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1 Introduction

The duality between scalars and vectors together with the non-propagating nature of super-

gravity fields in three dimensions make three dimensional gauged supergravity substantially

differs from its higher dimensional analogue. On one hand, only matter-coupled supergrav-

ity has propagating degrees of freedom in terms of scalars and spin-12 fields. Accordingly,

the matter-coupled theory takes the form of a supersymmetric non-linear sigma model cou-

pled to supergravity. On the other hand, recasting vectors to scalars, making the U-duality

symmetry manifest, seems to create a trouble in any attempt to gauge the theory since the

vector fields accompanying for the gauging are missing.

Special to three dimensions, vector fields can enter the gauged Lagrangian via Chern-

Simons (CS) terms as opposed to the conventional Yang-Mills (YM) kinetic terms. Since

CS terms do not lead to additional degrees of freedom, any number of gauge fields, or equiv-

alently the dimension of the gauge group, can be introduced provided that the gauge group

is a proper subgroup of the global symmetry group and consistent with supersymmetry.

This gives rise to a very rich structure of gauged supergravity in three dimensions [1–5].

Additionally, the Chern-Simons form of gauged supergravity raises another difficulty

namely the embedding of the resulting gauged theory in higher dimensions. This is due to

the fact that all theories obtained from conventional dimensional reductions are of Yang-

Mills form. It has been, however, shown that Yang-Mills gauged supergravity is on-shell

equivalent to Chern-Simons gauged theory with a non-semisimple gauge group [6]. Up to

now, there are many attempts to embed three dimensional gauged supergravity in higher

dimensions and in string/M theory. These results would give rise to new string theory

backgrounds with fluxes as well as new D-brane configurations [7]. However, it has been

pointed out recently in [8] that there might exist supersymmetric string backgrounds which

are not captured by gauged supergravities.

The rich structure and embedding in string/M theory aside, gauged supergravity proves

to be a very useful tool in the AdS/CFT correspondence [9]. AdS3/CFT2 correspondence

can provide more insight not only to the AdS/CFT correspondence, including its general-

izations such as the Domain Wall/Quantum Field Theory (DW/QFT) correspondence, but

also to black hole physics [10, 11]. In holographic RG flows, AdS3 vacua and domain walls

interpolating between them interpreted as RG flows in the dual two dimensional field theo-

ries are of particular interest, see [12] for a thorough review. The deformations of a strongly

coupled field theory can be understood in this framework. Some gauged supergravities do

not admit a maximally supersymmetric AdS3 but a half-supersymmetric domain wall as

a vacuum solution. This class of gauged supergravities will be useful in the context of the

DW/QFT correspondence [13–15].

In this work, we further explore the structure of gauged supergravity in three di-

mensions with N = 5, 6 supersymmetry. We begin with a study of compact and non-

compact gaugings of the N = 5 theory with scalar manifolds USp(4, 2)/USp(4) × USp(2)

and USp(4, 4)/USp(4)×USp(4). We will identify some supersymmetric AdS3 critical points

and study the associated RG flow solutions. This could be useful in AdS3/CFT2 correspon-

dence although the embedding in higher dimensions is presently not known. The result is
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similar to supersymmetric RG flows studied in [16–19] and in higher dimensions such as

recent solutions of new maximal gauged supergravity in four dimensions given in [20].

We then move to non-semisimple gaugings of the N = 5 theory containing 16 scalars

encoded in USp(4, 4)/USp(4)×USp(4) coset manifold with SO(5)⋉T10 gauge group. The

gauge group is embedded in the global symmetry group USp(4, 4). According to [6], the

resulting theory is equivalent to SO(5) YM gauged supergravity. The latter might be

obtained by a reduction of N = 5, SO(5) gauged supergravity in four dimensions on S1/Z2

as pointed out in [21]. The theory may also be embedded in N = 10, SO(5)⋉T10 gauged

supergravity via the embedding of the global symmetry group USp(4, 4) ⊂ E6(−14). The

theory admits a maximally supersymmetric AdS3 vacuum and provides another example

of three dimensional gauged supergravities with known higher dimensional origin.

We finally turn to non-semisimple gauging of N = 6 theory with SU(4, 4)/S(U(4) ×
U(4)) scalar manifold. The global symmetry SU(4, 4) contains an SO(6) ⋉ T15 subgroup

that can be consistently gauged. Similar to N = 5 theory, this theory is equivalent to

SO(6) YM gauged supergravity and could be obtained by an S1/Z2 reduction of N = 6

gauged supergravity in four dimensions. Unlike N = 5 theory, the theory admits only a

half-supersymmetric domain wall as a vacuum solution.

The paper is organized as follow. We give the construction of N = 5 theory in sec-

tion 2. Relevant information and related formulae for general gauged supergravity in three

dimensions are collected in appendix A. Vacua of compact and non-compact gauge groups

are given in section 3 and 4, respectively. Section 5 deals with some examples of RG flows

between critical points previously identified. Non-semisimple gaugings of N = 5 and N = 6

theories are constructed in sections 6 and 7, respectively. The maximally supersymmetric

AdS3 of N = 5 theory and a 1
2 -BPS domain wall of the N = 6 theory are explicitly given

in these sections. We end the paper with some conclusions and discussions. Appendices B

and C contain the explicit form of the relevant generators used in the main text as well as

the scalar potential for SO(4)×USp(2) gauging in N = 5 theory.

2 N = 5 gauged supergravity in three dimensions

In N = 5 three dimensional gauged supergravity, scalar fields are described in term of

USp(4, k)/USp(4) × USp(k) coset manifold with dimensionality 4k. The R-symmetry is

given by USp(4) ∼ SO(5)R. All admissible gauge groups are embedded in the global

symmetry group USp(4, k). In this paper, we will consider only the k = 2 and k = 4 cases.

We first introduce USp(4, k) generators constructed from a compact group USp(4+ k)

via the Weyl unitarity trick. In order to make contact with the N = 6 theory with global

symmetry group SU(4, k) studied in section 7, we will construct the USp(4+ k) generators

by figuring out the USp(4 + k) subgroup of SU(4+ k), directly. The latter is generated by

the well-known generalized Gell-Mann matrices given in, for example, [22]. We will denote

USp(4 + k) generators by Ji given explicitly in appendix B. The SO(5)R R-symmetry

generators, labeled by a pair of anti-symmetric indices T IJ = −T JI , can be identified as
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follow

T 12 =
1√
2
(J3 − J6) , T 13 = − 1√

2
(J1 + J4) , T 23 =

1√
2
(J2 − J5) ,

T 34 =
1√
2
(J3 + J6) , T 14 =

1√
2
(J2 + J5) , T 24 =

1√
2
(J1 − J4) ,

T 15 = −J9, T 25 = −J10, T 35 = J8,

T 45 = J7 . (2.1)

The non-compact generators Y A are identified by

Y 1 = iJ14, Y 2 = iJ15, Y 3 = iJ16, Y 4 = iJ17,

Y 5 = iJ18, Y 6 = iJ19, Y 7 = iJ20, Y 8 = iJ21,

Y 9 = iJ25, Y 10 = iJ26, Y 11 = iJ27, Y 12 = iJ28,

Y 13 = iJ29, Y 14 = iJ30, Y 15 = iJ31, Y 16 = iJ32 . (2.2)

For k = 2 case with 8 scalars, the associated non-compact generators are given by the first

8 generators, Y A with A = 1, . . . , 8.

Admissible gauge groups are completely characterized by the symmetric gauge invari-

ant embedding tensor ΘMN , M,N = 1, . . . , dimG. Viable gaugings are defined by the

embedding tensor satisfying two constraints. The first constraint is quadratic in Θ and

given by

ΘPLfKL
(MΘN )K = 0 (2.3)

ensuring that a given gauge group G0 is a proper subgroup of G. The other constraint due

to supersymmetry takes the form of a projection condition

P⊞T
IJ,KL = 0 (2.4)

where the T-tensor T IJ,KL is given by the moment map of the embedding tensor

T IJ,KL ≡ VM IJΘMNVN KL . (2.5)

The ⊞ denotes the Riemann tensor-like representation of SO(N)R. For symmetric scalar

manifolds of the form G/H, the V maps can be obtained from the coset representative, see

appendix A, and the constraint can be written in the form

PR0ΘMN = 0 . (2.6)

The representation R0 of G contains the ⊞ representation of SO(N)R.

We are now in a position to study gaugings of N = 5 supergravity. We will treat

compact and non-compact gauge groups separately.
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3 Compact gauge groups

In this section, we explore N = 5 gauged supergravity with compact gauge groups. The

gauge groups are subgroup of USp(4) × USp(k) and takes the form SO(p) × SO(5 − p) ×
USp(k), p = 5, 4, 3.

