
J. Marti

R. Pinosio

A Game Semantics for
System P

Abstract. In this paper we introduce a game semantics for System P, one of the most

studied axiomatic systems for non-monotonic reasoning, conditional logic and belief revi-

sion. We prove soundness and completeness of the game semantics with respect to the rules

of System P, and show that an inference is valid with respect to the game semantics if and

only if it is valid with respect to the standard order semantics of System P. Combining

these two results leads to a new completeness proof for System P with respect to its order

semantics. Our approach allows us to construct for every inference either a concrete proof

of the inference from the rules in System P or a countermodel in the order semantics.

Our results rely on the notion of a witnessing set for an inference, whose existence is a

concise, necessary and sufficient condition for validity of an inferences in System P. We

also introduce an infinitary variant of System P and use the game semantics to show its

completeness for the restricted class of well-founded orders.

Keywords: Non-monotonic consequence relations, Conditional logic, Belief revision, Game

semantics, Dialogical logic.

1. Introduction

System P is an inference system which formalizes core principles of non-
monotonic consequence relations as studied in artificial intelligence [8]. It is
also the non-nested fragment of a conditional logic developed in philosophy
and linguistics [3,10,15].

The standard semantics for System P is based on orders and evaluates
a non-monotonic inference or conditional by minimization in the order. A
similar order semantics is also used in the theory of AGM belief revision [5],
which can be recast in the setting of conditional logic [1].

In this paper we introduce a game semantics for the validity of inferences
in System P. The study of logical systems with game-theoretic methods
was initiated independently by Lorenzen and Lorenz [11] and Hintikka [6].
Hintikka’s approach, known as game theoretic semantics, uses a game to
establish the truth of a formula in a given model. Lorenzen and Lorenz
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developed what is known as dialogical logic. A dialogical game is a game
in which two players debate the validity of an inference in a logical system.
The main difference between dialogical games and game theoretic semantics
is that Lorenzen and Lorenz adopt a proof-theoretical perspective whereas
Hintikka presupposes a model theory for the logic. A comparison of the two
approaches can be found in [13].

The game semantics for System P developed in this paper is close to
Lorenzen and Lorenz’ dialogical games. For every inference in System P we
define a game in which the first player, we call her Hélöıse, attempts to argue
for the validity of the inference against attacks by the second player, whom
we call Abélard. The game differs from dialogical games in that Abélard
successively chooses from a given domain of objects or possible worlds, whose
properties are already fixed. This setup allows us to focus on the semantics
of the conditional, since it is already determined in advance whether an
object or world instantiates a given Boolean combination of properties.

As an illustration of the game semantics consider the following example:

Example 1. Assume that Hélöıse and Abélard have agreed that birds nor-
mally fly. Hélöıse is now claiming that penguins normally fly. Abélard dis-
putes this. They are having the following dialogue:

Abélard: Look at Pingu! He is a penguin but he doesn’t fly.
Hélöıse: But Pingu is not a good example. He is a bird that doesn’t

fly and we have agreed that birds normally fly.
Abélard: Yes, but Pingu is a totally fine penguin. He is just a

strange bird. When we talk about birds we would rather think of
a sparrow, like Tweety. Tweety can fly.

Hélöıse: [has nothing to say]

In this dialogue Abélard tries to disprove the inference to the conclusion
that penguins usually fly by providing an object refuting this conclusion.
Hélöıse tries to circumvent Abélard’s alleged counterexample by pointing
out that it does not conform to an agreed upon premise. Abélard defends
the counterexample by showing that it is an exception to the premise. He
does this by presenting a different object which conforms to the premise
and which he claims to be more normal than the object provided before.
Hélöıse loses since she does not have a premise to dispute the normality of
the second object given by Abélard.

The main result of this paper is a proof that for every inference the
following statements are equivalent:

1. The inference has a formal proof in System P.
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2. The inference is valid in the order semantics.

3. The inference is valid in the game semantics.

4. There exists a witnessing set for the inference.

The notion of a witnessing set mentioned in statement 4 is introduced in
this paper. Checking for the existence of a witnessing set is a straightforward
method to determine the validity of an inference in System P.

We prove two different instances of the equivalence above, where the
details in the four statements vary. One instance is Theorem 19, which con-
cerns the standard System P and validity on the class of all orders and yields
a new proof of the completeness result for System P. This result has already
been obtained in [8] and for nested conditional logic in [3,15]. Our approach
is however more constructive in that we transform a winning strategy for
Hélöıse into a concrete proof in System P and a winning strategy for Abélard
into a counterexample in the order semantics. The other instance is Theo-
rem 17, which on the syntactic side concerns an extension of System P with
an infinitary proof rule introduced in this paper, and on the semantic side
concerns validity on the class of well-founded orders.

The paper is organized as follows. In Section 2 we review the basics
of System P and its order semantics. In Section 3 we introduce our game
semantics for System P and its infinitary variant. In Section 4 we show
that winning strategies for Abélard correspond to counterexamples in the
order semantics. In Section 5 we show that winning strategies for Hélöıse
correspond to proofs in System P. To obtain this result we introduce the
notion of a witnessing set. In Section 6 we prove compactness for the version
of the game semantics that corresponds to provability in standard System P.
In Section 7 we put the results from the previous sections together to prove
the main theorems of this paper.

2. System P

In this section we introduce the version of System P used in this paper and
its standard order semantics.

Let W be any set, whose elements we call possible worlds. One might
also think of the elements in W as objects, as for instance in Example 1. A
conditional over W is a pair (A,C) ∈ PW × PW of subsets of W , written
as A C. We call A the antecedent and C the consequent of the conditional
A C. A world w verifies a conditional A C if w ∈ A ∩ C. A world w is a
counterexample to or falsifies A C if w ∈ A−C = A∩Cc. We write A−C
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A A
(Id)

A C C ⊆ D

A D
(RW)

A C A D

A C ∩ D
(And)

A B A C

A ∩ B C
(CM)

A C B C

A ∪ B C
(Or)

Figure 1. System P

for the set difference of A and C and Cc = W − C for the complement of C
relative to W .

Two sets Σ and Γ of conditionals over W are called an inference, written
as Σ/Γ. We call the elements of Σ the premises of the inference and the
elements of Γ the conclusions of the inference. The conclusions in Γ are
understood disjunctively. If Γ = {A C} is a singleton set we write Σ/A C
instead of Σ/Γ. We also call an inference Σ/Γ a single-conclusion inference
if Γ is a singleton set, and a multi-conclusion inference if we want to stress
that Γ need not be a singleton. In this paper we focus on single-conclusion
inferences because, as shown in Corollary 20, the completeness result for
multi-conclusion inferences follows from that for single-conclusion inferences.

Note the distinction between an inference Σ/A C between conditionals
and the non-monotonic inference A C captured by one conditional. Infer-
ences between conditionals have a classical monotonic semantics, whereas
conditionals have a non-monotonic semantics on orders.

