in magnetic fields, a more general 

theory including electron current density in addition to  should be used instead of conventional DFT [86, 87]). As a result, 

instead of the direct “one-step” application of perturbation theory we have to start an iterative process of solving coupled-

perturbed equations (see [83, 84] for details of the discussion). This is undesirable not only because of greater computation 

times, but also because of the loss of direct correlation between the quality of the self-consistent solution (in the form of 

orbitals and orbital energies), on the one hand, and the accuracy of the calculated magnetic resonance parameters, on the 

other, in view of the fact that the outcome of any iterative process is unpredictable.  

Let us now consider practical chances to avoid the nonlocal and/or nonmultiplicative contributions to the exchange 

correlation potential, i.e., to the problem of functional differentiation of the orbital-dependent functional with respect to 

density. Since the 
orb
xc / iE  FDO is accessible and taking into account equation (42), one can formally record the functional 

derivative 
orb
xc /E  as follows: 

orb orbocc
orb xc xc
xc

( )
v ( ) .

( ) ( ) ( )

i

i i

E E
d

r
r r

r r r
 (51) 
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For evaluating i/ , in turn, for the “binding element” one generally uses the Kohn–Sham one-electron potential vs (10) 

[77, 88]: 

s

s

( ) ( ) v ( )
.

( ) v ( ) ( )

i i d
r r r

r
r r r

 (52) 

In (52), the functional derivative i/ vs can be evaluated in terms of perturbation theory starting from Eq. (9) (i.e., 

considering vs as a small perturbation of the vs potential, and i, as the corresponding first order correction to the I one-

electron function):  

s

s

( ) v ( ) ( ) ( ) ( )
( ) ( ) v ( ) ( ) .

j i j j

i j i

j i j ij i j i

d
d

r r r r r r
r r r r r  (53) 

By the definition of the functional derivative (40), (41),  

s

( ) ( )( )
( ) ( , ) ( ),

v ( )

j ji
i i i

j i j i

G
r rr

r r r r
r

 (54) 

where Gi is the static one-electron Green function corresponding to the orbital with the index i.

To find the last component vs/  required, one uses the static linear response function,

occ( )
( , ) 2 ( ) ( , ) ( ).

( )
i i i

is

G
v

r
r r r r r r

r
 (55) 

The physical sense of the  function is reflected in its name because it describes the reaction of the electron density of the 

system (in first order perturbation theory) to a minor change in the external potential*. Accordingly, the desired functional 

derivative vs/  can be formally recorded as an inverted linear response function  

1sv ( )
( , ).

( )

r
r r

r
 (56) 

Equation (56) implies that the following relation is satisfied:  

1 1
( , ) ( , ) ( , ) ( , ) ( ).d dr r r r r r r r r r r r  (57) 

Inversion of the linear response function is a technically complex problem, which can be solved by performing expansion in a 

finite auxiliary basis (which differs from the basis of atomic orbitals) [89], but is numerically unstable in calculations for 

molecules. Moreover, construction of the linear response function itself (55), which, in turn, requires the construction of the

Green function Gi (see Eq. (54)), is a rather expensive procedure, especially because all of the above operations should be 

performed at each iteration of the self-consistency process. Recall that the initial problem was to construct the local and 

multiplicative potential 
orb
xcv  (51) to substitute the latter into (9) and (10). The whole procedure can only be fulfilled 

numerically 
orb
xc(v  cannot be obtained in analytical form). In practice, however, 

orb
xcv  is constructed by an alternative technique 

(which also implies only numerical solution) called the optimized effective potential (OEP) method and discussed below. 

OPTIMIZED EFFECTIVE POTENTIAL METHOD (OEP) 

In the OEP method [90, 91], the variational problem is formulated differently; instead of seeking the stationary 

points of the total electron energy with respect to variation of density ( E/  = 0), the Kohn–Sham potential (10) is varied for 

the same purpose; that is, the problem is reduced to seeking an “optimized effective potential” 
OEP
sv  such that  

                                                          

*Equation (55) can readily be obtained from (54) if density equation (3) is taken into account. 
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OEP
s

0.
v

E
 (58) 

These variational problems are equivalent because theoretically they lead to identical results: as shown recently [92], 

in the framework of DFT for the “basic variable” one can use not only electron density, but also other objects, in particular, 

the Kohn Sham potential (10). The functional derivative E/ vs can be conveniently represented as  

occ

OEP OEP
s s

( )
,

( )v v ( )

i

i i

E E
d

r
r

r r
 (59) 

where 
OEP
s/ vi  is determined in terms of (51); taking into account (2), (9), and (10), E/ i can be recorded as  

orb
2 xc

orb
orb xc
xc

( )
2 2 ( )

( ) | | | | ( )
2[ v ( )] ( ) ,

( )

K
i

Ki K i

i i
i

EE Z
d

Er
r r

r r R r r r
r r

r
 (60) 

where 
orb
xcv  is the desired local and multiplicative exchange correlation functional. Substituting (60) and (54) into (58), (59) 

and taking into account (55) and the fact that the Green function Gi (by construction) is a linear combination of orbitals 

orthogonal to i, we obtain (after identical transformations) an integral equation of the OEP method,

orbocc
orb xc
xc( , )v ( )d ( ) ( )d .

( )
i i

i i

E
Gr r r r r r r r

r
 (61) 

In the case of pure density functionals, by virtue of (44), Eq. (61) becomes an identity.  

The numerical method for solving (61) is not efficient and not stable form computational viewpoint; it is suitable 

only for calculations of atoms [91]. Moreover, from practical viewpoint, the equation itself has no advantages over the 

explicit equation for 
orb
xcv  (51). Nevertheless, the nature of integral equation (61) admits the introduction of quite effective 

approximations, leading to a considerable simplification of the construction procedure of the 
orb
xcv  potential. We will discuss 

in detail one of the approximations actively used in our studies, namely, the common energy denominator approximation

(CEDA) [93] (which is ideologically fully equivalent to the “localized Hartree Fock method” (LHF)* [94]). The CEDA 

formalism is also very convenient for discussing a rather popular but rougher approximation used previously, namely the 

Krieger Li Iafrat (KLI) approximation [95].  

