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1 Introduction and motivation

The possible existence of sterile neutrinos (Standard Model singlet fermions) with masses

of order eV has been a widely discussed topic in astroparticle physics over the past few

years. It is motivated by several anomalous results from short-baseline neutrino oscillation

experiments, in particular the excesses of νe and ν̄e events in a νµ and ν̄µ beam respectively

observed by LSND [1] and MiniBooNE [2], the apparently lower than expected ν̄e flux

from nuclear reactors [3–5] (see however [6]) and the deficit of νe in radioactive source

experiments [7, 8]. Global fits [9–11, 11–15] show that these anomalies could be explained

if sterile neutrinos with O(eV) mass and O(10%) mixing with νe and νµ exist. However,

global fits also reveal that it is difficult to reconcile such a scenario with existing null results

from other short-baseline oscillation experiments.

Constraints come also from cosmological observations, which slightly disfavor scenarios

with extra relativistic degrees of freedom in the early Universe [16]. Cosmology also imposes

a tight constraint on the sum of neutrino masses
∑

jmνj < 0.23, where the sum runs over

all neutrino mass eigenstates that are in thermal equilibrium in the early Universe. Note

that these constraints would be relaxed if the recent BICEP-2 data on B-modes in the

cosmic microwave background [17] is confirmed [18–22].

An interesting scenario that is unconstrained by cosmology is self-interacting sterile

neutrinos [23, 24]. If interactions among sterile neutrinos are mediated by a scalar or

gauge boson with a mass of order MeV or lighter, sterile neutrinos will feel a strong thermal

potential in the early Universe which suppresses their mixing with active neutrinos and thus
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prohibits their production through oscillations. Moreover, if the new interaction couples

not only to sterile neutrinos, but also to dark matter, it has the potential to explain several

problems with cosmic structure formation at small scales [24–26].

If a new interaction is shared between sterile neutrinos and ordinary matter (for in-

stance in models with gauged baryon number coupled to sterile neutrinos and in scenarios in

which a sterile sector gauge boson mixes kinetically with the photon), interesting signals in

direct dark matter searches are possible [27–30]. The increased neutrino-nucleus scattering

cross section might even explain some of the excess events observed by several experiments.

On the other hand, such scenarios are more challenging for cosmology because of an ad-

ditional sterile neutrino production mechanism through the gauge interaction. (Note that

these constraints are still avoided for instance in scenarios with extra entropy production

in the visible sector after sterile neutrino decoupling [31].)

In this paper, we investigate how novel interactions between sterile neutrinos and ordi-

nary matter are constrained by neutrino oscillation experiments at short and long baseline.

This topic has been discussed in a previous paper [32], the conclusions of which we will

update below. For definiteness, we will focus on scenarios similar to the “baryonic sterile

neutrino” scenario first introduced in [27], where the sterile neutrino couples to gauged

baryon number (see also [33, 34] for anomaly-free models with gauges baryon number).

We emphasize, however, that our results are directly applicable to any theory in which

sterile neutrinos interact with Standard Model (SM) fermions through a new gauge force

under which ordinary matter carries a net charge. (The last condition excludes models in

which the coupling is only through kinetic mixing between the new gauge boson and the

photon.) The new gauge current creates a Mikheyev-Smirnov-Wolfenstein (MSW) poten-

tial for sterile neutrinos propagating through ordinary matter and has thus a potentially

large impact on neutrino oscillations. Since the mass of the new gauge boson in this model

can be as low as 10 MeV (see [28] for detailed constraints) and since constraints on its cou-

pling are weak [27], the strength of the effective interaction can be more than two orders of

magnitude larger than the SM weak interactions responsible for the ordinary MSW effect.

This implies that resonant enhancement of the oscillation amplitude could be relevant at

O(GeV) energies even for relatively large mass squared difference ∆m2
41 ∼ eV between the

mostly sterile and mostly active mass eigenstates. The model could thus potentially allow

an explanation of some of the short-baseline oscillation anomalies with significantly smaller

vacuum mixing angles than in sterile neutrino scenarios without new interactions.

The structure of the paper is as follows. In section 2, we briefly review models with new

interactions in the sterile sector in general, and the “baryonic neutrino” model from [27] in

particular. We map these models onto an effective field theory and discuss their implications

for neutrino oscillations. In particular, we derive approximate analytical formulas for the

oscillation probabilities. In section 3, we then present our main numerical results, which

will set strong constraints on new forces coupling sterile neutrinos to SM particles. We will

summarize and conclude in section 4.
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2 Models and formalism

2.1 New gauge bosons in the sterile neutrino sector

In the following we shortly describe the model proposed in [27, 28], originally introduced to

study the impact of a new gauge force in the sterile neutrino sector on dark matter searches.

The basic idea is to introduce a fourth left-handed neutrino flavour νb, sterile under SM

interactions, which can have a relatively large coupling to baryons (102–103 times larger

than the Fermi constant GF ) without being in conflict with current experimental bounds,

like for examples constraints coming from meson decays such as K → πν̄bνb [27]. It can

be implemented by introducing a new U(1)B gauge symmetry under which quarks have

charge gb/3 and the baryonic neutrino νb has charge g′b. We will assume gb and g′b to be of

order 0.1–1. To cancel anomalies, the introduction of additional fermions charged under

U(1)B will be necessary [33, 34], but we assume that these do not mix significantly with

SM neutrinos and can be neglected. The baryonic gauge boson X acquires a mass when

U(1)B is broken by a new sterile sector Higgs field hb. The relevant part of the Lagrangian

after symmetry breaking can be written as [27]

L ⊃ −1

4
FX,µνF

µν
X +

1

2
m2
XXµX

µ

+ν̄bγµ
(
i∂µ + g′bX

µ
)
νb +

∑
q

q̄
(
i /DSM +

1

3
gbγµX

µ
)
q + Lm , (2.1)

where q are the SM quark fields, FX,µν ≡ ∂µXν − ∂νXµ is the field strength tensor of

the baryonic vector boson Xµ and mX ∼ 1 GeV is its mass. In a seesaw framework, the

baryonic neutrino mixes with the SM through the terms

Lm = −
∑
α,j

mαj
D ν̄

α
LN

j
R −

∑
j

mj
bν̄bLN

j
R −

1

2

∑
i,j

mij
R

(
N i
R

)C
N j
R + h.c. , (2.2)

with the Dirac mass matrix mD of the active neutrinos ναL, the Dirac mass vector of the

baryonic neutrino mj
b and the the Majorana mass matrix mij

R of the heavy right-handed

neutrino fields N j
R. The flavour index α runs over e, µ and τ , while the indices i and j run

over all heavy right-handed neutrino states.

