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1 Introduction

The AdS/CFT correspondence [1–3] has provided new insights into the properties of several

different gravitational objects from their corresponding description in terms of the large N

limit of matrix valued (super) Yang-Mills theories. It is of great interest to understand how

or if gravitational properties emerge from the large N limit of matrix theories, including

in settings without supersymmetry or even conformal invariance. Of particular interest is

the emergence of a semiclassical / geometric background in the large N limit of matrix

theories at strong coupling.

Two defining relationships of the AdS/CFT correspondence in the canonical case are

R ∼ λ
1
4 (1.1)

g2
YM ∼ gs (1.2)

where R is the radius of both the AdS5 and S5 of the AdS5 × S5 background, gYM is the

(super) Yang-Mills coupling, λ = g2
YMN the ’t Hooft coupling and gs the Type IIB string

coupling.

In this communication, we consider several properties associated with the large N limit

of the integral

Z =

∫
[dXI ]e

−S , S =
w2

2g2
YM

6∑
I=1

TrX2
I −

1

g2
YM

6∑
I 6=J

Tr([XI , XJ ][XI , XJ ]) (1.3)

which corresponds to the leading compactification (e.g., on S3 × T 1 or S4) of the bosonic

Higgs sector of N = 4 SYM. The harmonic “frequency” w is a function of the curvature of
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the manifold, and serves as an infrared regulator. gYM “has been scaled out of the action”,

so that the relationship (1.2) is apparent.

For this system, the relationship (1.1) now follows from dimensional analysis,1 in that

[XI ] ∼ λ
1
4 . (1.4)

If a suitable matrix “radial coordinate” can be identified, it will satisfy (1.1) simply by

dimensional analysis, provided no other dimensional parameter is present. It would then

be of great interest to obtain its large N dynamics.

For an even number of hermitian matrices (or an arbitrary number of complex matrices)

a closed sub sector2 dependent on a single matrix only, that has properties expected of such

radial matrix, has indeed been identified [4, 5], and it is the purpose of this communication

to discuss its large N dynamics.

In section 2, the radial sector, or the restriction of the system (1.3) to this closed

subsector, is considered for an arbitrary number of complex matrices. The large N density

of radial eigenvalues is obtained explicitly and shown to have a well defined strong coupling

limit satisfying (1.1). A new feature present only in systems of strictly more than one

complex matrix (as is relevant for N = 4 SYM) is the appearance of a Penner [6–8]

logarithmic potential that moves the eigenvalues away from the origin. In section 3, we

integrate out the angular degrees of freedom in (1.3). This is carried out for a single complex

matrix. In this case, the harmonic term is required, introducing another dimensionful

parameter. By first mapping the system to a two matrix system, the large N limit of the

radial eigenvalue distribution is obtained and shown to be of the Wigner type.

A review of the vast literature on matrix models in beyond of the scope of this brief

communication. Aspects related to the emergence of geometries are reviewed in [9].

2 Radial Sector

We start by describing the closed subsector of systems of an even number of hermitian ma-

trices which is naturally associated with a radial sector of the theory. First, we complexify

by introducing complex matrices:

Z1 = X1 + iX2 , Z2 = X3 + iX4 , etc.

and in general, for m complex matrices ZA , A = 1, ...,m, we consider the matrix,

m∑
A=1

Z†AZA . (2.1)

This matrix is hermitian and positive definite, and its eigenvalues

ρi = r2
i , i = 1, ..., N , ρi ≥ 0,

have a natural interpretation as matrix radial coordinates.

1We extend to d = 0 the standard scalar dimensions [XI ] =
d−2

2
.

2In the sense of closure under Schwinger-Dyson equations.
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The radially invariant sector of (1.3) is then:

SR =
w2

2g2
YM

Tr

m∑
A=1

Z†AZA +
1

2g2
YM

Tr

(
m∑
A=1

Z†AZA

)2

.

This sector has an enhanced U(N)m+1 symmetry

ZA → VAZAV
† , A = 1, ...,m, (2.2)

and depends only on the radial eigenvalues.