The major idea of the CEDA [93] is approximation for the one-electron Green function, according to which the 

differences between the orbital energies corresponding to the “occupied–vacant” orbital pairs in the denominator are replaced 

with a certain common “mean” value:  

occ vac( ) ( ) ( ) ( ) 1
( , ) ( ) ( ).

j j j j

i j j

j i j i jj i j i

G
r r r r

r r r r  (62) 

The next step is extension of the common energy denominator approximation to the “occupied–occupied” orbital pairs; it 

leads to the KLI approximation [95], in which due to the completeness of the space of the (orthonormalized) molecular 

orbitals, the Green function  

| | 1,i i

i

 (63a) 

or

 ( ) ( ) ( ),i i

i

r r r r  (63b) 

                                                          

*This name is not quite suitable because this procedure is applicable to any orbital-dependent functinonals, and not 

only to exact (Hartree–Fock) exchange. 
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becomes very simple,  

1 1
( , ) ( ) ( ) [ ( ) ( ) ( )].i j j i i

j i

G r r r r r r r r  (64) 

Without detailing the working equations of the KLI approximation, we note that while being simple and attractive 

from the viewpoint of computational resources, this is a rather rough approach (essentially admitting “averaging” of values 

with opposite signs!). It has the same disadvantage as the method of direct subtraction of self-interaction [43], namely, it is

not invariant under the unitary transformations of the occupied one-electron orbitals. 

Let us now return to the CEDA–LHF formalism. We omit the cumbersome intermediate constructions and 

transformations and give only the final working equations. The desired local and multiplicative exchange correlation potential 

is constructed as the sum of two terms [94, 93]: 

av corr
xc xc xcv ( ) = v ( ) v ( ),r r r  (65) 

where 
av
xcv  is the orbital-averaged FDO (46) or (48), 

occ
orb
xc

av orb , hybr
xc xc xc xc

ˆ( )[v ]( )

ˆ ˆ ˆv ( )= , v v , v ,
( )

i i

i

r r

r
r

 (66) 

and
corr
xcv  is the correction potential also called the “response potential” [96],  

occ
orb

xc xc

,corr
xc

ˆ( ) ( ) |v v | ]

v ( )=
( )

i j j i

i j

' r r

r
r

 (67) 

(the prime at the summation symbol implies that in the sum of (67) we omitted the diagonal term that corresponds to the 

highest occupied molecular orbital; i.e., i = j = Nocc). The average potential 
av
xcv  is calculated from (66) directly, while the 

correction term 
corr
xcv  is calculated by using iterations, which generally quickly converge [94]. Note that the structure of the 

solution in the KLI approximation is similar to that of (65)-(67); the only difference is that in correction potential (67) we 

neglect all of the “off-diagonal” terms (i.e., the terms corresponding to the condition i j).

In the case of 100% exact exchange and neglect of dynamic correlation 
orb exact
xc xc

ˆ ˆ(v v  (49)) the average potential (66) 

has a special name: Slater potential x
S

v  [97]. It can readily be seen that the latter is related by a simple equation to the exact 

exchange energy density (22): 

exact
x x

1
( ) = ( )v ( ).

2

S
r r r  (68) 

Recently, the direct optimization method has become popular. This method uses the OEP representation in the form 

of the sum of a certain fixed potential and a correction, which can be expanded in an auxiliary basis that is generally different 

from the atomic orbital basis [98]. However, today the sensitivity of this method to the quality of an auxiliary basis, in 

particular, to its completeness, is not completely studied (see, e.g., recent publications [99, 100]).  

Using the OEP method was described in the literature for transforming the nonlocal exact exchange operator (49) 

per se* into the local and multiplicative potential as applied to finite systems in both the KLI [48, 78, 101-104] and CEDA-

LHF [15, 94, 105] approximations. For transforming the exact exchange operator within the nonlocal hybrid potential (48), 

using the OEP method was described in the form of the CEDA-LHF approximation [106-111] and in the form of a 

decomposition into the basis functions [112, 113].  

                                                          

*In cases when 100% exact exchange (19) is used as exchange energy. 
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Fig. 2. Localization effect of the authentically 

nonlocal hybrid potential (operator) for the nitrogen 

molecule: the total energy of the molecule and the 

occupied one-electron orbital energies vary 

insignificantly, while the virtual orbital energies 

decrease substantially. Self-consistent calculation 

with the B88-EXX-LYP hybrid functional (a0 = 0.5, 

this is often called the “Becke-Half-and-Half-LYP” 

or, in abbreviated form, “BHandHLYP” in the 

literature) in the IGLO-IV basis.  

Let us consider details of the localization effect of the nonlocal hybrid operator, taking the nitrogen molecule as an 

illustration. As can be seen in Fig. 2, the difference in the nature of the potentials (operators) is almost insignificant to the

total energy of the molecule and to the energies of the occupied one-electron orbitals. At the same time, the virtual orbital 

energies decrease considerably, which results in the appearance of greater numbers of “bound” one-electron states 

(description of the virtual subspace is much more adequate in the case of localized potentials; see [94] for detailed 

discussion). This effect is very important for calculating the “response” properties in second order perturbation theory (for 

example, nuclear chemical screening constants) since the one-electron energy differences (and the matrix elements between 

the occupied and virtual orbitals) change significantly.  

The construction of the local and multiplicative -dependent potential was first described in our work [114], which 

reported the transformation of FDO (46) by the OEP method (CEDA-LHF approximation). Later we succeeded in obtaining 

the Kohn–Sham potentials for the more general case of orbital-dependent functionals (see the next section).  

To summarize, the Zhao–Morrison–Parr (ZMP) approach [115] is an alternative to the OEP method for the 

construction of the local and multiplicative potentials. According to this approach, the Kohn Sham potential can be 

constructed during iterations, starting from any electron density specified as an expansion into the functions of a certain basis. 