The Lagrangian of equation (2.1) implies the existence of a new MSW potential that

sterile neutrinos experience while propagating in matter. This effect is caused by coherent

elastic forward scattering on neutrons and protons and can lead to resonant enhancement

of flavour oscillations. Since coherent forward scattering does not involve any momentum

transfer, its amplitude can be most easily obtained from the low energy effective Lagrangian

of baryonic neutral current interactions

Lb,eff =
GB
2

[
ν̄bγµ (1− γ5) νb

][
p̄γµp+ n̄γµn

]
. (2.3)

Here, the effective coupling constant is GB ≡ gbg′b/m2
X . By treating neutrons and protons

as a static background field [35], we obtain the matter potential for sterile neutrinos

Vb = GBNnucl. (2.4)
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The potential for sterile anti-neutrinos has opposite sign. Here, Nnucl is the number density

of nucleons in the background matter. Note that GB can be either positive or negative,

depending on the relative sign of gb and g′b. In the following analysis we will use the ratio

of the coupling constants

ε ≡ GB√
2GF

(2.5)

as a measure for the relative strength of Vb compared to the potential VCC that charged

current (CC) interactions with electrons induce for electron neutrinos in the SM. The

baryonic potential can be written as

Vb = VCC ·GB/(
√

2GFYe) = ε VCC/Ye (2.6)

= ε · 7.56 · 10−14 eV ·
(

ρ

g/cm3

)
, (2.7)

where Ye is the number of electrons per nucleon.

As mentioned in the introduction, baryonic sterile neutrinos could lead to novel signals

in direct dark matter searches thanks to an enhanced sterile neutrino-nucleus scattering

rate. Typically, observable effects in current experiments are expected if ε & 100 [27–30].

We will see in section 3.2 that such large values of ε are largely excluded for eV scale sterile

neutrinos with substantial mixing into the active sector.

We wish to stress here that, while we use baryonic sterile neutrinos as a benchmark

scenario, our results will apply to any scenario in which sterile neutrinos have new gauge

interactions with SM fermions. It is important to keep in mind, though, that models

with new forces in the lepton sector are much more tightly constrained than new baryonic

interactions (see e.g. [28] for a review).

The mass terms in equation (2.2) lead to flavour mixing between νb and the active

neutrinos, as can be seen by integrating out the heavy right-handed neutrinos and diag-

onalizing the resulting mass matrix. In this way, we obtain the 4 × 4 mixing matrix U

connecting mass eigenstates |νi〉 and flavour eigenstates |να〉:

|να〉 =
∑
i

U∗αi|νi〉. (2.8)

Since U is unitary, it can be parametrized by 6 rotation angles θij and 3 complex phases δij
1

U = R34 ·R′24 ·R′14 ·R23 ·R′13 ·R12. (2.9)

Here, Rij describes a rotation matrix in the ij plane, while R′ij corresponds to a complex

rotation by the angle θij and phase δij . Given the mixing matrix U and the mass squared

difference ∆m2
41 between the mostly sterile mass eigenstate ν4 and the mostly active mass

1We omit the Majorana phases here since they do not contribute to neutrino flavour oscillations.
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eigenstate ν1, one can write down the effective Hamiltonian2 in flavour space:

Hflavour
eff =

1

2E
U


0

∆m2
21

∆m2
31

∆m2
41

U † +


VCC

0

0

Vb − VNC

 . (2.10)

Here, VNC ≡ −
√

2GFnn/2 is the contribution from SM neutral current interactions to

the MSW potential. It is proportional to the number density nn of neutrons in the back-

ground material.

The oscillation probability Pνα→νβ (t), i.e. the probability for a neutrino of initial flavour

α to be converted into flavour β after traveling a time t, can then be obtained by diagonaliz-

ing the effective Hamiltonian according to Hflavour
eff = Ũdiag(λ1, λ2, λ3, λ4)Ũ † and inserting

the eigenvalues λi and the effective mixing matrix Ũ into the well-known formula

Pνα→νβ =
∣∣ 〈νβ|να(t)〉

∣∣2 =
∣∣∣∑

j

Ũ∗αjŨβje
−iλjL

∣∣∣2. (2.11)

2.2 Approximate oscillation probabilities

As a prelude to the numerical fits we are going to present in section 3, we give here

approximate analytic expressions for the oscillation probabilities in the baryonic sterile

neutrino model and in models with new sterile neutrino-SM interactions in general. Similar

calculations have been carried out previously in [32] and we will compare these results to

ours in section 2.3.

Our starting point is to assume |∆m2
41| � |∆m2

31|,∆m2
21, which is a good approxi-

mation at sufficiently short baselines. Moreover, we neglect the SM MSW potentials VNC

(arising from Z exchange diagrams) and VCC (arising from W exchange diagrams) against

the baryonic potential Vb, which we assume to be much larger. With these approxima-

tions, mixing among the three active flavour eigenstates becomes irrelevant. (They can,

however, still oscillate into each other through their mixing with νb.) We also set Uτ4 = 0

for simplicity, following [32]. With these assumptions, diagonalization of the Hamiltonian

Hflavour
eff from equation (2.10) yields for the eigenvalues λi

λ1 = λ2 = 0, λ3 =
1

2

(
Vb +

∆m2
41

2E
−A

)
, λ4 =

1

2

(
Vb +

∆m2
41

2E
+A

)
. (2.12)

