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1 Introduction

Hilbert series (“HS”) provide an important tool in the analysis of the moduli spaces as-
sociated with various field theories. One key area of interest is the study of the moduli
spaces of the gauge invariant operators (“GIOs”) constructed from fields transforming in



some combination of flavour, colour and/or other symmetry group representations. Such
product group structures arise in supersymmetric (“SUSY”) quiver gauge theories.

Considerable progress has been made in recent years under the auspices of the Plethys-
tics Program [1, 2] in the systematic calculation and analysis of the Hilbert series of the
moduli spaces of SUSY quiver gauge theories. The Plethystics Program deploys plethystic
functions and Weyl integration to construct generating functions for the Hilbert series of
objects transforming under various representations of classical or exceptional Lie groups or
product groups.

The Hilbert series for these SUSY quiver gauge theories enumerate holomorphic op-
erators, such as the chiral ring of BPS operators characterising the moduli space of a
supersymmetric vacuum. Theories that have been well studied include SQCD for classical
gauge groups [3-5], the moduli spaces of one and two instantons [6, 7] and the master space
of N/ =1 SUSY gauge theories based on particular Calabi-Yau manifolds [8, 9]. In SQCD,
the theories are without superpotentials (W = 0) and the gauge group structures are based
on those specified by the chiral scalar field definitions; in the other cases, such as SUSY
quiver theories for instanton moduli spaces, the theories have non-trivial superpotentials
W and the vacuum conditions can place F-flatness constraints on the field representations
and/or give rise to hidden symmetry groups. In all cases, however, the Hilbert series
associated with the moduli spaces are amenable to analysis by similar methods.

Key analytical tools within the Plethystics Program include the Plethystic Exponential
(“PE”), the Fermionic Plethystic Exponential (“PEF”), Plethystic Logarithm (“PL”) and
Weyl integration. The PE symmetrises polynomials and can be used to generate symmetric
tensor products of group representations described in terms of their characters. Weyl
integration, combined with the orthogonality property of the inner products of characters,
makes it possible to project out irreducible representations (“irreps”) from such generating
functions. The PL provides an inverse function. Such procedures can be used to identify
GIOs, which are necessarily singlets of the gauge group, and the results can be arranged
into Hilbert series and their generating functions that encode information about the GIOs
at a given level of field counting.

Hilbert series can be expressed in refined form, with fields described in terms of class
functions built from the characters of the irreps of the symmetry group. Alternatively,
Hilbert series can be expressed in unrefined form, where they simply count representations
according to their dimensions. Unrefined Hilbert series are the most straightforward to cal-
culate, but their limitation to dimensional information entails that they do not fully encode
moduli space data, for example, about the specific representations in which fields trans-
form. On the other hand, while refined Hilbert series do fully encode moduli spaces, their
generating functions can be cumbersome to deploy, with complicated plethystic procedures
being necessary to extract character expansions.

Our aim in this paper is to outline a methodology for constructing highest weight
generating functions (“HWGs”) for the character expansions of Hilbert series, from which
the latter can readily be extracted, either in refined or unrefined form. We wish to obtain
HWGs that faithfully and efficiently encode the combinatorics of objects transforming
in representations of the chosen symmetry group. We shall show that, just like Hilbert



Generating Function gB™°"P (coordinates)
HWG gCrouP (¢, m;)
Character gomomwP (m;, X))
Refined HS (character notation) guTouP (¢, X))
Refined HS (coordinates) gOTOuP (5, 27)
Unrefined HS (distinct counting) gUTouP (¢5)
Unrefined HS gCrouP (1)

Table 1. Types of Generating Function.

series, HWGs can be constructed as polynomials and rational functions of polynomials.
While the prime objective here is to facilitate the analysis of the moduli spaces of SUSY
gauge theories, we shall also show how HWG techniques can in principle be applied to
other aspects of the combinatorics of group and product group representations, such as the
calculation of Littlewood-Richardson and similar coefficients.

Section 2 of this paper outlines the theory underlying the construction of HWGs. This
draws upon the standard plethystic functions and their use in symmetrising and antisym-
metrising characters, as summarised in appendix A. We show how Weyl integration, as
summarised in appendix B, can be used together with the plethystic functions to con-
struct generating functions for the characters of irreps of classical and exceptional groups.
We also show how the well-known Weyl Character Formula can be recast as a generating
function for the characters of irreps of any classical or exceptional group. These character
generating functions are instrumental in deriving HWGs and can also be useful for other
group theoretic analyses. In section 2.4, we show how the character generating functions
can be used to construct HWGs that encode the Littlewood-Richardson and similar coef-
ficients governing the decomposition of the tensor products of irreps. In section 2.5, we
calculate the HWGs for symmetrisations of objects transforming in the basic irreps of lower
rank SU(N) simple groups. In section 2.6 we examine the relationship between the invari-
ant tensors of a group and the plethystics of product groups, since this will be helpful in
understanding the structure of HWGs for the GIOs of product groups.