The SO(p) × SO(5 − p) part is embedded in SO(5)R as 5 → (p,1) + (1,5− p). The

corresponding embedding tensor is identified in [5] and takes the form

ΘIJ,KL = θδKL
IJ + δ[I[KΞL]J ] (3.1)

where

ΞIJ =











2
(

1− p

5

)

δIJ , I ≤ p

−2p

5
δIJ , I > p

, θ =
2p− 5

5
. (3.2)

The full embedding tensor for SO(p)× SO(5− p)×USp(k) is given by

Θ = g1ΘSO(p)×SO(5−p) + g2ΘUSp(k) (3.3)

with two independent coupling constants. ΘUSp(k) is given by the Killing form of USp(k).

Together with the explicit form of the coset representative, the scalar potential is completely

determined by the embedding tensor.

3.1 The k = 2 case

In this case, the theory contains 8 scalars parametrized by USp(4, 2)/USp(4) × USp(2)

coset space. The full 8-dimensional manifold can be conveniently parametrized by the

Euler angles of SO(5) × USp(2) ∼ USp(4) × USp(2). The details of the parametrization

can be found in [23], and the application to SU(n,m)/S(U(n)×U(m)) coset can be found

in [19].

3.1.1 SO(5) × USp(2) gauging

With USp(4) × USp(2) Euler angles, the full USp(4, 2)/USp(4) × USp(2) coset can be

parametrized by the coset representative

L = ea1X1ea2X2ea3X3ea4J7ea5J8ea6J9ea7J15ebY
7

(3.4)

where Xi’s are defined by

X1 =
1√
2
(J1 − J11), X2 =

1√
2
(J2 − J12), X3 =

1√
2
(J3 − J13). (3.5)

The resulting scalar potential is

V =
1

32

[

64
(

g22 − 12g21 + 4g1g2
)

cosh b− 1076g21 − 180g1g2 − 45g22

−4
(

52g21 + 20g1g2 + 5g22
)

cosh(2b) + (2g1 + g2)
2 cosh(4b)

]

. (3.6)
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b V0 unbroken unbroken

SUSY gauge symmetry

I 0 −64g21 (5, 0) SO(5)×USp(2)

II cosh−1
[

g2−2g1
2g1+g2

]

−64g21(g1+g2)2

(2g1+g2)2
(4, 0) USp(2)×USp(2)

III cosh−1
[

6g1+g2
2g1+g2

]

−64g21(3g1+g2)2

(2g1+g2)2
(1, 0) USp(2)×USp(2)

Table 1. Critical points of SO(5)×USp(2) gauging.

Note that the scalar fields associated to the gauge generators do not appear in the potential

due to gauge invariance. We find some critical points as shown in table 1. V0 is the value

of the potential at each critical point. Unbroken supersymmetry is denoted by (n−, n+)
where n− and n+ correspond to the number of supersymmetry in the dual two dimensional

CFT. In three dimensional language, they correspond to the numbers of negative and

positive eigenvalues of AIJ
1 tensor. As reviewed in appendix A, these eigenvalues, ±α̃,

satisfy V0 = −4α̃2. Since, in our convention, the AdS3 radius is given by L = 1√−V0
, we

also have a relation L = 1
2|α̃| .

The maximally supersymmetric critical point at L = I preserves the full gauge sym-

metry. The two non-trivial critical points preserve USp(2) × USp(2) symmetry. We also

give the A1 tensors at each critical point:

A
(I)
1 = −4g1I5×5,

A
(II)
1 = diag

(

α, α, α, α,
4g1(g1 − g2)

2g1 + g2

)

.

A
(III)
1 = diag

(

β, β, β, β,
−4g1(3g1 + g2)

2g1 + g2

)

. (3.7)

where

α =
−4g1(g1 + g2)

2g1 + g2
, β =

−4g1(5g1 + g2)

2g1 + g2
. (3.8)

The scalar mass spectrum at the trivial critical point is given in the table below.

m2L2 SO(5)×USp(2)

−3
4 (4,2)

All scalars have the same mass m2L2 = −3
4 with L being the AdS3 radius at this crit-

ical point. The full symmetry of the background corresponds to Osp(5|2,R) × Sp(2,R)

superconformal group. Notice that in finding critical points with constant scalars we can

use the gauge symmetry and the composite USp(4) × USp(k) symmetry to fix the scalar

parametrization as, for example, in the Euler angle parametrization. In determining scalar

masses, we need to compute scalar fluctuations to quadratic order. In this case, only the

the composite USp(4) × USp(k) symmetry can be used since the vector fields are set to

– 6 –
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zero, see the discussion in [24]. The scalar masses must accordingly be computed in the

so-called unitary gauge with the coset representative

L =
8
∏

i=1

eaiY
i

. (3.9)

The mass spectrum at (4, 0) critical point is shown below.

m2L2 USp(2)×USp(2)

g2(2g1+3g2)
(g1+g2)2

(1,1)

0 (2,2) + (1,3)

And, scalar masses at (1, 0) critical point are as follow.

m2L2 USp(2)×USp(2)

(4g1+g2)(10g1+3g2)
(3g1+g2)2

(1,1)

0 (2,2) + (1,3)

Notice that there are seven massless Goldstone bosons corresponding to the symmetry

breaking SO(5)×USp(2) → USp(2)×USp(2).

3.1.2 SO(4) × USp(2) gauging

We still use the same parametrization as in the previous case. The potential in this case

turns out to be much more complicated although it dose not depend on a1, a2 and a3. We

give its explicit form in appendix C. The trivial critical point has N = (4, 1) supersymmetry

and preserves the full SO(4)×USp(2) symmetry. The A1 tensor and scalar masses at this

point are given below.

A
(I)
1 = −4g1diag (1, 1, 1, 1,−1) , (3.10)

m2L2 SO(4)×USp(2) ∼ SU(2)× SU(2)×USp(2)

−3
4 (2,1,2) + (1,2,2)

The corresponding superconformal symmetry is Osp(4|2,R)×Osp(1|2,R).
Other critical points with a4 = a5 = a6 = a7 = 0 are shown in table 2. Critical points

II and III preserve only USp(2)diag ×USp(2) subgroup of SO(4)×USp(2). The USp(2)diag
is a diagonal subgroup of one factor in USp(2)×USp(2) ∼ SO(4) and the USp(2) factor in

the gauge group and is generated by J1 + J11,J2 + J12 and J3 + J13. Critical point II has

(4, 1) supersymmetry with the A1 tensor

A
(II)
1 = −4g1(g1 + g2)

2g1 + g2
diag (1, 1, 1, 1,−1) . (3.11)

– 7 –
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b V0 unbroken unbroken

SUSY gauge symmetry

I 0 −64g21 (4, 1) SO(4)×USp(2)

II cosh−1
[

g2−2g1
2g1+g2

]

−64g21(g1+g2)2

(2g1+g2)2
(4, 1) USp(2)×USp(2)

III cosh−1
[

6g1+g2
2g1+g2

]

−64g21(3g1+g2)2

(2g1+g2)2
(0, 0) USp(2)×USp(2)

Table 2. Critical points of SO(4)×USp(2) gauging.

The scalar mass spectrum is given in the table below.

m2L2 USp(2)×USp(2)

0 (1,3)

g2(2g1+3g2)
(g1+g2)2

(1,1)

− g1g2(g1+2g2)
(g1+g2)2(2g1+g2)

(2,2)

Critical point III is non-supersymmetric with scalar masses given by

m2L2 USp(2)×USp(2)

0 (1,3)

(4g1+g2)(10g1+3g2)
(3g1+g2)2

(1,1)

− g1(4g1+g2)(5g1+2g2)
(2g1+g2)(3g1+g2)2

(2,2)

.

We can now check its stability by comparing the above scalar masses with the

Breitenlohner-Freedman bound m2L2 ≥ −1. At this critical point, the value of b is real for

g1 > 0 and g2 > −2g1 or g1 < 0 and g2 < −2g1. For definiteness, we will consider the first

possibility. The mass of the singlet scalar satisfies the BF bound for g1 > 0 and g2 > −3g1
while the mass of (2,2) scalars requires g2 > 0.21432g1 for g1 > 0 to satisfy to BF bound.

Therefore, critical point III is stable for g1 > 0 and g2 > 0.21432g1.

Note that both critical points II and III contain three massless scalars which are

responsible for the symmetry breaking SO(4)×USp(2) → USp(2)×USp(2).

3.1.3 SO(3) × SO(2) × USp(2) gauging

Computing the scalar potential on the full 8-dimensional manifold turns out to be very

complicated even with the Euler angle parametrization (3.4). In order to make things

more tractable, we employ the technique introduced in [25] and consider a submanifold of

USp(4, 2)/USp(4) × USp(2) invariant under U(1)diag symmetry generated by T 12 + T 45.