The elements of the unitary matrix Ũ are

Ũµ1 = Ũe1 = 0, |Ũe2|2 =
|Uµ4|2

1− |Us4|2
, |Ũµ2|2 =

|Ue4|2

1− |Us4|2
,

|Ũe4|2 = |Ue4|2
∆m2

41
2E

[
A+

∆m2
41

2E − Vb
]

A
[
A+

∆m2
41

2E + Vb

] , |Ũµ4|2 = |Uµ4|2
∆m2

41
2E

[
A+

∆m2
41

2E − Vb
]

A
[
A+

∆m2
41

2E + Vb

] . (2.13)

2Effective means that terms proportional to the unit matrix are omitted because they do not contribute

to flavour oscillations. Also note that we assume a definite three-momentum that is the same for all con-

tributing mass eigenstates so that one can approximate Ei ≈ |p| + m2
i /(2E). It is well-known that this

approximation, though technically unjustified, leads to correct results for neutrino oscillation probabili-

ties [36].
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Here, we have introduced the abbreviation

A = |Vb| ·

√
1 + (4|Us4|2 − 2)

∆m2
41

2EVb
+

(
∆m2

41

2EVb

)2

. (2.14)

With these formulas at hand and using the unitarity condition
∑

i Ũ
∗
αiŨαi = 1 as well as

the observation that Ũµ2Ũ
∗
e2Ũ

∗
µ4Ũe4 is real, it is straightforward to calculate the oscillation

probabilities according to equation (2.11). For α = µ and β = µ, e we obtain

Pνµ→νe = −4
|Ue4|2|Uµ4|2|Us4|2

1− |Us4|2

(
∆m2

41

2EA

)2

sin2 φ1 + 2
|Ue4|2|Uµ4|2

(1− |Us4|2)2

(
1 +

Vb − Vres

A

)
sin2 φ2

+2
|Ue4|2|Uµ4|2

(1− |Us4|2)2

(
1− Vb − Vres

A

)
sin2 φ3, (2.15)

Pνµ→νb = 4|Uµ4|2|Us4|2
(

∆m2
41

2EA

)2

sin2 φ1, (2.16)

Pνµ→νµ = 1− Pνµ→νe − Pνµ→νb , (2.17)

where the oscillation phases are

φ1 =
λ4 − λ3

2
L =

L

2
A, (2.18)

φ2 =
λ3

2
L =

L

4

(
Vb +

∆m2
41

2E
−A

)
, (2.19)

φ3 =
λ4

2
L =

L

4

(
Vb +

∆m2
41

2E
+A

)
(2.20)

and Vres is the value of the matter potential at which A takes its minimal value

|Us4|
√

1− |Us4|2 ∆m2
41/E. It is given by

Vres = −∆m2
41

2E

(
2|Us4|2 − 1

)
(2.21)

and corresponds to the new MSW resonance condition. Whether the resonance is in the

neutrino or anti-neutrino sector depends on the sign of Vb, i.e. the relative sign of the charges

gb and g′b. With the assumption sin2 θ24 < 0.5 and for Vb < 0 (Vb > 0) the resonance condi-

tion can be fulfilled only in the neutrino (anti-neutrino) sector. For ∆m2
41 = 1 eV2, a matter

density of 3 g/cm3 and a neutrino energy of 1 GeV, the resonance condition is fulfilled for

neutrinos if ε = GB/
√

2GF ' −2 × 103 and for anti-neutrinos if ε has opposite sign. For

oscillation experiments, we see that matter enhancement of active-to-sterile neutrino os-

cillations is expected predominantly in high energy (O(GeV)) experiments and only if the

new gauge force is several orders of magnitude stronger than SM weak interactions. For

weaker gauge forces, the new resonance moves to higher energies that are only accessible

with atmospheric or cosmic neutrinos.

Note that equation (2.21) has a structure similar to the expression for the stan-

dard MSW resonance condition. To see this, consider the matrix element |Us4|2 in

the parametrization of equation (2.9): |Us4|2 = cos2 θ14 cos2 θ24 cos2 θ34. If cos2 θ34,

– 6 –
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cos2 θ14 ≈ 1, we have Vres = −(∆m2
41/2E) cos 2θ24. However, unless ∆m2

41/2E is much

larger than Vb, oscillations at short baseline cannot be approximately described in an ef-

fective two-flavour framework, unlike the 3+1 model without non-standard matter effects.

The reason is that, without the extra matter term, three eigenvalues of the Hamiltonian

can be set to zero at short baseline, while large Vb implies that this is only possible for two

of them.

On the other hand, in the limit of very large matter potential, Vb � ∆m2
41/(2E), the

term proportional to sin2 φ2 in equation (2.15) dominates over the terms containing sin2 φ1

and sin2 φ3 since the latter two are of higher order in ∆m2
41/(2EVb). If we furthermore

assume the baseline is not too long, in particular (∆m2
41)2/(4E2Vb) · L/2 � 1, we can

approximate φ2 ≈ (L/2)(1 − |Us4|2)∆m2
41/(2E) and obtain for the oscillation probability

of equation (2.15) the effective two-flavour formula

Pνµ→νe ≈ 4
|Ue4|2|Uµ4|2

(1− |Us4|2)2 · sin
2

(
L

2

(
1− |Us4|2

) ∆m2
41

2E

)
+O

((
∆m2

41

2EVb

)2
)

. (2.22)

As expected, in the limit of large matter potential Vb, the corresponding neutrino νb de-

couples from flavour oscillations, Pνµ→νb ≈ 0 and the νµ survival probability becomes

Pνµ→νµ ≈ 1− Pνµ→νe .
We do not expect that scenarios with large Vb can explain the short-baseline anomalies

better than conventional models without new interactions. The reactor [3–5] and gallium [7,

8] experiments were too low in energy; in LSND [1], neutrinos traveled mostly through air;

MiniBooNE could in principle be sensitive to new matter effects, but resonant enhancement

could only explain an anomaly in either the neutrino or the anti-neutrino sector, while the

data shows similar deviations from expectations in both sectors.3 On the other hand, we

expect that MiniBooNE — along with long-baseline experiments like MINOS and with

solar neutrinos — will impose tight constraints on Vb.