System P consists of the rules given in Figure 1. A proof of an inference
Σ/Γ in system P is a tree which is built by recursive application of the rules
of system P , such that the root of the tree is a conclusion A C ∈ Γ and
all leaves which are not instances of (Id) are premises in Σ.

The presentation of system P in [8] includes an additional cut rule, which
is shown in Lemma 5.3 to be derivable from the other rules in the system.
In the setting of conditional logic an axiomatization analogous to that in
Figure 1 was given by [15].

The system P∞ is obtained from system P by adding the following infini-
tary rule:

A Ci for all i ∈ I

A
⋂{Ci | i ∈ I} (And∞)
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In our presentation of System P conditionals are over sets of worlds rather
than formulas. This simplifies the development of the game semantics in Sec-
tion 3 and dispenses us from including a rule for replacing logically equivalent
antecedents in conditionals, like the rule (Left Logical Equivalence) in [8].
One can recast conditionals over formulas as conditionals over sets of worlds
by taking the worlds to be all the maximal consistent sets of formulas, and
identifying a formula with the set of maximal consistent sets containing it.

The standard semantics for System P uses posets over sets of worlds,
which are reflexive, transitive and antisymmetric relations. All the results of
this paper are stated in terms of posets. We however never use antisymmetry,
thus our results could be generalized to preorders, which are transitive and
reflexive relations.

Let A C be a conditional over a set of worlds W and P = (W, ≤) a poset
with carrier W . The conditional A C holds in P , written as P |= A C,
if it satisfies the following semantic clause:

A C iff for all w ∈ A there is a v ∈ A with v ≤ w
such that u ∈ C for all u ≤ v with u ∈ A.

In the context of conditional logic this semantic clause has been given in [3]
and is a generalization of the clause in [10, p. 48]. It was later introduced to
the setting of non-monotonic consequence relations by [2].

The semantic clause for conditionals is simpler on well-founded orders. A
poset P = (W, ≤) is well-founded if there is no infinite chain w1 ≥ w2 ≥ . . .
where the inequalities are strict, meaning that w1 �≤ w2 �≤ . . . . One can
show that for a well-founded poset P = (W, ≤) the above semantic clause is
equivalent to

A C iff w ∈ C for all w ∈ Min≤(A),
where Min≤(A) ⊆ W is the set of minimal elements of A in ≤, that is

Min≤(A) = {m ∈ A | if w ≤ m then m ≤ w for all w ∈ A}.

This semantic clause on well-founded orders is intuitive if one thinks of the
order such that w ≤ v if w is more normal than v. The conditional A C
holds in such an order if the most normal instances of A are instances of C.

An inference Σ/Γ, where premises and conclusions are over the set W , is
valid on posets if for every poset P = (U,≤) and function f : U → W there
is an A C ∈ Γ such that P |= f−1[A] f−1[C] whenever P |= f−1[B]
f−1[D] for all B D ∈ Σ.

An inference Σ/Γ, where premises and conclusions are over the set W , is
valid on well-founded posets if for every well-founded poset P = (U,≤) and
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function f : U → W there is an A C ∈ Γ such that P |= f−1[A] f−1[C]
whenever P |= f−1[B] f−1[D] for all B D ∈ Σ.

In the above definitions of validity the carrier U of the poset P is possibly
distinct from the set of worlds W over which the relevant conditionals were
defined. The two sets U and W are related by the function f , which we
call the labeling function. We discuss why labeling functions are needed in
Remark 5 at the end of the section.

The following proposition states the soundness of System P for its order
semantics.

Proposition 2. If an inference is provable in system P then it is valid on
posets. If an inference is provable in system P∞ then it is valid on well-
founded posets.

Proof. A routine induction on the complexity of the proof trees.

We continue with a model-theoretic construction used in Section 7. This
construction is used in the proof of Lemma 3 in [9] and is also essential to
the complexity results of [4].

Proposition 3. Let I be an index set and take a poset Pi for every i ∈ I.
Consider the disjoint sum S =

∐
i∈I Pi which results from placing all the

different Pi next to each other without adding any order that is not already
present in some Pi. We write ιi : Wi → U for the inclusion map of Pi into
S. Then it holds for all A,C ⊆ U that

S |= A C iff Pi |= ι−1
i [A] ι−1

i [C] for all i ∈ I.

Proof. The proof is a routine argument unfolding the semantic clause of
and using the definition of the disjoint sum.

As observed in [4], one obtains the following disjunction property:

Corollary 4. A multi-conclusion inference Σ/Γ is valid on posets iff there
exists an A C ∈ Γ such that Σ/A C is valid on posets. The same property
holds for validity on well-founded posets.

Proof. First note that the direction from right-to-left follows immediately
from the definition of validity.

We prove the contrapositive of the left-to-right direction. Assume that
Σ/A C is not valid on posets for every A C ∈ Γ. Then there is for every
A C ∈ Γ a poset PA,C = (UA,C ,≤A,C) and a function fA,C : UA,C → W

such that PA,C |= f−1
A,C [B] f−1

A,C [D] for all B D ∈ Σ but PA,C �|= f−1
A,C [A]

f−1
A,C [C].
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We define P = (U,≤) to be the disjoint sum of all the PA,C for A C ∈ Γ
with inclusions ιA,C : UA,C → U . We let f : U → W be the unique function
such that f ◦ ιA,C = fA,C for all A C ∈ Γ. By Proposition 3 we know that
for all E, F ⊆ W

P |= f−1[E] f−1[F ] iff PA,C |= f−1
A,C [E] f−1

A,C [F ] for all A C ∈ Γ.

(1)
We show that P together with the labeling function f is a counterexample

to the validity of Σ/Γ on posets.
That P |= f−1[B] f−1[D] for all B D ∈ Σ follows from (1) because

PA,C |= f−1
A,C [B] f−1

A,C [D] for all B D ∈ Σ and A C ∈ Γ.
That P �|= f−1[A] f−1[C] for all A C ∈ Γ follows from (1) because

PA,C �|= f−1
A,C [A] f−1

A,C [C] for all A C ∈ Γ.
The same construction works in the case of well-founded posets because

the disjoint sum of well-founded posets is well-founded.

In the following remark we explain why labeling functions are needed in
the definition of validity:

Remark 5. The intuitive notion of validity for an inference with premises
and conclusions over a set W quantifies only over posets with carrier W .
This notion of validity is equivalent to the definition of validity given above
when the labeling function is required to be bijective. We sketch an argument
showing that this intuitive notion of validity cannot be complete with respect
to provability in system P .

