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Abstract
Background: Circulating memory T cells can be divided into tissue-specific subsets, which traffic
through distinct tissue compartments during physiologic immune surveillance, based on their
expression of adhesion molecules and chemokine receptors. We reasoned that a bias (either
enrichment or depletion) of CSF T cell expression of known organ-specific trafficking determinants
might suggest that homing of T cells to the subarachnoid space could be governed by a CNS-specific
adhesion molecule or chemokine receptor.

Results: The expression of cutaneous leukocyte antigen (CLA) and CC-chemokine receptor 4
(CCR4; associated with skin-homing) as well as the expression of integrin α4β7 and CCR9
(associated with gut-homing) was analyzed on CD4+ memory T cells in CSF from individuals with
non-inflammatory neurological diseases using flow cytometry. CSF contained similar proportions
of CD4+ memory T cells expressing CLA, CCR4, integrin α4β7 and CCR9 as paired blood samples.

Conclusion: The results extend our previous findings that antigen-experienced CD4+ memory T
cells traffic through the CSF in proportion to their abundance in the peripheral circulation.
Furthermore, the ready access of skin- and gut-homing CD4+ memory T cells to the CNS
compartment via CSF has implications for the mechanisms of action of immunotherapeutic
strategies, such as oral tolerance or therapeutic immunization, where immunogens are
administered using an oral or subcutaneous route.

Background
The differentiation of naïve T cells into an activated mem-
ory phenotype is characterized by an extensive change in
the expression of trafficking determinants, resulting in the

acquisition of homing receptors that enable the cells to
migrate from the circulation into peripheral tissues. This
change in T cell homing potential is affected by the micro-
environment where initial antigen recognition occurred,
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as memory T cells preferentially return to regions of the
body similar to those where the initial antigen was
encountered [1]. For instance, studies in mice have dem-
onstrated that CD4+ T cells activated in cutaneous lymph
nodes upregulate trafficking determinants specific for the
skin, such as P-selectin ligand, while T cells responding to
antigen in intestinal lymph nodes express high levels the
gut-associated adhesion molecule integrin α4β7 and
acquire responsiveness to the intestinal CC-chemokine
ligand CCL25 [2]. The specific profile of adhesion mole-
cules and chemoattractant receptors expressed by individ-
ual T cells allows the cells to interact with the vascular
endothelium at anatomical sites where the cognate lig-
ands are selectively expressed, targeting the cells to specific
tissues [3,4]. The relevance of such interactions has been
amply demonstrated in humans, where postcapillary
venules in the inflamed skin selectively express E-selectin
and CCL17, while lamina propria of the small intestines
displays the mucosal addressin MAdCAM-1 and CCL25
[5-7]. Interestingly, T cells isolated from the small intes-
tines and the skin are almost completely dichotomous in
their expression of trafficking determinants; T cells from
the skin express cutaneous leukocyte antigen (CLA) and
CCR4, but lack integrin α4β7, while T cells from the small
intestines are positive for α4β7, but not CLA or CCR4
[6,8-10]. Consequently, circulating T cells can be divided
into tissue specific subsets, each of which have the ability
to traffic through certain tissue compartments, but which
are excluded from others.

While trafficking of T cells to the skin and gut is well char-
acterized, less is known about the mechanisms governing
homing of T cells across the choroid plexus into the CSF
during immune surveillance of the healthy brain [11].
Although it has been hypothesized that such CSF-specific
trafficking determinants exist, their molecular specificity
has been evasive. Some progress has been made in defin-
ing trafficking determinants for inflamed CNS microves-
sels: CD8+ T cells activated in cervical lymph nodes
draining intracerebral tumors in the mouse acquire a phe-
notype characterized by high expression of the two
integrins α4 and α1 as well as a modest increase in the
expression of P-selectin ligand [12]. Functional data sup-
ports a role for P-selectin/E-selectin and their ligands
(including CLA) as well as integrin α4β1 (VLA-4) in
extravasation of lymphocytes in the CNS during experi-
mental autoimmune encephalomyelitis (EAE), but the
relevance of these findings for trafficking of T cells across
non-inflamed vessels during immune surveillance of the
healthy brain remains unclear [13-16]. T cells in the CSF
of healthy individuals or patients with non-inflammatory
neurological diseases (NIND) are characterized by high
expression of integrin αLβ2 (LFA-1), α4β1, CCR5 and
CXCR3 [17,18], a phenotype they share with activated T
cells isolated from a wide range of other organs [19-22].

Therapeutic α4-integrin blockade suppressed access of
several cell types (CD4>CD8 T cells; CD19+ B cells;
CD138+ plasma cells) into CSF [23], identifying the first
functional CSF entry determinant for human lym-
phocytes.