There are four singlets under this symmetry corresponding to the non-compact generators

X1 =
1√
2
(Y 1 + Y 6), X2 =

1√
2
(Y 2 + Y 8),

X3 =
1√
2
(Y 4 − Y 3), X4 =

1√
2
(Y 7 − Y 5). (3.12)
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a1 V0 unbroken unbroken

SUSY gauge symmetry

I 0 −64g21 (3, 2) SO(3)× SO(2)×USp(2)

II 1
2 ln

[

g2−8g1−4
√

g1(4g1−g2)

g2

]

−64g21(g1−g2)2

g22
(2, 0) U(1)×U(1)

III 1
2 ln

[

g2+8g1−4
√

g1(4g1+g2)

g2

]

−64g21(g1+g2)2

g22
(1, 2) U(1)×U(1)

Table 3. Critical points of SO(3)× SO(2)×USp(2) gauging.

The coset representative can be parametrized by

L = ea1X1ea2X2ea3X3ea4X4 . (3.13)

The resulting potential is given by

V =
1

128
[3 + cosh a1 cosh a2 cosh a3 cosh a4]

[

−2
(

512g21 + 19g22
)

+
(

99g22 − 1024g21
)

cosh a1 cosh a2 cosh a3 cosh a4 + 3g22 cosh(2a1)

×(cosh a1 cosh a2 cosh a3 cosh a4)− 2− 12g22 cosh
2 a1 [cosh(2a2)

+2 cosh2 a2
(

cosh(2a3) + 2 cosh2 a3 cosh(2a4)
)]

+ 2g22 cosh
3 a1

× cosh a2 cosh a3
(

3
(

cosh(2a2) + 2 cosh2 a2 cosh(2a3)
)

cosh a4

+4 cosh2 a2 cosh
2 a3 cosh(3a4)

)]

. (3.14)

We find critical points as shown in table 3. We have given only the value of a1 since, at

all critical points, the four scalars are related by a2 = a1 and a3 = a4 = 0. As usual,

when all scalars vanish, we have a maximally supersymmetric point with N = (3, 2) and

SO(3)× SO(2)×USp(2) symmetry. The corresponding A1 tensor is

A
(I)
1 = −4g1diag (1, 1, 1,−1,−1) . (3.15)

This background leads to the superconformal symmetry Osp(3|2,R) × Osp(2|2,R). The

scalar masses at this point are shown below.

m2L2 SO(2)× SO(3)×USp(2)

−3
4 (1,2,2) + (−1,2,2)

The other two critical points preserve U(1)×U(1) symmetry. The corresponding A1 tensor

at these points is given by

A
(II)
1 = = diag (α, α, β,−β,−β) ,

A
(III)
1 = diag (γ, γ,−δ, δ, δ) (3.16)
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where

α =
4g1(g1 − g2)

g2
, β = −4g1(g2 − 3g1)

g2
,

γ = −4g1(3g1 + g2)

g2
, δ =

4g1(g1 + g2)

g2
. (3.17)

With some normalization of the U(1) charges, the scalar mass spectra can be computed

as shown in the tables below. The original four singlets under U(1)diag correspond to one

massless and three massive modes in the tables. The U(1)diag is given by a combination of

the two U(1)’s in the unbroken symmetry U(1)×U(1). Therefore, the (0,±4) and (±4, 0)

modes, which are singlets under one of the two U(1)’s, will not be invariant under U(1)diag.

• (2, 0) point:

m2L2 U(1)×U(1)

0 (0, 4) + (0,−4) + (4, 0) + (−4, 0) + (0, 0)

32g21−32g1g2+6g22
(g1−g2)2

(0, 0)

−2g1(g1−2g2)
(g1−g2)2

(−2,−2) + (2, 2)

• (1, 2) point:

m2L2 U(1)×U(1)

0 (0, 4) + (0,−4) + (4, 0) + (−4, 0) + (0, 0)

32g21+32g1g2+6g22
(g1+g2)2

(0, 0)

2g1(3g1+2g2)
(g1+g2)2

(−2,−2) + (2, 2)

3.2 The k = 4 case

We now consider a bigger scalar manifold USp(4,4)
USp(4)×USp(4) . Compact gauge groups in this

case are SO(5) × USp(4), SO(4) × USp(4) and SO(3) × SO(2) × USp(4). Analyzing the

potential on the full 16-dimensional manifold would be very complicated. We then choose

a particular submanifold invariant under a certain subgroup of the gauge group and study

the potential on this restricted scalar manifold as in the SO(3) × SO(2) × USp(2) gauge

group of the previous case. The procedure is parallel to that of the k = 2 case, so we

will omit some irrelevant details particularly the explicit form of the A1 tensor at each

critical point.

3.2.1 SO(5) × USp(4) gauging

We use the parametrization of a submanifold invariant under USp(2) ⊂ USp(4). There

are eight singlets under this USp(2) symmetry corresponding to non-compact generators

of USp(4, 2) ⊂ USp(4, 4). With the Euler angle parametrization, we can write the coset

representative as

L = ea1X̃1ea2X̃2ea3X̃3ea4K1ea5K2ea6K3ea7K4ebY
8

(3.18)
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b V0 unbroken unbroken

SUSY gauge symmetry

I 0 −64g21 (5, 0) SO(5)×USp(4)

II cosh−1
[

g2−2g1
2g1+g2

]

−64g21(g1+g2)2

(2g1+g2)2
(4, 0) USp(2)3

III cosh−1
[

6g1+g2
2g1+g2

]

−64g21(3g1+g2)2

(2g1+g2)2
(1, 0) USp(2)3

Table 4. Critical points of SO(5)×USp(4) gauging.

where

X̃1 =
1√
2
(J4 − J11), X̃2 =

1√
2
(J5 − J12), X̃3 =

1√
2
(J6 − J13),

K1 = J31, K2 = J32, K3 = J33, K4 = J36 . (3.19)

The scalar potential turns out to be same as in (3.6). The critical points are shown in

table 4. The critical points have the same structure as in the k = 2 case but with bigger

residual symmetry. The scalar mass spectra at each critical point are given in the tables

below.

• (5, 0) point:

m2L2 SO(5)×USp(4)

−3
4 (4,4)

• (4, 0) point:

m2L2 USp(2)×USp(2)×USp(2)

0 (2,2,1) + (1,2,2) + (1,3,1)

g2(2g1+3g2)
(g1+g2)2

(1,1,1)

−4g21+8g1g2+3g22
4(g1+g2)2

(2,1,2)

• (1, 0) point:

m2L2 USp(2)×USp(2)×USp(2)

0 (2,2,1) + (1,2,2) + (1,3,1)

40g21+22g1g2+3g22
(3g1+g2)2

(1,1,1)

−3(12g21+8g1g2+g22)
4(3g1+g2)2

(2,1,2)

Notice that the number of massless Goldstone bosons agrees with the corresponding sym-

metry breaking in each case.

– 11 –



J
H
E
P
0
1
(
2
0
1
4
)
1
5
9

b V0 unbroken unbroken

SUSY gauge symmetry

I 0 −64g21 (4, 1) SO(4)×USp(4)

II cosh−1
[

g2−2g1
2g1+g2

]

−64g21(g1+g2)2

(2g1+g2)2
(4, 1) USp(2)3

III cosh−1
[

6g1+g2
2g1+g2

]

−64g21(3g1+g2)2

(2g1+g2)2
(0, 0) USp(2)3

Table 5. Critical points of SO(4)×USp(4) gauging.

3.2.2 SO(4) × USp(4) gauging

With the same coset representative, we find the same potential as shown in (C.1). The

critical points with different unbroken symmetry are shown in table 5. The scalar mass

spectra are given below.

• (4, 1) point:

m2L2 SO(4)×USp(2) ∼ SU(2)× SU(2)×USp(4)

−3
4 (2,1,4) + (1,2,4)

• (4, 1) point:

m2L2 USp(2)×USp(2)×USp(2)

0 (1,2,2) + (1,3,1)

g2(2g1+3g2)
(g1+g2)2

(1,1,1)

− g1g2(g1+2g2)
(g1+g2)2(2g1+g2)

(2,1,2)

− (2g1+g2)(2g1+3g2)
4(g1+g2)2

(2,2,1)

• Non-supersymmetric point:

m2L2 USp(2)×USp(2)×USp(2)

0 (1,2,2) + (1,3,1)

40g21+22g1g2+3g22
(3g1+g2)2

(1,1,1)

−3(2g1+g2)(6g1+g2)
4(3g1+g2)2

(2,1,2)

− g1(20g21+13g1g2+2g22)
(2g1+g2)(3g1+g2)2

(2,2,1)

This critical point is stable for g1 > 0 and g2 > 0.21432g1.

3.2.3 SO(3) × SO(2) × USp(4) gauging

In this case, we use the parametrization of L as in (3.13). The four scalars correspond to

four singlets of USp(2) × U(1)diag. The potential is the same as (3.14) with the critical

points shown in table 6. The scalar mass spectra are given in the following tables.
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a1 V0 unbroken unbroken

SUSY gauge symmetry

I 0 −64g21 (3, 2) SO(3)× SO(2)×USp(4)

II 1
2 ln

[

g2−8g1−4
√

g1(4g1−g2)

g2

]

−64g21(g1−g2)2

g22
(2, 0) U(1)×U(1)×USp(2)

III 1
2 ln

[

g2+8g1−4
√

g1(4g1+g2)

g2

]

−64g21(g1+g2)2

g22
(1, 2) U(1)×U(1)×USp(2)

Table 6. Critical points of SO(3)× SO(2)×USp(4) gauging.