We first show that we need to allow for labeling functions that are not sur-
jective. It is easy to see that if A ⊆ W is not empty, then for every surjective
function f : U → W and every poset (U,≤) the conditional f−1[A] f−1[∅]
does not hold on (U,≤). Hence, the inference

A ∅ A �= ∅
B D

is valid for the notion of validity with surjective labeling function. However,
this inference is not provable in system P; one can show this using the
completeness result of Theorem 19 for the notion of validity with arbitrary
labeling functions.

We now argue that we also need to allow for labeling functions that
are not injective. An argument for this claim can be found at the end of
Section 5.2 on page 193 of [8]. We show here how their reasoning applies
to our context. In particular, we provide a multi-conclusion inference that
is valid according to the notion of validity with injective labeling functions,
but is not provable in system P . Let W be the set {x, y, z}. Consider the
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following multi-conclusion inference Σ/Γ with conditionals over W :

{x, y, z} {y, z}
{x} ∅ {x, y} {y} {x, z} {z}

One can show that this multi-conclusion inference is valid for the notion of
validity where the labeling function is required to be injective. It is however
not valid for labeling functions that are not injective. This is witnessed by
the poset P = (U,≤) where U is the set {x0, x1, y, z} and ≤ is as follows:

x0

y

x1

z

The labeling function f : U → W is defined as x0, x1 �→ x, y �→ y, z �→ z.
Hence it follows by Corollary 20 that the inference Σ/Γ is not provable in
system P .

One might wonder what rules have to be added to system P to recover
completeness with respect to validity with injective labeling functions. The
discussion of the coherence condition in Section II.4.1 of [15] suggests that
this requires expressive power that goes beyond the language of conditionals.

3. The Game

In this section we introduce the semantic games for System P, along with
the needed game theoretic notions. We first give the definitions and then
provide intuitive explanations and examples.

For every inference Σ/A C we define two games, the non-well-founded
game GΣ

A,C and the well-founded game FΣ
A,C . The difference between GΣ

A,C

and FΣ
A,C is that the former is about the validity of the inference Σ/A C

on posets and its provability in system P , whereas the latter is about the
validity of the inference on well-founded posets and its provability in the
infinitary system P∞. The definitions of GΣ

A,C and FΣ
A,C are mostly the same.

Thus we simultaneously define both games for a fixed inference Σ/A C
and mention the differences between the two games explicitly.

One can consider the game for an inference Σ/A C to be a graph whose
nodes are the positions in the game and whose edges are the possible moves.
Additionally every position is labeled with the player, Hélöıse or Abélard,
who has to move at that position. A concise specification of this graph is
given by the following table:
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Pos. Player Moves

(R,F ) Abélard {(w,F ) | w ∈ R − F}
(w,F ) Hélöıse {(B ∩D,F ∪ (B −D)) | B D ∈ Σ, w ∈ B −D} ∪

{(A − C,F ) | w ∈ A ∩ C}

The game contains two types of positions. The first type consists of all
pairs of the form (R,F ) ∈ PW × PW , where W is the set of worlds that
contains the antecedents and consequents of all conditionals in the inference
Σ/A C. For such a position (R,F ) we call R the required area and F the
forbidden area of the position. The second type of positions consists of all
pairs of the form (w,F ) ∈ W × PW . For such a position (w, F ) we call w
the world of the position and F its forbidden area.

The positions of the form (R,F ) belong to Abélard, meaning that he
moves next if the game is at such a position. He can choose any world
w ∈ R − F that is in the required area and not in the forbidden area. In
this case we say that Abélard plays the move w. When Abélard chooses the
world w the game moves to the position (w,F ), where the forbidden area F
remains the same.

The positions of the form (w,F ) belong to Hélöıse. She can play any
premise B D ∈ Σ which is such that w ∈ B − D. This moves the game
to the position (B ∩ D,F ∪ (B − D)). In the special case when w ∈ A ∩ C,
where A C is the conclusion of the inference Σ/A C that we are playing
for, Hélöıse has one special move at her disposal which moves the game to
the position (A − C,F ). We call this move � and we say that Hélöıse plays
� if she chooses this move.

The position (A−C, ∅) is defined to be the starting position of the game.
A play s starting from a position p is a finite sequence s = p0, p1, . . . , pn

of positions of the game such that p0 = p and there is a move from pi to pi+1

for every i ∈ {0, . . . , n−1}. If we call s a play, without explicitly mentioning
the starting position, then s is is assumed to start from the starting position
of the game. For two plays s and t starting from the same position we write
t ≤ s if s is an initial segment of t. It is convenient in the setting of this paper
to let ≤ be the converse of the initial segment relation, and not the initial
segment relation itself. The set of all plays starting from some position is a
possibly infinite tree ordered by the converse initial segment relation.

A match starting from a position p is a maximal, possibly infinite, branch
in the tree of all plays starting from p. If the starting position p is omitted
we again assume it to be the starting position of the game.

Note that a finite match is just a play p0, . . . , pn such that there is no
move in the game leading from pn to any other position. A player gets stuck
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in the finite match p0, . . . , pn if she or he has to move in the position pn. A
finite match is won by the player that does not get stuck.

There is no natural way to define the winner of infinite matches. In the
game GΣ

A,C the winner of all infinite matches is stipulated to be Abélard. In
the game FΣ

A,C the winner of all infinite matches is stipulated to be Hélöıse.
The winning condition for infinite matches is the only difference between
the definitions of GΣ

A,C and FΣ
A,C .

A strategy S for some player starting from position p is a set of plays
starting from p such that:

1. S is closed under initial segments of plays.

2. Whenever a play sp ending in a position p belonging to the player is in
S then there is a unique position q reachable from p by a move of the
player such that spq is also in S.

3. Whenever a play sp ending in a position p of the opponent is in S then
all plays spq such that there is some move of the opponent from p to q
are also in S.

If we do not mention the position from which a strategy starts then it should
be understood as starting from the starting position of the game.

A strategy for some player starting from some position p is a recipe which
tells the player how to continue playing once the game is in position p. The
second condition above guarantees that the strategy determines one unique
move for the player in every match starting from p in which she or he plays
according to the strategy. The third condition guarantees that the strategy
covers all possible moves of the opponent.

A strategy S for some player starting from p is a subtree of the tree of all
plays starting from p. This subtree is somewhat peculiar since all the nodes
ending with a position belonging to the player to whom the strategy belongs
have only one child. For this reason we define the tree T = (L,≤) determined
by some strategy S for some player starting from some position to consist of
all plays in S that end in a position that belongs to the opponent, ordered
by the converse initial segment relation.

One can check that given a strategy S for Hélöıse starting from a position
p and a strategy S′ for Abélard starting from p there is a unique match
starting from p in which Hélöıse plays according to S and Abélard plays
according to S′. This match is the unique branch in the subtree of the tree
of all plays that corresponds to the intersection of S and S′.