In this study we addressed the expression of trafficking
determinants known to be involved in organ-specific traf-
ficking to the skin (CLA and CCR4) and the small intes-
tines (integrin α4β7 and CCR9) on CSF T cells from
patients with NIND. We reasoned that any bias in CD4+
T cell expression of these known organ-specific trafficking
determinants in the CSF might aid in identifying CNS-
specific adhesion molecules or chemokine receptors. By
contrast, equal presence of tissue-committed T cells in the
blood and CSF would indicate that memory T cells enter
CSF according to their activation or differentiation state
but possibly not by specific homing molecules. We
observed comparable frequencies of CD4+ memory T
cells displaying CLA and CCR4 as well as integrin α4β7
and CCR9 in paired blood and CSF samples. The results
demonstrated that, in contrast to most other tissues, skin-
and gut-homing T cells are not excluded from the CSF,
suggesting that the recruitment of CD4+ T cells to the CNS
is more related to previous antigen exposure and activa-
tion than to the expression of an organ-specific adhesion
molecule or chemokine receptor. Although negative with
regard to roles for CCR9/α4β7 or CCR4/CLA, for CSF
homing, the results carry implications for the use of novel
immunotherapeutic strategies to treat neurological dis-
eases. In particular, several new techniques for treating
diverse neurological disorders require the generation of
neuroantigen-specific T cells by peripheral administration
of antigen either subcutaneously or to the gastrointestinal
mucosa. Our current results indicate that skin- and gut-
homing memory T cells readily access the CNS compart-
ment, providing a rationale for the feasibility of such strat-
egies.

Results
CD4+ memory T cells expressing CLA and integrin α4β7 
are present in the CSF
Flow cytometry was used to determine the expression of
CLA and integrin α4β7, two adhesion molecules involved
in the selective recruitment of T cells to the skin and gut,
respectively (reviewed by [1]), on T cells in paired blood
and CSF samples from four NIND patients. Since many
trafficking determinants are differentially expressed on
naïve and memory T cells and CSF contains predomi-
nantly CD4+ T cells, of which almost all display a pheno-
type consistent with previously activated memory cells
[18], we compared the expression of CLA and integrin
α4β7 on CD4+/CD45RA- cells (excluding both CD45RAhi

and CD45RAintermediate cells). The majority of CD4+/
CD45RA- T cells in the CSF did not express either CLA or
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integrin α4β7 (74.9 ± 3.2%, mean ± SD). Discrete sub-
populations of CD4+/CD45RA- T cells expressing either
CLA (7.2 ± 3.0%) or integrin α4β7 (17.4 ± 3.5%) were,
however, detected in the CSF. Interestingly, the pattern of
CLA and integrin α4β7 expression on CD4+/CD45RA-
memory T cells in the CSF was strikingly similar to periph-
eral blood (Figure 1), demonstrating that skin- and gut-
homing T cells are not excluded from the CNS compart-
ment.

Expression of CCR4 on CSF T cells
Next, we assessed CSF expression of CCR4, a chemokine
receptor highly expressed by skin-homing T cells [5]. Due

to technical reasons, we used the presence of CD45RO to
determine the population of memory CD4+ T cells for all
CCR4 stainings (Figure 2). CCR4 was expressed by 41.7 ±
8.2% of CD4+/CD45RO+ memory T cells in the CSF from
patients with NIND (Table 1). Consistent with a shared
homing profile to the skin, a majority of CLA+ memory T
cells in the CSF co-expressed CCR4, but some CCR4 stain-
ing could be detected also on CLA- memory T cells (Figure
2). Numbers of CCR4+/CD4+/CD45RO+ T cells in the
CSF were slightly lower than in paired blood samples
(59.8 ± 10.8%), but this difference was not statistically
significant (n = 5; p = 0.09).

Since CCR4 has been associated with a Th2 phenotype
[24,25], CSF levels of CCR4 were analyzed in six patients
with multiple sclerosis (MS), a disease associated with
Th1 responses in the CNS [26]. MS patients had slightly
lower numbers of CCR4+/CD4+/CD45RO+ T cells in the
CSF compared to paired blood samples (Table 1; p <
0.01), but CCR4 was still expressed by approximately
50% of all CD4+/CD45RO+ T cells in the CSF. By care-
fully analyzing the profile of chemokine receptors on Th1
and Th2 cells, it has been demonstrated that Th2 cells pre-
dominantly are CCR4+/CXCR3-, while the population of
CCR4+/CXCR3+ memory T cells not is enriched for Th2
cells [27]. We observed that a majority of CCR4+ memory
T cells in the CSF co-expressed CXCR3 and that the num-
bers of CCR4+/CXCR3- "true" Th2 cells in the CSF were
low (Figure 2).