• (3, 2) point:

m2L2 SO(3)×USp(4)

−3
4 (2,4) + (2,4)

• (2, 0) point:

m2L2 U(1)×U(1)×USp(2)

0 (4, 0,1) + (−4, 0,1) + (0, 4,1) + (0,−4,1) + (0, 0,1)

+(1,−1,2) + (−1, 1,2)

32g21−32g1g2+6g22
(g1−g2)2

(0, 0,1)

−2g1(g1−2g2)
(g1−g2)2

(−2,−2,1) + (2, 2,1)

−4g21−8g1g2+3g22
4(g1−g2)2

(−1,−1,2) + (1, 1,2)

• (1, 2) point:

m2L2 U(1)×U(1)×USp(2)

0 (4, 0,1) + (−4, 0,1) + (0, 4,1) + (0,−4,1) + (0, 0,1)

+(1,−1,2) + (−1, 1,2)

32g21+32g1g2+6g22
(g1+g2)2

(0, 0,1)

−2g1(3g1+2g2)
(g1+g2)2

(−2,−2,1) + (2, 2,1)

−4g21+8g1g2+3g22
4(g1+g2)2

(−1,−1,2) + (1, 1,2)

That critical points in the k = 4 case are similar to those in the k = 2 case should be

related to the fact that the theory with USp(4, 2)/USp(4)×USp(2) scalar manifold can be

embedded in the theory with USp(4, 4)/USp(4)×USp(4) scalar manifold. We have studied

the potential on scalars which are singlets under USp(2). These singlets are precisely

parametrized by non-compact directions of USp(4, 2) ⊂ USp(4, 4), the global symmetry
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group of k = 2 case. This might explain the fact that this particular parametrization gives

rise to the same potential as in the k = 2 case. Turning on more scalars would give more

interesting structures.

4 Non-compact gauge groups

In this section, we classify admissible non-compact gauge groups. We will consider the

k = 2 and k = 4 cases separately as in the previous section.

4.1 The k = 2 case

In this case, there is only one non-compact subgroup of USp(4, 2) namely USp(2, 2). The

USp(4, 2) itself can be gauged with the embedding tensor given by its Killing form, but the

corresponding potential will become a cosmological constant. The subgroup of USp(4, 2)

that can be gauged is USp(2)×USp(2, 2) ⊂ USp(4, 2). The embedding tensor reads

Θ = g1ΘUSp(2) + g2ΘUSp(2,2) (4.1)

where g1 and g2 are two independent coupling constants. ΘUSp(2,2) and ΘUSp(2) are given

by the Killing forms of USp(2, 2) and USp(2), respectively.

Generally, scalar fields corresponding to non-compact directions in the gauge group

will drop out from the potential. Therefore, we do not need to include them in the

coset representative. The remaining four scalars correspond to non-compact directions

of another USp(2, 2) in USp(4, 2) and can be parametrized by the coset representative of

USp(2, 2)/USp(2)× USp(2). We can use Euler angles of USp(2)× USp(2) to parametrize

the coset representative as

L = ea1X1ea2X2ea3X3ebY
7

(4.2)

where Xi are given in (3.5). We find the following potential

V =
1

16

[

8(g1 − g2 + (g1 + g2) cosh(b))
2 sinh2 b

− (3g1 + 11g2 + 4(g1 − g2) cosh b+ (g1 + g2) cosh(2b))
2
]

. (4.3)

Some of the critical points are shown in table 7. The A1 tensor at each supersymmetric

critical point is given by

A
(I)
1 = (g1 + g2)diag (−1,−1,−1,−1, 1) ,

A
(II)
1 = diag

(

β, β, β, β,
g2(−2g1 + g2)

g1 + g2

)

,

A
(III)
1 = diag

(

γ, γ, γ, γ,−g2(2g1 + 3g2)

g1 + g2

)

(4.4)

where

β = −g2(2g1 + g2)

g1 + g2
, γ = −g2(2g1 + 5g2)

g1 + g2
. (4.5)
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b V0 unbroken unbroken

SUSY gauge symmetry

I 0 −4(g1 + g2)
2 (4, 1) USp(2)3

II cosh−1
(

g2−g1
g1+g2

)

−4g21(2g1+g2)2

(g1+g2)2
(4, 0) USp(2)×USp(2)

III cosh−1
(

− g1+3g2
g1+g2

)

−4g21(2g1+3g2)2

(g1+g2)2
(1, 0) USp(2)×USp(2)

IV ln(2 +
√
3) −1

4(27g
2
1 + 54g1g2 + 19g22) (0, 0) USp(2)×USp(2)

Table 7. Critical points of USp(2)×USp(2, 2) gauging.

Critical point I preserves N = (4, 1) supersymmetry. The gauge group is broken down

to its maximal compact subgroup USp(2)3. In this symmetry breaking, the four mass-

less Goldstone bosons correspond to scalars associated to non-compact generators of

the gauge group. The full symmetry at this point gives the superconformal symmetry

Osp(4|2,R) × Osp(1|2,R) since the supercharges transform under USp(2) × USp(2) ⊂
SO(5)R as (2,2) + (1,1).

Scalar mass spectra at all critical points are given below.

• (4, 1) point:

m2L2 USp(2)×USp(2)×USp(2)

0 (1,2,2)

− g1(g1+2g2)
(g1+g2)2

(2,1,2)

• (4, 0) point:

m2L2 USp(2)×USp(2)

0 (2,2) + (1,3)

4g1(3g1+g2)
(2g1+g2)2

(1,1)

• (1, 0) point:

m2L2 USp(2)×USp(2)

0 (2,2) + (1,3)

4(g1+2g2)(3g1+5g2)
(2g1+3g2)2

(1,1)

• Non-supersymmetric point:

m2L2 USp(2)×USp(2)

0 (2,2) + (1,3)

12(3g1+g2)(3g1+5g2)
27g21+54g1g2+19g22

(1,1)
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At non-trivial critical points, there are additional three massless scalars which are respon-

sible for USp(2) × USp(2) → USp(2)diag symmetry breaking. The non-supersymmetric

critical point is stable for g2 >
3
79(2

√
210− 45)g1.

4.2 The k = 4 case

There are three possible non-compact subgroups of USp(4, 4); USp(2, 2) × USp(2, 2),

USp(2) × USp(4, 2) and USp(2) × USp(2) × USp(2, 2). Only USp(2, 2) × USp(2, 2) can

be gauged with the following embedding tensor

Θ = g1ΘUSp(2,2) + g2ΘUSp(2,2) . (4.6)

There are two independent coupling constants g1 and g2, and ΘUSp(2,2) is given by the

Killing form of USp(2, 2). The relevant 8 scalars can be parametrized by
(

USp(2,2)
USp(2)×USp(2)

)2

coset space with the two USp(2, 2) factors different from those appearing in the gauge

group. With the Euler angle parametrization, the coset representative reads

L = ea1X1ea2X2ea3X3eb1Y
7
ea4X4ea5X5ea6X6eb2Y

16
(4.7)

where

X1 =
1√
2
(J1 − J11), X2 =

1√
2
(J2 − J12), X3 =

1√
2
(J3 − J13),

X4 =
1√
2
(J4 − J22), X5 =

1√
2
(J5 − J23), X6 =

1√
2
(J6 − J24). (4.8)

The scalar potential is given by

V =
1

16
[(g1 + g2)(6 + cosh(2b1))− (4(g1 − g2) cosh b1 + 4(g2 − g1) cosh b2

+(g1 + g2) cosh(2b2))
2 + 8(g1 − g2 + (g1 + g2) cosh(b1))

2 sinh2 b1

+8(g2 − g1 + (g1 + g2) cosh b2)
2 sinh2 b2

]

. (4.9)

We find some critical points for b2 = 0 as shown in table 8. Scalar masses at all critical

points are given below.

• (4, 1) point:

m2L2 USp(2)×USp(2)×USp(2)×USp(2)

0 (1,2,2,1) + (2,1,1,2)

− g2(2g1+g2)
(g1+g2)2

(1,2,1,2)

− g1(g1+2g2)
(g1+g2)2

(2,1,2,1)
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b1 V0 unbroken unbroken

SUSY gauge symmetry

I 0 −4(g1 + g2)
2 (4, 1) USp(2)4

II cosh−1
(

−g1+g2
g1+g2

)

−4g21(2g1+g2)2

(g1+g2)2
(4, 0) USp(2)3

III cosh−1
(

−g1−3g2
g1+g2

)

−4g21(2g1+3g2)2

(g1+g2)2
(1, 0) USp(2)3

IV cosh−1 2 −1
4(27g

2
1 + 54g1g2 + 19g22) (0, 0) USp(2)3

Table 8. Critical points of USp(2, 2)×USp(2, 2) gauging.