In sections 3 and 4 we apply the HWG methodology to explicate and extend some
established results regarding SQCD and the moduli spaces of selected instanton theories,
respectively. Section 5 summarises the key new results and perspectives and concludes
with a comparison of some geometric properties of HWGs and Hilbert series.

Notation and terminology. Some preliminary comments on notation are in order. We
present the characters of groups either in the generic form Xgyoup or, more specifically,
using Dynkin labels such as [n1,...,n;]Group, Where r is the rank of the group (dropping
group subscripts if no ambiguities arise). We may refer somewhat interchangeably to series,
such as 1+ f + f2 + ..., by their generating functions 1/ (1 — f). We rely on the use of
coordinates/variables to distinguish the different types of generating functions, as indicated
in table 1.



These different types of generating function are related and can be considered as a
hierarchy in which the HWG, character and refined HS generating functions fully encode
the group theoretic information. We label Cartan subalgebra (“CSA”) coordinates for
weights within characters by x or y, using subscripts when necessary; these coordinates
are unimodular. We generally label object counting variables with ¢, and Dynkin label
counting variables with m, although we may also use other letters, where this is helpful.
We choose such counting variables to have a complex modulus of less than unity, which is
essential for the residue calculations involved in Weyl integration to be valid. We follow
established practice in referring to both counting variables and coordinates as “fugacities”.

2 Highest weight generators

2.1 Representation of Dynkin labels using monomials

The canonical classification of the irreps of a Lie group is carried out using Dynkin labels.
These label the states or weights within an irrep; each irrep has a unique highest weight
and can therefore be identified by the Dynkin labels of its highest weight state. We can
map the Dynkin labels [ng,...,n,] of the irreps of a group of rank r onto the complex
manifold C" by introducing the Dynkin label fugacities {m1,...,m,} and establishing a
correspondence:

T
[, ... ne] & [ mi (2.1)
=1

If we choose the fugacities {m1,...,m,} to have absolute values less than unity, then
each point on the infinite lattice of Dynkin labels corresponds to a unique point lying
inside the unit complex disk on C". This lattice is freely generated since the Dynkin
labels can be chosen independently of each other. Now consider a second lattice on CV,
with its points representing the possible combinations of N objects that transform in some
representations of the group. Each such combination of objects will transform in some
(generally reducible) representation of the group and there will be a non-trivial relationship
between these lattices. Such relationships can be described most simply in terms of the
dimensions of the representations, and the resulting polynomials of fugacities on CV are
termed unrefined Hilbert series:

HS (1) = Y ahy, ey 01" t"Y, (2.2)
k;

We can, however, also choose to represent such series in other ways. If instead of
dimensions, we use characters composed of monomials of CSA coordinates, then we obtain
a refined Hilbert series:

HS (:L‘z',tj) = Z Chy,...kn (1,..., ) tlkl .. .L‘NkN,
ki

where

Ay ki = Chypokey (1,00, 1)



Alternatively, if we use the Dynkin labels of irreps of the group, then we obtain series
expansions in terms of monomials in the Dynkin label fugacities:

HWG (my;, tj) = Z bn1,...,nr,k1,...,k‘N miy™ . om, L‘lkl .. .tNkN. (2.4)
ng,k;

While such series expansions necessarily represent lattices on CV17, they can often be

obtained from highest weight generating functions (“HWGs”) based on a small number

of monomials that encode very concisely the relationships between the combinations of

objects and the irreps in which they transform.

2.2 Character generating functions

As a further preliminary to developing the theory of HWGs, it is useful to recall the
Peter Weyl Theorem [10]. This entails that, in addition to being orthonormal under Weyl
integration, the characters of a compact group form a complete basis for the class functions
of the group. Since the PEs and PEFs of characters, being functions of characters, belong
to the class functions of the group, it is always possible, in principle, to decompose such a
PE or PEF into a sum of characters, each with some polynomial coefficient.

As summarised in appendix A, we can use the PE and PEF functions to symmetrise
or antisymmetrise the characters of representations. It is well known that any irrep of
a group can be obtained from a small number of basic irreps by some combination of
symmetrisations and antisymmetrisations. It is interesting to explore how this relationship
can be encoded most succinctly.

We can illustrate this for classical A series Lie groups using the PEF. Thus, taking the
PEF of the fundamental irrep gives, for example,

SU(2) : PEF[[1]¢] = 1 + [1]t + %,
SU(3):  PEF[[1,0]t] = 1+ [1,0]t + [0, 1]t* + 3,
where we have represented the characters of the singlets [0] and [0,0] by unity. The pattern

(2.5)

generalises to higher rank groups within the A series, for which we can obtain all the basic
irreps [0,...,1,...,0] either from the fundamental (or antifundamental) by antisymmetri-
sation. In the case of the C series, this role is played by the fundamental representation,
while in the case of the B and D series, this role is played by the vector and spinor rep-
resentations together. In all cases, including Exceptional groups, we can use the PEF to
generate all the basic irreps carrying a single unit Dynkin label starting from a small subset
of the irreps of lowest dimension.