With a parametrization of the complex matrices ZA, A = 1, ..,m in terms of a matrix

valued radial matrix and 2m− 1 unitary matrices,3 one can write∫ ∏
A

∏
ij

dZA
†
ijdZAij =

∫ ∏
i

dρiJ (ρi)d[Angular]

The “angular” degrees of freedom can be integrated out in the radial sector.

J (ρi) has recently been obtained in closed form [5]. This results from the remark-

able fact that correlators in this sector, with the enhanced symmetry (2.2), close under

Schwinger-Dyson equations. The result is:

J (ρi) = Cm
∏
i

dρiρ
m−1
i

∏
i>j

ρm−1
i ρm−1

j (ρi − ρj)2

= Dm

∏
i

drir
2m−1
i

∏
i>j

r2m−2
i r2m−2

j

(
r2
i − r2

j

)2
(2.3)

= Cm
∏
i

dρiρ
m−1
i ∆2

RM (ρi) = Dm

∏
i

drir
2m−1
i ∆2

RM

(
r2
i

)
,

where the antisymmetric product

∆RM (ρi) ≡
∏
i>j

ρ
m−1

2
i ρ

m−1
2

j (ρi − ρj)

generalizes the well known Van der Monde determinant ∆ =
∏
i>j(ρi − ρj), and Cm and

Dm are numerical constants.

In the radial sector, we are then lead to the integral

Z =

∫ ∏
i

dρiJ (ρi) e
−SR(ρi) =

∫ ∏
i

dρie
lnJ (ρi)−SR(ρi) =

∫ ∏
i

e−Seff(ρi). (2.4)

3 Large N configuration and hyperspheres

The large N configuration of (2.4) is given by the “saddle point” equation of Seff(ρi),

Seff(ρi) =
Nw2

2λ

∑
i

ρi +
N

2λ

∑
i

ρ2
i −N(m− 1)

∑
i

ln ρi −
∑
i 6=j

ln |ρi − ρj | (3.1)

3For an explicit such parametrizations in the m = 1 case, see [4].
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and satisfies:

2
∑
j,j 6=i

1

ρi − ρj
+
N(m− 1)

ρi
=
Nw2

2λ
+
N

λ
ρi (3.2)

where λ = g2
YMN is the ’t Hooft’s coupling. In terms of a density of eigenvalues Φ(ρ)

normalized (Φ→ NΦ) so that
∫
dρΦ(ρ) = 1,

−
∫ ∞

0

dρ′Φ(ρ′)

ρ− ρ′
+

(m− 1)

2ρ
=
w2

4λ
+

ρ

2λ
(3.3)

One observes that for m ≥ 2, and in opposition to the single hermitean and single

complex matrix case, there is, in addition to the repulsive logarithmic potential amongst the

eigenvalues, a new single Penner [6–8] logarithmic potential which moves the eigenvalues

away from the origin. The density of radial eigenvalues therefore is non-vanishing only

between hyperspheres of radii r− =
√
ρ− and r+ =

√
ρ+, i.e., within a “hyperannulus”. For

m = 1, and in the strong coupling limit, the density of radial eigenvalues is non-vanishing

within a hypersphere.

Inspection of either (3.2) or (3.3) establishes that the size of these hyperspheres in

the strong coupling limit, i.e., when w → 0, is set by the only parameter λ left in theory

through a radius R satisfying

R2 ∼ ρ ∼
√
λ , R ∼ λ

1
4 (3.4)

Logarithmic Penner potentials [6–8] arise in several different contexts, such as in, for

instance, the study of Gaussian ensembles of rectangular matrices [10–14].

They play a crucial role in the matrix model identified by Dijkgraaf and Vafa [15] as

the “bridge” in the equivalence between partition functions of d = 4 N = 2 quiver gauge

theories and d = 2 conformal Toda field theories [16]. In all three cases, there is a a Riemann

surface involved: in the gauge theory it can be related to the Seiberg-Witten curve, in the

Toda theory to the manifold in which the theory is defined, and in the quiver matrix model

it is the spectral curve related to the resolvent of the model [17–19]. The positions of the

poles of the derivate of the (sum of) Penner potentials correspond to insertions of vertex

operators in the Toda/Liouville 2d theory.