The expression of CCR4 on CSF T cells was assessed using
two different anti-CCR4 mAbs, clones 328B and 1G1. Pre-
liminary experiments demonstrated that clone 328B
resulted in a distinct staining of CSF T cells as described
above, whereas clone 1G1 failed to detect any CCR4+ T
cells in the CSF (data not shown). To confirm the expres-
sion of CCR4 on CSF T cells, RNA was isolated from CSF
cells obtained from one patient with mononuclear pleio-
cytosis during the follow-up after postinfectious myelitis.
Using real-time rt-PCR, we were able to verify that CSF
mononuclear cells expressed CCR4 mRNA at slightly

The majority of CD4+/CD45RA- memory T cells in the CSF (black bars) were CLA-/α4β7-, but discrete populations of CLA+ (associated with skin-homing) and integrin α4β7+ (associated with gut-homing) cells were observedFigure 1
The majority of CD4+/CD45RA- memory T cells in the CSF 
(black bars) were CLA-/α4β7-, but discrete populations of 
CLA+ (associated with skin-homing) and integrin α4β7+ 
(associated with gut-homing) cells were observed. The 
expression pattern of CLA and integrin α4β7 was compara-
ble on CD4+/CD45RA- memory T cells in peripheral blood 
(white bars) and CSF (black bars). Data are from four 
patients with non-inflammatory neurological diseases and fig-
ure shows mean+SEM.

Table 1: Expression of trafficking determinants on CD4+ memory1 T cells in blood and CSF

CLA Integrin α4β7 CCR4 CCR9
Blood CSF Blood CSF Blood CSF Blood CSF

NIND Mean 14.2 11.5 33.0 17.9 59.8 41.7 8.0 5.1
SD 6.1 4.3 5.9 3.0 10.8 8.2 2.8 4.3
n 10 10 4 4 5 5 8 8

MS Mean n.d. n.d. n.d. n.d. 69.6 48.4 n.d. n.d.
SD 11.5 15.3
n 6 6

1CD45RO+ or CD45RA- depending on staining protocol
NIND = non-inflammatory neurological diseases; MS = multiple sclerosis; CLA = cutaneous leukocyte antigen
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Multi-color flow cytometry was used to analyze the co-expression of CCR4 with CLA or CXCR3 on memory T cells in paired blood and CSF samples from an individual patient with a non-inflammatory neurological disease (A-D) or MS (E-F)Figure 2
Multi-color flow cytometry was used to analyze the co-expression of CCR4 with CLA or CXCR3 on memory T cells in paired 
blood and CSF samples from an individual patient with a non-inflammatory neurological disease (A-D) or MS (E-F). The expres-
sion of trafficking determinants was analyzed on CD4+/CD45RO+ memory T cells to account for the different percentages of 
naïve and memory CD4+ cells in blood (A) and CSF (B). As expected, there was an association between the expression of 
CCR4 and CLA on CD4+/CD45RO+ T cells in peripheral blood (C). A majority of CLA+ memory T cells co-expressed CCR4 
also in the CSF, but some CCR4 staining could be detected on CLA- memory T cells (D). While a large population of CCR4+/
CXCR3- cells, which have been demonstrated to be enriched for Th2 cells [27], were present in peripheral blood (E), such 
cells were rare in the CSF (F).
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higher levels compared to PBMCs from the same individ-
ual (data not shown).

Preliminary stainings showed that CCR10, another chem-
okine receptor expressed by skin-homing T cells [28], was
only expressed by a negligible percentage of CD4+ mem-
ory T cells both in blood and CSF and was thus not inves-
tigated closer (data not shown).

CCR9 expression on CSF T cells
Finally, the expression of CCR9, associated with homing
of T cells to the intestines [6,7], was examined in the CSF.
CCR9 was expressed by 5.1 ± 4.3% of CD4+/CD45RA-
memory T cells in the CSF from patients with NIND, a fre-
quency that was almost identical to peripheral blood (8.0
± 2.8%; p = 0.1; Table 1). As expected, CCR9 expression
was predominantly detected on CD4+/CD45RA- T cells
co-expressing integrin β7 both in blood and CSF (Figure
3). Since the β7 subunit can dimerize not only with α4
(forming the α4β7 heterodimer, which is associated with
gut-homing) but also with integrin αE (CD103), we
stained CSF cells using an antibody against αE to exclude
that CCR9 was associated with integrin αEβ7 in the CSF.
Virtually no CD4+/CD45RA- T cells in the CSF were, how-
ever, positive for αE (data not shown), confirming that
gut-homing CCR9/α4β7 double positive memory T cells
are present in the CSF.

Discussion
This study demonstrated that CD4+ memory T cells in the
CSF exhibit a distinctly different expression pattern of
adhesion molecules and chemokine receptors compared
to most tissue-infiltrating T cell populations. It is well
established that T cells isolated from the small intestines

and the skin are nearly homogenously positive for mutu-
ally exclusive pairs of trafficking determinants; almost all
T cells from the skin express CLA and CCR4, but lack
integrin α4β7 or CCR9, while T cells from the small intes-
tines are positive for integrin α4β7 and CCR9, but not
CLA or CCR4 [5,6,8,10]. This highly polarized pattern is
believed to result from selective recruitment of T cells
expressing the appropriate trafficking determinants from
a pool of tissue-committed and non-committed T cells in
the systemic circulation. It is plausible that additional tis-
sue-committed T cell populations exist, since T cells from
most other tissue compartments, including bronchoalve-
olar lavage (BAL) fluid and liver, do not express CLA,
integrin α4β7, CCR4 or CCR9, suggesting that hitherto
unknown combinations of adhesion molecules and
chemokine receptors mediate organ-specific homing to
these organs [9,10,29]. CSF from NIND patients con-
tained, on the contrary, comparable numbers of CD4+
memory T cells expressing trafficking determinants spe-
cific for the skin (CLA and CCR4) and the small intestines
(integrin α4β7 and CCR9) as paired samples from periph-
eral blood. Even though percentages of CD4+ memory T
cells expressing CCR4 and integrin α4β7 were slightly
lower in CSF compared to blood, the results demonstrate
that skin- and gut-homing T cells access the CSF. These
findings argue that T cell homing to the CSF is character-
ized by recruitment of a wide spectrum of tissue-specific T
cell subpopulations. Aside from the established role of
α4-integrin [23], the trafficking determinants involved in
CSF trafficking remain to be defined.