In this case, the origin of density is unimportant because it can be obtained in both self-consistent calculation with a nonlocal

hybrid potential and beyond the DFT or Hartree–Fock method, that is, for example, using any highly correlated post-Hartree–

Fock method [7] (of the many-particle perturbation theory, multiconfiguration method of self-consistent field, configuration 

interaction, coupled cluster method, etc.). The ZMP technique was used [108, 116-118] exactly for constructing the Kohn–

Sham potentials from the densities obtained in a self-consistent calculation with nonlocal hybrid potentials. While the ZMP 

method is universal, it is rather labor-consuming and is hardly applicable to large systems; moreover, its numerical stability 

and the reliability of results obtained with it are dubious. The same properties (chemical screening constants) obtained with 

the local and multiplicative potentials obtained from the same hybrid FDO (48) in different ways (within the framework of 



S19

the OEP method (CEDA–LHF approximation) in one case and using the ZMP procedure in the other) differ widely (see the 

discussion in [108, 109]). The sources of these differences deserve thorough analysis; nevertheless, it seems more natural to 

use the OEP method as applied to FDP with the orbital-dependent functionals. 

LOCALIZED LOCAL HYBRID (LLH) POTENTIALS 

This section discusses the construction of the local and multiplicative potentials for the case of orbital-dependent 

functionals of more general form, namely, local hybrid functionals (27). As for global hybrids (25), (26), at first we are to 

obtain the corresponding FDOs 
loc-hybr
xc / ;iE  then the latter are “localized” by the OEP procedure described in the previous 

section. In contrast to the global hybrids, however, the expression for 
loc-hybr
xc / iE  is rather complex and includes much 

more contributions than 
hybr
xc / iE  (48). These expressions were first obtained in our works [119, 120] for several 

particular cases of the g LMF. Here we give the functional derivative 
loc-hybr
xc / iE  in a more general form; we include in 

the LMF the dependence on all density and orbital ingredients actually used today*: 

2 occ
[ ,| |, , {| |} ],i ig g  (69) 

and consider that the 
DFT
x  (semi)local component depends only on the density or its gradient (i.e., belongs to the LDA or 

GGA, but not meta-GGA** type). Thus,  

loc-hybr DFT
loc-hybr exact exact DFT DFTxc x
xc xc xc x c

exact DFT exact DFT 2 exact GGA
x x x x x x2

ˆ ˆ ˆ2v ( v v { }) 2 (1 )v v ( )

1
( ) ( ) ( ) ,

2

i i i i

i

i i i

E
g g g g

g g g

 (70) 

where  

DFT DFT
DFT x x
xv ,  (71) 

and the 
exact
xv̂  operator is determined by (49). In this case, we do not impose any limitations on 

DFT
c ;E  in particular, one can 

use any orbital-dependent correlation functional with substitution (47), which is quite justifiable here. It can readily be seen

that in the limiting case of the constant LMF (g = const = a0), all contributions in (70) that contain the derivatives of LMF are 

zero; thus, (70) is reduced to (48). Transforming the last line of (70) and the 

DFT
x( )g  contribution, we ultimately 

obtain  

loc-hybr GGA
loc-hybr NL NL DFT DFTxc x
xc xc xc x c

2
exact DFT
x x2

ˆ ˆ ˆ2v ( v v { }) 2 (1 )v v 2
| |

( ) ( | |)
2

| | | |

| |

( ) [ ( )] ( ) ( )]
( )

| | | |

i i i i

i

i

E
g g g

g

g

g g g

                                                          

*The spatial derivatives of density and the third and higher order orbitals are not used. 

**According to our recent studies, the space-dependent mixing of exact exchange with semilocal exchange of higher 

order (meta-GGA) is of formal interest only. 
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exact DFT
x x

exact DFT 2
x x

exact DFT 2 exact DFT
x x x x2

( ) ( )

( ) .

( )
( ) ( )

| | | |
i i

i

g

g

g g

 (72) 

While being apparently cumbersome, Eq. (72) contains the derivatives g/ , g/ | |, g/ | 2 |, and g/  , which are 

readily calculated (from a particular analytical form of LMF, e.g., (29), (32), or (34)), as well as the natural  ingredients 

generated in any quantum-chemical program that includes DFT (in particular, | |, 2 , and the scalar derivatives 

( ) ( | |), ( ) ( )). Several contributions, however, deserve more detailed discussion. It should be emphasized that in 

quantum-chemical programs (except the numerical quantum-chemical programs such as NUMOL [121]), the Kohn–Sham 

potential (10) is always used in the form of matrix elements calculated in an atomic orbital ( ) basis. Therefore, it is not 

necessary to differentiate complex expressions (e.g., to explicitly calculate the contributions 

exact DFT
x x

( )
( )

| | | |

g
 or 

2 exact DFT
x x2

( )
g

 on the right side of (72)). Instead, one can perform 

transformations (using three-dimensional integration by parts ) of the following type: 

 | ( ) | ( )( ( )) ( ) ( )[ ( ( ) ( ))] ,F F d F dr r r r r r r r  (73) 

taking into account that all functions that can be integrated in (73) are finite (vanish at infinity)*. Transformation (73) may be 

used in sequence as long as necessary in order to avoid undesirable differentiation of complex equations containing, e.g., the 

exact exchange energy density (or calculations of third order derivatives with respect to density in 

2

2
( ) [ ( )] / | |,

g
 etc.). As a result, differentiation (no more than double differentiation) is used only for the { }

basis s, which is quite a routine problem. To summarize, we give the final equation for the matrix element of FDO 

corresponding to the local hybrid functional (27),  

loc-hybr
xc

2 2

ˆˆ|v | | | | | | | | |

| | | | ,

A B C C D

E E
 (74) 

where  

NL NL
x x

ˆ ˆ ˆ( v v ) / 2A g g  (75) 

is the nonlocal operator, while all other operators are local: 