2.3 Accuracy of analytic approximations

In the following, we discuss the implications of sterile neutrinos with non-standard matter

effects in terrestrial long-baseline experiments, taking MiniBooNE and MINOS as exam-

ples. In doing so, we also compare our analytic expressions (2.17) and (2.15) to a numerical

computation in the full four flavour framework and to the results of [32].

To obtain the exact four-flavour oscillation probabilities, we diagonalize the effective

Hamiltonian of equation (2.10) numerically and use the resulting eigenvalues and eigen-

vectors in equation (2.11). In doing so, we absorb the neutral current potential VNC into

a redefinition of Vb.
4 To average out fast oscillations that would not be resolvable by ex-

periments, we also implement a low-pass filter by multiplying each term in the oscillation

3Note that in earlier MiniBooNE data [37–39], there appeared to be mild tension between the neutrino

and anti-neutrino mode data. This motivated the authors of [32] to consider resonantly enhanced active-

sterile neutrino mixing even as a possible explanation of the MiniBooNE anomaly.
4This is only approximately correct if Vb ' VNC and the proton-to-neutron ratio is varying along the

neutrino trajectory. Since we are mainly interested in scenarios with Vb � VNC, our results are insensitive

to this subtlety.
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Figure 1. The electron neutrino (green) and anti-neutrino (blue) appearance probability in a model

with a large MSW potential in the sterile sector (for instance the baryonic sterile neutrino model

from [27]). We use the baseline L = 541 m and the energy range 0.1–3 GeV of the MiniBooNE

experiment and take the favored model parameters from [32]: ε = GB/(
√

2GF ) = 882 (⇔ Vb =

2 · 10−10 eV for ρ = 3 g/cm3), ∆m2
41 = 0.47 eV2, |Us4|2 = 0.9, |Ue4|2 = |Uµ4|2 = 0.05. (We will see

below, that this particular parameter point is in fact excluded by MINOS data, though.) For the

standard oscillation parameters, we have used the results of the global fit “Free Fluxes and RSBL”

of [42]. In black, we show also the prediction of a sterile neutrino model without new interactions

(ε = 0). Dashed lines correspond to our analytic approximations, which coincide with numerical

results (solid curves) in this baseline and energy range, while dotted lines show the results from [32].

probability equation (2.11) by a Gaussian factor [40]. This yields:

Pνα→νβ =
∑
j,k

Ũ∗αjŨβjŨαkŨ
∗
βk exp

[
− iL(λj−λk)

]
exp

[
− L2(λj−λk)2 ·

σf (E)2

2E2

]
, (2.23)

where σf (E) is the energy width of the filter, which is related to the energy resolution of

the experiment. This form for the low-pass filter can also be motivated in a wave packet

treatment, where the finite energy resolution of the production and detection processes

determines the width of the neutrino wave packets (see [41] and references therein). When

comparing analytical and numerical results, we also apply such a low-pass filter to the

analytic expressions (2.15) and (2.17) by replacing the oscillation terms sin2 φi according to

sin2 φi 7→
1

2

(
1− cos(2φi) · exp

[
− (2φi)

2 σf (E)2

2E2

])
. (2.24)

In the following, we choose σf (E) = 0.01 GeV.

In the calculation of the analytical formulas in [32] the eigenvalues λi are approximated

by setting A ≈ Vb +
∆m2

41
2E (i.e. taking |Us4| = 1 in equation (2.14)). This leads to λ1 =

λ2 = λ3 = 0 and λ4 = Vb + ∆m2
41/2E. The oscillation phases of equations (2.18)–(2.20)

then become φ1 = φ3 = 1
2L(Vb + ∆m2

41/2E) and φ2 = 0. With this replacements our

equation (2.15) reduces to equations (21)–(22) in [32]. In the limit of large Vb we see from

equation (2.22) that this approximation is only valid if L/2(1− |Us4|2)∆m2
41/(2E)� 1.

– 8 –
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Figure 2. We show the survival probability Pνµ→νµ for the MINOS baseline of L = 735 km and

energies up to 10 GeV for ε = 0 (left panel) and ε = 882 (⇔ Vb = 2 ·10−10 eV for ρ = 3 g/cm3) (right

panel) using the best fit parameters from the LSND/MiniBooNE fit of [32]. Solid curves correspond

to a numerical calculation in the full four flavour oscillation framework, using for the standard

oscillation parameters the values from the fit “Free Fluxes and RSBL” of [42]. Dashed curves show

our analytic approximation, equation (2.17), while dotted curves correspond to equations 20 and

28 of [32]. The comparison shows that, when the new matter potential Vb is switched on (ε > 0),

the active-sterile oscillation mode dominates over the standard atmospheric oscillation pattern, an

effect which is not captured by the approximations made in [32].

Since the latter condition is fulfilled in the L/E regime at which the LSND and

MiniBooNE experiments are sensitive to νµ → νe flavour transitions, the approximation

from [32] is applicable there. This can be seen in figure 1, where the transition probabilities

for neutrinos (in green) and anti-neutrinos (in blue) are shown for L = 541 m and E = 0.1–

3 MeV. We have taken the model parameters at the best fit point from [32] (which we will

show to be in fact excluded by MINOS in section 3.2). Dashed curves correspond to our

analytical approximation (equation (2.15)), which agrees extremely well with numerical

results, while dotted curves show the approximation from equations (21)–(22) of [32]. The

difference between the neutrino and anti-neutrino sectors originates from the different signs

of the matter potential. As expected, ε > 0 (⇔ Vb > 0) leads to a resonant enhancement

of the anti-neutrino transition probabilities and a suppression of the neutrino transition

probabilities compared to the case ε = 0 (black curve). We see that the approximations

used in [32] are fairly accurate in the most relevant energy range below 1 GeV, but fail at

higher energies.