Given such a set of basic irreps of a group, with Dynkin labels [1,0,...,0] through
0,...,0,1], we can construct irreps with higher Dynkin labels. These higher irreps can
all be obtained by symmetrisation of the basic irreps, followed by taking tensor products
between these series. So, we can usefully define character generating functions g% (m;, X),
which encode the relationship between the full set of irreps, as identified by their Dynkin
labels, and the action of the PE on the basic irreps:

o0 T T
9% (mi, X) = Y " [n,..omelg [[m? = PO (mi, X)PE | D [0, 15,0l ms | . (26)
; : —
n;=0 j=1 =1

1 in ith slot



The numerators PG(mi, &), which have been defined implicitly, are necessarily class
functions of characters, since both the sum on the Lh.s. of (2.6) and the PE on the r.h.s.
are class functions. For low rank groups, P%(m;, X) takes a simple form, although some
considerable analytical work can be required to find it for higher rank groups. A general
procedure for finding P%(m;, X') can be outlined as follows.

Firstly, we rearrange (2.6) to obtain:

oo

,
Pémi, X)=> | [na,....n ][] | PE =)0, g, ..., 0] my| . (2.7)
n;=0 j=1 k=1
The class function P%(m;, X) is thus a product of two series, of which the first is infinite
and the second is finite.
For SU(2), we can find PSU®)(m;, X) directly: we take z as the CSA coordinate and
use [1] = (z + 1/z) as the character of the fundamental. It then follows that:

PSUQ) = PE [— 1] m] i [n]m"

n=0

=1 —-m/z)(1l—xm) [n] m"
T;) (2.8)

=[0] + Z (n+2]—[n+1][1] + M)m"”
n=0 0

=1
The sum in the r.h.s. term vanishes for all n as a consequence of the multiplication law for
SU(2). Thus, we obtain the simple generating function for the series of characters of SU(2):
o0
gV (m, x) =Y [nfm" =PE[[1]m] = 1+ [1]m + [2]m® + ... (2.9)
n=0
For SU(3), we can follow a similar route:

oo

PSUG) = PE[—[1,0] my — [0,1] ma] Z [n1, na) ma"tme"?
’I’Li:O
o0
= (L=myz) (L=my) (1=m1/zy) (1=ma/z) (1=ma/y) (1—mazy) Y [n1,n2] m1 " my"™
m:O
(m3m? —m? +m3m? + mamy —m3 + 1) [0, 0]
+ (m3 — m3m3 — mom? +m3my —my) [1, 0]
_ + (mam? — m3m? + m? — m3my —my) [0, 1] i R
+mimeo (mlmg + ].) [1, 1] ni=0
7m%m2 [072]
—mym3 [2,0]
=(1=mm2)[0,0]+ > (i) M me™
n1>0||n2>0

r.h.s.

=1- mimso.

(2.10)



Group P% (m;, X)

AAEB =0 1
Ay (1 —myms)
By (1 —m? +mym3 — m?m%) + mama (m1 — 1) [0,1]
Cy As By with my < ma and [1,0] < [0, 1]
Dy~ A @ Ay 1
Gs See appendix C

2

(1 — m2) (1 —mims + m2m3 +mi1“meo — mlmg ms + mq mg ms ) [07 0, 0}

+ma (—TTlg + mimg — m12m2m3 + m1m2 ms ) [1 0, 0]

As +mg (—m1 + mams — mimams® + m1*ma*ms) (0,0, 1]
+mimams (1 —m3) (0,1, 0]

D5 As As with my < mg and [1,0,0] < [0,1,0]

Ay See appendix D

Table 2. P for Low Rank Classical and Exceptional Groups.

Once again, it can be shown that the r.h.s. term vanishes and so we obtain the generating
function for the characters of SU(3):
o
g (m1,ma, X) = Y [n1,ng] mi™my" = (1 — mymy) PE[[1, 0] ma] PE[[0, 1] mg) .

n; =0

(2.11)

More generally, we use the completeness principle to expand PG(mi, X) as a super-

position of characters, each with polynomial coefficients P [ ) (mi) , where [A] denotes the
collective Dynkin labels corresponding to an irrep:

(my, X ZP[A] m;) [A]. (2.12)

We can then use Weyl integration, as described in appendix B, to project out the polynomial

coefficients Pﬁ} (m;), one at a time, from:
o0

P[(j](mi):fdu[A]*Z (1, . Hm' = [0, g, ..., 0] My,

G n;=0 k=1

<

(2.13)
Without digressing into the mechanics of efficient algorithms for computing these coef-
ficients, using Mathematica, for example, we compile the results of such calculations in
table 2.