These results address a key question regarding the feasibil-
ity of several experimental therapies for neurological con-
ditions utilizing antigenic stimulation in the periphery
(such as the skin or the gut) to produce a population of T
cells, which are intended to act in the CNS. Such therapies
include peripheral immunization against A-beta for
Alzheimer's disease [30,31], sensitization with self anti-
gens to generate myelin-reactive T cells for the ameliora-
tion of spinal contusion and neurodegeneration [32,33],
as well as injection of altered peptide ligands [34,35] and
oral administration of myelin to induce tolerance for the
treatment of MS [34]. In recent years, such innovative
approaches have been assessed in experimental animal
models and in clinical trials, with provocative results [35].

To our knowledge, the only other tissue compartment
besides CSF, which contains tissue-committed T cells spe-
cific for a different compartment is synovial fluid. Analo-
gous to the present observations, synovial fluid from
patients with arthritis contained comparable numbers of
CD4+ memory T cells expressing CLA, integrin α4β7 and
CCR4 as peripheral blood [10]. Both CSF and synovial
fluid are sterile tissue fluids and the pathways for immune
surveillance of such fluids may be different from the

Flow cytometry was used to determine the expression of CCR9 and integrin β7, associated with homing to the gut, on CD4+/CD45RA- memory T cells in paired blood and CSF samples from patients with non-inflammatory neurological diseasesFigure 3
Flow cytometry was used to determine the expression of 
CCR9 and integrin β7, associated with homing to the gut, on 
CD4+/CD45RA- memory T cells in paired blood and CSF 
samples from patients with non-inflammatory neurological 
diseases. Memory T cells expressing CCR9 and integrin β7 
were detected at comparable numbers in blood (A) and CSF 
(B), indicating that gut-homing memory T cells readily access 
the CNS.
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parenchyma itself. It has generally been assumed that cells
in the CSF are derived from the brain parenchyma and
reflect processes ongoing in the tissue compartment.
Recent intravital microscopy studies have, however, dem-
onstrated that leukocyte migration through the blood-
brain barrier surrounding deep parenchymal vessels of the
brain is an uncommon event in the non-inflamed murine
brain [16], while fluorescently labeled splenocytes readily
were detected in the meninges and choroid plexus within
two hours after adoptive transfer [14]. Vasculature in the
choroid plexus and meninges, but not in the non-
inflamed human brain, express adhesion molecules sup-
porting interactions with circulating leukocytes, suggest-
ing that activated memory T cells may enter the CSF
directly from the systemic circulation as part of immune
surveillance of the CNS [36]. It is conceivable that in addi-
tion to the well characterized pathways of organ-specific
homing to tissues in direct contact with the outside envi-
ronment such as skin and gut, there may be distinct mech-
anisms controlling homing of antigen-experienced
lymphocytes to sterile tissue fluids. The majority of CNS
infections are derived from pathogens, which initially
entered the body through mucosal sites or the skin, ren-
dering it likely that memory T cells primed in these loca-
tions may mount the appropriate intrathecal immune
response. In contrast, pathogens causing infections in the
skin or the intestines are predominantly locally derived
and a compartmentalized immune response may under
these circumstances be phylogenetically beneficial.

Conclusion
This study demonstrated that CLA+/CCR4+ and α4β7+/
CCR9+ memory T cells are present in the CSF during
immune surveillance of the CNS. Homing of T cells to the
CSF during immune surveillance may be more tuned to
distinguish between naïve and antigen-experienced T cells
than among various tissue-specialized memory T cell pop-
ulations. The ready access of skin- and gut-homing CD4+
T cells to the CNS compartment via CSF provide a ration-
ale for the use of immunotherapeutic strategies, such as
oral tolerance or therapeutic immunization, where immu-
nogens are administered using an oral or subcutaneous
route.