A strategy S for a player starting from p is a winning strategy if, for
every strategy S′ for the opponent starting from p, the unique match in
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which the player plays according to S and the opponent plays according
to S′ is winning for the player. Less formally, a strategy for some player is
winning if the player wins every match in which he or she plays according
to the strategy.

An inference Σ/A C is defined to be valid in the non-well-founded game
semantics if Hélöıse has a winning strategy in the game GΣ

A,C . The inference
is defined to be valid in the well-founded game semantics if Hélöıse has a
winning strategy in the game FΣ

A,C .
We make use of the fact that winning strategies for some player starting

at a given position can be glued together from winning strategies for that
player starting from later positions. Assume the position p belongs to the
player and there is a move from p to a position q such that the player has
a winning strategy S starting from q. Then there is a new winning strategy
S′ for the player starting from p where the player first moves from p to the
position q and then continues playing according to the winning strategy S.
We can do a similar thing if the position p belongs to the opponent. Assume
that for every move of the opponent leading from p to a position q there is
a winning strategy Sq for the player starting from q. Then there is a new
winning strategy S′ for the player starting from p where she or he waits for
the opponent to move to a position q and from then on uses the winning
strategy Sq.

The games GΣ
A,C and FΣ

A,C enjoy the property of determinacy. Determi-
nacy means that for any such game exactly one of the players has a winning
strategy. The determinacy of GΣ

A,C and FΣ
A,C follows from the Gale-Stewart

Theorem, a proof of which can be found for instance in [14, Sect. 3.5].
We now provide an intuitive explanation of the rules of the game. Con-

sider the game GΣ
A,C or FΣ

A,C for an inference Σ/A C. The conditionals in
Σ are accepted by both players in advance. Abélard aims to show that con-
clusion A C does not follow from Σ by giving a counterexample. Hélöıse
disputes the relevance of the counterexample by forcing Abélard to admit
that there is a more relevant world that verifies the conclusion of the infer-
ence. To do so she chooses premises in Σ forcing Abélard to come up with
further worlds that verify the chosen premises.

The game starts at position (A−C, ∅) which means that in his first move
Abélard has to provide a counterexample to the conclusion A C.

After Abélard has chosen some world w the match is at position (w, F ).
Hélöıse can now show that this world is not relevant by finding a premise
B D ∈ Σ that is falsified by w. This moves the match to the position
(B ∩ D,F ∪ (B − D)). Abélard is now required to come up with a more
relevant world that verifies the premise B D. Moreover the forbidden area
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grows such that Abélard is not allowed to choose counterexamples to B D
anymore.

If Abélard moves to a position (w,F ) such that w verifies the conclusion
A C then Hélöıse can play �. This moves the game to (A − C,F ) forcing
Abélard to restart with a new counterexample to the conclusion. It now
becomes more difficult for Abélard to find the required worlds because the
forbidden area F has grown to include all counterexamples to premises that
Hélöıse played before.

Let us consider again the dialogue from Example 1 in the introduction.
Formally this dialogue corresponds to the game for the inference B F/P
F such that there are at least two worlds p, t ∈ W with p, t ∈ B, p ∈ P , t /∈
P , p /∈ F end t ∈ F . The game starts at the position (P −F, ∅). This means
that Abélard has to give a counterexample to the conditional P F . He
chooses p moving the game to the position (p, ∅). Hélöıse tries to neutralize
this alleged counterexample by pointing out that it does not conform to
the premise B F . So the match moves to the position (B ∩ F,B − F ).
Now Abélard has to come up with an object that is more normal than p
in that it verifies B F . He chooses t moving the game to (t, B − F ). His
counterexample p is thus left intact because t is not in P and hence does
not verify P F . Moreover there is no premise that is falsified by t, which
means that Hélöıse cannot argue that t is not normal in some respect. Hence
Abélard wins the match.

We now consider two examples of games that belong to more abstract
inferences. It is quite helpful to illustrate the dialectics of simple games by
means of Venn diagrams.

Example 6. Consider the following cautious cut rule which is part of the
axiomatization of System P in [8]:

A B A ∩ B C

A C
(CCut)

Take A,B,C ⊆ W to be any subsets of some set of worlds W . Hélöıse has
a winning strategy in the non-well-founded game for this inference. The
strategy can be described as follows. Hélöıse’s move only depends on the
last world w that Abélard has played. If w ∈ A ∩ Bc then Hélöıse plays the
first premise A B. If w ∈ A ∩ B ∩ Cc then she replies with the second
premise A ∩ B C. If w ∈ A ∩ B ∩ C then Hélöıse replies with �. We do not
need to specify a reply for the case where w ∈ Ac because it can be seen
to never arise if Hélöıse plays the above strategy. One can check that by
playing this strategy Hélöıse does not get stuck and no infinite match can
arise. Hence it is a winning strategy for Hélöıse.
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The following classical cut rule is however not valid in general:

A B B C

A C
(Cut)

Assuming that there are worlds w0 ∈ A∩B∩Cc and w1 ∈ Ac∩B∩C we can
show that Abélard has a winning strategy in the non-well-founded game for
(Cut). In the starting position (A−C, ∅) Abélard plays w0. Hélöıse can then
only reply with the second premise B C moving the match to the position
(B ∩ C,B − C). Then Abélard picks w1 and Hélöıse gets stuck. Note that
the absence of A in the antecedent of the second premise is crucial, since it
allows Abélard to escape to a world not in A.

Example 7. This last example demonstrates the difference between the non-
well-founded and the well-founded game. Consider the following inference
where Ai for all i ∈ I and C are subsets of any set of worlds W :

Ai C for all i ∈ I
⋃{Ai | i ∈ I} C

(Or∞)

Hélöıse has a winning strategy in the well-founded game for this inference.
Whenever Abélard has chosen a world in Ai for some i ∈ I then Hélöıse
plays the premise Ai C. It is guaranteed that all worlds picked by Abélard
are in Ai for some i ∈ I. This holds at the beginning of the match because
the required area of the starting position is

⋃{Ai | i ∈ I}. It remains true
later because after Hélöıse has played Ai C Abélard needs to pick a world
in Ai ∩ C and after she has played � Abélard needs to pick a world in⋃{Ai | i ∈ I} − C. Playing this strategy Hélöıse never gets stuck. So this is
a winning strategy for her in the well-founded game for the inference because
by definition she wins all infinite matches.

Hélöıse does not necessarily have a winning strategy in the non-well-
founded game associated to (Or∞). To see this consider the following
instance of the rule over the set W = ω ∪ {∞} where ω is the set of all
natural numbers and ∞ is distinct from all elements in ω:

{n,∞} {∞} for all n ∈ ω

ω ∪ {∞} {∞}
Abélard has a winning strategy in this game because he can enforce an
infinite match. If the required area equals ω then Abélard picks the smallest
n ∈ ω that is not in the forbidden area. Such a world exists because the
forbidden area is the finite set containing all k such that Hélöıse has played
{k,∞} {∞} before. If the required area is {∞} then Abélard plays ∞
which is never in the forbidden area. In this way Abélard never gets stuck
because he has a move for all of his positions. In the starting position and
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after Hélöıse has played � the required area is ω. After Hélöıse has played
one of the premises the required area is {∞}. A match played according to
this strategy is either infinite or a match where Hélöıse gets stuck. So it is
a winning strategy for Abélard in the non-well-founded game.