• (4, 0) point:

m2L2 USp(2)×USp(2)×USp(2)

0 (2,2,1) + (2,1,2) + (3,1,1)

4g1(3g1+g2)
(2g1+g2)2

(1,1,1)

− (g1+g2)(3g1+g2)
(2g1+g2)2

(1,2,2)

• (1, 0) point:

m2L2 USp(2)×USp(2)×USp(2)

0 (2,2,1) + (2,1,2) + (3,1,1)

4(3g21+11g1g2+10g22)
(2g1+3g2)2

(1,1,1)

−3(g21+4g1g2+3g22)
(2g1+3g2)2

(1,2,2)

• Non-supersymmetry point:

m2L2 USp(2)×USp(2)×USp(2)

0 (2,2,1) + (2,1,2) + (3,1,1)

12(3g1+g2)(3g1+5g2)
27g21+54g1g2+19g22

(1,1,1)

− 24g2(3g1+g2)
27g21+54g1g2+19g22

(1,2,2)

At the trivial critical point, the SO(5)R R-symmetry is broken to SU(2)×SU(2) ∼ USp(2)×
USp(2). The N = 5 supercharges transform under this subgroup as (2,2) + (1,1). This

gives rise to Osp(4|2,R)×Osp(1|2,R) superconformal symmetry. As in the previous case,

the non-supersymmetric point is stable for g2 >
3
79(2

√
210− 45)g1.

5 RG flow solutions

Given some AdS3 critical points form the previous sections, we now consider domain wall

solutions interpolating between these critical points. The solutions can be interpreted as
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RG flows describing a perturbed UV CFT flowing to another CFT in the IR. Since the

structure of critical points in both k = 2 and k = 4 cases is similar, we will consider only

the flows in k = 2 case to simplify the algebra. The study of holographic RG flows is

very similar to those in other gauged supergravities in three dimensions [16–19]. In this

paper, we will give only examples of RG flows in compact SO(5)×USp(2) and non-compact

USp(2, 2)×USp(2) gauge groups.

We are interested only in supersymmetric flows connecting two supersymmetric critical

points. The solution can be found by solving BPS equations arising from supersymmetry

transformations of fermions δψI
µ and δχiI which, for convenience, we will repeat them here

from [5]

δψI
µ = Dµǫ

I + gAIJ
1 γµǫ

J ,

δχiI =
1

2
(δIJ1− f IJ)i jD/φjǫJ − gNAJIi

2 ǫJ (5.1)

where Dµǫ
I =

(

∂µ + 1
2ω

a
µγa
)

ǫI for vanishing vector fields.

We now employ the standard domain wall ansatz for the metric

ds2 = e2A(r)dx21,1 + dr2 . (5.2)

In order to preserve Poincare symmetry in two dimensions, all fields involving in the flow

can only depend on the radial coordinate r identified with an energy scale in the dual field

theory. BPS equations give rise to first order flow equations describing the dependence of

active scalars on r. It can be verified that setting some of the scalars to zero satisfies their

flow equations. We can then neglect all scalars that vanish at both UV and IR points.

5.1 An RG flow between (5, 0) and (4, 0) CFT’s in SO(5) × USp(2) gauging

The flow involves only one active scalar parametrized by the coset representative

L = eb(r)Y
7
. (5.3)

The BPS equation from δχiI = 0 gives rise to the flow equation

db

dr
= [2g1 − g2 + (2g1 + g2) cosh b] sinh b (5.4)

where we have used the projection condition γrǫ
I = ǫI . It is clearly seen from the above

equation that there are two critical points at b = 0 and b = cosh−1 g2−2g1
2g1+g2

. This equation

can be solved for r as a function of b, and the solution is given by

r =
1

8g1g2

[

4g1 ln cosh
b

2
− (2g1 + g2) ln[2g1 − g2 + (2g1 + g2) cosh b]

+2g2 ln sinh
b

2

]

. (5.5)

The integration constant has been neglected since we can shift the coordinate r to remove it.
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The variation δψI
µ = 0 gives another equation for A(r)

dA

dr
=

1

4
[4g2 cosh b− 22g1 − 3g2 − 8g1 cosh b

−2g1 cosh(2b)− g2 cosh(2b)] (5.6)

or, in term of b,

dA

db
= − [22g1 + 3g2 + (8g1 − 4g2) cosh b+ (2g1 + g2) cosh(2b)] cschb

8g1 − 4g2 + 4(2g1 + g2) cosh b
. (5.7)

This equation is readily solved and gives A as a function of b

A =
1

g2

[

(g1 + g2) ln [2g1 − g2 + (2g1 + g2) cosh b]− (2g1 + g2) ln cosh
b

2

−2g2 ln sinh
b

2

]

. (5.8)

The additive integration constant can be absorbed by scaling x0,1 coordinates. It can be

verified that equation δψI
r = 0 gives the Killing spinors of the unbroken supersymmetry

ǫI = e
A
2 ǫI0 as usual, with constant spinors ǫI0 satisfying γrǫ

I
0 = ǫI0.

Linearizing equation (5.5) near the UV point b ≈ 0, we find

b(r) ∼ e4g1r = e
− r

2LUV , LUV =
1

8|g1|
. (5.9)

We have set g1 < 0 to identify r → ∞ as the UV point. The above behavior indicates

that from a general result, see for example [12], the flow is driven by a relevant operator

of dimension ∆ = 3
2 .

Near the IR point, we find

b(r) ∼ e
− 8g1g2r

2g1+g2 = e
g2r

(g1+g2)LIR , LIR = − 2g1 + g2
8g1(g1 + g2)

> 0 . (5.10)

The reality condition for bIR requires g2 > −2g1 for g1 < 0. From the above equation, we

find g2
g2+g1

> 0, so in the IR the operator becomes irrelevant with dimension ∆IR = 3g2+2g2
g1+g2

.

This value of ∆IR precisely gives the correct mass square m2L2
IR = g2(2g1+3g2)

(g1+g2)2
given before.

The ratio of the central charges is computed to be

cUV

cIR
=
LUV

LIR
=

√

V0IR
V0UV

=
g1 + g2
2g1 + g2

> 1 (5.11)

satisfying the holographic c-theorem for g1 < 0 and g2 > −2g1.

5.2 An RG flow between (5, 0) and (1, 0) CFT’s in SO(5) × USp(2) gauging

We then study another RG flow interpolating between (5, 0) and (1, 0) critical points. The

coset representative is sill given by (5.3). Similar to the previous case, we obtain the

following flow equations

db

dr
= [6g1 + g2 − (2g1 + g2) cosh b] sinh b,

dA

dr
=

1

4
[3g2 − 10g1 − 4(6g1 + g2) cosh b+ (2g1 + g2) cosh(2b)] . (5.12)
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The first equation gives a solution

r = − 1

8g1(4g1 + g2)

[

4g1 ln cosh
b

2
+ (2g1 + g2) ln [(2g1 + g2) cosh b

−6g1 − g2]− 2(4g1 + g2) ln sinh
b

2

]

. (5.13)

We can rewrite the second equation of (5.12) as

dA

db
=

[10g1 − 3g2 + 4(6g1 + g2) cosh b− (2g1 + g2) cosh(2b)] cschb

4(2g1 + g2) cosh b− 4(6g1 + g2)
(5.14)

whose solution can be found to be

A =
1

4g1 + g2

[

(3g1 + g2) ln ((2g1 + g2) cosh b− 6g1 − g2)

−(2g1 + g2) ln cosh
b

2
− 2(4g1 + g2) ln sinh

b

2

]

. (5.15)

The fluctuation around b = 0 behaves as

b(r) ∼ e4g1r = e
− r

2LUV , LUV =
1

8|g1|
. (5.16)

As in the previous case, we have chosen g1 < 0 to make the UV point corresponds to

r → ∞. From the above equation, the flow is again driven by a relevant operator of

dimension ∆UV = 3
2 . Near the IR point, b(r) becomes

b(r) ∼ e
− 8g1(4g1+g2)r

2g1+g2 = e
(4g1+g2)r

(3g1+g2)LIR , LIR = − 2g1 + g2
8g1(3g1 + g2)

. (5.17)

We can verify that bIR is real for g1 < 0 and g2 < −2g1, the operator becomes irrelevant

in the IR with dimension ∆IR = 10g1+3g2
3g1+g2

. The ratio of the central charges is given by

cUV

cIR
=

3g1 + g2
2g1 + g2

> 1, for g1 < 0 and g2 < −2g1 . (5.18)

5.3 An RG flow between (4, 1) and (4, 0) CFT’s in USp(2)×USp(2, 2) gauging

We next consider RG flows between critical points of non-compact USp(2) × USp(2, 2)

gauge group. We will not give a non-supersymmetric flow to critical point IV in table 7 in

this paper. It can be studied in the same procedure as [26] and [27]. Like in the compact

case, it is consistent to truncate the full scalar manifold to a single scalar parametrized by