DFT
DFT DFT exact DFT DFT x
x c x x x(1 )v v ( ) v ,

g
B g g  (76) 

DFT
exact DFT x
x x( ) ,

| | | | | |

g
C g  (77) 

exact DFT
x x2

1
2 ( ),

2

g g
D  (78) 

exact DFT
x x2

( ).
g

E  (79) 

                                                          

*Using transformation (73) one can easily show that the expressions for the kinetic energy density 

,occ
2

=1

1
| ( ) |

2

N

i

i

r  and 
,occ

2

=1

( ) ( )
1

2 i

N

i

i

*
r r  are equivalent and one can illustrate the problem of ambiguous 

determination of the exchange energy density (see above). 
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To summarize, it is worthwhile to refer to the method for calculating the exact exchange energy density 
exact
x . Evidently, 

explicit calculation of 
exact
x  (directly using its definition (22)) at each point of the numerical integration net is an extremely 

labor-consuming problem. Instead of this procedure, the authors of [94] used completeness (resolution of identity) (63), 

which (in the nonorthogonal basis) is as follows: 

1
( ) ( )( ) ( ),r r r rS  (80) 

where S–1 is the inverse of the matrix of the overlap integrals of basis functions. Using the expansion of the molecular orbitals  

i iC  (81) 

and Eq. (80), one can record the exact exchange energy as  

occ occ occ
exact exact exact

x x x

,

occ
1 exact

x

1

( ) ( )1 1 1
ˆ ˆ( ) ( ) ( ) d ( )[v ]( ) ( ) ( )[v ]( ) d

2 | | 2 2

1
ˆ( )( ) ( ) ( )[v ]( )

2

1
(

2

i j

i j i i i i

i j i i

i i

i

C C d

S

r r
r r r r r r r r r r r

r r

r r r r rS

11
) ( ) [ ( )],

2
K P X Trr K P X rS

 (82) 

where  

 ( ) ( );X r r  (83) 

occ

i i

i

P C C  (84) 

are the density matrix elements; and  

exact
x

ˆ( )[v ]( )K dr r r  (85) 

are the exact exchange matrix elements, which are readily accessible in any standard quantum-chemical program (except 

“pure functional-density” programs such as deMon2K [122]). We also used the resolution of identity twice in calculating the 

integrals of the nonlocal operator Â  (75). It should be emphasized that expansion (80) is performed in a finite basis and hence 

is an additional approximation. For minimizing the error introduced by representation (82) this is required if contracted AO 

basis sets are used (the AO bases should be of high quality). Details of this technique are given in our publication [119]*. 

The local and multiplicative potentials obtained by using the OEP method (in the CEDA/LHF approximation) for 

FDO (72), (74) are called the localized local hybrid (LLH) potentials. To avoid misunderstanding, the local and multiplicative 

potentials constructed from FDO (48) of the global hybrids are called here the localized global hybrid (LGH) potentials.  

RESULTS AND DISCUSSION 

All the necessary algorithms and equations described above were implemented with our MAG-ReSpect software 

[123], with which we fulfilled all calculations. To calculate the thermochemical properties we used the cc-pVQZ basis sets 

[124, 125] (without the g functions). The basis sets from the IGLO family were used to calculate the magnetic resonance 

parameters [126]. In calculations of the chemical screening constants, the calibrating (gradient) invariance problem was 

solved within the framework of the GIAO [127] (LGH potentials) and IGLO [126] (LLH potentials) approaches. In g tensor 

calculations for transition metal complexes, the common gauge origin was chosen to be on the metal atom. The magnetic 

resonance parameters considered in this work were calculated in second order perturbation theory using the procedures 

described in [83-85, 128]. 

                                                          

*Specially selected auxiliary bases may be an alternative to the decontracted AO bases. 
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Thermochemical calculations with the local hybrid functionals. Let us consider the atomization energies of 

molecules from the standard G2-1 (55 molecules and radicals) [62, 63] and G2 (148 molecules) test sets [129]*. All total 

energies were taken from the non-self-consistent calculations with the orbitals obtained in the local density approximation 

(post-LDA calculations, see above). Table 1 lists the data of the simplest statistical analysis (mean absolute deviations and 

mean deviations (including the sign) of the calculated values from experiment) for atomization energies obtained with the 

local hybrid functionals using the LMFs of two types, namely, the functions that depend on the t parameter (29) (t-LMF) and 

those that depend on the dimensionless electron density gradient s (33) (s-LMF). We used the experimental data of [130]. For 

comparison, Table 1 also lists the results obtained with the global hybrid functionals, both one-parameter (25) and B3LYP 

(26) functionals. As mentioned above, the atomization energies are seriously underestimated by the local hybrid functionals 

(27) with the initially suggested [61] unscaled t-LMF (29). In this case, however, the result depends significantly on the type 

of the admixed “density functional” exchange 
DFT
x( ); with the GGA (B88 and PBE) functionals, the errors are much smaller 

than those with the local exchange (S). The difference between the correlation functionals used (LYP, PKZB, VWN) seems 

to be much less significant. The scaling of t-LMF, that is, a transition from (29) to (32) improves the results by an order of 

magnitude, which is especially pronounced for the Lh-SVWN scheme (for notation used, see note to Table 1). It is 

interesting to note that with LMF (32) the best results were obtained when local exchange was mixed with exact exchange; 

substitution by GGA type exchange (B88) did not afford an equally low mean absolute deviation for any value of 0  1 

(see (32); the corresponding data are not given in Table 1). An important peculiarity of the Lh-SVWN scheme is its very high 

stability against expansion of the test set of molecules by a factor of ~3, that is, in passing from G2-1 to G2 (full set); the

mean absolute deviation (3.6 kcal/mol) (minimized with respect to the  parameter on molecules from the G2-1 set) increased 

by only 0.2 kcal/mol. Using the Lh-SLYP scheme, one can reach even a smaller absolute error within the “small” G2-1 set 

(2.9 kcal/mol), but it increases by a factor of more than 1.5 on passing to the G2 set.  