4. Abélard Orders

In this section we show that a winning strategy for Abélard in the game for
some inference yields a countermodel to the inference in the order semantics.

Proposition 8. If Abélard has a winning strategy in GΣ
A,C then the inference

Σ/A C is not valid on posets. If Abélard has a winning strategy in FΣ
A,C

then the inference Σ/A C is not valid on well-founded posets.

Proof. Assume that Abélard has a winning strategy in GΣ
A,C . We show

that the tree T = (L,≤) determined by Abélard’s winning strategy is a
countermodel to the validity of the inference Σ/A C. The labeling function
f : L → W is defined to map a play s, (w,F ) ending with a position (w, F )
for Hélöıse to the world w ∈ W previously picked by Abélard.

We have to show that T |= f−1[B] f−1[D] for all B D ∈ Σ and that
T �|= f−1[A] f−1[C]. To show the former take any B D ∈ Σ and consider
s ∈ L such that s ∈ f−1[B]. We must find a t ≤ s such t ∈ f−1[B] and for
all u ≤ t with u ∈ f−1[B] it holds that u ∈ f−1[D]. We distinguish cases on
whether s ∈ f−1[D].

First assume that s /∈ f−1[D]. Let w = f(s) be the world from the
last position (w,F ) in the play s. Because s ∈ f−1[B] and by assumption
s /∈ f−1[D] it follows that w ∈ B − D. Then Hélöıse can play the premise
B D moving the game to the position (B∩D,F ∪(B−D)). Abélard replies
with some world v ∈ B∩D moving to the position (v, F ∪(B−D)). This gives
a play t = s, (B∩D,F ∪(B−D)), (v, F ∪(B−D)) which is in L because the
last position is a position for Hélöıse. It is the case that t ∈ f−1[B] because
f(t) = v. It remains to be shown that for any u ≤ t, if u ∈ f−1[B] then
u ∈ f−1[D]. Take any such u whose last position is (f(u), F ′). Since u ≤ t,
the position (f(u), F ′) either occurs later in the match than (v, F ∪(B−D))
or it is equal to it. Since in a match the forbidden area never decreases, we
have that F ∪ (B − D) ⊆ F ′, and therefore B − D ⊆ F ′. Because Abélard
picked f(u) when the forbidden area was F ′ it follows that f(u) /∈ F ′ and
thus f(u) /∈ B − D. Hence if u ∈ f−1[B] then also u ∈ f−1[D].

Consider now the case when s ∈ f−1[D]. We distinguish two further
cases. If r ∈ f−1[D] for all r ≤ s with r ∈ f−1[B] then we can take s to be



Game Semantics for System P 1133

the witnessing t to satisfy the semantic clause. If on the other hand there is
some r ≤ s with r ∈ f−1[B] but r /∈ f−1[D] then we can run the argument
from the previous paragraph with r for s to find the witnessing t ≤ r ≤ s
such that t ∈ f−1[B] and for all u ≤ t if u ∈ f−1[B] then u ∈ f−1[D].

It remains to be shown that T �|= f−1[A] f−1[C]. We must find an
s ∈ f−1[A] such that for every t ≤ s with t ∈ f−1[A] there exists a u ≤ t
with u ∈ f−1[A] but u /∈ f−1[C]. First note that f−1[A] �= ∅, otherwise
Abélard would get stuck in the initial position (A−C, ∅). Consider then any
s ∈ f−1[A]. Take an arbitrary t ≤ s such that t ∈ f−1[A]. If t /∈ f−1[C] then
we can take u = t. If t ∈ f−1[C] then t ends with the position (v, F ) where
v ∈ A ∩ C. Hélöıse can reply to this position with �, to which Abélard’s
winning strategy must supply a world z ∈ A−C. This moves the game to a
position (z, F ), and hence we have a play u ≤ t ending with position (z, F ).
Thus f(u) ∈ A − C, and so u ∈ f−1[A] but u /∈ f−1[C].

Example 9. Consider the following instance of (Or∞) from Example 7:

{n,∞} {∞} for all n ∈ ω

ω ∪ {∞} {∞}
In Example 7 we show that Abélard has a winning strategy in the non-
well-founded game for this inference. The construction from the proof of
Proposition 8 transforms this winning strategy into a non-well-founded poset
that is a counterexample to the inference above. This poset is displayed in
Figure 2.

(1, ∅)

(∞, {1})

(2, {1})

(∞, {1, 2})

(3, {1, 2})

...

{1, ∞} {∞}

�

{2, ∞} {∞}

�

Figure 2. Counterexample to (Or∞)
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The converse of Proposition 8 is a consequence of Theorems 17 and 19.
One could also show it by a direct proof. The idea is that Abélard obtains
a winning strategy in the game for some inference by moving downwards in
a poset that is a counterexample to the inference.

5. Hélöıse Proves

In this section we prove that if Hélöıse has a winning strategy in the game for
some inference then the inference is provable in System P. An intermediate
step of the proof is to show the existence of a witnessing set for the inference,
which is defined as follows:

Definition 10. Let Γ be a set of conditionals. The abnormality area U(Γ) ⊆
W of Γ is defined as:

U(Γ) =
⋃

{B − D | B D ∈ Γ}.

The set Γ is a witnessing set for an inference Σ/A C if Γ ⊆ Σ and the
following conditions are satisfied:

1. A ⊆ C ∪ U(Γ).

2. B ∩ D ⊆ (A ∩ C) ∪ U(Γ) for all B D ∈ Γ.

Proposition 11. If Hélöıse has a winning strategy in the game FΣ
A,C then

the inference Σ/A C has a witnessing set.

Proof. Assume that Hélöıse has a winning strategy in the game FΣ
A,C . We

define the witnessing set Γ ⊆ Σ as the set of all premises that Hélöıse uses
in some match played according to her winning strategy. We check that the
two conditions from Definition 10 are satisfied.

For the first condition consider any w ∈ A. If w ∈ C ⊆ C ∪ U(Γ) we
are done. So we can assume that w /∈ C. Since the game starts in position
(A−C, ∅) Abélard can then move to (w, ∅) in his first move. Hélöıse’s winning
strategy provides her with a reply to this move. The reply cannot be �
because w /∈ A∩C. Hence she replies with a premise B D ∈ Γ from which
it follows that w ∈ B − D ⊆ U(Γ) ⊆ C ∪ U(Γ).

