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Abstract

Background: In bone metabolism, Ca®* disturbance and oxidative damage are the main biochemical factors
related to pathology. Osteoblasts are bone-forming cells that also control bone endocrinology. Endocrine
hormones and proteins are matured, folded, and secreted in the endoplasmic reticulum (ER). ER stress has emerged
as a new pathological mechanism to explain bone disturbance. Here we studied the role of porcine placenta

hydrolysates (PPHs) in the regulation of ER stress.

Methods: Cell viability was determined in vitro using trypan blue dye exclusion. ER stress and apoptosis were
evaluated using immunoblotting and a caspase kit. The fluorescent Ca®*-binding dye Fura-2/AM was used to
measure changes in intracellular Ca®* ([Ca”*];). ROS levels, NADPH oxidase activity, and superoxide dismutase (SOD)

activity were also measured.

Results: PPHs protected MC3T3-E1 osteoblastic cells against thapsigargin (Tg)-induced ER stress. Moreover, PPHs
regulated caspase-12 and —3 activities, thereby protecting against cell death, and also regulated Tg-induced Ca**
release. The Ca”* chelator BAPT/AM also regulated caspase-12 and —3 activities and prevented Ca® stress-induced
cell death. In the presence of PPHs or BAPTA/AM, Ca**-related ROS were also regulated, as demonstrated by

alterations in NADPH oxidase and SOD activity.

Conclusions: PPHs appear to regulate bone metabolism disturbance by controlling Ca®* concentrations, and thus

ER stress and ROS, in osteoblasts cultured in vitro.

Keywords: Osteoporosis, Oxidative damage, Calcium, Porcine placenta hydrolysates, ER stress

Background

Osteoporosis is characterized by decreased bone strength,
decreased bone mass, and deterioration of bone tissue. An
imbalance between bone resorption and bone formation is
the dominant mechanism causing osteoporosis [1, 2]. Since
new bone formation primarily depends on osteoblasts, fac-
tors that disturb their bone-forming characteristics can lead
to bone formation defects or related pathological condi-
tions. Osteoblasts are secretory cells with well-developed
endoplasmic reticulum (ER) cristae. The balance of osteo-
blasts and osteoclastic cells is carefully controlled [1, 3, 4].
During severe pathologic stress, apoptosis occurs in
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osteoblasts, which disturbs the balance between osteoblasts
and osteoclasts and ultimately leads to bone resorption and
related disease conditions [5].

The ER plays a major role in controlling protein folding
and secretion in cells. Various acute and chronic condi-
tions, including misfolded proteins and Ca?* disturbances,
can alter ER function and lead to ER stress [6-8]. Ca®*
disturbance and oxidative stress (which is related to Ca®*
disturbance) have been suggested to lead to pathological ER
stress. Furthermore, ER stress has been reported to contrib-
ute to several diseases, including bone diseases [9, 10].
Osteoblast apoptosis associated with ER stress is one of the
predominant mechanisms of osteoporosis pathogenesis
[11-14]. In stressed osteoblasts, endocrine function, includ-
ing the production of bone formation hormones (e.g,
osteopontin and osteocalcin), is damaged [15, 16]. During
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severe ER stress, apoptosis is also induced [17-19]. Conse-
quently, ER stress regulators are of great importance in
bone-related endocrine cells.

The placenta is an organ found exclusively in women
during pregnancy that supplies nutrients and oxygen to
the developing fetus. The nutritional substances and vi-
tamins therein can be extracted in the form of porcine
placenta hydrolysates (PPHs). PPHs are considered to be
a reservoir of cytokines, hormones, bioactive peptides,
enzymes, growth factors, and minerals [20]. PPHs also
contain valuable bioactive compounds that have various
biological functions, including inhibiting aging, inflam-
mation, sunburn, gene mutation, and oxidation [21].
PPHs have been used for wound healing in Korean folk
medicine [22, 23] and have been demonstrated to have
immunomodulatory effects in various studies [24, 25].
Moreover, PPHs have been used in cosmetic and
pharmaceutical products for whitening and oxidative
stress-induced diseases, respectively [20]. However, the
effect of PPHs on bone-related endocrine cells, including
osteoblasts, has received comparatively little attention.
To determine the role of PPHs in the endocrine system,
it is important to determine the effects of PPHs on oste-
oblasts, a representative endocrine cell associated with
stress conditions.