The results up to Ba, Cs, Dy and As correspond to those obtained by other meth-
ods [11]. The numerators tabulated in appendix C and appendix D should be understood
as sums of characters with the polynomial coefficients given, similar to the numerator for
Aj in table 2. Importantly, for all the Classical and Exceptional groups, the class function



PG ig finite and has palindromic properties. The finite nature of P is a consequence of
relations between the characters generated from each basic irrep and, indeed, follows as a
corollary of the construction of character generating functions based on the Weyl Character
Formula, as described later in this section.

A polynomial in {¢,...,t.} is defined as palindromic of degree (di,...,d,) if each
monomial term ¢} ... ¢} in the polynomial is paired with a term tilr"l ... t% " with the
same coefficients [5]. The polynomial is anti-palindromic if the coefficients in each pair are
of opposite sign. Under this definition, the class function PP? in table 2, for example, is
anti-palindromic of degree (3,2).

The generating functions for characters of irreps can be simplified to give generating
functions for the dimensions of irreps by replacing characters with dimensions. The general
form of these relationships follows from (2.6) and (A.2) as:

o0 T T
g% (mi) = Y Dim|na,....n] [[m}" = P% (my, DimX) / T[] (1 = my) P00,
n;=0 =1 =1

(2.14)
We then obtain the generating functions for dimensions summarised in table 3, with P44
as set out in appendix E.

The palindromic properties of P% (m;, DimX) can clearly be seen. Interestingly, the
degrees of the palindromic numerators are in all cases equal to the degrees of the denomina-
tors minus two.! It can readily be verified that all the generating functions given in table 2,
table 3 and appendix C through appendix E are consistent both with the usual formulae
for group dimensions and also with characters obtained by other methods, such as applying
Cartan matrices to highest weights and using the Freudenthal multiplicity formula [10].

A similar analysis can be carried out for unitary groups and we include for reference in
table 4 the elements of the character generating functions for unitary groups U(1) through
U(4). There is a clear relationship between the PY functions for the U(N) and the SU(N)
series, which can be seen by dropping the last Dynkin labels from the irreps within P< for a
given U(N) series and assigning the corresponding polynomials to the resulting (truncated)
irreps of the SU(IV) series.

Before concluding this section it is useful also to demonstrate how the Weyl Character
Formula can be recast as a generating function. This provides an alternative method for
deriving the character generating functions described above; it also makes it possible to
replace complicated character generating functions by finite sums over simpler generating
functions, which can be helpful for some calculations.

The Weyl Character Formula [10] is given by:

S det [w] e te)

X\ = W . 2.15
(\) P (2.15)

aced+

The conventional notation translates to the explicit character constructions developed
in this note as follows. The weight A corresponds to the desired irrep with Dynkin la-

1Observation by A. Thomson, Imperial College.



Group

Degree of

g~ (m;) Palindromic
Numerator
A =B =0 (1_1m)2 (0)
(1—mima2)
A2 (1—m1)3(1—ms)3 (171)
(1+m174m1m2+m1m§+mfm§)
B2 (17m1)4(17m2)4 (272)
Cy As By with my < my (2,2)
Dy AT (0)
(1—m1)“(1—m2)
1 +m + 8mg + 8m3 +m3
—26mimg — 41mym3 — 6mym3 + 15m?mg + 78m2m3
+15m?m3 — 6m$may — 41m3Im3 — 26m3ms3
+mima + 8mim3 + 8mim3 + mims + mims
G2 (1—m1)°(1—m2)° (4.9)
14+ mg — mimg — dmims — dmoms
+5mimoms + m%mg + TTIng
+m3m3 + m2m3 + 5mymam3
—4AmImims — 4mimim3 — mim3ms + mImim3 + mim3m3

As (1—m1) (1—m2)°(1—m3)" (2,3,2)
Ds As Az with my < my (372,2)
Ay ) (35,5.3)

(1—=m1)°(1—ma2) " (1—m3)" (1—m4)°®

Table 3. Generating Functions for Dimensions of Low Rank Classical and Exceptional Groups.
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bels [ni,...n,]. The weight p corresponds to the weight of the Weyl vector, which is
[1,1,...1] and so the formal exponential e” corresponds to the CSA coordinate monomial
x1T9 ...x, = x. The parameter a ranges over the weights of the positive root space, so that

a0

~“ corresponds to the monomial x7'x5* ... x5 for positive roots o, 3,.... The matrices

e
w or w;; are elements of the finite Weyl group W of the Lie algebra, which acts upon the
weights; their signs are given by their determinants, which are all real and unimodular.