Methods
CSF samples
Blood and CSF were obtained from a total of 29 patients
(20 women). The majority of the patients were referred for
diagnostic lumbar puncture. In addition, three patients
with known MS being evaluated for intrathecal baclofen
treatment for intractable spasticity were included. The col-
lection of blood and CSF samples was approved by the
Institutional Review Board of the Cleveland Clinic Foun-
dation (CCF) and written consent was obtained from all
subjects. Because of limited cell numbers, the analysis of

cell phenotypes in each sample was restricted to one or
two trafficking determinants, along with cell lineage
markers. The age of the patients ranged between 18–80
years (mean 43 years). When reviewing the charts, it
turned out that 22 patients had non-inflammatory neuro-
logical diseases {NIND; headaches (6 patients), paresthe-
sias (5), CSF circulation disturbances (3), chronic pain
(3), vertigo (2), polyneuropathy (2), and mitochondrial
cytopathy (1)}, six patients had clinically definite MS in
remission [37], and one patient presented with pleiocyto-
sis during follow-up after postinfectious myelitis. Three of
the MS patients were treated with immunomodulatory
drugs at the time of sampling (glatiramer-acetate or inter-
feron-β1b). The CSF leukocyte count of the NIND patients
ranged between 0–2 cells/µl (mean 0.8 cell/µl), while the
CSF leukocyte count of the MS patients ranged between
2–41 cells/µl (mean 9.3 cells/µl). RNA was isolated from
peripheral blood mononuclear cells (PBMCs) and CSF
cells from the patient with postinfectious myelitis (CSF
leukocyte count 13 cells/µl).

mAbs
CD4 PerCP (clone SK3) and CD45RO APC (UCHL1)
from BD Biosciences, San Jose, CA; β7 PE (FIB-504), CLA
FITC (HECA-452), CXCR3 PE (1C6) and CD4 FITC/PE/
APC (RPA-T4) from BD PharMingen, San Diego, CA; CD4
PE-Cy7 (SFCI12T4D11), CD45RA PE-TexasRed
(2H4LDH11LDB9) and αE FITC (2G5) from Beckman
Coulter, Fullerton, CA; CCR4 (328B) from ICOS, Bothell,
WA; CCR9 (96-1) and α4β7 (ACT-1) from Millennium
Pharmaceuticals Inc, Cambridge, MA; anti-mouse IgG1
PE/FITC from Southern Biotechnology Associates, Bir-
mingham, AL; anti-mouse IgG Biotin and Streptavidin
Cy5 from Jackson ImmunoResearch Laboratories Inc,
West Grove, PA.

Flow cytometry
Immunostainings for flow cytometry were performed as
previously described [18]. Paired blood (5 ml) and CSF
(10 ml) samples were collected and stained within 20 min
of sampling. Staining was performed at room temperature
for 15 min (CCR9, αE, β7) or on ice for 45 min (CCR4,
CLA, α4β7). Titrations were performed for each mAb in
blood samples to define the concentration that resulted in
saturating conditions and an optimal signal to noise ratio.
Identical concentrations of mAbs were used for blood and
CSF samples, as numbers of CSF cells per staining never
exceeded the number of cells in peripheral blood. Eryth-
rocytes were lysed after staining whole blood using FACS
lysing solution (BD Biosciences).

Cells were acquired on an LSR (BD Immunocytometry
Systems, San Jose, CA) or a MoFlo flow cytometer (Cyto-
mation Inc., Fort Collins, CO) and analyzed using Win-
List software (Verity Software House Inc., Topsham, ME).
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Cells were gated according to forward- and side light-scat-
tering properties, and were positively selected for the pres-
ence of CD4 in combination with high expression of
CD45RO (for all stainings containing CCR4) or the
absence of CD45RA (for all other stainings) to identify
CD4+ memory T cells. Isotype matched control mAbs
were used to define background fluorescence.

RNA isolation and real-time RT-PCR
RNA was generated from PBMCs isolated through density
centrifugation on Ficoll (Lymphocyte separation
medium; Meidatech Inc., Herndon, VA) and CSF mono-
nuclear cells using Trizol (Invitrogen, Carlsbad, CA).
Approximately 1 µg of DNase (Invitrogen) treated total
RNA was reverse transcribed using Superscript II (Invitro-
gen) according to the manufacturer's instructions. PCR
reactions were performed in 20-µl capillaries containing 2
mM Mg2+, 0.25 µl each of forward (5'-AAATGAAC-
CCCACGGATATAGCAG-3') and reverse (5'-GAAAACAC-
GAAGAGCAGATCCGAGA-3') primer [38], 1×DNA
Master SYBR Green (LightCycler-DNA Master SYBR Green
I kit; Roche, Indianapolis, IN) and 2 µl of cDNA using a
LightCycler (Roche). Reaction conditions for PCR were as
follow: denaturation at 95°C for 1 min, followed by 40
cycles of amplification by denaturation at 95°C for 15 s,
annealing at 60°C for 5 s, and extension at 72°C for 30 s.
The accumulation of products was monitored by SYBR
Green fluorescence at the completion of each cycle. Con-
struction of standard curves and analysis was performed
with the LightCycler 3 software (Roche) as previously
described [39].

Statistical methods
Paired t-test was used for comparing expression of traffick-
ing determinants on blood and CSF T cells. Reported p-
values are two-tailed and considered statistically signifi-
cant at p < 0.05.

Competing interests
The author(s) declare that they have no competing inter-
ests.