For the second condition consider any B D ∈ Γ. By definition of Γ
there is a match played according to Hélöıse’s winning strategy in which she
plays the premise B D. This moves the match to a position of the form
(B ∩ D,F ), where F ⊆ U(Γ), because the forbidden area F at a position is
the union of the B′ − D′ of all the premises B′ D′ that Hélöıse has played
so far in the match. Now consider a w ∈ B ∩ D and distinguish cases on
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whether w ∈ F . If w ∈ F then also w ∈ U(Γ). Otherwise Abélard can reply
with w at the position (B ∩ D,F ). Hélöıse’s winning strategy provides her
with a reply to this move. If she plays � then w ∈ A ∩ C. If she plays a
premise B D ∈ Γ then w ∈ B − D ⊆ U(Γ).

There is also a short direct proof of the converse of Proposition 11. We
do not give it here because the converse also follows from Theorem 17.

We now show how one can obtain a formal proof of an inference in Sys-
tem P from a witnessing set for this inference.

Proposition 12. If the inference Σ/A C has a witnessing set then it is
provable in system P∞. If the inference Σ/A C has a finite witnessing set
then it is provable in system P .

Proof. We first show that a witnessing set yields a proof in system P∞.
Thus assume that there is a witnessing set Γ ⊆ Σ for the inference Σ/A C.
We index the elements in Γ such that Γ = {Bi Di | i ∈ I} ⊆ Σ for some
set I. That Γ is a witnessing set means that:

1. A ⊆ C ∪ U(Γ).

2. Bi ∩ Di ⊆ (A ∩ C) ∪ U(Γ) for all i ∈ I.

We need two consequences of these inclusions.
The first consequence is

⋃

i∈I

Bi ∩
⋂

i∈I

(Bc
i ∪ Di) ⊆ A ∩ C. (2)

To see this pick any w ∈ ⋃
i∈I Bi ∩ ⋂

i∈I (Bc
i ∪ Di). Since w ∈ ⋃

i∈I Bi

there exists an j ∈ I such that w ∈ Bj . Then also w ∈ Dj because w ∈⋂
i∈I (Bc

i ∪ Di) and hence w ∈ Bc
j∪Dj . Thus w ∈ Bj∩Dj ⊆ (A∩C)∪U(Γ) by

condition 2. It follows that w ∈ A∩C because w ∈ ⋂
i∈I (Bc

i ∪ Di) = U(Γ)c.
The second consequence is

(

C ∪
⋃

i∈I

Bi

)

∩ A = A. (3)

The ⊆-inclusion is obvious. For the other inclusion we need that A ⊆ C ∪⋃
i∈I Bi. This holds because condition 1 is that A ⊆ C ∪ U(Γ) and one can

verify that U(Γ) ⊆ ⋃
i∈I Bi.

We now construct the proof of Σ/A C. For every j ∈ I we have the
following proof:
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Bj Dj (RW)
Bj Bc

j ∪ Dj

(Id)⋃
i∈I Bi ∩ Bc

j

⋃
i∈I Bi ∩ Bc

j (RW)⋃
i∈I Bi ∩ Bc

j Bc
j ∪ Dj

(Or)
Bj ∪ (⋃

i∈I Bi ∩ Bc
j

)
Bc

j ∪ Dj

One can check that Bj ∪ (⋃
i∈I Bi ∩ Bc

j

)
=

⋃
i∈I Bi. So we have for every

j ∈ I a proof of
⋃

i∈I Bi Bc
j ∪ Dj from premises in Σ. We continue as

follows:

(Id)⋃
i∈I Bi

⋃
i∈I Bi

{⋃
i∈I Bi Bc

j ∪ Dj | j ∈ I
}

(And∞)⋃
i∈I Bi

⋂
j∈I

(
Bc

j ∪ Dj

)

(And)⋃
i∈I Bi

⋃
i∈I Bi ∩ ⋂

j∈I

(
Bc

j ∪ Dj

)

(RW)⋃
i∈I Bi A ∩ C

The last application of (RW) is possible because of (2). We use this proof
twice to continue as follows:

(Id)
C ∩ A C ∩ A (RW)

C ∩ A C

⋃
i∈I Bi A ∩ C

(RW)⋃
i∈I Bi A

⋃
i∈I Bi A ∩ C

(RW)⋃
i∈I Bi C

(CM)⋃
i∈I Bi ∩ A C

(Or)(
C ∪ ⋃

i∈I Bi

) ∩ A C

In the last application of (Or) we use the distributivity of ∩ over ∪. By (3)
we now have a proof of A C from premises in Σ.

The same construction can be used to show the second claim. If Σ is
finite then so is the index set I, which allows us to replace the application
of (And∞) above by a finite chain of applications of (And).

Example 13. Consider again the following cautious cut rule:

A B A ∩ B C

A C
(CCut)

Using Propositions 11 and 12 we can construct a proof of (CCut) in system P
from the winning strategy of Example 6. Both premises A C and A∧B C
are played by Hélöıse in some match according to this winning strategy. From
the proof of Proposition 11 it follows that together they are a witnessing set
for the inference (CCut). We can apply the proof of Proposition 12 to this
witnessing set to obtain a proof of the inference in system P . After deleting
some obvious redundancies we obtain a proof of (CCut) starting as follows:
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A ∩ B C (RW)
A ∩ B (A ∩ B)c ∪ C

(Id)
A ∩ (A ∩ B)c A ∩ (A ∩ B)c

(RW)
A ∩ (A ∩ B)c (A ∩ B)c ∪ C

(Or)
A (A ∩ B)c ∪ C

The above is the rightmost leaf of the following continuation:

(Id)
A A

A B (RW)
A Ac ∪ B A (A ∩ B)c ∪ C

(And)
A (Ac ∪ B) ∩ ((A ∩ B)c ∪ C)

(And)
A A ∩ (Ac ∪ B) ∩ ((A ∩ B)c ∪ C)

(RW)
A C

The converse of Proposition 12 can be shown by an induction on the
complexity of the proof tree of an inference. It also follows from Theorems
17 and 19.

6. Compactness

In this section we show that the semantics of the non-well-founded games is
compact. For this we need the following notion:

Definition 14. A subalgebra A of PW is compact if for all elements A of
A and sets of elements B of A such that A ⊆ ⋃ B there is a finite B′ ⊆ B
such that A ⊆ ⋃ B′.

Compact subalgebras arise naturally when working with conditionals over
formulas in propositional logic. The subalgebra of all sets of maximal consis-
tent sets of formulas containing a given formula is a compact subalgebra of
the powerset algebra over the set of all maximal consistent sets of formulas.

Theorem 15. Let A be a compact subalgebra of PW . If Σ ∪ {A C} ⊆
{B D | B,D ∈ A} and Hélöıse has a winning strategy in GΣ

A,C then there
is a finite Σ′ ⊆ Σ such that Hélöıse has a winning strategy in GΣ′

A,C .