The generating functions that we seek are rational functions that generate series of
characters, so we introduce the fugacities m,; for the Dynkin labels and use these to form
the generating functions:

(m;, X ZX A—Zan,..., Pl mit o omr (2.16)

We proceed by combining and rearranging (2.15) and (2.16):
1 o
g% (my, X) = Z det [w Z e?MmA, (2.17)

e’ II (1—e ) oew A=[0,...,0]
acd+

We focus on the right hand term and switch to monomial notation, obtaining the rational

expression:
§ A A E r ro_ | I
A=0 n;=0 i J i ¢

We can now combine (2.17) and (2.18) into a generating function for the series of characters
of any irreps of a group G:

1 [T
g% (mi, X) = Z det [w HW (2.19)

z [ (1—272) o
acd+

The generating function (2.19) has advantages over the Weyl Character Formula, since the
summation over the Weyl group needs only to be carried once, for any number of characters;
it is also a finite rational function and can therefore be used in Weyl integration to project
out any rational class function into an HWG. The Weyl group matrices necessary for
calculations can be obtained from Mathematica add-on programs such as LieArt [12].

2.3 Transforming a Plethystic Exponential into a highest weight generating
function

Consider now some other class function, such as the PE of a given set of irreps:

PE[[A]ta+... Zg i (EAs - tD) [0, ] (2.20)
In this expression, the collective Dynkin labels {[A],...[D]} range over some selected ir-
reps of the group and the {t4,...,tp} are object fugacities. The polynomial coefficients

- 11 -



QG[nl,...,n,.] (ta,...,tp) can be obtained one at a time from (2.20) with the help of the
character orthonormality and completeness relations and using Weyl integration:

6% mysm (b D) = fdu e PE[Alta+ ... [Dltp].  (2.21)
G
We can aggregate the coefficients gG[nl,...,nT] (ta,...,tp) into a polynomial series, which

corresponds to an HWG series equivalent to (2.4):

oo
g% (ta,...,tp,m;) = Z gG[nh._’nT] (ta,...,tp)m™ ...m,"". (2.22)

n; =0

This HWG series (2.22) encodes all the group theoretic information relating the multiplic-
ities of the objects being symmetrised and the irreps in which they transform. We can
extract this information from the HWG in various different ways. For example:

1. Given some multiplicities {k4,...,kp} of the objects represented by the mono-
mials tff(‘ . ..tIBD, we can identify the linked exponents of highest weight variables

mit ... m}" amongst the monomials of the HWG series and the integer coefficients of
these monomial terms. These enumerate the irreps [n, ..., n,] in which the objects
transform along with their multiplicities.

2. Conversely, given some set of irreps [ni,...,n,] with their associated monomials
mit ... m}r, we can identify the linked monomials tff(‘ e t';)D amongst the terms of the
HWG. The exponents {k4,...,kp} correspond to the combinations of basic objects
that transform in the given irreps.

3. We can replace the monomials in Dynkin label fugacities m7" ... m)" within the HWG
by the corresponding irrep dimensions and obtain information about the number of
combinations of basic objects at any given multiplicity. These unrefined Hilbert series
take the form:

o0
9% (tas-stp) = > g% (ta, .. tp)Dimlny, ... ). (2.23)
n;=0

4. We can map distinct object fugacities in a Hilbert series onto a single fugacity
{ta,...,tp} — t to obtain an unrefined Hilbert series g (t).

The Hilbert series of a theory can thus be presented in various ways. Importantly, the
HWG captures all the group theoretic properties of the class functions of the theory; if we
encode the information as a HWG series, we can always extract an unrefined HS, but not
vice versa.

Clearly (2.22) and (2.23) are in the form of infinite series and it is desirable to obtain
these from rational polynomial generating functions. It can often be a non-trivial exercise
to find the polynomial generating function for the HWG series g% (t4,m;) for the PE of
some given set of objects. This calculation is, however, facilitated for groups for which we

- 12 —



have the character generating functions g% (m;, X), as described above, available. In these
cases, we can, in principle, calculate the HWG by using Weyl integration to project the
PE (expressed as a class function in terms of CSA coordinates) onto the complete basis for
class functions provided by the character generating function:

(3]

G G r

g (tAymi) = Z g [nl,...,nr]mlnl coemy”
n;=0

— Z %d,u X*[nl,...,nr]mlnl - mrnr PE [X[A]tA + ... X[D]tD]
niZOG

= %du gG (mi, X*) PE [X[A]tA + ... X[D}tD]
G

T
= fdu PY (m;, X*)PE [Z [0,..., 15, 0" mi | PE [Xiata + ... Xipytp].
& i=1
(2.24)

It will be clear from the foregoing that knowledge of the P%(m;, X') function is neces-
sary to construct such an HWG from first principles, although sometimes the HWG can
be found by inspection, starting from a finite number of the gG[m’m’nT] (ta,...,tp) terms
in the series expansion. There may also be situations where it is not necessary to use the
full character generating function, for example, if the PE is known to generate only irreps
with certain symmetry properties.