We based our study on the knowledge that osteoblasts
are susceptible to Ca®* disturbance and hypothesized
that they amplify their signaling to closely related cells.
Thus, in this pharmacological study of PPHs, we studied
Ca** disturbance in the context of related ER stress and
cell death. We tested the hypothesis that PPHs regulate
ER stress by affecting Ca** homeostasis, leading to cell
protection. Our results indicate that PPHs are a novel
group of ER stress regulators, at least in bone-forming
osteoblasts, with an additional protective role against
Ca** disturbance.

Methods

Materials

PPHs were obtained from Codebio Inc. (Cheonan,
Republic of Korea). Hydrogen peroxide and thapsigar-
gin were obtained from Sigma Chemical Company (St.
Louis, MO, USA). BAPTA/AM was purchased from
Invitrogen (Carlsbad, CA, USA). Caspase-3 and -12
activity kits were obtained from BioVision (Mountain
View, CA, USA). All other chemicals and reagents
used in this study were of reagent-grade quality and
were obtained commercially.

Cell culture and viability analysis

The MC3T3-E1 osteoblast-like cell line (mouse C57BL/6
calvaria, subclone 4, ATCC No. 58078614) was pur-
chased from the American Type Culture Collection
(ATCC; Manassas, VA, USA). MC3T3-E1 osteoblastic
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cells were cultured in minimum essential medium (a-
MEM) supplemented with 10 % fetal bovine serum
(FBS), 100 U/mL penicillin, and 100 pg/mL strepto-
mycin (Gibco). Cells were maintained at 37 °C in a hu-
midified atmosphere of 5 % CO,. After the cells were
cultured with PPHs and/or other agents, cell viability
was assessed by trypan blue dye exclusion using a
hemocytometer.

Quantification of apoptosis

To visualize nuclear morphology, cells were fixed in 4 %
paraformaldehyde and stained with 2.5 pg/ml Hoechst
33342 DNA dye. Cells with uniformly stained nuclei were
scored as healthy and viable. Cells with condensed or frag-
mented nuclei were scored as apoptotic. To ensure that the
counting was unbiased, all petri dishes were coded before
the cells were scored. Separately, the apoptosis assay using
flow cytometry was performed according to the vendor’s
protocol (BD Pharmingen, BD Biosciences, San Jose, USA).
Briefly, the cells were treated with 0.1 uM Tg at 37 °C in
the presence or absence of 100 pg/mL PPHs or 2 uM
BAPTA/AM for 24 h and were trypsinized, washed in PBS
and resuspended (1x10° cells/ml) in binding buffer (10 mM
HEPES, pH 7.4, 140 mM NaCl, 2.5 mM CaCl,). A fraction
(100 ul/1x10° cells) of the cell suspension was incubated
with 5 ul Annexin V conjugated to FITC and 5 pl propi-
dium iodide (PI) for 15 mins at 25 °C in the dark. 400 pl of
binding buffer was added to the suspension and apoptosis
was measured immediately using a BD FACSCalibur flow
cytometry (BD Biosciences, Franklin Lakes, NJ, USA).

Immunoblotting

For immunoblotting, MC3T3-E1 osteoblastic cells were
lysed by the addition of lysis buffer [50 mM Tris—HCI
(pH 7.4), 150 mM NaCl, 0.25 % sodium deoxycholate, 1 %
NP-40, 1 mM ethylenediaminetetraacetic acid (EDTA),
0.1 % sodium dodecyl sulfate (SDS), protease inhibitor
cocktail set III (EMD Biosciences, La Jolla, CA, USA) and
phosphatase inhibitor cocktail set II (EMD Biosciences)]
directly onto the cells. The proteins in the lysates (40 pg)
were resolved on polyacrylamide gels and transferred to
nitrocellulose membranes that were then blocked with skim
milk for 1 h at room temperature. The blots were probed
overnight at 4 °C with the appropriate primary antibodies,
washed, and probed again with species-specific secondary
antibodies coupled to horseradish peroxidase (GE Health-
care, Piscataway, NJ, USA). Chemiluminescence reagents
(GE Healthcare) were used for signal detection. Primary
antibodies included rat anti-GRP78, rabbit anti-GADD153/
C/EBP homologous protein (CHOP), rabbit-anti-PERK,
mouse anti-elF2a, rabbit anti-ATF6a, and mouse anti-f-
actin (Santa Cruz Biotechnologies, Inc., Santa Cruz, CA,
USA), in addition to rabbit anti-phospho-elF2 and rabbit
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anti-IREla (Cell Signaling Technologies, Inc., Danvers,
MA, USA).