The form of the density in (3.3) and values of ρ± are obtained using standard meth-

ods [20], together with a careful treatment of the ρ→ 0 behaviour.

The solution is completely determined by the resolvent G(z), defined on the com-

plex plane:

G(z) =

∫ ρ+

ρ−

dρ′Φ(ρ′)

z − ρ′
=

z

2λ
− (m− 1)

2z
−
q0 + z

λ

2z

√
(z − ρ−)(z − ρ+)

For quiver matrix models, the singularities associated with the derivative of the Penner

potentials have an interpretation as vertex insertions in Liouville theory, and remain poles

of the resolvent. In our case, the Penner potential is thought of as one of the terms of the

potential, and we follow Tan [21] in requiring the absence of a pole as z → 0. This allows

for a solution where ρ− (and ρ+) are positive for m > 1.

– 4 –



J
H
E
P
1
2
(
2
0
1
5
)
0
3
5

Absence of a pole as z → 0 and the normalization of the density then require:

q0 =
1

2λ
(ρ+ + ρ−) , q0

√
ρ+ρ− = m− 1 ,

−m− 1

2
+
q0

4
(ρ+ + ρ−) +

1

16λ
(ρ+ − ρ−)2 = 1 . (3.5)

With s ≡ ρ+ + ρ− and ∆ ≡ ρ+ − ρ− these can be solved to yield

s2 = λ
4

3
(m+ 1)

1 +

√
1 + 3

(
m− 1

m+ 1

)2


∆2 = s2 − 16λ2(m− 1)2

s2
(3.6)

Using these expressions for s and ∆, one has, for instance:

ρ− = 0.416λ1/2, ρ+ = 3.10λ1/2, m = 3

ρ− = 0.168λ1/2, ρ+ = 2.77λ1/2, m = 2 (3.7)

ρ− = 0, ρ+ =
4

31/2
λ1/2, m = 1.

In order to confirm the ρ prescription around the pole, particularly for the single

complex matrix case (m = 1), while also providing a unified description for matrix systems

with more than two complex matrices (m ≥ 2), we extend the domain of definition of the

density of eigenvalues to the real line. With ρ = r2, r > 0, we define

2rΦ
(
r2
)
≡ φ(r) ≡ φ(−r), (3.8)

so that for an arbitrary function f(r2)∫ +∞

−∞
drf

(
r2
)
φ(r) = 2

∫ +∞

0
dρf(ρ)Φ(ρ). (3.9)

We remark that (ρ = r2)

−
∫ ∞

0

dρ′Φ(ρ′)

ρ− ρ′
= −
∫ ∞

0

2r′dr′Φ
(
r′2
)

r2 − r′2
=

1

2r
−
∫ ∞

0
dr′φ(r′)

(
1

r − r′
+

1

r + r′

)
=

1

2r
−
∫ ∞
−∞

dr′φ(r′)

r − r′
(3.10)

As a result, (3.3) is equivalently written as

−
∫ ∞
−∞

dr′φ(r′)

r − r′
=
w2r

2λ
+
r3

λ
− (m− 1)

r
,

∫ +∞

−∞
drφ(r) = 2 . (3.11)

The solution of (3.11) for m > 2 is symmetric, and it can be obtained following the

analysis of [21, 22]. It is a two cut solution, with the cuts in the intervals [−r+,−r−] and

[r−, r+], with r+ > r− > 0. One finds that ρ± = r2
±, with ρ± given by equations (3.6) and

that the densities are related by (3.8).
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The solution of (3.11) when m = 1 is the standard symmetric single cut solution

associated with a quartic interaction. It follows that equations (3.6) for the turning points

indeed extend to m = 1 provided one sets ρ− = r2
− = 0. Explicitly,

πΦ(ρ) =
1

2λρ

(
ρ+

1

2
(ρ+ + ρ−)

)√
(ρ+ − ρ)(ρ− ρ−) , ρ− ≤ ρ ≤ ρ+

and

πφ(r) =
1

λr

(
r2 +

1

2
(r2

+ + r2
−)

)√(
r2

+ − r2
)(
r2 − r2

−
)
, r2

− ≤ r2 ≤ r2
+,

with ρ± = r2
± given by (3.6), (3.7).