HWGs can be used to analyse the combinatorics of group representations quite gen-
erally and it is instructive to review some archetypal situations involving (a) finding co-
efficients for the decomposition of tensor products of irreps and (b) symmetrisations and
antisymmetrisations of basic irreps of groups.

2.4 Decomposing tensor products using HWGs

Given two irreps of a group with composite Dynkin labels [A] and [B], we can ask how
their tensor product decomposes into a sum of irreps [C] with integer multiplicities a§ 5.
These integer coeflicients are similar to Clebsch-Gordan coefficients, although they relate
irreps rather than states within irreps. For U(N) they correspond to Littlewood Richardson
coeflicients:

[A]® [B] = a%p(C]. (2.25)
C

We can transform the relationship (2.25) using Weyl integration and character complete-
ness/orthonormality to obtain an expression for the individual coefficients:

oSy = 74 dyi [CT[A][B]. (2.26)
G
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> ch’BmAnBtC
A,B,C

Ay (1fmn)(171mt)(lfnt)

A 1—mimoninatits
2 (17m2n1)(17m1n2)(17m1t1)(17n1t1)(17m2t2)(17n2t2)(17m2n2t1)(17m1n1t2)

Ag 1+...152 monomial terms“.+m?m§mgn?n%ngt?t%t§

(1 —m3anyi)(1 —mang)(1 —ming)(1 —myt;)(1 — mata)(1 — msts)
X(l — nltl)(l — ngtg)(l — n3t3)
X(l — m3n2t1)(1 — mgngtl)(l — mlnltz)

X (1 — m3n3t2) (1 — m2n1t3) (1 — mlngtg)

X (1 — mlm;gngtg) (1 — 77‘L27‘L17‘L3t2) (1 — 77‘L27‘L2t1t3)

Table 5. HWG for SU(N) Tensor Products.

We now rearrange the problem by introducing three sets of fugacities {m;, n;,t;} and
by using three character generating functions ¢& (m;, X), etc.:

Z aGpmAnPtt = y{d,u Z [C]* [A] [B] mAnPtC
G

A,B,C A,B,C

7{(1# g (tC,X*) g (mA,X)g (nB,X) (2.27)

G
g% (

my, nj, tk> .

We have used the shorthand notation m4 = ﬁ (mi)Ai for the product of fugacities relating
to irrep [A], and so on [13]. Once calcula;e(li explicitly, the resulting HWG generating
function g% (m;,n;,ty) allows the values of a§ 5 to be read off from the integer coefficients
of the monomials mAn?t® . For SU(2) through SU(4) the tensor product generating
functions are shown in table 5.

For example, to obtain the decomposition of [1,0] ® [0,2], we identify the terms
mln% (tlt% + t2) in the Taylor series expansion for the Ao generating function and obtain
[1,2] @ [0, 1].

If we examine the individual denominator terms, we find that they obey the rule
that the sum of the subscripts on the m; and n; less the sum of the subscripts on the ¢;
variables modulo the dimension of the fundamental is zero. This occurs since (i) the HWG
is formed from singlets, (ii) the indices count antisymmetrisations (under the labelling
system adopted) and, (iii) antisymmetrisation of the fundamental by the epsilon tensor,
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which has dimension equal to the fundamental, leads back to a singlet. Put another way,
the sum of central charges counting the degree of antisymmetrisation of each irrep is a
conserved quantity under a tensor product.

Also, since (2.27) is symmetric between the irreps A,B and C*, and the irreps of SU(N)
are conjugate under reversal of Dynkin labels, we have the consquence that the HWGs in
table 5 are symmetric under interchange of any two fugacities {m;, n;, ty—_;}.

The numerators of these HWGs for tensor products of A series groups are all palin-
dromic. We can also observe that in all three A series cases, the degree of each variable in
the denominator exceeds that in the numerator by two. The palindromic numerator for As
is somewhat lengthy containing 154 monomial terms in total and we do not present it here.

This approach to calculating the coefficients for decomposing tensor products of irreps
from Dynkin label fugacties can, in principle, be generalised to unitary groups, yielding gen-
erators for Littlewood Richardson Coefficients, as well as to other classical and exceptional
groups.