Calcium analysis

The procedures for Ca** measurements were modi-
fied from Kim et al. [26]. Briefly, the low affinity
fluorescent Ca** dye Fura-2/AM (1-[2-(5-carboxyox-
azol-2-yl)-6-aminobenzoFURAn-5-oxy]-2-(2-amino-5-
methylphenoxy)-ethane-N, N, N, N’-tetraacetic acid
pentaacetoxymethyl ester; Molecular Probes, Eugene, OR,
USA) was used to measure changes in intracellular Ca**
([Ca*"],). Cells were incubated with Fura-2/AM (2 uM) for
30 min at room temperature in Hanks” balanced salt solu-
tion. After loading, cells were washed three times in iso-
tonic buffer without Ca®>* (KH buffer: 132 mM NaCl,
5 mM KCl, 10 mM glucose, 10 mM HEPES, and 1.05 mM
MgCl,). Cells were then promptly treated with thapsigargin.
Changes in [Ca®*]; were determined by measuring the ratio
of 340/380 nm excitation (512 nm emission) using an inte-
grated spectrofluorometer (Photon Technology Inter-
national, Birmingham, NJ, USA). Ca’* concentrations were
calculated using the equation [Ca®'];= K, (Fss0 max/Fsso
min)R - Rinin)/(Rmax - R); a K value of 229 nM was as-
sumed for the binding of calcium to Fura-2/AM. R, and
R,in were determined in each experimental group by the
consecutive addition of 30 puM Triton X-100 (R, and
50 mM EGTA (Rpin)-

Measurement of caspase-3 activity

To analyze caspase-3 activity, cell pellets were resuspended
in lysis buffer [25 mM HEPES (pH 7.4), 0.1 % Triton X-100,
10 % glycerol, 5 mM DTT, and a protease inhibitor cock-
tail] and spun by centrifugation at 13,000 rpm at 4 °C for
30 min. The soluble protein fraction (40 pg) was mixed
with 100 uM of the caspase-3-specific substrate Ac-DEVD-
AFC (Acetyl-Asp-Glu-Val-Asp-AFC, Sigma-Aldrich) in a
final volume of 100 pL and incubated at 37 °C. Caspase-3
activity was analyzed continuously by monitoring fluoro-
genic AFC release at 37 °C. Subsequently, substrate cleav-
age was monitored at 405 nm using a SPECTRAmax 340
microplate reader. All data were analyzed using SOFTmax
PRO software (Molecular Devices, Sunnyvale, CA, USA).

Measurement of caspase-12 activity

Caspase-12 activity was measured spectrophotomet-
rically by detecting free AFC cleavage with caspase-
12-specific substrates using a Caspase-12 Assay Kit
(Biovision, San Francisco, CA, USA). After the lysates
were incubated with ATAD-AFC (AFC: 7-amino-4-tri-
fluoromethyl coumarin) for 2 h at 37 °C, the absorb-
ance of each sample at 505 nm was read.

Page 3 of 10

NADPH oxidase activity assay

Cells were seeded in six-well plates and cultured for
48 h. Next, the cells were treated with 0.1 uM Tg for
24 h in the presence or absence of 100 pug/mL PPHs for
30 min. NADPH oxidase activity was determined based
on superoxide-induced lucigenin photoemission, as de-
scribed by Rao and Maddala et al. [27]. Enzymatic assays
were performed in a final volume of 0.2 ml containing
50 mM phosphate buffer (pH 7.0), 1 mM EGTA,
150 mM sucrose, 0.5 mM lucigenin, 0.1 mM NADPH,
and cell lysis solution. Enzymatic reactions were initiated
by the addition of lucigenin. Photoemission, expressed
as relative light units, was measured every minute for
10 min using a luminometer. Assays were performed in
the dark at room temperature with all appropriate
controls.