Since standard and non-standard matter effects are most relevant at long baseline

(& few× 100 km), it is important to also study the disappearance probability 1− Pνµ→νµ
as a function of energy for long-baseline oscillation experiments like MINOS. MINOS has

measured Pνµ→νµ at a baseline of L = 735 km in the energy range 1–50 GeV. The oscillation

probabilities for this baseline and energy range are shown in figure 2 for ε > 0 (right panel)

and also for the Standard Model (ε = 0, left panel). We see that, due to matter-enhanced

oscillations inside the earth, a scenario with strong non-standard matter effects leads to
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very large muon disappearance even at energies as high as 10 GeV, well above the standard

oscillation maximum at ∼ 1.5 GeV. This is in conflict with MINOS data and we therefore

expect that MINOS is able to place very strong constraints on new matter effects in the

sterile neutrino sector. Figure 2 also implies that the parameters favored in [32] are ruled

out by MINOS.

Comparing numerical results (solid lines) to our analytic approximation (dashed lines),

we find, as expected, that the approximations of equations (2.15) and (2.17) are accurate

at ∆m2
31L/(2E) ∼ 1 only if Vb is very large. We also see that the analytic approximations

from [32] (dotted curves in figure 2) are not applicable at long baseline even for large

Vb. For example, in the MINOS case, ∆m2
41L/(2E) · eV2 ∼ 100 for ∆m2

41 ∼ eV2, the

phase φ2 (see equations (2.19) and (2.22)) becomes non-negligible. This is the reason why

our conclusions regarding the importance of MINOS data for constraining sterile neutrino

matter effects differ from those of [32], where φ2 has been neglected.

3 Constraints from oscillation experiments

From the analysis in the previous section we expect that the baryonic sterile neutrino

model (or models with new sterile neutrino-SM interactions in general) could potentially

explain by resonant enhancement an event excess in the MiniBooNE neutrino or anti-

neutrino data (but not in both), but is strongly constrained by data from long-baseline

experiments. Therefore, we now derive limits on the model using a numerical χ2 analysis

of data from MiniBooNE, MINOS and also solar neutrino experiments.

3.1 Analysis method

In our analysis we fix the standard oscillation parameters at their best fit values from the

global fit by Gonzalez-Garcia et al. [42] (see table 1) and we assume a normal mass ordering.

We have checked that our results for inverted ordering are very similar, with only the solar

limits becoming somewhat weaker. (We will comment on this in more detail in section 3.2.)

For simplicity we set δ13 = δ14 = δ24 = 0 because none of the experiments considered here

is sensitive to CP violation in the small Vb limit and equations (2.15)–(2.17) show that also

the leading terms in the oscillation probabilities for large Vb are independent of complex

phases. We fix the mixing angle θ34 = 0 since MiniBooNE is not sensitive to this angle and

MINOS has only very limited sensitivity [15]. The impact of θ34 > 0 on the constraints

from solar experiments will be discussed in section 3.2. Finally, we set sin2 2θ14 = 0.12

so that the reactor anomaly [3–5] can be explained. We will comment on the effect of

relaxing this assumption also in section 3.2. The constraints we impose on the parameter

space are also summarized in table 1. The remaining three parameters ε = GB/(
√

2GF ),

∆m2
41 and θ24 are scanned over the ranges |ε| = 1 − 32000, ∆m2

41/eV
2 = 0.01 − 11 and

sin2 θ24 = 0.0001− 1.

We now discuss the details of our fits to MINOS, MiniBooNE and solar neutrino data.
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sin2 θ12 sin2 θ23 sin2 θ13 ∆m2
21 [eV2] ∆m2

31 [eV2] δ13, δ14 δ24 sin2 2θ14 sin2 θ34

0.302 0.413 0.0227 7.5 · 10−5 2.473 · 10−3 0 0.12 0

Table 1. The parameter values of the baryonic sterile neutrino model that we have fixed in our

parameter scan.

3.1.1 MINOS

For MINOS, we use GLoBES [43, 44] to compute the energy dependent oscillation prob-

abilities Pnear(E) for the near detector and Pfar(E) for the far detector numerically. We

include a low pass filter according to equation (2.23) with σf (E) = 0.06 · E. The matter

density ρ along the neutrino trajectory to the far detector is assumed to be constant at its

average value

〈ρfar〉 =
2

Lfar

∫ R⊕

√
R2

⊕−(Lfar/2)2
ρ(r)

d

dr

(√
r2 −R2

⊕ + (Lfar/2)2
)
dr. (3.1)

In this expression, which can be understood from geometric arguments, r is the distance

of the neutrino from the center of the earth, R⊕ is the radius of the earth and Lfar =

735 km is the neutrino path length from the source to the far detector [45]. Using the

matter density profile from the Preliminary Reference Earth Model (PREM) [46] we obtain

〈ρfar〉 ≈ 2.36 g/cm3.

For large Vb, matter effects can be relevant even in the near detector at a baseline

Ltarget = 965 m from the target. In computing the average matter density 〈ρ〉near that

neutrinos experience on their way to the near detector, we account for the fact that they

first travel along the evacuated decay pipe with a length of Lpipe = 675 m. We estimate

〈ρ〉near ≈ (Ltarget−Lpipe)/Lnear ·3 g
cm3 , where Lnear ' 763 m is the average distance between

the neutrino production vertex and the near detector. It is obtained from the decay length

of the neutrinos’ parent pions, which have an average energy of 4− 5 GeV [47].

We compute the theoretically predicted event spectrum Nosc by multiplying the ratio

Pfar(E)/Pnear(E) with the background-subtracted prediction for the MINOS event rate in

the absence of oscillations, Nno osc:

Nosc(E) =
[
Nno osc(E)−Nbg(E)

] Pfar(E)

Pnear(E)
. (3.2)

The no-oscllation rate Nno osc(E) and the background rate Nbg(E) are taken from [48],

which is similar to [49] but contains data up to 50 GeV. The higher energy data is important

to us since it increases the sensitivity at low matter potential Vb.