Proof. We consider the tree T = (L,≤) determined by the winning strat-
egy of Hélöıse in GΣ

A,C starting from the position (A − C, ∅). Let < on L be
the strict version of the converse initial segment relation ≤ meaning that
t < s if t ≤ s and not s ≤ t. The relation < on L is well-founded. If this was
not the case then there would be an infinite match in T contradicting the
claim that T is the tree of a winning strategy for Hélöıse in the game GΣ

A,C .
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The proof is an induction on the well-founded relation <. This means
that we show a claim about all elements of L by showing that the claim
holds for some s ∈ L whenever the claim holds for all t ∈ L with t < s. The
claim which we show by induction is that Hélöıse has a winning strategy in
the game GΓ

A,C for a finite Γ ⊆ Σ starting from the position (R,F ), where
(R,F ) is the last position in the play s and R,F ∈ A. The statement of
the theorem then follows from taking s to be the play consisting just of the
starting position (A − C, ∅) of the game GΣ

A,C .
So suppose we have a play s ∈ L with last position (R,F ) where R,F ∈ A

such that the claim holds for all t < s. From the position (R,F ) Abélard can
move to any position (w,F ) where w ∈ R − F . Hélöıse’s winning strategy
provides a reply rw ∈ Σ ∪ {�} for any such w ∈ R − F . After the reply rw
the game moves to the position pw such that

pw =
{

(B ∩ D,F ∪ (B − D)) if rw = B D ∈ Σ,
(A − C,F ) if rw = �.

For every w ∈ R − F we thus obtain a new play tw = s, (w, F ), pw ∈ L to
which the induction hypothesis applies because tw < s. This means that for
every w ∈ R − F there is a finite Γw ⊆ Σ such that Hélöıse has a winning
strategy for the game GΓw

A,C starting from the position pw.
We define the area Kw for any w ∈ R − F such that Kw = B − D if

rw = B D and Kw = A ∩ C if rw = �. By the rules of game we have that
w ∈ Kw for every w ∈ R − F . Thus we obtain the covering

R − F ⊆
⋃

{Kw | w ∈ R − F}.

Since all the involved propositions are in A it follows by compactness of A
that there is a finite subcover

R − F ⊆
⋃

{Kv | v ∈ V }, (4)

where V ⊆ R − F is a finite set.
Define the set

Γ =
⋃

v∈V

Γv ∪ {B D | B D = rv for some v ∈ V }.

The set Γ ⊆ Σ is finite because Γv is finite for every v ∈ V and V is finite.
Note that Hélöıse’s winning strategy starting from position pv in GΓv

A,C is
also a winning strategy starting from pv in the game GΓ

A,C , since Γv ⊆ Γ and
so any move available to her in GΓv

A,C is also available to her in GΓ
A,C .

We show that Hélöıse has a winning strategy in the game GΓ
A,C starting

from the position (R,F ). We need to specify a move for Hélöıse in any
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position (w,F ) such that w ∈ R−F is a possible move of Abélard in (R,F ).
Consider any such w ∈ R − F . By (4) there is a v ∈ V such that w ∈ Kv.
Hence we can let Hélöıse reply rv in the position (w, F ). This moves the
game into position pv. From there on Hélöıse plays according to her winning
strategy starting from pv in the game GΓ

A,C .

Example 16. The compactness result for the non-well-founded game for
an inference fails if the antecedents and consequents of the inference are
not from a compact subalgebra. To see this consider the following infinitary
inference over the set of worlds W = {a, b} ∪ ω where we assume a and b to
be distinct from each other and from any element of ω:

{{a} ∪ ω ω} ∪ {{n, b} {b} | n ∈ ω}
{a, b} {b}

Hélöıse’s winning strategy in the non-well-founded game for this inference
is as follows. The starting position is ({a, b} − {b}, ∅). Abélard’s first move
must thus be a, to which Hélöıse replies with the premise {a} ∪ ω ω. This
moves the game to the position (ω, {a}). Abélard now needs to choose some
number n ∈ ω. Hélöıse can then play the corresponding premise {n, b} {b}
forcing him to play b. Hélöıse answers this move with � and Abélard gets
stuck because a is in the forbidden area. In all matches played according to
this strategy Abélard gets stuck after a finite number of moves. Hence it is
a winning strategy for Hélöıse in the non-well-founded game.

There is however no finite subset of the premises for which Hélöıse still
has a winning strategy. To see this assume that we are playing the game
for an inference with the same conclusion as the inference above but only a
finite subset of its premises. Then for some n ∈ ω the premise {n, b} {b}
is missing. In this case Abélard has a winning strategy. He starts the match
with a. If the premise {a}∪ω ω is not in the finite set of premises available
to Hélöıse then she loses immediately. Otherwise she plays this premise and
forces Abélard to pick a number in ω. He then chooses the number n ∈ ω
such that {n, b} {b} is missing. Now Hélöıse is stuck.

7. Completeness of the Order Semantics

In this section we prove the main theorems of this paper.
For the system P∞ we obtain the following result:

Theorem 17. The following are equivalent:

1. There is a proof of the inference Σ/A C in system P∞.
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2. The inference Σ/A C is valid on well-founded posets.

3. Hélöıse has a winning strategy in the game FΣ
A,C .

4. There is a witnessing set for the inference Σ/A C.

Proof. The implication from 1 to 2 is given by Proposition 2.
The implication from 2 to 3 is by contraposition. Assume that Hélöıse

does not have a winning strategy in the game FΣ
A,C . By determinacy then

Abélard has a winning strategy. From Proposition 8 we obtain a counter-
model to the validity of Σ/A C on well-founded posets.

The implication from 3 to 4 is given by Proposition 11.
The implication from 4 to 1 is given by Proposition 12.

Using compactness we obtain the version of the main theorem for the
system P . We need the following lemma:

Lemma 18. If Σ is finite then Hélöıse has a winning strategy in GΣ
A,C iff she

has a winning strategy in FΣ
A,C .

Proof. First recall that the only difference between FΣ
A,C and GΣ

A,C are the
winning conditions for infinite matches. In the former infinite matches are
won by Hélöıse, in the latter by Abélard. So whenever Hélöıse has a winning
strategy in GΣ

A,C the same strategy is also winning in FΣ
A,C . This proves the

direction from right to left.
For the direction from left to right we show that if Σ is finite then any

match played according to a winning strategy for Hélöıse in FΣ
A,C is finite.

Hence the strategy is also winning in the game GΣ
A,C .

Assume for a contradiction that an infinite match is played. In this match
Hélöıse has to play infinitely often, and because Σ is finite either some
premise B D ∈ Σ is played infinitely often or otherwise only � is played
infinitely often.