4 Angular degrees of freedom

In the strong coupling limit, the scaling relationship (3.4) is unaffected by the angular

degrees of freedom, as it follows from dimensional analysis.

For a single complex matrix (m = 1), the integration over the angular degrees of free-

dom in (1.3) can be carried out explicitly. Introducing matrix valued “polar coordinates”

X1 + iX2 = Z = RU , Z† = U †R (4.1)

with R hermitean and U unitary, R can be diagonalized as R = V †rV , with r a diagonal

matrix and V unitary, we obtain [4, 23]∫ ∏
A

∏
ij

dZA
†
ijdZAij = Cm=1

∫ ∏
i

dρi∆
2(ρi)[dX][dS] (4.2)

dX ≡ V dUU †V † , dS ≡ dV V †

As a result of the properties of the de Haar measure, one has (the equality sign below

is to be understood up to numerical constants),

Z =

∫
[dXI ] exp

{
− w2

2g2
YM

2∑
I=1

TrX2
I +

1

g2
YM

Tr([X1, X2][X1, X2])

}

=

∫
[dZ†][dZ] exp

{
−Nw

2

2λ
TrZ†Z − N

2λ
(Tr((Z†Z)2)− Tr(Z†

2
Z2))

}
=

∫ ∏
i

dρi∆
2(ρi)e

−Nw
2

2λ

∑
ρi− N

2λ

∑
ρ2
i

∫
dUe

N
2λ

Tr(R2U†R2U) (4.3)

=

∫ ∏
i

dρi∆
2(ρi)e

−Nw
2

2λ

∑
ρi− N

2λ

∑
ρ2
i exp

{
N2X(ρi, ρi,

1

2λ
)

}
(4.4)

The last integral is the well known Harish-Chandra- Itzykson-Zuber (HCIZ) inte-

gral [24], and it can be written in closed form in terms of a determinant. We recall that,

in the large N limit, X(ρi, ρi,
1

2λ) has an expansion in 1/λ:

X

(
ρi, ρi,

1

2λ

)
=

∞∑
k=1

1

k

(
1

2λ

)k
Xk(ρi, ρi) , (4.5)
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where Xk(ρi, ρi) is generically a function of the weights 1/N
∑

i ρ
n
i , and is homogeneous of

degree k in each of its variables. It follows that, in the strong coupling limit, should the

integral be well defined, the size of the system remains determined by

R2 ∼ ρ ∼
√
λ , R = λ

1
4 (4.6)

It is of particular interest to consider the leading 1/λ contribution in (4.5), as this is

of the same order as the radially symmetric term in the action. With the leading term in

the expansion (4.5) included, the effective action is now:

Seff(ρi) =
Nw2

2λ

∑
i

ρi +
N

2λ

∑
i

ρ2
i −

1

2λ

(∑
i

ρi

)2

−
∑
i 6=j

ln |ρi − ρj | (4.7)

After rescaling and extending to the full real line, the saddle point equation now takes

the form:

−
∫ ∞
−∞

dr′φ(r′)

r − r′
=
w2r

2λ
+
r3

λ
− rw2

λ
,

∫ +∞

−∞
drφ(r) = 2 ,

∫ +∞

−∞
drr2φ(r) = 2w2 (4.8)

The density of radial eigenvalues is readily obtained to be:

πφ(r) =
r2

λ

√
r2

+ − r2 , r+ = 2λ
1
4 ,−r+ ≤ r ≤ r+

πΦ(ρ) =
1

2λ

√
ρ(ρ+ − ρ) , ρ+ = 4λ

1
2 , 0 ≤ ρ ≤ ρ+ (4.9)

To move beyond a non-perturbative solution, we note that, as mentioned earlier, the inte-

gral can be written in closed form in terms of a determinant. Specifically,

Z = Const.