Authors' contributions
PK participated in the conception of the study, designed
the experiments, participated in the performance of the
experiments, analyzed the data, and drafted the manu-
script. BT enrolled the patients in the study and carried out
the flow cytometry assays. TW designed the molecular
biological studies. JJC designed the 6-color immunofluo-
rescent flow stainings and participated in the analysis and
interpretation of the data. RMR participated in the con-
ception and coordination of the study, contributed to the
interpretation of the data and helped to draft the manu-
script. All authors read and approved the final manu-
script.

Acknowledgements
We thank Dr J Stine, ICOS corporation, Bothell, WA for generously pro-
viding us with the antibody against human CCR4 (clone 328B). This work 
was supported by National Institutes of Health Grants PO1 NS38667 (to 
RMR) and RO1 AI046784 (to JJC). PK is the recipient of an advanced post-
doctoral fellowship from the National Multiple Sclerosis Society.

References
1. Butcher EC, Williams M, Youngman K, Rott L, Briskin M: Lym-

phocyte trafficking and regional immunity.  Adv Immunol 1999,
72:209-253.

2. Campbell DJ, Butcher EC: Rapid acquisition of tissue-specific
homing phenotypes by CD4(+) T cells activated in cutaneous
or mucosal lymphoid tissues.  J Exp Med 2002, 195:135-141.

3. Rott LS, Briskin MJ, Andrew DP, Berg EL, Butcher EC: A fundamen-
tal subdivision of circulating lymphocytes defined by adhe-
sion to mucosal addressin cell adhesion molecule-1.
Comparison with vascular cell adhesion molecule-1 and cor-
relation with beta 7 integrins and memory differentiation.  J
Immunol 1996, 156:3727-3736.

4. Tietz W, Allemand Y, Borges E, von Laer D, Hallmann R, Vestweber
D, Hamann A: CD4+ T cells migrate into inflamed skin only if
they express ligands for E- and P-selectin.  J Immunol 1998,
161:963-970.

5. Campbell JJ, Haraldsen G, Pan J, Rottman J, Qin S, Ponath P, Andrew
DP, Warnke R, Ruffing N, Kassam N, Wu L, Butcher EC: The chem-
okine receptor CCR4 in vascular recognition by cutaneous
but not intestinal memory T cells.  Nature 1999, 400:776-780.

6. Zabel BA, Agace WW, Campbell JJ, Heath HM, Parent D, Roberts AI,
Ebert EC, Kassam N, Qin S, Zovko M, LaRosa GJ, Yang LL, Soler D,
Butcher EC, Ponath PD, Parker CM, Andrew DP: Human G pro-
tein-coupled receptor GPR-9-6/CC chemokine receptor 9 is
selectively expressed on intestinal homing T lymphocytes,
mucosal lymphocytes, and thymocytes and is required for
thymus-expressed chemokine-mediated chemotaxis.  J Exp
Med 1999, 190:1241-1256.

7. Kunkel EJ, Campbell JJ, Haraldsen G, Pan J, Boisvert J, Roberts AI,
Ebert EC, Vierra MA, Goodman SB, Genovese MC, Wardlaw AJ,
Greenberg HB, Parker CM, Butcher EC, Andrew DP, Agace WW:
Lymphocyte CC chemokine receptor 9 and epithelial thy-
mus-expressed chemokine (TECK) expression distinguish
the small intestinal immune compartment: Epithelial
expression of tissue-specific chemokines as an organizing
principle in regional immunity.  J Exp Med 2000, 192:761-768.

8. Picker LJ, Treer JR, Ferguson-Darnell B, Collins PA, Bergstresser PR,
Terstappen LW: Control of lymphocyte recirculation in man.
II. Differential regulation of the cutaneous lymphocyte-asso-
ciated antigen, a tissue-selective homing receptor for skin-
homing T cells.  J Immunol 1993, 150:1122-1136.

9. Campbell JJ, Brightling CE, Symon FA, Qin S, Murphy KE, Hodge M,
Andrew DP, Wu L, Butcher EC, Wardlaw AJ: Expression of chem-
okine receptors by lung T cells from normal and asthmatic
subjects.  J Immunol 2001, 166:2842-2848.

10. Kunkel EJ, Boisvert J, Murphy K, Vierra MA, Genovese MC, Wardlaw
AJ, Greenberg HB, Hodge MR, Wu L, Butcher EC, Campbell JJ:
Expression of the chemokine receptors CCR4, CCR5, and
CXCR3 by human tissue-infiltrating lymphocytes.  Am J Pathol
2002, 160:347-355.

11. Engelhardt B, Ransohoff RM: The ins and outs of T-lymphocyte
trafficking to the CNS: anatomical sites and molecular
mechanisms.  Trends Immunol 2005, 26:485-495.

12. Calzascia T, Masson F, Di Berardino-Besson W, Contassot E,
Wilmotte R, Aurrand-Lions M, Ruegg C, Dietrich PY, Walker PR:
Homing phenotypes of tumor-specific CD8 T cells are pre-
determined at the tumor site by crosspresenting APCs.
Immunity 2005, 22:175-184.