2.5 HWGs for symmetrisation of basic irreps of SU(N) Groups

We can also use the character generating functions g% (m;, X) to obtain HWGs for sym-
metrisations of objects transforming in the basic irreps of a SU(N) group by evaluating
Weyl integrals:

r

gG(ti,mj):fdu gG(mj,X*)PE [Z [0,---,11‘,---,0]%]
G

=1

r

:fd,uPG (my, X*)PE|Y [0,...,1;,...,0"m; | PE
G j=1

T

0,...,14...,0]t;
=1

2

(2.28)
The t; count the objects being symmetrised, while the m; count the Dynkin labels of the
resulting irreps. Explicit evaluations of gG(ti,mj) using generating functions based on
table 2 are set out in table 6 for SU(2) through SU(4). These can alternatively be written
more compactly by taking their PLs with respect to the fugacities, as shown in table 7. In
all the cases calculated, the HWGs of the basic irreps lead to finite PLs with all positive
terms and are said to be freely generated. If we choose to restrict the series by selecting a
subset of the basic irreps for symmetrisation (by setting some of the t; to zero) this simply
has the effect of dropping monomials from the PL, and so the subseries of the HWGs are
also freely generated.

These polynomial generating functions gG(ti,mj) encode, through the exponents of
the fugacities, the combinations of irreps formed by the symmetrising action of the PE on
the basic irreps. We can in principle carry out similar procedures for other classical or
exceptional Lie algebras and also obtain polynomial generating functions that encode the
antisymmetrising action of the PEF. The combinatorics of subsets of the basic irreps, when
the t; do not span the rank of the group, can be read off from such HWGs. Alternatively,
HWG series can in principle be obtained for any chosen subset of fugacities by following
similar procedures to those set out above.
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Ar HWG Of PE Z[O,...,li,...,O]ti
Li=1

Ay ﬁ
1
A2 (17t1t2)(17m1t1)(17m2t2)

1
A3 (1—t1t3)(l—t%)(l—mltl)(l—mztz)(l—mgtg)(l—mgtltg)(1—m1t2t3)(1—m2t1t2t3)

Table 6. HWG of SU(N) basic irreps.

A, PL [HWG]

Ay mt

Ao tita +maty + mats

As | tits + t3 + maty + mata + mats + matits + matats + maotitats

Table 7. PLs of HWG of SU(V) basic irreps.

2.6 HWGs for invariant tensors

Any group has various invariant tensors, such as delta or epsilon tensors, structure con-
stants and intertwiners, and these can be combined in many ways. For example, the
invariant tensors can be contracted with vector or spinor fields to yield fields transforming
in other irreps. Also, the invariant tensors of the adjoint representation can be combined
with the generators of group transformations to create scalar Casimir operators whose
eigenvalues identify the irreps in which fields transform [14]. The totally symmetric and
totally antisymmetric invariant tensors for the defining representations of various Classical
and Exceptional Lie Groups are summarised in table 8.

As can be seen from table 8, each classical and exceptional group has a unique sig-
nature in terms of the invariant tensors of its defining representation [14]. Within these,
there is a minimal set of tensors in terms of which the other invariant tensors can be ex-
pressed, termed primitive tensors. If these primitive tensors are symmetric, they can be
symmetrised into symmetric tensors of higher degree; if they are antisymmetric, they are
forms over the co-cycles of the group manifold [15], and can only be antisymmetrised up
to the length of the overall volume form (or epsilon tensor), as determined by the dimen-
sion of the defining representation. The symmetric and antisymmetric tensors can also
be combined into tensors of mixed symmetry and the number of such possible combina-
tions compounds with increasing rank and dimension; the exceptional groups in particular
posses a very complicated set of defining representation invariants when invariant tensors
of mixed symmetry are included [16].

Corresponding tables can also be generated for other representations, such as the
adjoint, in which cases the tensors correspond to the Casimirs of the group. There are also
many invariant tensors that can be formed from combinations of representations.

It is therefore interesting to consider how all the invariant tensors of some represen-
tation(s) might most effectively be enumerated. This question is closely related to the
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problem of identification of GIOs in SQCD, which is the subject of the next section. In the
case of symmetric and antisymmetric tensors, respectively, these can be enumerated in a
straightforward manner by using Weyl integration to project out the singlets of characters
that have been symetrised using the PE, or antisymmetrised using the PEF. Thus we find
the degrees of primitive symmetric tensors are given by t% from the Hilbert series:

thf =PL []{ du PE[X t]} , (2.29)

and the degrees of antisymmetric tensors given by 4" from the series:
14+ > el = fdu PEF [X 4. (2.30)
i

The identification of invariant tensors of mixed symmetry is not so straightforward; in
particular, it is necessary to have some way of describing the symmetry properties of each
tensor, in addition to tracking the number of its indices. One solution is provided by
encoding the symmetry properties of the tensor as a HWG of a unitary representation of
sufficiently high dimension. This method makes use of the pattern of symmetrisations and
antisymmetrisations that arises when a product group is symmetrised, as will be explained.
Consider the symmetrisation of an irrep transforming in a product group A ® B:

Sym?*(A® B) = Sym?A ® Sym?B + A*A ® A’B. (2.31)

The resulting irreps are either symmetrisations of both constituent groups, or antisym-
metrisations of both constituent groups. This contrasts with the situation under overall
antisymmetrisation, when the constituent group irreps are of opposite symmetry:

A*(A® B) = Sym®>A ® A’B + A’A @ Sym?B. (2.32)

This behaviour of product groups under symmetrisation generalises to any order of
symmetrisation n to give all possible combinations, such that the symmetry properties of
Sym™(A® B), which can be described in terms of all the possible Young tableaux at order
n, match between A and B [16]. Whenever the symmetry properties of B correspond to
one of its invariant tensors or singlets, this yields a GIO of B that transforms in some
representation of A; and we can use a HWG to encode the symmetry properties of this
representation of A.