To account for the finite energy resolution of the detector, we foldNosc with the detector

response function f(E,E′), which maps the true event energy E′ to the reconstructed

energy E. Finally, we also add the small experimental background Nbg(E):

Nth(E) = Nbg(E) +

∫
f(E,E′)Nosc(E

′)dE′. (3.3)

We assume a Gaussian shape for f(E,E′),

f(E,E′) =
1

σ(E′)
√

2π
exp

(
−(E − E′)2

2σ2(E′)

)
, (3.4)
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where we choose σ(E′) = 0.2 GeV
√
E′/GeV. This choice allows us to reproduce the

oscillated event rates and the constraints on θ23 and ∆m2
31 from [49] with good accuracy.

When evaluating equation (3.3) numerically, we discretize the integral so that Nosc(E)

needs to be evaluated only at fixed support points E′j with a step size of ∆E′j = 0.25 GeV

in between. (We have checked that choosing a smaller value for ∆E′j does not change

our results significantly, which implies that possible aliasing effects are under control.)

Following the MINOS analysis [48], events are binned for the analysis according to their

reconstructed energy E. The rate in th i-th bin is given by

N i
th =

∫ Ei+∆Ei/2

Ei−∆Ei/2
Nth(E) dE = N i

bg +
∑
j

F ijNosc(E
′
j), (3.5)

where N i
bg is the total background in the i-th bin and the elements of the detector response

matrix F ij are F ij ≡=
∫ Ei+∆Ei/2
Ei−∆Ei/2

f(E,E′j) dE. It is important to note that the F ij need

to be computed only once.

From equation (3.5) we compute χ2 according to

χ2 =
∑
i

(
N i

th −N i
exp√

N i
exp + 0.1 ·N i

exp

)2

, (3.6)

where N i
exp is the observed event rate in the i-th energy bin [48] and the sum runs over

all energy bins. Note that we have included an additional uncertainty of 10% in order to

account for systematic errors without modeling them in detail. Like our choice of σ(E′)

in equation (3.4), also our simplified treatment of systematic errors has been confirmed by

cross-checking our simulations against the results of [15, 49].

In figure 3, we compare our prediction for the oscillated neutrino spectrum in MINOS

assuming standard 3-flavour oscillations (blue shaded histogram) to the official MINOS

prediction (blue unshaded histogram) and to the data (black points with error bars). We

find excellent agreement, which validates our calculations. We also show the MINOS no

oscillation prediction (red histogram) which is the starting point for our predictions, as well

as the survival probability Pνµ→νµ (dashed green line; corresponding vertical scale shown

on the right).

3.1.2 MiniBooNE

As for MINOS, the oscillation probabilities for MiniBooNE are calculated numerically in

the full four flavour framework with the help of GLoBES [43, 44], including a low pass

filter according to equation (2.23) with σf (E) = 0.06E. Since the MiniBooNE decay pipe

is only 50 m long, while the distance from the target to the detector is L = 541 m, we

neglect the effect of the finite pion decay length. Instead, we take the matter density to be

〈ρ〉 ∼ 3 g/cm3 along the whole neutrino trajectory.

We use a χ2 analysis to compare our predicted oscillation probabilities with the exper-

imentally measured probabilities, which are given in [50] as a function of L/E. The data

from [50] are shown in figure 4 together with the trivial no-oscillation prediction and with
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Figure 3. The measured and predicted event spectra for the MINOS νµ (left) and νµ (right)

disappearance measurements. The red histogram is the MINOS prediction assuming no neutrino

oscillation [48]. In blue, we show the predicted event spectrum including oscillations according to

equation (3.3), assuming standard three flavour oscillations with the parameters listed in table 1.

The blue shaded histogram is our prediction, the unshaded histogram is the prediction by the

MINOS collaboration. We overlay the survival probability Pνµ→νµ (dashed green curve and vertical

scale on the right).

Figure 4. The measured MiniBooNE νµ → νe (left) and ν̄µ → ν̄e (right) appearance probabilities

compared to the predictions of the baryonic sterile neutrino scenario for ε > 0 (blue line) and ε < 0

(dashed red line) at the MiniBooNE best fit points from table 2. Without sterile neutrinos, the

appearance probability at the MiniBooNE baseline is approximately zero (solid black line).

our prediction for the MiniBooNE best fit points in the baryonic sterile neutrino scenario

for ε > 0 and ε < 0.
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3.1.3 Solar neutrinos

We analyze solar neutrino oscillation data by comparing the measured νe survival proba-

bility Pνe→νe at different energies to our theoretical predictions. The data points are taken

from [51] and include results from Super-Kamiokande, SNO, Borexino and radiochemical

experiments on CC νe interactions. We do not include SNO NC data in our analysis be-

cause even for ε ∼ 102, the cross section for A′-mediated NC scattering is still smaller

than the cross section for Z-mediated NC scattering in the SM. This is related to the axial

vector structure and the isospin-dependent nature of Z boson couplings, compared to the

vector structure and isospin-independent nature of A′ couplings [27].

In calculating Pνe→νe , we assume MSW flavour transitions to be fully adiabatic and

we account for the fact that solar neutrinos arrive at the earth as an incoherent mixture of

mass eigenstates. We obtain Pνe→νe according to

Pνe→νe =
∑
i

|Uei|2 · |Ũei(0)|2, (3.7)

where Ũei(0) is the mixing matrix in matter at the center of the Sun (t = 0) and Uei is the

vacuum mixing matrix. We neglect earth matter effects here, but we have checked that,

in the parameter ranges of interest to us, the day-night effect caused by the earth matter

is of the order of few per cent, comparable to the day-night effect in the Standard Model.

We thus anticipate that our limits would only change marginally if Earth matter effects

were included.

In order to verify that the assumption of full adiabaticity is justified, we have examined

the adiabaticity parameter γ in the two flavour approximation and we have checked that

the adiabaticity condition [35]

γ−1 =
sin 2θ

∆m2
ij

2E

|λi − λj |3
·
∣∣∣∣dVbdt

∣∣∣∣� 1 (3.8)

holds for all relevant mass squared difference ∆m2
ij even for large Vb and the smallest

relevant differences between the Hamiltonian eigenvalues λi and λj , which occur at the

resonance position. We determine the derivative of the matter potential,
∣∣dVb/dt∣∣, from

the solar density profile of the standard solar model BS’05 (OP) [52].