L = eb(r)Y
7
. (5.19)

The variation δχiI = 0 gives

db

dr
= (g1 − g2 + (g1 + g2) cosh b) sinh b (5.20)
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which is solved by the solution

r =
1

4g1g2

[

2g2 ln sinh
b

2
+ 2g1 ln cosh

b

2

− (g1 + g2) ln [g1 − g2 + (g1 + g2) cosh b]

]

. (5.21)

The equation from δψI
µ = 0 reads

dA

dr
= −2

[

g2 + g1 cosh
4 b

2
+ g2 sinh

4 b

2

]

. (5.22)

The solution for A as a function of b can be found as in the previous cases. The result is

given by

A =
1

2g1

[

(2g1 + g2) ln [g1 − g2 + (g1 + g2) cosh b]− 4g1 ln cosh
b

2

−2(g1 + g2) ln sinh
b

2

]

. (5.23)

Near the UV point, the b solution becomes

b(r) ∼ e2g1r = e
g1r

(g1+g2)LUV , LUV =
1

2(g1 + g2)
. (5.24)

bIR is real for g1 < 0 and g2 > −g1. With this range, − g1
g1+g2

< 1. The flow is then

driven by a relevant operator of dimension ∆ = 3g1+2g2
g1+g2

< 2. At the IR point, we find the

asymptotic behavior

b(r) ∼ e
− 4g1g2r

g1+g2 = e
2g2r

|2g1+g2|LIR , LIR =
g1 + g2

2|g1(2g1 + g2)|
(5.25)

corresponding to an irrelevant operator of dimension ∆ = 2g2
|2g1+g2| + 2.

Finally, the ratio of the central charges is given by

cUV

cIR
=

|g1(2g1 + g2)|
(g1 + g2)2

. (5.26)

5.4 An RG flow between (4, 1) and (1, 0) CFT’s in USp(2)×USp(2, 2) gauging

As a final flow solution, we quickly investigate a solution interpolating between (4, 1) and

(1, 0) critical points. The flow equations are given by

db

dr
= − [g1 + 3g2 + (g1 + g2) cosh b] sinh b, (5.27)

dA

dr
=

1

4
[3g1 − 5g2 + 4(g1 + 3g2) cosh b+ (g1 + g2) cosh(2b)] . (5.28)
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The corresponding solutions take the form

r = − 1

4g2(g1 + 2g2)

[

(g1 + g2) ln [g1 + 3g2 + (g1 + g2) cosh b]

+2g2 ln sinh
b

2
− 2(g1 + 2g2) ln cosh

b

2

]

, (5.29)

A =
1

2(g1 + 2g2)

[

(2g1 + 3g2) ln [g1 + 3g2 + (g1 + g2) cosh b]

−4(g1 + 2g2) ln cosh
b

2
− 2(g1 + g2) ln sinh

b

2

]

. (5.30)

The fluctuations near the UV and IR points are given by

b(r) ∼ e−2(g1+2g2)r = e
(g1+2g2)r

(g1+g2)LUV , LUV = − 1

2(g1 + g2)
, (5.31)

b(r) ∼ e
− 4g2(g1+2g2)r

g1+g2 = e
2g2(g1+2g2)r

|g1(2g1+3g2)|LIR , LIR = − (g1 + g2)

2|g1(2g1 + 3g2)|
. (5.32)

We have chosen a particular range of g1 and g2 namely g1 < 0 and − g1
2 < g2 < −g1 for

which g1 + g2 < 0. The flow is driven by a relevant operator of dimension ∆ = 3g1+4g2
g1+g2

. In

the IR, the operator becomes irrelevant with dimension ∆ = 2g2
|2g1+g2| + 2.

The ratio of the central charges for this flow is

cUV

cIR
=

|g1(2g1 + 3g2)|
(g1 + g2)2

. (5.33)

6 N = 5, SO(5) ⋉ T10 gauged supergravity

In this section, we consider non-semisimple gauge groups in the form of G0 ⋉ TdimG0

in which G0 is a semisimple group. TdimG0 constitutes a translational symmetry with

dimG0 commuting generators transforming in the adjoint representation of G0. We

consider the k = 4 case with USp(4, 4) global symmetry that admits a non-semisimple

subgroup SO(5)⋉T10.

A general embedding of G0 ⋉ TdimG0 group is described by the embedding tensor of

the form [6]

Θ = g1Θab + g2Θbb . (6.1)

We have used the notation of [6] in denoting the semisimple and translational parts by a

and b, respectively. The absence of aa coupling plays a key role in the equivalence of this

theory and the Yang-Mills gauged supergravity with G0 gauge group.

The next task is to identify SO(5)⋉T10 generators. The semisimple SO(5) is identified

with the diagonal subgroup of SO(5) × SO(5) ∼ USp(4) × USp(4) ⊂ USp(4, 4). The

corresponding generators are given by

J ij = T ij + T̃ ij , i, j = 1, 2, . . . , 5 . (6.2)

T ij are the SO(5) R-symmetry generators, and T̃ ij are generators of USp(4). The trans-

lational generators are constructed from a combination of T ij − T̃ ij and non-compact
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generators. The 16 scalars transform as (4,4) under SO(5) × SO(5). They accordingly

transform as 1+ 5+ 10 under SO(5)diag. Scalars in the 10 representation will be part of

the T10 generators which are given by

tij = T ij − T̃ ij + Ỹ ij , i, j = 1, 2, . . . , 5 . (6.3)

The explicit form of T̃ ij and Ỹ ij is given in appendix B.

In the present case, supersymmetry allows for any value of g1 and g2. Therefore, the

embedding tensor contains two independent coupling constants. We begin with the scalar

potential computed on the SO(5)diag singlet scalar. The above decomposition gives one

singlet under this SO(5). We end up with a simple coset representative

L = ea(Y
7+Y 16) . (6.4)

This results in the potential

V = −64g1e
−3a (3eag1 + 2g2) . (6.5)

The existence of a maximally supersymmetric critical point at L = I requires g2 = −g1.
This is the same as in N = 4, 8 gauged supergravities [28, 29]. With this condition and g1
denoted by g, the potential becomes

V = −64g2e−3a (3ea − 2) . (6.6)

Clearly, the only one critical point is given by a = 0 with V0 = −64g2 and N = (5, 0)

supersymmetry. This critical point is a minimum of the potential as can be seen

from figure 1. The vacuum is very similar to the AdS3 vacuum found in N = 16,

SO(4)× SO(4)⋉ (T12, T̂34) gauged supergravity studied in [30]. The singlet has a positive

mass square m2L2 = 3 as expected for a minimum point. In the dual CFT with supercon-

formal symmetry Osp(5|2,R)× Sp(2,R), this scalar corresponds to an irrelevant operator

of dimension ∆ = 3. The full scalar masses are given below.

m2L2 SO(5)

3 1

3 5

0 10

The ten massless scalars accompany for the symmetry breaking SO(5)⋉T10 → SO(5)

at the vacuum.

To find other critical points, we reduce the residual symmetry of the scalar submanifold

to SO(3) ⊂ SO(5) under which the 16 scalars transform as (2+ 2)× (2+ 2) = 4× (1+ 3).

There are four singlets which can be parametrized by the coset representative

L = ea1Y
4
ea2Y

7
ea3Y

9
ea4Y

16
. (6.7)

The resulting potential turns out to be very complicated. We, therefore, will not attempt

to do the analysis of this potential in the present work.
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100
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Figure 1. The scalar potential of N = 5, SO(5)⋉T10 gauged supergravity for SO(5) singlet scalar

with g = 1.

7 N = 6, SO(6) ⋉ T15 gauged supergravity

In this section, we consider non-semisimple gauge groups of N = 6 theory. Compact and

non-compact gauge groups in this theory together with their vacua and holographic RG

flows have been studied in [19].

We are interested in N = 6 gauged supergravity with SU(4,4)
S(U(4)×U(4)) scalar manifold.

Most of our conventions here are parallel to those used in [19]. The global symmetry

SU(4, 4) contains a non-semisimple subgroup SO(6) ⋉ T15. Similar to N = 5 theory, the

SO(6) part is given by the diagonal subgroup of SO(6)×SO(6) ∼ SU(4)×SU(4) ⊂ SU(4, 4).

The 32 scalars transform as (4, 4̄) + (4̄,4) under SU(4) × SU(4). Under SO(6)diag, they

transform as

(4× 4̄) + (4̄× 4) = 1+ 15+ 1+ 15. (7.1)

The adjoint representations 15’s will be used to construct the translational generators T15.

The full SO(6)⋉T15 generators are given in appendix B.