13. Piccio L, Rossi B, Colantonio L, Grenningloh R, Gho A, Ottoboni L,
Homeister JW, Scarpini E, Martinello M, Laudanna C, D'Ambrosio D,
Lowe JB, Constantin G: Efficient recruitment of lymphocytes in
inflamed brain venules requires expression of cutaneous
lymphocyte antigen and fucosyltransferase-VII.  J Immunol
2005, 174:5805-5813.
Page 7 of 8
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10361577
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10361577
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11781372
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11781372
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11781372
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8621908
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8621908
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8621908
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9670976
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9670976
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10466728
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10466728
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10466728
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10544196
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10544196
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10544196
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10974041
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10974041
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10974041
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7678617
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7678617
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7678617
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11160352
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11160352
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11160352
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11786428
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11786428
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11786428
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16039904
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16039904
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16039904
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15723806
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15723806
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15843584
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15843584
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15843584


BMC Immunology 2006, 7:14 http://www.biomedcentral.com/1471-2172/7/14
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

14. Carrithers MD, Visintin I, Viret C, Janeway CSJ: Role of genetic
background in P selectin-dependent immune surveillance of
the central nervous system.  J Neuroimmunol 2002, 129:51-57.

15. Kerfoot SM, Kubes P: Overlapping roles of P-selectin and alpha
4 integrin to recruit leukocytes to the central nervous sys-
tem in experimental autoimmune encephalomyelitis.  J Immu-
nol 2002, 169:1000-1006.

16. Piccio L, Rossi B, Scarpini E, Laudanna C, Giagulli C, Issekutz AC,
Vestweber D, Butcher EC, Constantin G: Molecular mechanisms
involved in lymphocyte recruitment in inflamed brain micro-
vessels: critical roles for P-selectin glycoprotein ligand-1 and
heterotrimeric G(i)-linked receptors.  J Immunol 2002,
168:1940-1949.

17. Svenningsson A, Hansson GK, Andersen O, Andersson R, Patarroyo
M, Stemme S: Adhesion molecule expression on cerebrospinal
fluid T lymphocytes: evidence for common recruitment
mechanisms in multiple sclerosis, aseptic meningitis, and
normal controls.  Ann Neurol 1993, 34:155-161.

18. Kivisakk P, Trebst C, Liu Z, Tucky BH, Sorensen TL, Rudick RA, Mack
M, Ransohoff RM: T-cells in the cerebrospinal fluid express a
similar repertoire of inflammatory chemokine receptors in
the absence or presence of CNS inflammation: implications
for CNS trafficking.  Clin Exp Immunol 2002, 129:510-518.

19. Agostini C, Cassatella M, Zambello R, Trentin L, Gasperini S, Perin A,
Piazza F, Siviero M, Facco M, Dziejman M, Chilosi M, Qin S, Luster
AD, Semenzato G: Involvement of the IP-10 chemokine in sar-
coid granulomatous reactions.  J Immunol 1998, 161:6413-6420.

20. Qin S, Rottman JB, Myers P, Kassam N, Weinblatt M, Loetscher M,
Koch AE, Moser B, Mackay CR: The chemokine receptors
CXCR3 and CCR5 mark subsets of T cells associated with
certain inflammatory reactions.  J Clin Invest 1998, 101:746-754.

21. Shields PL, Morland CM, Salmon M, Qin S, Hubscher SG, Adams DH:
Chemokine and chemokine receptor interactions provide a
mechanism for selective T cell recruitment to specific liver
compartments within hepatitis C-infected liver.  J Immunol
1999, 163:6236-6243.

22. Flier J, Boorsma DM, van Beek PJ, Nieboer C, Stoof TJ, Willemze R,
Tensen CP: Differential expression of CXCR3 targeting chem-
okines CXCL10, CXCL9, and CXCL11 in different types of
skin inflammation.  J Pathol 2001, 194:398-405.

23. Stuve O, Marra CM, Jerome KR, Cook L, Cravens PD, Cepok S, Fro-
hman EM, Phillips JT, Arendt G, Hemmer B, Monson NL, Racke MK:
Immune surveillance in multiple sclerosis patients treated
with natalizumab.  Ann Neurol 2006, 59:743-747.

24. Bonecchi R, Bianchi G, Bordignon PP, D'Ambrosio D, Lang R, Borsatti
A, Sozzani S, Allavena P, Gray PA, Mantovani A, Sinigaglia F: Differ-
ential expression of chemokine receptors and chemotactic
responsiveness of type 1 T helper cells (Th1s) and Th2s.  J Exp
Med 1998, 187:129-134.

25. Sallusto F, Lenig D, Mackay CR, Lanzavecchia A: Flexible programs
of chemokine receptor expression on human polarized T
helper 1 and 2 lymphocytes.  J Exp Med 1998, 187:875-883.

26. Lassmann H, Ransohoff RM: The CD4-Th1 model for multiple
sclerosis: a critical [correction of crucial] re-appraisal.  Trends
Immunol 2004, 25:132-137.