First consider the case that some B D ∈ Σ is played infinitely often.
After Hélöıse plays B D for the first time B − D is contained in the
forbidden area. Later in the match the forbidden area only grows so Abélard
is never allowed to pick a world in B−D. This means that Hélöıse can never
play B D again because this move is only available if the match is at a
world in B − D. Hence B D cannot be played infinitely often.

If only � is played infinitely often there is a point in the match from
which on Hélöıse always plays �. Hence there is a sequence of plays where
Hélöıse starts by playing �, Abélard responds with w ∈ W and Hélöıse
replies with � again. But for w to be a reply to the first � it needs to hold
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that w ∈ A −C, which contradicts that Hélöıse answers with � because this
move presupposes that w ∈ A ∩ C.

Theorem 19. Let A be a compact subalgebra of PW . If Σ ∪ {A C} ⊆
{B D | B,D ∈ A} then the following are equivalent:

1. There is a proof of the inference Σ/A C in system P .

2. The inference Σ/A C is valid on posets.

3. Hélöıse has a winning strategy in the game GΣ
A,C .

4. There is a finite witnessing set for the inference Σ/A C.

Proof. The implication from 1 to 2 is given by Proposition 2.
The implication from 2 to 3 is by contraposition. Assume that Hélöıse

does not have a winning strategy in the game GΣ
A,C . By determinacy then

Abélard has a winning strategy. From Proposition 8 we obtain a counter-
model to the validity of Σ/A C on well-founded posets.

For the implication from 3 to 4 assume that Hélöıse has a winning strat-
egy in the game GΣ

A,C . Then by Theorem 15 there is a finite Σ′ ⊆ Σ such
that Hélöıse has a winning strategy in the game GΣ′

A,C . By Lemma 18 it fol-
lows that she also has a winning strategy in FΣ′

A,C . Proposition 11 yields a
witnessing set Γ for the inference Σ′/A C. By the definition of a witnessing
set we have that Γ ⊆ Σ′ and hence Γ is finite because Σ′ is finite. Because
Γ is a finite witnessing set for Σ′/A C and Σ′ ⊆ Σ one can see from the
definition of a witnessing set that Γ is also a finite witnessing set for the
inference Σ/A C.

The implication from 4 to 1 is given by Proposition 12.

Note that if Σ is finite the assumption of compactness in the previous
theorem is satisfied because then the subalgebra generated by A, C and all
antecedents and consequents of conditionals in Σ is finite and hence compact.

Completeness extends to multi-conclusion inferences as follows:

Corollary 20. A multi-conclusion inference Σ/Γ is provable in system P∞
iff it is valid on well-founded posets.

If Σ ∪ Γ ⊆ {A C | A,C ∈ A} for a compact subalgebra A of PW then
the multi-conclusion inference Σ/Γ is provable in system P iff it is valid on
posets.

Proof. It follows immediately from the definition of provability in system
P∞ that a multi-conclusion inference Σ/Γ is provable in system P∞ iff there
exists a conclusion A C ∈ Γ such that Σ/A C is provable in system P∞.
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Analogously we have by Corollary 4 that the inference Σ/Γ is valid on well-
founded posets iff there exists a conclusion A C ∈ Γ such that Σ/A C is
valid on well-founded posets. Hence the claim follows by Theorem 17.

The second claim follows similarly using Theorem 19.

The corollary above yields the following strong completeness result:

Corollary 21. Let Σ be a set of conditionals over a set of worlds W . Then
there is a set of worlds U , a function f : U → W and a well-founded poset
P = (U,≤) such that for all A,C ⊆ W :

P |= f−1[A] f−1[C] iff Σ/A C is provable in system P∞. (5)

Proof. Let Σ be a set of conditionals over W and define Γ to be the
following set of conditionals over W :

Γ = {A C | Σ/A C is not provable in P∞}.

Clearly, Σ/Γ is not provable in system P∞. It follows by Corollary 20 that
it is not valid on well-founded posets. Hence there is a set U , a function
f : U → W and a well-founded poset P = (U,≤) such that P |= f−1[B]
f−1[D] for all B D ∈ Σ and P �|= f−1[A] f−1[C] for all A C ∈ Γ. By
the definition of Γ the latter entails the left-to-right direction of (5).

For the right-to-left direction of (5) assume that Σ/A C is provable in
system P∞. It follows from Proposition 2 that the inference is valid on well-
founded posets. From the definition of validity we obtain that P |= f−1[A]
f−1[C] because P |= f−1[B] f−1[D] for all B D ∈ Σ.

Lastly, we obtain a similar result for system P , which is essentially The-
orem 5.18 from [8].

Corollary 22. Let A be a compact subalgebra of PW in the sense of Def-
inition 14. Take some Σ ⊆ {B D | B,D ∈ A}. Then there is a set of
worlds U , a function f : U → W and a poset P = (U,≤) such that for all
A,C ∈ A:

P |= f−1[A] f−1[C] iff Σ/A C is provable in system P .

Proof. This is analogous to the proof of Corollary 21.

8. Conclusions and Further Work

In this paper we introduce a game semantics for System P and use it to
provide a new completeness proof with respect to the order semantics.
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The game semantics is useful to determine whether a given inference
is valid because for many inferences it is hard to find a formal proof in
System P. In such cases it is often easier to determine whether Hélöıse has a
winning strategy in the game for the inference. If one finds such a winning
strategy for Hélöıse then Propositions 11 and 12 yield a formal proof in
System P. If on the other hand one finds a winning strategy for Abélard
then one immediately obtains a countermodel using Proposition 8.

The notion of a witnessing set introduced in this paper allows for a con-
cise characterization of validity in System P. One can check whether an
inference is valid by searching for a subset of the set of premises that sat-
isfies the condition on a witnessing set from Definition 10. The inference is
valid if and only if such a set is found. If the antecedents and consequents
in the conditionals are propositional formulas then verifying the two condi-
tions in Definition 10 amounts to checking the validity of two formulas in
propositional logic. This problem is in coNP. Thus assuming a coNP oracle
our algorithm checks for the validity of an inference by non-deterministally
guessing a witnessing set. Hence the algorithm for checking validity is in
ΣP

2 = NPcoNP. This is theoretically worse than the results from [4,9,12]
which provide procedures that find countermodels in NP thus demonstrat-
ing that validity is in coNP. It would, however, be interesting to compare the
performance of the different algorithms in actual applications, since the the-
oretical differences in complexity rely on non-deterministic Turing machines,
which only exist in theory.

In Remark 5 we show that for completeness it is necessary to use labeling
functions in the order semantics. This suggests looking for a semantics that
does not require labeling functions. We are investigating an approach based
on antimatroids [7, Chap. 2] which are a generalization of partial orders.

It might also be interesting to adapt the game semantics of this paper to
systems of conditional logic that are weaker or stronger than System P.
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