The embedding tensor is still given by (6.1), but in this case, the linear constraint

PR0Θ = 0 requires g2 = 0 similar to N = 16, 10, 8 theories [3, 21, 31]. The above decom-

position gives two singlet scalars under SO(6) part of the gauge group. They correspond

to non-compact generators

Ys1 =
1

2
(Y 1 + Y 11 + Y 21 + Y 31), (7.2)

Ys2 =
1

2
(Y 2 + Y 12 + Y 22 + Y 32).

Accordingly, the coset representative can be parametrized by

L = e
√
2b1Ys1e

√
2b2Ys2 (7.3)

where we have chosen a particular normalization for later convenience. The potential is,

with g = g1, given by

V = −224g2 (cosh b1 cosh b2 − sinh b2)
2 . (7.4)
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The above potential does not admit any critical points, so the vacuum should be a

half-supersymmetric domain wall. In the rest of this section, we will find this domain

wall solution.

The supersymmetry transformations δψI
µ and δχiI together with the domain wall

ansatz (5.2) give rise to the following BPS equations

b′1 = 8gsechb2 sinh b1, (7.5)

b′2 = −8g (cosh b2 − cosh b1 sinh b2) , (7.6)

A′ = −16g (cosh b1 cosh b2 − sinh b2) (7.7)

where ′ denotes d
dr
. Equation (7.5) is readily solved by setting b1 = 0. Equation (7.6)

now becomes

b′2 = −8ge−b2 . (7.8)

The solution is given by

b2 = ln (−8gr + c1) (7.9)

where c1 is an integration constant. With b1 = 0 and b2 given by (7.9), equation (7.7)

becomes

A′ =
−16g

c1 − 8gr
(7.10)

whose solution is easily found to be

A = 2 ln (−8gr + c1) + c2 (7.11)

with another integration constant c2. The two integration constants are not relevant be-

cause we can shift the coordinate r rescale x0,1 to remove them. As in other domain wall

solutions, the metric can be written in the form of a warped AdS3 as

ds2 =
1

(8g)4ρ2

(

dx21,1 + dρ2

ρ2

)

(7.12)

where ρ = − 1
(8g)2r

.

8 Conclusions and discussions

In this paper, we have classified compact and non-compact gauge groups of N = 5 gauged

supergravity in three dimensions with USp(4, 2)/USp(4)×USp(2) and USp(4, 4)/USp(4)×
USp(4) scalar manifolds. We have also identified a number of supersymmetric AdS3 vacua

in each gauging and studied some examples of supersymmetric RG flows interpolating

between these vacua in both compact and non-compact gauge groups. All of the solutions

can be analytically found, and the flows describe deformations by relevant operators. They

would be useful to the study of AdS3/CFT2 correspondence such as the computation of

correlation functions in the dual field theory similar to that studied in [32].

Among our main results, we have constructed N = 5, SO(5)⋉T10 gauged supergravity.

The theory is equivalent to N = 5 Yang-Mills gauged supergravity and could be obtained
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from S1/Z2 reduction of N = 5 gauged supergravity in four dimensions as pointed out

in [21]. The theory admits a maximally supersymmetric AdS3 vacuum which should be

dual to a superconformal field theory with Osp(5|2,R)×Sp(2,R) superconformal symmetry.

We have also given all of the scalar masses at this vacuum. It is interesting to further

study the scalar potential of this theory in order to find other critical points as well as

the associated RG flow solutions. This could give some insight to the deformations in the

dual CFT.

Similar construction has then been extended to N = 6 gauged supergravity with

SU(4, 4)/S(U(4) × U(4)) scalar manifold. The resulting theory is N = 6 gauged super-

gravity with SO(6) ⋉ T15 gauge group. Like N = 5 theory, this is equivalent to SO(6)

Yang-Mills gauged supergravity and should be obtained from S1/Z2 reduction of N = 6

gauged supergravity in four dimensions. This has also been pointed out in [21] in which

the spectrum of the S1 reduction of four dimensional N = 6 gauged supergravity has been

given. The theory admits a half-supersymmetric domain wall vacuum rather than a maxi-

mally supersymmetric AdS3. We have also given the domain wall solution. This solution

provides another example of domain walls in three dimensional gauged supergravity similar

to the solutions of [21, 31] and might be useful in the study of DW/QFT correspondence.

The above non-semisimple gaugings are of importance for embedding the theories in

higher dimensions. With the full embedding at hand, any solutions in a three dimensional

framework, which are usually easier to find than higher dimensional ones, can be uplifted

to string/M theory in which a full geometrical interpretation can be made. Other attempts

to embed Chern-Simons gauged supergravities in three dimensions can be found in [28–

30, 33–35]. In many cases, the precise reduction ansatz from ten or eleven dimensions

remains to be done.
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A Useful formulae

For conveniences, we collect useful formulae used throughout this paper. The detailed

discussion can be found in [5]. All of our discussions involve symmetric scalar manifolds of

the form G/H. The G generators are denoted by tM = (T IJ , Tα, Y A) in which T IJ and

Tα are SO(N)×H ′ generators and Y A are non-compact generators. In the present cases,

we have H ′ = USp(k) for N = 5 and H ′ = U(k) for N = 6 theories, respectively. SO(N)

is the R-symmetry.

The coset manifold, consisting of d scalars φi, i = 1, . . . , d = dim (G/H), can be

described by a coset representative L transforming by left- and right-multiplications of G
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and H. Some useful relations are given by

L−1tML =
1

2
VMIJT IJ + VM

αT
α + VM

AY
A, (A.1)

L−1∂iL =
1

2
QIJ

i T IJ +Qα
i T

α + eAi Y
A . (A.2)

The first relation gives scalar matrices V used in defining a moment map while the second

gives SO(N) ×H ′ composite connections, QIJ and Qα, and the vielbein on the manifold

G/H, eAi . Accordingly, the metric on the scalar manifold is defined by

gij = eAi e
B
j δAB, i, j, A,B = 1, . . . , d . (A.3)

The embedding tensor determines the fermionic mass-like terms and the scalar poten-

tial via the T-tensor defined by

TAB = VM
AΘMNVN

B . (A.4)

In the above equation, A and B label SO(N)×H ′ representations.

The AIJ
1 and AIJ

2i tensors appearing in the fermionic supersymmetry transformations

and the scalar potential are given in terms of linear combinations of various components

of TAB by the following relations

AIJ
1 = − 4

N − 2
T IM,JM +

2

(N − 1)(N − 2)
δIJTMN,MN ,

AIJ
2j =

2

N
T IJ

j +
4

N(N − 2)
f
M(Im
j T J)M

m +
2

N(N − 1)(N − 2)
δIJfKL m

j TKL
m. (A.5)

The f IJij tensor can be constructed from SO(N) gamma matrices or from the SO(N) gen-

erators in a spinor representation. In the present case, it is given in a flat basis by

f IJAB = −2Tr(Y B
[

T IJ , Y A
]

). (A.6)

The scalar potential can be computed from

V = − 4

N

(

AIJ
1 AIJ

1 − 1

2
NgijAIJ

2i A
IJ
2j

)

. (A.7)

We end this section by noting the condition for unbroken supersymmetry. The associated

Killing spinors correspond to the eigenvectors of AIJ
1 with eigenvalues ±

√

−V0
4 .

B Relevant generators

In this appendix, we give generators of various groups used throughout the paper.
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B.1 N = 5 theory

Ji’s are USp(8) generators written in terms of generalized Gell-Mann matrices λi generating

the SU(8) group. They are explicitly given by

J1 =
iλ1√
2
, J2 =

iλ2√
2
, J3 =

iλ3√
2
,

J4 =
iλ13√

2
, J5 =

iλ14√
2
, J6 = − iλ8√

6
+
iλ15√

3
,

J7 =
iλ6
2

+
iλ9
2
, J8 = − iλ7

2
+
iλ10
2
, J9 =

iλ4
2

− iλ11
2
,

J10 = − iλ5
2

− iλ12
2
, J11 =

iλ33√
2
, J12 =

iλ34√
2
,

J13 = − iλ24√
5

+

√

3

10
iλ35, J14 =

iλ18
2

+
iλ25
2
, J15 = − iλ19

2
+
iλ26
2
,

J16 =
iλ16
2

− iλ27
2
, J17 =

iλ22
2

+
iλ29
2
, J18 = − iλ23

2
+
iλ30
2
,

J19 =
iλ20
2

− iλ31
2
, J20 = − iλ17

2
− iλ28

2
, J21 = − iλ21

2
− iλ32

2
,

J22 =
iλ61√

2
, J23 =

iλ62√
2
, J24 = −

√

3

14
iλ48 +

√

2

7
iλ63,

J25 =
iλ38
2

+
iλ49
2
, J26 = − iλ39

2
+
iλ50
2
, J27 =

iλ36
2

− iλ51
2
,

J28 =
iλ42
2

+
iλ53
2
, J29 = − iλ43

2
+
iλ54
2
, J30 =

iλ40
2

− iλ55
2
,

J31 =
iλ46
2

+
iλ57
2
, J32 = − iλ47

2
+
iλ58
2
, J33 =

iλ44
2

− iλ59
2
,

J34 = − iλ37
2

− iλ52
2
, J35 = − iλ41

2
− iλ56

2
, J36 = − iλ45

2
− iλ60

2
. (B.1)

The USp(6) generators needed for constructing USp(4, 2) are given by the first

21 generators.