Superoxide dismutase (SOD) activity assay

Cells were seeded in six-well plates and cultured for 48 h.
The cells were then treated with 0.1 uM Tg for 24 h in the
presence or absence of 100 pg/mL PPHs for 30 min. Next,
cells were harvested and the level of SOD activity was
determined using a SOD assay kit (k335-100, Biovision)
according to the manufacturer's instructions.

DCFDA assay (ROS production)

The cellular ROS level was measured by following the
protocol described by Badham et al. (2010) [28]. Briefly,
cells were treated with 0.1 uM Tg at 37 °C in the pres-
ence or absence of 100 pg/mL PPHs or 2 uM BAPTA/
AM for 24 h. Next, cells were incubated with 10 pM 2;
7’-dichlorofluorescein diacetate (DCFDA) at 37 °C for an
additional 30 min. The fluorescence intensity of 2,7’-
dichlorofluorescein, a product of the reaction between
DCFDA and cellular ROS, was analyzed using a fluores-
cence reader (SpectraMax 190, Molecular Devices, LLC,
Sunnyvale, CA, USA).

Statistical analysis

Results are presented as means + SEs of # cells. Paired and
unpaired Student's t-tests were applied to the test and
control conditions where appropriate. Microcal Origin
software (Northampton, MA, USA) was used for all statis-
tical calculations.

Results

PPHs alleviate Tg-induced cell death in MC3T3-E1 osteo-
blastic cells

Porcine placenta hydrolysates (PPHs) have traditionally
been used to treat bone resorption, especially in meno-
pausal women. Since calcium disturbance is a known
mechanism of bone dysmetabolism [29], thapsigargin (a
Ca**-ATPase inhibitor and Ca**-disturbing agent) was
applied to PPHs-treated or non-treated MC3T3E-1
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osteoblastic cells. MC3T3-E1 osteoblasts were used to
study the efficacy and function of PPHs on osteoblasts
because these secretory cells have highly developed ER.
First, we tested the effect of PPHs on cell viability. At con-
centrations ranging from 25 to 100 pg/mL, PPHs did not
significantly affect the viability of MC3T3-E1 osteoblastic
cells (Additional file 1: Figure S1A). However, treatment of
cells with 0.025, 0.05, or 0.1 pM Tg for 24 h significantly in-
creased cell death in a concentration-dependent manner
(Additional file 1: Figure S1B). Interestingly, PPHs signifi-
cantly blunted Tg-induced cell death in a concentration-
dependent manner (Additional file 1: Figure S1C). The
kinetics of PPHs-mediated protection (100 pug/mL PPHs)
are shown in Additional file 1: Figure S1D. To investigate
the mechanism of cell death, apoptosis was analyzed
through Hoechst 33342 staining. Representative photomi-
crographs of MC3T3-E1 nuclear morphology are shown in
Fig. la. Tg treatment induced nuclear condensation and
fragmentation, both of which are characteristic of apoptosis.
However, pretreatment with PPHs markedly attenuated this
effect. Caspase-12 activation is known to be associated with
ER stress-induced apoptosis [30]. Thus, we investigated the
effect of PPHs on caspase-12 activation. We found that
caspase-12 activity increased significantly after Tg treat-
ment, whereas treatment with PPHs markedly reduced Tg-
induced caspase-12 activity in MC3T3-E1 cells (Fig. 1b).
Similarly, Tg treatment enhanced caspase-3 activation, and
this increase was blocked by PPHs treatment in MC3T3-E1
cells (Fig. 1c). Next, MC3T3-E1 cells were treated with Tg
in the presence or absence of PPHs and the levels of vari-
ous apoptosis-related proteins (caspase-12, -3, Bax, and
Bcl-2) were analyzed by immunoblotting. These experi-
ments showed that Tg significantly increased the protein
levels of caspase-12, caspase-3, Bax, and Bcl-2 in a time-
dependent manner. Interestingly, combined treatment with
PPHs and Tg resulted in less increased protein levels of
caspase-12, caspase-3, and Bax in MC3T3-E1 cells, rather
than further increasing the protein level of Bcl-2, an anti-
apoptotic protein. This is an interesting finding because it
contrasts with the results obtained with treatment with Tg
alone (Fig. 1d). These findings suggest that PPHs protect
osteoblasts against Ca>* stress.