∫ ∏
i

dρie
−
(
Nω2

2λ

∑
i ρi+

N
2λ

∑
i ρ

2
i

)
det
(
e
N
2λ
ρiρj
)
.

Note the cancellation of the Van der Monde determinant, i.e, the standard Coulombic-

gas repulsion of the eigenvalues is absent. It turns out that this form of the partition

function is not useful to obtain the large N distribution of eigenvalues. In order to facilitate

this, we introduce an auxiliary two-matrix system in the next section.

5 Auxiliary two-matrix integral

In ρ-space,4 the partition function (4.3) can be written as

Z =

∫
[dρ]

∫
dUeSρ (5.1)

=

∫ ∏
i

dρi∆
2 (ρ) e−NVρ(ρ)

∫
dUeβNTrρUρU† , (5.2)

4In what follows, we will refer to the matrix integral expressed in terms of the matrices ρ and U as the

matrix integral in ρ-space.
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with

Sρ = −NVρ (ρ) + βNTrρUρU †. (5.3)

Motivated by the appearance of a logarithim potential for a larger number of matrices,

we have in mind a potential of the form (ε > 0):

Vρ (ρ) =
w2

2λ
Trρ+

1

2λ
Trρ2 − εTr ln ρ. (5.4)

For the saddle-point equation, we get

0 = −NV ′ρ (ρ) +
∂

∂ρi
ln ∆2 (ρ) + βN

〈
UρU † + U †ρU

〉
. (5.5)

where < . > denotes the expectation value with respect to the angular degrees of freedom.

Let us now consider the auxiliary two (hermitean)-matrix integral defined via the

action:

S = −NTrV (A)−NTrV (B) +NTrAUBU †. (5.6)

The partition function for this auxiliary two-matrix model reads

Z =

∫
dA

∫
dB

∫
dUe−NTrV (A)−NTrV (B)+NTrAUBU† , (5.7)

where A and B are N ×N hermitian matrices and dU is the Haar measure for the U (N)

unitary group.

In terms of the eigenvalues of the matrices A and B, which will be denoted by ai and

bi (i = 1, 2, . . . , N), the partition function becomes

Z =

∫ ∏
i

dai

∫ ∏
i

dbi∆
2 (a) ∆2 (b)

∫
dUe−N

∑
i V (ai)−N

∑
i V (bi)+ln I(a,b), (5.8)

where ∆2 (a) and ∆2 (b) are the Van der Monde determinants and I (a, b) is the HCIZ

integral:5

I (a, b) =

∫
dUeNβTr(aUbU†). (5.9)

At large N, the saddle-point equations are:

0 = −NV ′ (ai) +
∂

∂ai
ln ∆2 (a) +N

〈
UbU †

〉
(5.10)

0 = −NV ′ (bi) +
∂

∂bi
ln ∆2 (b) +N

〈
U †aU

〉
. (5.11)

Due to the exchange symmetry between A and B under the original integral (5.7),

ai = bi at the minimum. Adding (5.10) and (5.11), one obtains

0 = −NV ′ (ai) +
∂

∂ai
ln ∆2 (a) +

N

2

〈
UaU † + U †aU

〉
. (5.12)

5Here, a = diag (a1, a2, · · · , aN ) and b = diag (b1, b2, · · · , bN ).
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Comparison of (5.12) and (5.5) shows that the two saddle point equations agree if

2β = 1, V ′ρ (ρ) = V ′ (A) . (5.13)