The SO(5)⋉ T 10 generators are constructed as follow. The SO(5)diag is generated by

T ij + T̃ ij in which

T̃ 12 =
1√
2
(J13 − J24) , T̃ 13 = − 1√

2
(J11 + J22) , T̃ 23 =

1√
2
(J12 − J23) ,

T̃ 34 =
1√
2
(J13 + J24) , T̃ 14 =

1√
2
(J12 + J23) , T̃ 24 =

1√
2
(J11 − J22) ,

T̃ 45 = J31, T̃ 15 = −J33, T̃ 25 = −J36,

T̃ 35 = J32 . (B.2)

Generators Ỹ ij in T10 are given by

Ỹ 12 =i(J16 − J30), Ỹ 13 =− i(J14 + J28), Ỹ 23 =i(J15 + J29),

Ỹ 34 =i(J16 + J30), Ỹ 14 =i(J15 + J29), Ỹ 24 =i(J14 − J28),

Ỹ 45 =i(J17 + J25), Ỹ 15 =− i(J19 + J27), Ỹ 25 =i(J21 − J34),

Ỹ 35 =i(J18 + J26). (B.3)
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B.2 N = 6 theory

For conveniences, we repeat non-compact generators of SU(4, 4) in terms of generalized

Gell-Mann matrices, λi, i = 1, . . . , 63, given in [19]

Ȳ A =















































1√
2
cA+15, A = 1, . . . , 8

1√
2
cA+16, A = 9, . . . , 16

1√
2
cA+19, A = 17, . . . , 24

1√
2
cA+24, A = 25, . . . , 32

. (B.4)

The SO(6)R R-symmetry generators are identified to be

T̄ 12 =
1

2
c3 +

1

2
√
3
c8 −

1√
6
c15, T̄ 13 = −1

2
(c2 + c14), T̄ 23 =

1

2
(c1 − c13),

T̄ 34 =
1

2
c3 −

1

2
√
3
c8 +

1√
6
c15, T̄ 14 =

1

2
(c1 + c13), T̄ 35 = −1

2
(c6 + c9),

T̄ 56 =
1√
3
c8 +

1√
6
c15, T̄ 36 = −1

2
(c7 + c10), T̄ 24 =

1

2
(c2 − c14),

T̄ 45 =
1

2
(c7 − c10), T̄ 46 =

1

2
(c9 − c6), T̄ 15 =

1

2
(c4 − c11),

T̄ 16 =
1

2
(c5 − c12), T̄ 25 =

1

2
(c5 + c12), T̄ 26 = −1

2
(c4 + c11) (B.5)

where ci = −iλi.
The SO(6)⋉ T 15 generators are given by

SO(6) : J ij
a = T̄ ij + ˜̄T ij , i, j = 1, . . . , 6

T15 : J ij
b = T̄ ij − ˜̄T ij + ˜̄Y ij (B.6)

where

˜̄T 12 = i

(

1√
10
λ24 −

√

3

20
λ35 −

√

3

28
λ48 +

1√
7
λ63

)

,

˜̄T 34 = i

(

1√
10
λ24 −

√

3

20
λ35 +

√

3

28
λ48 −

1√
7
λ63

)

,

˜̄T 56 = i

(

1√
10
λ24 +

1√
15
λ35 −

2√
21
λ48 −

1√
7
λ63

)

,

˜̄T 13 =
i

2
(λ34 + λ62) ,

˜̄T 23 = − i

2
(λ33 − λ61) ,

˜̄T 14 = − i

2
(λ33 + λ61) ,

˜̄T 24 =
i

2
(λ62 − λ34) ,

˜̄T 45 =
i

2
(λ58 − λ47) ,

˜̄T 15 =
i

2
(λ59 − λ44) ,

˜̄T 25 = − i

2
(λ45 + λ60) ,

˜̄T 35 =
i

2
(λ46 + λ57) ,

˜̄T 16 =
i

2
(λ60 − λ45) ,

˜̄T 26 =
i

2
(λ44 + λ59) ,

˜̄T 36 =
i

2
(λ47 + λ58) ,

˜̄T 46 =
i

2
(λ46 − λ57) (B.7)
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and

˜̄Y 12 = −1

2
(λ27 − λ16 + λ40 − λ55) ,

˜̄Y 34 = −1

2
(λ55 − λ16 + λ27 − λ40) ,

˜̄Y 56 = −1

2
(λ55 − λ16 − λ27 + λ40) ,

˜̄Y 13 = −1

2
(λ54 − λ19 + λ26 − λ43) ,

˜̄Y 23 = −1

2
(λ53 − λ18 − λ25 + λ42) ,

˜̄Y 14 =
1

2
(λ18 + λ25 + λ42 + λ53) ,

˜̄Y 24 = −1

2
(λ19 − λ26 − λ43 + λ54) ,

˜̄Y 45 = −1

2
(λ50 − λ23 + λ30 − λ39) ,

˜̄Y 15 = −1

2
(λ31 − λ20 − λ36 + λ51) ,

˜̄Y 25 = −1

2
(λ21 + λ32 − λ37 − λ52) ,

˜̄Y 35 = −1

2
(λ22 + λ29 + λ38 + λ49) ,

˜̄Y 16 = −1

2
(λ21 − λ32 − λ37 + λ52) ,

˜̄Y 26 = −1

2
(λ20 + λ31 + λ36 + λ51) ,

˜̄Y 36 = −1

2
(λ50 − λ23 − λ30 + λ39) ,

˜̄Y 46 = −1

2
(λ29 − λ22 + λ38 − λ49) . (B.8)

C Scalar potential for SO(4) × USp(2) gauging

The scalar potential for compact gauge group SO(4)×USp(2) is given by

V = 2g22(3 + cosh b) sinh6
b

2
+

1

16
g1g2 [68 + 4 cos(2a4) + 2 cos(2(a4 − a5))

+4 cos(2a5) + 2 cos(2(a4 + a5)) + 2 cos(2(a4 − a6)) + cos(2(a4 − a5 − a6))

+2 cos(2(a5 − a6)) + cos(2(a4 + a5 − a6)) + 4 cos(2a6) + 2 cos(2(a4 + a6))

+ cos(2(a4 − a5 + a6)) + 2 cos(2(a5 + a6)) + cos(2(a4 + a5 + a6))

+32 cos2 a4 cos
2 a5 cos

2 a6 cos(2a7)
]

(3 + cosh b) sinh6
b

2

−4g21

[

cos2 a5 cos
2 a6 cos

2 a7 cosh
2 b

2
(3 + cosh b)2 sin2(2a4)

+64 cos2 a4 cosh
4 b

2
sin2 a4 sin

2 a5 + 64 cos2 a4 cos
2 a5 cosh

4 b

2

× sin2 a4 sin
2 a6 + 64 cos2 a4 cos

2 a5 cos
2 a6 cosh

4 b

2
sin2 a4 sin

2 a7

+
1

16384

[

51 + 259 cos(2a4) + 4(−17 + 63 cos(2a4)) cosh b+ (17 + cos(2a4))

× cosh(2b)+16 cos2 a4 cos(2a5) sinh
4 b

2
+ 32 cos2 a4 cos

2 a5 cos(2a6) sinh
4 b

2

+64 cos2 a4 cos
2 a5 cos

2 a6 cos(2a7) sinh
4 b

2

]2

+
1

2

[

−4 cos4 a4 cos
2 a5 cos

2 a6

× cos2 a7 sin
2 a5 sinh

6 b

2
− 4 cos4 a4 cos

4 a5 cos
2 a6 cos

2 a7 sin
2 a6 sinh

6 b

2

−4 cos4 a4 cos
4 a5 cos

4 a6 cos
2 a7 sin

2 a7 sinh
6 b

2
− 4 sin2(2a4) sin

2 a5 sinh
2 b
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−16 cos2 a4 cos
2 a5 sin

2 a4 sin
2 a6 sinh

2 b− 16 cos2 a4 cos
2 a5 cos

2 a6 sin
2 a4

× sin2 a7 sinh
2 b− 1

16
cos2 a5 cos

2 a6 cos
2 a7 sin

2(2a4)

[

7 sinh
b

2
+ 3 sinh

3b

2

]2

− 1

4096

[

16 cos2 a4
[

cos(2a5) + 2 cos2 a5
(

cos(2a6) + 2 cos2 a6 cos(2a7)
)]

× cosh
b

2
sinh3

b

2
+ 2[63 cos(2a4) + 17 cosh b− 17] sinh b

+cos(2a4) sinh(2b)

]2]]

. (C.1)

Open Access. This article is distributed under the terms of the Creative Commons
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