27. Kim CH, Rott L, Kunkel EJ, Genovese MC, Andrew DP, Wu L,
Butcher EC: Rules of chemokine receptor association with T
cell polarization in vivo.  J Clin Invest 2001, 108:1331-1339.

28. Homey B, Alenius H, Muller A, Soto H, Bowman EP, Yuan W, McEvoy
L, Lauerma AI, Assmann T, Bunemann E, Lehto M, Wolff H, Yen D,
Marxhausen H, To W, Sedgwick J, Ruzicka T, Lehmann P, Zlotnik A:
CCL27-CCR10 interactions regulate T cell-mediated skin
inflammation.  Nat Med 2002, 8:157-165.

29. Boisvert J, Kunkel EJ, Campbell JJ, Keeffe EB, Butcher EC, Greenberg
HB: Liver-infiltrating lymphocytes in end-stage hepatitis C
virus: subsets, activation status, and chemokine receptor
phenotypes.  J Hepatol 2003, 38:67-75.

30. Schenk D, Games D, Seubert P: Potential treatment opportuni-
ties for Alzheimer's disease through inhibition of secretases
and Abeta immunization.  J Mol Neurosci 2001, 17:259-267.

31. Janus C: Vaccines for Alzheimer's disease: how close are we?
CNS Drugs 2003, 17:457-474.

32. Schwartz M: Protective autoimmunity and prospects for ther-
apeutic vaccination against self-perpetuating neurodegener-
ation.  Ernst Schering Res Found Workshop 2004:133-154.

33. Schwartz M, Shaked I, Fisher J, Mizrahi T, Schori H: Protective
autoimmunity against the enemy within: fighting glutamate
toxicity.  Trends Neurosci 2003, 26:297-302.

34. Whitacre CC, Gienapp IE, Meyer A, Cox KL, Javed N: Treatment
of autoimmune disease by oral tolerance to autoantigens.
Clin Immunol Immunopathol 1996, 80:S31-9.

35. Weiner HL, Selkoe DJ: Inflammation and therapeutic vaccina-
tion in CNS diseases.  Nature 2002, 420:879-884.

36. Kivisakk P, Mahad DJ, Callahan MK, Trebst C, Tucky B, Wei T, Wu L,
Baekkevold ES, Lassmann H, Staugaitis SM, Campbell JJ, Ransohoff RM:
Human cerebrospinal fluid central memory CD4+ T cells:
evidence for trafficking through choroid plexus and menin-
ges via P-selectin.  Proc Natl Acad Sci U S A 2003, 100:8389-8394.

37. McDonald WI, Compston A, Edan G, Goodkin D, Hartung HP, Lublin
FD, McFarland HF, Paty DW, Polman CH, Reingold SC, Sandberg-
Wollheim M, Sibley W, Thompson A, van den Noort S, Weinshenker
BY, Wolinsky JS: Recommended diagnostic criteria for multi-
ple sclerosis: guidelines from the International Panel on the
diagnosis of multiple sclerosis.  Ann Neurol 2001, 50:121-127.

38. Zella D, Barabitskaja O, Burns JM, Romerio F, Dunn DE, Revello MG,
Gerna G, Reitz MSJ, Gallo RC, Weichold FF: Interferon-gamma
increases expression of chemokine receptors CCR1, CCR3,
and CCR5, but not CXCR4 in monocytoid U937 cells.  Blood
1998, 91:4444-4450.

39. Schreiber RC, Krivacic K, Kirby B, Vaccariello SA, Wei T, Ransohoff
RM, Zigmond RE: Monocyte chemoattractant protein (MCP)-
1 is rapidly expressed by sympathetic ganglion neurons fol-
lowing axonal injury.  Neuroreport 2001, 12:601-606.
Page 8 of 8
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12161020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12161020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12161020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12097407
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12097407
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12097407
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11823530
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11823530
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11823530
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8338339
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8338339
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8338339
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12197893
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12197893
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12197893
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9834133
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9834133
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9466968
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9466968
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9466968
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10570316
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10570316
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10570316
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11523046
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11523046
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11523046
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16634029
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16634029
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16634029
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9419219
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9419219
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9419219
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9500790
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9500790
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9500790
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15036040
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15036040
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11696578
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11696578
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11821900
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11821900
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11821900
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12480562
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12480562
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12480562
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11816797
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11816797
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11816797
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12751917
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15032058
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15032058
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15032058
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12798598
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12798598
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12798598
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8811061
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8811061
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12490962
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12490962
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12829791
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12829791
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12829791
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11456302
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11456302
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11456302
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9616137
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9616137
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9616137
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11234772
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11234772
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11234772
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	CD4+ memory T cells expressing CLA and integrin a4b7 are present in the CSF
	Expression of CCR4 on CSF T cells
	CCR9 expression on CSF T cells

	Discussion
	Conclusion
	Methods
	CSF samples
	mAbs
	Flow cytometry
	RNA isolation and real-time RT-PCR
	Statistical methods

	Competing interests
	Authors' contributions
	Acknowledgements
	References