In figure 5, we compare the measured solar neutrino oscillation probabilities Pνe→νe to

the theoretical predictions for standard three flavour oscillations and for the best fitting

baryonic neutrino scenarios with ε > 0 (blue) and ε < 0 (red).

We observe that for ε < 0, a peak-like structure appears in Pνe→νe , which suggests that

mixing of νe with other flavors is dynamically driven to zero for specific parameter combina-

tions. The peak occurs at parameter points where ∆m2
41/(2E), ∆m2

31/(2E)� ∆m2
21/(2E),

Vb and where moreover θ34 and θ13 are small. To understand its origin, it is therefore help-

ful to determine the eigenvalues of the Hamiltonian Hflavor
eff (see equation (2.10)) using

time-independent perturbation theory, with the zeroth order Hamiltonian given by

H
flavour,(0)
eff ≡ 1

2E
Udiag(0, 0,∆m2

31,∆m
2
41)U † , (3.9)
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Figure 5. Comparison of the measured solar neutrino oscillation probabilities to our theoretical

predictions for standard three flavour oscillations (black) and for the best fit parameter points of

the baryonic sterile neutrino model with ε > 0 (dotted blue) and ε < 0 (dashed red).

and the perturbation being H
flavour,(1)
eff ≡ Hflavour

eff − H
flavour,(0)
eff . In the approximation

θ34 = θ13 = 0, a set of zeroth order eigenvectors is obviously given by the matrix

U (0) ≡ R′24R
′
14R23, where, as before, Rij and R′ij are real and complex rotation matri-

ces, respectively. Since H
flavour,(0)
eff has zero as a double eigenvalue, we next have to find

eigenvectors of H
flavour,(1)
eff in the subspace corresponding to this double eigenvalue. In other

words, we need to compute U (0)†H
flavour,(1)
eff U (0) and then diagonalize the upper left 2 × 2

block. It turns out that, if the condition

∆m2
21

2E
sin 2θ12 + Vb cos θ23 sin θ14 sin 2θ24 ' 0 (3.10)

is fulfilled, this 2× 2 block is automatically diagonal. This implies that U (0)(1, 0, 0, 0)T '
(1, 0, 0, 0) is an approximate eigenvector of Hflavour

eff . Hence, if (3.10) holds at the center of

the Sun, solar neutrinos are produced in an almost pure ν1 mass eigenstate. After adiabatic

flavour conversion, the resulting νe admixture is of order cos θ2
12, leading to a peak in the

observed solar neutrino spectrum at Earth.

3.2 Results

In figures 6 and 7 our constraints on the parameter space of baryonic sterile neutrinos are

presented as contour plots for ε > 0 and ε < 0, respectively. We show exclusion limits (lines

of constant χ2 − χ2
min) at the 95% and 3σ confidence levels. In each panel, we keep either

ε or ∆m2
41 fixed at the value indicated in the plot and show constraints on the remaining

two parameters. Moreover, as discussed in section 3.1, we fixed sin2 2θ14 = 0.12. Blue lines

correspond to constraints from solar experiments, black lines are the limits from MINOS

and the colored regions show the parameter region preferred by MiniBooNE. The best fit

values for ε > 0 and ε < 0 are listed in table 2.
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Figure 6. 95% and 3σ confidence level constraints on the parameters ∆m2
41, sin2 2θ24 and ε

(strength of the new MSW potential) of the baryonic sterile neutrino model in the ε > 0 case. Blue

contours show constraints from solar experiments, black contours are for MINOS and shaded areas

correspond to the region preferred by MiniBooNE. We have fixed sin2 2θ14 = 0.12, as motivated by

the reactor and gallium anomalies.

Figure 7. 95% and 3σ confidence level constraints on the parameters ∆m2
41, sin2 2θ24 and ε

(strength of the new MSW potential) of the baryonic sterile neutrino model in the ε < 0 case. Blue

contours show constraints from solar experiments, black contours are for MINOS and shaded areas

correspond to the region preferred by MiniBooNE. We have fixed sin2 2θ14 = 0.12, as motivated by

the reactor and gallium anomalies.
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ε = GB/(
√

2GF ) ∆m2
41 [eV2] sin2 θ24 χ2

min/d.o.f.

MINOS ε > 0 16.9 0.014 0.0024 37.7/49

ε < 0 −19.2 0.037 0.00083 36.1/49

MiniBooNE ε > 0 30634 0.316 0.10 16.1/20

ε < 0 −32000 0.116 0.75 16.4/20

Solar ε > 0 0.20 insensitive 1.0 1.10/3

ε < 0 −38.0 0.013 0.046 0.41/3

Table 2. Best fit values resulting from our parameter scan for the different experimental data sets.

For the MiniBooNE fit with ε < 0 analysis the best fit value for ε is located outside the boundary

of the analysis region, but χ2 hardly depends on |ε| in this region. Also note that the solar best fit

in the ε > 0 case has ε < 1 and is not sensitive to the exact value of ∆m2
41 in the interval [0.01, 11].

We see that values of |ε| & 10 are strongly disfavored by MINOS except in the case

of tiny active-sterile mixing angles. For such large values of ε, the new MSW resonance

at ∆m2
41/(2E) ∼ Vb lies within the MINOS energy range E < 50 GeV and leads to a

constraint sin2 θ24 . 10−3. Such small mixing angles are, however, irrelevant for possible

explanations of MiniBooNE and other short-baseline anomalies. The MINOS contours also

show that in most of the mass range 10−2 eV2 . ∆m2
41 . 101 eV2, values of sin2 θ24 & 0.01

are excluded, with limits becoming much stronger at large ε.

Solar neutrinos also have some sensitivity to θ24, but limits on ε vary a lot with sin2 θ24.