This is trivially achieved by rescaling ρ→ ρλ1/2. The action (5.3) becomes

S = −Nw
2

2λ1/2
Trρ− N

2
Trρ2 +NεTr ln ρ+

N

2
TrρUρU †. (5.14)

This action clearly satisfies the condition that 2β = 1 - the other condition can be easily

satisfied by setting V ′ (A) = V ′ρ (ρ). Therefore, at the level of the saddle-point equations

the matrix integral (in polar coordinates) with a Yang-Mills interaction is equivalent to an

auxiliary matrix model with an action of the form

S =− Nw2

2λ1/2
TrA− N

2
TrA2 +NεTr lnA+NTrAUBU †

− Nw2

2λ1/2
TrB − N

2
TrB2 +NεTr lnB. (5.15)

Methods to obtain the generating function G (z), and hence the eigenvalue density, for

these systems were developed in [25, 26] in the context of studies of the so called “induced

QCD” [27, 28]. The techniques used are based on the Schwinger-Dyson equations of the

system. Of particular interest is the limit w → 0 while keeping ε small but finite, so

that λ is the only dimensionful parameter, as considered in this communication until now.

Indications are that in this limit, it may not be possible to obtain an eigenvalue density

with support only on the positive real line in the presence of a pole at z = 0 [29].

In the following, we therefore set ε = 0, and keep the w dependent harmonic potential.

This is the Hoppe integral [30, 31].

6 Radial eigenvalues density in the Hoppe model

The action of the auxilliary system for the Hoppe integral in matrix valued “polar coordi-

nates” (4.1) is then

S = − Nw2

2λ1/2
TrA− N

2
TrA2 +NTrAUBU †

− Nw2

2λ1/2
TrB − N

2
TrB2.

= w̄Tr (A+B)− N

2
TrA2 − N

2
TrB2 +NTrAUBU †

= − 2Nw̄2TrB − N

2
TrC2 −Nw̄2TrC, (6.1)

where C = A − B and w̄2 = w2

2λ1/2 , and where the last equality is understood under the

integral. Consequently, the partition function reads

Z =

∫
dB

∫
dCe−2Nw̄2TrB−N

2
TrC2−Nw̄2TrC

= Const.(w̄)

∫ ∏
i

dbie
Seff , (6.2)
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where the effective action describing the large N dynamics of the matrix B, and hence ρ,

is given by

Seff =
∑
i 6=j

ln |bi − bj | − 2Nw̄2
∑
i

bi. (6.3)

The saddle-point equations are ∑
j,i 6=j

1

bi − bj
= 2Nw̄2. (6.4)

In terms of the eigenvalue density Φ (b′), the saddle-point equations read

−
∫ ∞

0

db′Φ (b′)

b− b′
= w̄2. (6.5)

(Note that we have rescaled the eigenvalue density i.e. Φ (b) → NΦ (b).) Letting b = r2

and, as explained before, extending to the full real line, the saddle-point equation can be

written as

−
∫ ∞
−∞

dr′φ (r′)

r − r′
= 2w̄2r. (6.6)

This is the well known integral equation for the Wigner distribution which, appropriately

normalized, is:

πφ (r) = 2w̄2

√
2

w̄2
− r2, 0 ≤ r ≤

√
2

w̄
. (6.7)

One can also solve the saddle-point equation in (6.5) directly, in which case one finds:

πΦ (ρ) = w̄

√
2

ρ
− w̄2, 0 ≤ ρ ≤

√
2

w̄
. (6.8)

In an approach based on commuting matrices, [32] have also obtained a radial Wigner

distribution for the Hoppe model. However, given our definition of a radial coordinate,

there is no approximation in our result.

7 Summary

Starting with the integral over systems of (an even number of) hermitean matrices inter-

acting through a Yang-Mills potential, as is relevant to the Higgs sector of N = 4 SYM, we

identified a closed subsector that can naturally be interpreted as a radial subsector of the

theory. For strictly more than two hermitean matrices, the measure introduces a logarith-

mic potential, a new result. The density of radial eigenvalues was obtained, and for strictly

more than two hermitean matrices, was shown to have support between hyperspheres, and

for two hermitean matrices, within a single hypersphere. For two hermitean matrices, the

integral over the angular degrees of freedom was carried out explicitely, and in the presence

of an harmonic potential, the density of radial eigenvalues was shown to be of the Wigner

type, without approximation.
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