Comparable results (of the same quality) can also be obtained with s-LMF (34); in this case, however, using the 

GGA correlation of LYP is obviously preferable. Table 1 also includes the data obtained with the LMF erf (0.24s).  

A comparison of the data obtained with the local hybrid scheme with the results of calculations with the one-

parameter global hybrids shows that the local hybrids are obviously advantageous. The results of comparable quality can 

TABLE 1. Statistical Analysis of the Atomization Energies of Molecules (kcal/mol) Obtained with Different 

Exchange Correlation Functionals 

Functional 
Small test set G2-1i

(55 molecules) 

Complete test set G2j

(148 molecules) 

Detailed description 

Type
Exchange

LMFb

or a0
c

Corre-

lationd

Mean abs. 

deviation 

Mean

deviation 

Max.

deviation 

Mean abs. 

deviation 

Mean

deviation 

Max.

deviation 

1 2 3 4 5 6 7 8 9 10 

Global 

hybrids 

B3LYP (a0 = 0.2)

(see Eq. (26)) 

2.7 –0.9 –15.3 

(SO2)

4.1 –3.2 –24.8 

(SiCl4)

Se 0.47 VWN 10.3 5.7 39.5 

(C2H6)

22.1 18.6 71.1 

(C4H10)
f

Se 0.54 LYP 7.0 2.0 27.5 

(C2H6)

18.7 15.3 63.5 

(C6H6)

B88e 0.13 LYP 2.9 –1.4 –11.3 

(SO2)

6.9 –5.8 –29.4 

(SiCl4)

                                                          

*See the notes to Table 1. 
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TABLE 1. (Continued) 

1 2 3 4 5 6 7 8 9 10 

Local

hybrids 

B88g t LYP 19.6h — –59.3h — — — 

PBEg t PKZB 13.0h — –51.7h — — — 

Sg t VWN 38.2 –37.9 –102.5 

(SO2)

— — — 

 0.48t VWN 3.6 0.2 –13.2 (N2) 3.8 0.5 –16.6 

(CN)2

Sf 0.50t LYP 2.9 –0.6 –8.1 (N2) 4.9 3.3 29.3 

(C2F4)
2

0.73

s

s

LYP 2.6 –0.73 –11.1 (N2) 4.5 2.7 20.8 

(C2F4)

2

0.84

s

s

VWN 5.1 1.0 –14.3 (N2) 5.9 2.0 –19.8 

(CN)2

 erf (0.24s) LYP 2.9 –0.6 –10.6 (N2) 3.9 1.9 21.8 

(C2F4)

These are mixed with the exact exchange 
DFT
xE  or 

DFT
x  in (25)-(27). Other symbols used in the literature for the 

global hybrids are S-EXX-VWN, S-EXX-LYP, and B88-EXX-LYP, respectively (where “EXX” (“EXact eXchange”) 

indicates that an exact exchange admixture is present) with an explicit indication to the value of the exact exchange 

admixture a0. For the local hybrids, we use the notation Lh-BLYP, Lh-PBEPKZB, Lh-SVWN, and Lh-SLYP, respectively, 

with an explicit indication to the local mixing function. 
bFor local hybrids (Eq. (27)). 
cFor global hybrids (Eqs. (25) and (26)).  

d DFT
cE  in (25)-(27).  

eOne-parameter functionals: the numerical values of the parameters in the LMF (or a0) minimize the mean absolute 

deviations of the atomization energies from the experimental values for molecules from the G2-1 set.  
fn-Butane (trans-conformation).  
gTest functionals without varied parameters.  
hThe data of [61] correspond to the non-self-consistent post-Hartree-Fock calculations (in contrast to all other data 

given in the table, which were obtained with the orbitals from the self-consistent calculation in the local density 

approximation (post-LDA)). 
iThe G2-1 set: CN, CO, CO2, F2, Li2, LiF, N2, NO, O2, Cl2, Na2, NaCl, P2, S2, Si2, BeH, C2H2, C2H4, C2H6, CH, CH2

(1A1), CH2 (
3B1), CH3, CH4, H2CO, H2O, H2O2, CH3OH, HCN, HCO, HF, LiH, N2H4, NH, NH2, NH3, H2S, OH, HCl, PH2,

PH3, Si2H6, SiH2 (
1A1), SiH2 (

3B1), SiH3, SiH4, CH3Cl, ClF, ClO, CS, CH3SH, HOCl, SiO, SO, and SO2.
gIn addition to 55 molecules from G2-1, the G2 set includes BF3, AlF3, BCl3, AlCl3, CF4, CCl4, COS, CS2, CF2O,

SiF4, SiCl4, N2O, ClNO, NF3, PF3, O3, F2O, ClF3, (CN)2, H2, HS, CCH, NO2, and a number of organic molecules with up to  

six carbon atoms. 

only be obtained with the B3LYP functional, containing two purely fitting parameters (ac and ax) in addition to the exact 

exchange admixture a0, which are dubious from the viewpoint of their physical sense (see (26)).  

To summarize, one can argue that the local hybrid functionals, in their exchange part, present a sound alternative to 

the generalized gradient approximation per se. In other words, in the given scheme, the exchange energy densities of two 

fundamental types, namely, of local (14), (15) and exact (22) types, are mixed at each point of space; good thermochemical 

results can be obtained using only one fitting parameter. This is an obvious advantage over modern DFT, generally tending to 

use too many empirical parameters. Since the dynamic correlation energy is not involved in the local hybrid scheme (see 

(27)), investigation of its effect on the result is not an independent problem unrelated to the properties of the local mixing 

functions used. A detailed discussion of the local hybrid functionals of different types as applied to thermochemistry can be 

found in [64, 66]. It should be mentioned that, according to our preliminary data [65], the Lh-SVWN scheme with LMF (32) 
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also permits us to obtain high accuracy for the barrier heights of reactions, which is a traditionally complex problem for 

density functional theory (generally, one can obtain acceptable accuracy in calculating either the atomization energies or the 

reaction barriers; one of the rare exceptions is given in [131], in which the aim is achieved by introducing a set of additional

fitting parameters).  