PPHs protect against ER stress-induced apoptosis in
MC3T3-E1 osteoblastic cells

Ca®* disturbance is linked to intra-ER Ca®* depletion/al-
teration, which also affects the ER folding machinery that
induce ER stress®™®. To investigate the effect of PPHs on
ER stress in osteoblasts, MC3T3-E1 osteoblasts were incu-
bated with 0.1 pM Tg to induce ER stress. To confirm in-
duction of the ER stress response, we evaluated the
expression and phosphorylation status of glucose response
protein 78 (GRP78), which is a representative chaperone
protein, and C/EBP homologous protein (CHOP), which
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is a proapoptotic ER stress protein. We also assessed the
expression and phosphorylation status of PKR-like ER kin-
ase (p-PERK) and its downstream target eukaryotic initi-
ation factor 2 alpha (elF2a), which are related to protein
translation attenuation, inositol-requiring enzyme 1
(IRE1-a), which has an endonuclease domain and a trans-
autophosphorylation kinase domain, and activating tran-
scription factor 6 (ATF6a), which is a transcription factor
that activates the transcription of ER molecules. The levels
of all these proteins were significantly increased in cells
treated with Tg. However, treatment with PPHs inhibited
the Tg-mediated increases in the levels of GRP78, CHOP,
p-PERK, p-elF2q, p-IREl-a, and ATF6-a (Fig. 2a and b),
indicating that PPHs affect the regulation of ER stress in
the presence of Ca>* disturbances.

PPHs regulate calcium release and ER stress-mediated
apoptosis in MC3T3-E1 osteoblastic cells

Homeostasis of intracellular Ca®* levels ([Ca®*];) is im-
portant for osteoblast differentiation [29, 31]. To analyze
the regulation of [Ca®']; in osteoblasts, we investigated
the effects of PPHs on intracellular Ca** concentration.
While the [Ca®*]; was significantly increased in Tg-
treated cells, treatment with BAPTA/AM significantly
attenuated this Ca”* spike in Tg-treated cells (Fig. 3a).
To confirm the relationship between PPHs, Ca?*, and
apoptosis, Tg-treated osteoblasts were pretreated with
the Ca’*-chelating agent BAPTA/AM. The effect of
PPHs alone was also tested. As shown in Fig. 3b, both
PPHs and BAPTA/AM protected osteoblasts against Tg-
induced apoptosis. Apoptosis levels were also deter-
mined by flow cytometry and expressed in units of mean
fluorescence intensity. In the MC3T3-E1 cells, the apop-
tosis level was 27.15 + 1.4 after Tg treatment for 24 h,
whereas the apoptosis level in the PPHs group was
15.32 +2.0. The level in the presence of Ca®* chelating
agent was similar to that in the presence of PPHs, indi-
cating that PPHs at least partly regulates Ca**-associated
ROS production in the Ca** disturbing stress (Fig. 3c).
Consistently, both agents also significantly blocked Tg-
induced caspase-12 and -3 activation (Fig. 3d and e),
suggesting that PPHs protect osteoblasts from apoptosis
by modulating the levels of Ca®*.

PPHs regulate ROS production, NADPH oxidase activity
and SOD activity in MC3T3-E1 osteoblastic cells

To analyze the relationship of Ca** with ROS in the
presence of PPHs, we determined the effect of PPHs on
Tg-induced ROS release. As expected, treatment with
0.1 pM Tg resulted in significantly increased ROS pro-
duction. However, exposure to 100 pg/mL PPHs signifi-
cantly attenuated ROS production in the Tg-treated
MC3T3-E1 cells (Fig. 4a).
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Fig. 1 PPHs protect against Tg-induced apoptosis in MC3T3-E1 osteoblastic cells. a Hoechst 33342 staining was performed in cells treated with
0.1 UM Tg in the presence or absence of 100 ug/mL PPHs for 24 h. Arrows identify cells with condensed or fragmented nuclei characteristic of
apoptosis. Apoptotic cells were quantified based on nuclear condensation or fragmentation (right). Caspase-12 (b) and —3 activities (c) were analyzed
in MC3T3-E1 cells treated with 0.1 uM Tg in the presence or absence of 100 pg/mL PPHs for 0, 12, 24, 36, or 48 h. d Cells were treated with 0.1 uM Tg
in the presence or absence of 100 ug/mL PPHs for 0, 12, 24, or 48 h. Immunoblotting was performed with antibodies against caspase-12, caspase-3,
Bax, Bcl2, and B-actin. p < 0.05, significantly different from the Tg-treated condition. Tg, thapsigargin; PPHs, porcine placenta hydrolysates