For intermediate values 0.01 . sin2 θ24 . 0.1, even values of |ε| as large as few × 103 are

compatible with solar neutrino data. For ε > 0, we notice that solar limits on ε are weakest

at sin2 θ24 ∼ few × 10−2. In this regime, the additional neutrino disappearance due to

nonzero θ14 and θ24 is partially compensated by Vb-induced modifications to the MSW

resonance structure. In particular, the 1–4 and 2–4 mixings imply that above the solar

MSW resonance, ν1–ν2 mixing is not as strongly suppressed as in the standard case. This

reduces the flavour transition probability at energies above the resonance. Note that this

effect is related to a sterile neutrino-induced smearing of the atmospheric resonance (which

at the center of the Sun lies at about 200 MeV) to the extent that it has a small impact even

at energies as low as∼ 10 MeV. The effect is therefore absent if the neutrino mass ordering is

inverted so that the atmospheric resonance lies in the anti-neutrino sector. We have checked

that indeed the limits on ε from solar neutrino experiments become somewhat weaker in

this case. For ε < 0, the exclusion contours reveal an allowed “island” at ε ∼ −103. In

the parameter region corresponding to these islands, the non-standard MSW resonance at

∆m2
41/2E ' Vb mimics the effect of the standard solar resonance. Note that such strong

resonant conversion of active neutrinos into sterile neutrinos could have an observable

impact on the SNO NC data, which is not included in our analysis because its impact

is expected to be negligible in most of the parameter space (see section 3.1.3). Also, in

this parameter region, the atmospheric MSW resonance — modified by the presence of the

sterile neutrinos — has a small impact. Therefore, the “islands” move down by almost an

order of magnitude in |ε| if the neutrino mass ordering is inverted. The ∆m2
41-independent

“peninsula” at ε ∼ −20, is related to the appearance of the peak structure in Pνe→νe which

we discussed in section 3.1.3 and which is independent of the mass ordering.
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Figure 8. Constraints on ε and sin2 θ24 from solar neutrinos for fixed sin2 2θ14 = 0.12 (as motivated

by the reactor and gallium anomalies), but for different values of θ34. The value of ∆m2
41 has been

marginalized over in the range 10−2 ≤ ∆m2
41 ≤ 1.1 · 101.

The allowed parameter region for the measured appearance signal in MiniBooNE is very

similar to the one obtained in conventional sterile neutrino scenarios (see for instance the

analysis by the MiniBooNE collaboration themselves [2]) with the exception that for large

matter potentials, the allowed region is expanded towards lower sin2 θ24 and higher ∆m2
41.

We now relax our assumption θ34 = 0. The main sensitivity to θ34 is expected to come

from solar neutrinos [15] (and from MINOS neutral current measurements, which we did

not consider in this work, though). We compare the solar neutrino limits in the sin2 θ24–ε

plane for different values of θ34 in figure 8, marginalizing over the sterile neutrino mass in

the range 10−2 ≤ ∆m2
41 ≤ 1.1 · 101. We see that the constraints on ε become somewhat

weaker if sin2 θ34 ∼ 0.01 and change significantly for larger values of sin2 θ34. This implies

that, for large θ34, a scenario with strong non-standard matter potential can be consistent

with solar data and with MiniBooNE. Nevertheless, such a scenario would still be ruled

out by MINOS.

Finally, let us also discuss the effect of choosing sin2 2θ14 different from the value

0.12 preferred by the reactor neutrino anomaly. To this end, we show in figure 9 how the

constraints on ε and θ24 for fixed ∆m2
41 are modified if sin2 2θ14 is taken a factor of 2 smaller

(left panel) or a factor of 2 larger (right panel) than the preferred value. We see that the

MiniBooNE preferred region, which is sensitive only to the combination sin2 2θ14 sin2 θ24

is simply shifted by a factor of 2. Solar limits are affected in a less trivial way and we

find that at large θ14, there is even a preference for nonzero θ24. Note, however, that the

goodness of fit becomes slightly worse as θ14 is increased: the minimum χ2/dof is 0.8/3 for

sin2 2θ14 = 0.6 and 2.7/3 for sin2 2θ14 = 0.24. Finally, MINOS limits are weakened if θ14

is large, especially at large ε. This happens because a larger mixing between νe and νb by

unitarity implies more νµ disappearance.
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Figure 9. The effect of varying θ14 on the constraints in the sin2 θ24–ε plane. The plot in the

center reproduces middle panel in the upper row of figure 6, while the left and right panels show

similar constraints for smaller and larger θ14, respectively.

4 Conclusions

To summarize, we have derived constraints on models with extended sterile neutrino sec-

tors that feature in particular a new gauge interaction between sterile neutrinos and SM

particles. As a specific example, we have considered a scenario in which eV-scale sterile

neutrinos are charged under gauged baryon number U(1)B. In principle, such interactions

could be several orders of magnitude stronger than SM weak interactions, so the Mikheyev-

Smirnov-Wolfenstein (MSW) potentials they generate could be significantly larger than the

matter potential in standard three-flavour neutrino oscillations.

We have also computed approximate analytic expressions for the relevant oscillation

probabilities in matter, improving and extending the expressions previously derived in [32].

We have then numerically analyzed data from the MINOS experiment, from solar neutrino

measurements and from MiniBooNE to show that new gauge interactions in the sterile

neutrino sector cannot be large unless the active-sterile neutrino mixing is very small. In

particular, if the ratio ε of the non-standard and standard matter potentials is larger than

∼ 10, MINOS excludes mixing angles down to sin2 2θ24 ∼ 10−3. (This limit becomes

stronger if θ14 = 0.)

We conclude that sterile neutrino searches in oscillation experiments are powerful tools

to constrain certain models with hidden sector gauge interactions. We also conclude that

such models do not help to resolve the tension in the global fit to short-baseline oscilla-

tion data.

Comparing to the interaction strength required for baryonic sterile neutrinos to yield

signals in dark matter detectors [27–30], we conclude that in the case of eV scale sterile

neutrinos, baryonic interactions cannot be large enough to be observable in the current

generation of experiments. On the other hand, interesting signals may still be possible in

future ton-scale experiments.
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