Chemical screening constants obtained with the LGH potentials. Table 2 compares the chemical screening 

constants obtained in different calculations for 22 small molecules including the elements of the major subgroups. It can 

readily be seen that the same global hybrid functionals B3-PW91 and B88-EXX-PW91 (a0 = 0.5) lead to absolutely different 

results, which depend on the method of implementing the corresponding potentials (operators). In the former case, these are 

iterative solutions of coupled equations (see above) with the 
hybr
xcv̂  nonlocal operators, which are the functional derivatives of 

hybrid functionals with respect to orbitals (Eq. (48)); in the latter case, these are direct (“one-pass”) calculations with the

potentials localized by the OEP method in the CEDA/LFH approximation (in Table 2, the locality of these potentials is 

designated by the letter “L” in parentheses: B3(L)-PW91 and B88-EXX(L)-PW91, respectively). Evidently, simple 

localization of the hybrid potentials decreases the mean absolute deviation from the experimental data by a factor of two for 

B3-PW91 and by a factor of 6 (!) for B88-EXX-PW91 (a0 = 0.5). One of the major reasons for this dramatic difference is a 

more adequate description of the subspace of virtual orbitals, which is especially important for calculations with second order

perturbation theory (see above). 

TABLE 2. Chemical Screening Constants (ppm) Calculated with the Nonlocal (FDO) and Localized (LGH) 

Global Hybrid Potentials 

FDO LGH

B88-EXX(L)-PW91 Molecule Nucleus 
B3-PW91 

B88-EXX-

PW91, 

a0 = 0.5 

B3(L)-

PW91 a0 = 0.4 a0 = 0.5 a0 = 0.6 
B88-PW91

Experimentb

1 2 3 4 5 6 7 8 9 10 

C2H2 C 108.1 110.9 109.4 112.4 113.6 114.7 107.4 117.2

C2H4 C 47.3 51.5 49.5 54.3 56.3 58.2 45.9 64.5 

CH3F C 106.7 114.9 103.8 107.0 108.1 109.2 101.8 116.8

 F 463.4 473.6 462.9 469.1 472.0 474.8 455.5 456.6

CH4 C 188.7 192.1 188.8 191.2 192.3 193.3 186.8 195.1

CHF3 C 55.6 67.4 52.1 56.7 58.6 60.4 48.8 68.4

 F 261.2 280.8 258.4 269.5 274.5 279.3 247.4 267.3

CO C –18.0 –21.6 –12.0 –8.6 –7.3 –6.0 –14.1 1.0

 O –82.7 –85.7 –64.2 –49.0 –41.9 –34.8 –79.2 –62.3

CO2 C 51.5 52.0 54.8 58.2 59.5 60.8 52.6 58.8

 O 212.4 215.2 218.7 226.3 230.0 233.5 210.9 223.4

F2 F –246.9 –214.6 –258.0 –246.3 –241.6 –237.0 –265.5 –234.2

H2CO C –24.1 –18.3 –24.5 –20.5 –19.1 –17.6 –26.5 –4.4 3

H2O O 327.9 329.3 330.9 334.6 336.5 338.3 326.9 324 1.5

H2S S 713.3 722.6 719.6 733.0 738.6 744.1 709.0 752.0

HCl Cl 941.1 950.3 945.2 955.8 960.4 964.8 936.1 952.0

HCN C 69.9 70.0 72.6 75.1 76.1 77.0 71.1 82.1

 N –47.8 –48.8 –36.1 –25.9 –21.5 –17.1 –44.6 –20.4

HF F 411.7 413.9 414.7 418.8 420.8 422.8 410.1 410.1

N2 N –91.7 –100.0 –78.6 –71.3 –68.1 –64.9 –84.8 –61.6 0.5

N2O Nterm 83.6 75.7 94.7 100.4 102.8 105.2 90.1 99.5
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TABLE 2. (Continued) 

1 2 3 4 5 6 7 8 9 10 

 Ncentral –7.0 –15.6 5.3 11.4 13.9 16.3 0.9 11.3

 O 172.5 171.9 183.3 192.9 197.6 202.1 173.1 180.5

NH3 N 255.9 257.9 257.7 260.7 262.1 263.5 254.7 264.5

O3 Ocentral –1113 –1540 –862.9 –830.3 –816.4 –802.9 –889.2 –744

 Oterm –1691 –2050 –1404 –1330 –1297 –1265 –1470 –1310

P2H2 P –304.7 –314.9 –257.1 –220.1 –205.0 –190.4 –284.6 –166

PH3 P 572.9 584.2 574.9 585.5 589.8 594.0 567.4 594

PN P –50.3 –69.1 –13.1 9.9 19.8 29.5 –32.4 53

 N –428.3 –450.0 –383.3 –355.9 –343.3 –330.8 –409.1 –349 

SO2 S –256.7 –289.6 –211.4 –190.2 –181.5 –172.8 –226.0 –125.9

 O –284.6 –289.7 –245.1 –214.2 –199.7 –185.7 –276.3 –225.1

Mean absolute 

deviation 

50,5 77.5 24.5 15.2 13.9 14.6 34.4  

Mean deviation –49.8 –73.8 –23.2 –10.3 –4.6 0.9 –34.2  

Self-consistent calculations by (9) and (10) with the 
hybr
xcv̂  nonlocal and nonmultiplicative operator defined in (48). 

bSee [109] for detailed references to the experimental data. 

The second conclusion concerning the LGH potentials is considerable difference between the thermochemically 

optimum value of the a0 parameter (which equals 0.2 if we take the B3 scheme as a basis, see (26)) and the values of a0 that 

lead to the best chemical screening constants (of the order of 0.5-0.6). A difference as large as this can be interpreted as 

evidence of the “insufficient universality” of the traditional (global) hybrid functionals, which still demand specific fitting for 

the property being calculated because, in the ideal case, a functional should describe equally well the thermochemical and 

other properties without any reparametrizations.  