Next, we examined the effect of PPHs on the activity
of NADPH oxidase, an enzyme that produces ROS. As
shown in Fig. 4b, PPHs and BAPTA/AM attenuated Tg-
induced NADPH oxidase activity. Consistently, Tg
significantly suppressed the activity of SOD, a represen-
tative antioxidative enzyme that eliminates superoxides.
This effect was also attenuated by PPHs and Ca** chela-
tion (Fig. 4c). These findings indicate that the antioxi-
dant effect of PPHs may contribute to their protective
effects in osteoblasts, and are consistent with a model in
which PPHs regulate Tg-induced elevations in [Ca*);
and subsequent ROS production in osteoblastic cells.

Discussion
In this study, we found that PPHs inhibit Ca®* disturbance-
related osteoblast death. The basic mechanisms underlying

this inhibition include the regulation of Ca®*, oxidative
stress, and ER stress. We suggest that PPHs contribute to
osteoblast-based endocrinal balance, implying that PPHs
could potentially be used as therapeutic agents to control
bone dysmetabolism.

This study showed that PPHs inhibit the cellular re-
sponses triggered by Ca”* disturbance and ER stress,
thereby protecting osteoblasts from apoptosis. ER stress
has been reported to be involved in apoptosis during vari-
ous pathophysiological processes, including osteoporosis
[11, 12, 29]. ER stress pathways are generally activated in
response to various stress conditions, such as the accumu-
lation of misfolded proteins, disturbances of Ca®>* homeo-
stasis, and disturbances in energy metabolism [6, 7]. As
shown in Figs. 1 and 2, Tg-induced cell death and ER
stress were inhibited in PPHs-treated osteoblasts. Our
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results suggest that PPHs act by inhibiting Ca®" release
(Fig. 3a). Both Ca®* disturbance and ER stress have been
implicated in the pathogenesis of osteoporosis [11, 12, 29].
Ca®* is an essential intracellular signaling molecule in-
volved in the regulation of numerous cellular processes,
including cell proliferation, differentiation, morphology,
and function [32]. The intracellular Ca** concentration
can be significantly increased via Ca®>* influx from the
extracellular space or by Ca?* release from the ER [33].
The release of Ca®* from the ER is mainly regulated by
the inositol trisphosphate 3 (IP3) receptors (IP3Rs) and
the ryanodine receptors (RyRs) [7]. Moreover, Ca**-acti-
vated signaling pathways have been demonstrated to

regulate osteoblast proliferation and differentiation [27].
In addition, Ca** is also involved in the synthesis, folding,
and post-translational modifications of proteins in the ER.
Disturbance of the Ca®* balance activates the unfolded
protein response (UPR) in an attempt to restore homeo-
stasis [34]. The UPR signaling axis, which includes
GRP78, CHOP, p-IRE-1a, p-PERK, p-elF2a, and ATF-6a
was highly activated under Ca®* stress, whereas PPHs at-
tenuated the UPR (Fig. 2a, b). Usually, unfolded protein
stress in the ER (ER stress) activates the ATF6, IRE-1a,
and PERK branches of the UPR. This activation, in turn,
regulates the expression of target genes involved in the
modulation of ER protein folding, such as GRP78 and
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100 pg/mL PPHs (red), or PPHs alone (blue), and then loaded with 2 uM Fura-2/AM for 30 min at 37 °C. The fluorescence intensity of Fura-2/AM
was then measured as described in Materials and Methods. b to (d) Cells were treated with 0.1 pM Tg for 24 h in the presence or absence of
2 UM BAPTA/AM or 100 ug/mL PPHs for 30 min. Apoptosis (b) was quantified based on nuclear condensation and fragmentation. Cells were
stained with FITC-conjugated Annexin V and P, followed by flow cytometric analysis (c). Caspase-12 (d) and —3 (e) activities were analyzed as described
in Materials and Methods. “p < 0.05, significantly different from the Tg-treated condition. Tg, thapsigargin; PPHs, porcine placenta hydrolysates

XBP1 [35]. Mild ER stress has been demonstrated to aid
osteoblast differentiation [36]. However, if the stress is
prolonged and unmitigated, the UPR switches to initiate
cell apoptosis [19, 37]. Persistent stress in osteoblasts that
leads to apoptosis and affects communication with other
bone cells is also considered to be ER stress. Ca>* stress
seems to be more related with persistent/prolonged stress
conditions, whereas PPHs regulate the ER stress response.