For comparison Table 2 also lists the results obtained by using the typical GGA (B88-PW91) potential, which are 

not quite satisfactory compared with the B88-EXX(L)-PW91 (a0 = 0.5) potential. It should be recognized, however, that 

within the framework of GGA one can obtain the same level of accuracy for the screening constants as when calculations are 

performed with the LLH potentials (see, e.g., the KT family of functionals [132, 133]), but this result is achieved by 

introducing rather artificial derivations and additional fitting parameters.  

Electronic g tensors of transition metal complexes obtained with the LGH potentials. Table 3 lists the 

calculated shifts of the components of the g tensors for nine metal complexes of the first row of transition metals. As in the 

case of the chemical screening constants, Table 3 compares the results obtained with the same nonlocal and localized hybrid 

potentials. At first sight, the effect of localization of the potentials is not so pronounced here; moreover, the B3(L)-PW91 

potential even leads to worse results compared with the nonlocal B3-PW91 potential. Nevertheless, the increased exact 

exchange admixture yields better agreement with experiment only in the case of localized potentials. It is interesting to note 

that the optimum values of a0 in this case lie in the same range (0.5-0.6) as for screening constants. This coincidence permits 

us to draw a pragmatic conclusion about the efficiency of hybrid functionals with large exact exchange admixtures for 

calculating magnetic resonance parameters of “response” type on condition of self-consistent implementation of these 

functionals in the form of localized potentials. Details of the discussion of the LGH potentials for the g tensors of transition 

metal complexes and screening constants of the compounds of elements from the major subgroups are found in our 

publications [109-111].  

Chemical screening constants obtained with the LGH potentials [120]. This section demonstrates the possibility 

of calculating the nonthermochemical properties using the local hybrid functionals for the chemical screening constants of the 

same 22 compounds of nontransition elements that were used for evaluating the LGH potentials (see above). Table 4 
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TABLE 3. Shifts of the g Tensor Components for Transition Metal Complexes (thousandths) a Calculated with 

the Nonlocal (FDO) and Localized (LGH) Global Hybrid Potentials 

FDOb LGH

B88-EXX(L)-PW91 Compound g Tensor 
B3-PW91 

B88-EXX-

PW91, 

a0 = 0,5 

B3(L)-

PW91 a0 = 0.4 a0 = 0.5 a0 = 0.6 

B88-

PW91 

Experimentc

Co(CO)4 g || 5.9 29.9 7.8 12.3 14.6 16.6 4.0 3.6 

g 88.8 115.9 87.5 93.5 96.8 100.0 78.9 127.6 

CrOF 4 g || –22.7 –33.4 –22.9 –28.5 –31.3 –34.1 –17.0 –43 

g –30.2 –45.7 –31.0 –35.6 –37.8 –39.6 –25.5 –34 

CrOCl4 g || 15.8 6.5 11.6 4.2 0.8 –2.2 18.5 –10 

g –25.8 –47.2 –26.6 –31.9 –33.7 –35.0 –19.4 –25 

Cu(NO3)2 gzz 157 275 132.8 157.5 172.5 190.4 113.6 263.8 

gyy 39.7 71.5 32.1 38.8 42.9 47.7 27.0 49.9

gxx 40.8 71.5 35.4 43.7 48.8 55.1 29.2 49.9

Fe(CO)5 g || –3.2 –7.5 –1.4 –1.6 –1.7 –1.8 –1.4 –1.5 

g 65.9 89.5 53.8 55.8 56.9 57.8 49.6 79.15 

Mn(CO)5 g || –2.6 –5.5 –1.6 –2.3 –2.8 –3.6 –1.3 –2.3 

g 27.4 32.5 23.1 22.8 22.4 21.7 22.4 35.7 

MnO3 g || 2.9 16.5 0.8 –2.8 –4.2 –5.4 3.1 –0.4 

g 2.7 90.6 –3.2 –11.7 –16.6 –20.9 2.9 4.7 

Ni(CO)3H g || 3.5 13.6 3.9 6.3 7.5 8.8 1.7 1.9 

g 64.1 157.4 45.2 49.1 51.2 53.7 41.7 65.1 

TiF3 g || –1.4 –1.4 –1.4 –1.7 –1.7 –1.7 –1.2 –8.6 

g –48.8 71.4 –48.5 –75.8 –106.2 –169.5 –32.8 –116 

Mean absolute 

deviation 

17.0 30.3 21.0 17.2 14.4 15.8 25.0 

Mean deviation –3.2 24.2 –7.5 –7.8 –8.5 –10.7 –7.7 

“Thousandths,” i.e., the values of guu = guu – ge (ge = 2.002319…, u = x, y, z) multiplied by 103.
bSee Note “a” to Table 2. 
cSee [110] for detailed references to the experimental data.  

summarizes data for two local hybrid schemes, Lh-SVWN and Lh-SLYP, with two different types of local mixing functions: 

t-LMF (32) and s-LMF (34), respectively. The results are given for two values of the  parameter in each case, namely, the 

thermochemically optimum value (in the sense of minimization of the mean absolute deviation of the atomization energies of 

molecules from the G2-1 test set, see Table 1) and the optimum value for screening constants. As can be seen from Table 4, 

the results of calculations with the LMFs of different types are comparable in quality to one another and to the data obtained 

with the use of the LGH potentials (see Table 2). However, s-LMF (34) is less sensitive to the variation of the  parameter 

and provides slightly higher accuracy compared with the scaled t-LMF (32), probably, as a consequence of the regular 

asymptotic behavior of the corresponding potential (see the discussion above).  