The in vitro analyses presented here indicate that PPHs
contribute to Ca** maintenance in osteoblasts, leading to
ER stress regulation and cell protection. Additionally, we
showed that the ER redox balance explains the association
with Ca®* disturbance. In studies of Ca** homeostasis im-
balance, ER stress has been highly linked with ER stress-
associated ROS [38]. In this study, we hypothesized that
ROS might be generated from Ca** disturbances resulting
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a Fig. 4 PPHs regulate ROS production, NADPH oxidase activity, and
SOD activity in MC3T3-E1 osteoblastic cells. MC3T3-E1 cells were
=~ 180 treated with 0.1 uM Tg for 24 h in the presence or absence of 2 uM
g 7] BAPTA/AM or 100 pg/mL PPHs for 30 min. ROS production was
g assessed by DCFDA staining (a) as described in Materials and
o 150 - Methods. NADPH oxidase (b) and SOD activity (c) were analyzed. *p
© < 0.05, significantly different from the Tg-treated condition. Tg, thap-
2 120 sigargin; PPHs, porcine placenta hydrolysates
~ -1 N J
c
=]
=
S 90 from Tg-induced ER stress. As expected, treatment with
g Tg increased ROS levels (Fig. 4a). However, the intracellu-
:,- 60 - lar ROS content was significantly decreased in PPHs-
g treated osteoblasts compared with Tg-treated osteoblasts.
30- The relationship between ER-induced oxidative stress and
;I%H - + + B - + Ca** disturbance has been investigated [38]. Ca** can be a
- - + + - - . . . .
combined physiological and pathological effector. More-
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over, ROS are generated by various environmental agents
as well as during normal cellular metabolism. ROS play a
major role in the pathogenesis of various diseases, includ-
ing osteoporosis [39]. Osteoporosis is characterized by re-
duced bone mass resulting from an imbalance between
bone formation by osteoblasts and bone resorption by os-
teoclasts. Since the rate of osteoblast apoptosis regulates
bone formation [1, 2, 40, 41], the effect of PPHs on ROS
may vyield a protective effect that inhibits osteoporosis.

In this study, we found that PPHs regulate bone me-
tabolism disturbances in osteoblasts by controlling Ca**
concentrations, thereby also affecting related ER stress
and ROS. Since PPHs do not include ovarian hormones,
this regulatory effect on bone metabolism disturbance is
not associated with ovarian hormones such as estrogen.
Thus, improvements in the amino acid profiles of PPHs
should be considered, as should the presence of modi-
fied amino acids. Nutrients and trace minerals, including
essential amino acids such as arginine, lysine, vitamin K,
Mn, B, vitamin D, Zn, Cu, folate, and Si are often used
to improve bone structure [42]. Dietary arginine and ly-
sine are also believed to play important roles in bone de-
velopment, growth, and modeling [42, 43]. Arginine is
involved in both the synthesis of substrates (polyamine
and L-Pro) implicated in collagen synthesis and in the
production of growth hormones, including insulin-like
growth factor-I [44]. In addition, arginine is thought to
alleviate metabolic disturbances in Ca** absorption,
growth, and ossification defects [45]. PPHs contain large
amounts of arginine and essential amino acids. Thus,
since PPHs contain arginine and other essential amino
acids, they may be useful preventive or therapeutic
agents against osteoporosis.

Conclusions

This study suggests that PPHs protect bone-forming
MC3T3-E1 osteoblasts against Ca>* stress. In addition,
PPHs regulate Ca”* release and the related ROS and ER
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stress responses. Our data also indicate that PPHs are a
new ER stress regulator, at least in bone-forming osteo-
blasts. The insights from this in vitro study have implica-
tions on our understanding of the mechanism by which
PPHs might exert therapeutic effects against bone
disturbance.

Additional file

Additional file 1: Figure S1. Protective effects of PPHs on Tg-induced
cell death in MC3T3-E1 osteoblastic cells (PDF 119 KB)
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