Table 4 also lists the mean LMF value for each of the above-discussed potentials. It deserves special discussion 

because this is some kind of an analog of the a0 parameter, which describes the global hybrid functionals (potentials) and is 

defined in the following way: 

0 ( ) ( )d ( )d ,a gr r r r r  (86) 
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TABLE 4. Chemical Screening Constants (ppm) Calculated with the Localized Local Hybrid (LLH) Potentials  

Lh(L)-S-VWN, LMF = t Lh(L)-S-LYP, LMF =

2
s

sMolecule Nucleus 

 = 0.48a  = 0.80b  = 0.73a  = 0.50b

Experiment c 

C2H2 C 110.6 116.6 111.8 113.8 117.2

C2H4 C 51.6 59.3 53.8 56.6 64.5 

CH3F C 104.4 107.1 106.5 107.4 116.8

 F 464.8 462.1 467.0 468.4 456.6

CH4 C 190.2 189.2 194.7 194.9 195.1

CHF3 C 53.9 59.7 56.0 57.8 68.4

 F 259.5 271.2 255.2 261.2 267.3

CO C –6.7 2.1 –2.2 0.3 1.0

 O –55.0 –34.6 –49.4 –39.7 –62.3

CO2 C 57.0 61.9 58.7 60.3 58.8

 O 224.4 233.4 228.7 233.2 223.4

F2 F –264.8 –254.4 –237.5 –232.1 –234.2

H2CO C –22.7 –11.4 –21.2 –18.0 –4.4 3

H2O O 334.9 335.0 338.4 339.2 324 1.5

H2S S 730.1 727.9 744.5 745.0 752.0

HCl Cl 958.8 958.5 966.9 968.0 952.0

HCN C 74.7 80.5 77.3 79.1 82.1

 N –31.0 –14.9 –29.4 –23.0 –20.4

HF F 419.0 420.5 420.8 422.1 410.1

N2 N –71.7 –58.9 –66.0 –60.6 –61.6 0.5

N2O Nterm 100.4 108.1 104.9 108.1 99.5

 Ncentral 9.0 16.4 11.8 15.0 11.3

 O 189.0 196.0 194.7 199.4 180.5

NH3 N 260.7 259.8 265.5 265.8 264.5

O3 Ocentral –849.9 –806.7 –824.2 –804.5 –744

 Oterm –1399 –1316 –1337 –1299 –1310

P2H2 P –259.0 –207.9 –255.4 –236.7 –166

PH3 P 577.6 573.4 594.1 594.0 594

PN P –17.3 14.7 –8.9 4.6 53

 N –371.5 –339.3 –363.5 –348.0 –349 

SO2 S –215.2 –186.7 –203.0 –191.1 –125.9

 O –232.9 –200.2 –222.9 –206.0 –225.1

Mean absolute deviation 22.5 14.7 17.0 14.5  

Mean deviation –19.2 –5.2 –11.2 –4.8  

Mean LMF, 0a d 0,281 0.469 0.301 0.399  

The thermochemically optimum value of  (that provides the minimum mean absolute deviation of the calculated 

atomization energies of 55 molecules from the G2-1 set from the experimental values). 
bThe optimum  value for the tabulated chemical screening constants. 
cSee Note “b” to Table 2.  
dCalculated by (86) and averaged over 22 molecules from the table. 
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in other words, 0a  is the local mixing function averaged over the electron density (it can readily be seen that for global 

hybrids, calculation of 0a  leads, in a trivial way, to the a0 constant). The mean LMF values listed in Table 4 are the values of 

0a  averaged over the set of 22 molecules under study. Evidently, the difference between two optimum averaged values of 

exact exchange admixtures (for thermochemistry, on the one hand, and magnetic resonance parameters, on the other) is much 

smaller for local hybrids (0.1-0.2) compared with the corresponding difference between the a0 parameters for global hybrids 

(0.3-0.4) (cf. Tables 4 and 2). This circumstance indicates that the local hybrids are “more universal” functinals (see above).

Therefore, the s-LMF is also advantageous over the t-LMF (the differences between 0a  are 0.10 and 0.19, respectively).  

To summarize, we note that the thermochemical properties calculated with the use of the local hybrid functionals are 

virtually the same both in the self-consistent calculations with the LLH potentials and non-self-consistent calculations with 

the orbitals obtained within the framework of the local density approximation (post-LDA) [119]. This is further evidence in 

favor of the overall sensitivity of the total energy of the molecule to the fine details of its electronic structure. 

CONCLUSIONS 

The exchange correlation hybrid functionals with an exact (Hartree–Fock) exchange energy admixture are a 

powerful tool for solving various problems within the framework of modern density functional theory. Apart from giving 

excellent results in computational thermochemistry, the hybrid functionals are absolutely indispensable in calculating the 

“subtler” properties that are sensitive to details of electron density distribution (e.g., the chemical screening constants and

electronic g tensors). In recent years, the hybrid functional concept received a strong impetus in view of the appearance of the 

local hybrid functionals in which the exact exchange admixture was introduced by a nontraditional method (in the form of a 

nontrivial space coordinates function and not in the form of a constant). Moreover, the construction of the localized potentials

from the traditional nonlocal hybrid potentials (operators) ensured higher accuracy of calculation of nonthermochemical 

properties. Recently, synthesis of two concepts, namely, the “local hybrid functional” and the “localized hybrid functional” 

gave rise to the localized local hybrid potentials, which, according to test calculations, proved very promising for a wide 

spectrum of molecular properties. Today the direction associated with the search for more perfect local hybrid functionals is 

being actively developed.  

It should be noted that here we did not adhere to the very popular (but not perfect) classification of the exchange 

correlation functionals in terms of the “steps” [134] of the “Jacob’s ladder to the heaven of chemical accuracy" [135, 136]. 

Moreover, we did not discuss the new, rather complex functionals from the “hyper-GGA” category, one of the ingredients of 

which is also the exact exchange energy density. 

We are grateful to Professor M. Kaupp for providing us with excellent conditions for work and for many years of 

fruitful collaboration in this field and also to R. O. Revyakin and H. Bakhmann for valuable technical assistance. 
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