As a first step we express the series of GIOs of B as a class function in terms of the
characters of U(A) using the fugacity ¢:

> s ()1, na] = i PE(X (U () Bl (2.33)
n;=0 B

As a second step we use a generating function for the characters of U(A) with the Dynkin
label fugacities m; to transform the class function (2.33) into an HWG:

U(A)
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Gauge/Colour | Flavour Flavour
SUN.) | SUWp), SUMNpg [U)g Uy UMy UMy
A [0,...,1] [1,0..] 1 1 0 1 (Ny— N.)/Ny
28 [1,0..] 1 0,...,1] 0 -1 -1 (Ny—N.)/Ny

Table 9. SQCD Charge Assignments for SU(Ny) x SU(N.).

The HWG series (2.34) can be presented in terms of Young tableaux for U(N), with
the total number of boxes being given by the exponents of the fugacities ¢ in a partition
described by the fugacities m;. Similar results also can be obtained by decomposition of
tensor products [16], however, the HWG approach has the potential advantage of generating
the complete infinite series of GIOs, thereby resolving uncertainties about the multiplicities
of distinct invariants and/or their appearance at higher orders. It can be noted that
equivalent series can also be obtained by using the SU(N) group in place of U(N), since
the rightmost Dynkin label of a U(IV) representation can be calculated from the Dynkin
labels of the corresponding SU(N) representation, together with the total number of Young
boxes given by the fugacity ¢. This provides an alternative calculation schema, which can
be more efficient.

Thus, HWGs neatly illustrate how the invariant tensors of the group representations
comprised within a product group theory determine the Hilbert series of GIOs. The HWG
monomials identify both the order at which such GIOs are formed and the representations
in which these objects transform. The above series for product groups incorporating U(NV)
are closely related to the series for SQCD, which are the subject of detailed examples in
the next section.

3 HWGs of gauge invariant objects of SQCD

We now apply the tools and methods developed in the previous sections to study the
HWGs of product groups associated with SQCD quiver theories. These are theories with no
superpotential, i.e. W = 0, whose Hilbert series have been calculated within the Plethystics
Program [3-5]. We now wish to construct HWG's for such theories. While we do not aim to
give an exhaustive treatment, we set out the principles and provide representative examples.

3.1 GIOs of SU(Ny) x SU(N,)

It is helpful to start with an explicit statement of the symmetry transformation properties
of the objects within the theory and these are set out in table 9, based on [4].

The theory consists of chiral quarks Q?, and antiquarks Q% transforming in the SU(Ny),
X SU(N¢)r x SU(N,) product group, where the indices 7 range over the fundamentals/anti-
fundamentals of the SU(Ny)r, and SU(Ny)g flavour groups and the indices a range over the
SU(N.) colour group. The GIOs of the theory consist of SU(N,) colour singlets composed
of quarks and/or antiquarks, with some combination of paired and unpaired SU (Ny), x
SU (Ny), indices determining the flavour representation in which they transform. The
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Theory HWG
SU(2)s x SU(2). 1/(1 —t2)

SU(2Ny > 4) x SU(2). 1/(1 — I2t?)

U) s x U(L) sk x SU(2). 1/(1 — tita)

SU(2) . x SU(2)5.r x SU(2), 1/(1 =t (1 — ta2) (1 — lyritats)
SU(Ny > 3)1, x SU(Ny > 3)g x SU(2). 1/(1 = lot12)(1 — rata?) (1 — lyritats)

Uy x U(L)s,r x SU3). 1/(1 —tita)

(2)7. x SU(2) £k x SU(3). 1/(1 = lyritat) (1 — t12t92)

SU(3) s x SU(3) sk x SU(3). 1/(1 =) (1 — ) (1 — Iyritata) (1 — loraty *t0?)

SU(Ny > 4), x SU(Ny > 4)p x SU(3)e | 1/(1 = I3t13) (1 — rat2®) (1 — lyritata) (1 — larati®te?)

Table 10. HWGs of SU(Ny), x SU(Ny)r x SU(N.) colour singlets.

fields also carry U(1) charges. The GIOs are restricted to symmetrised combinations of the
chiral quarks and antiquarks.

To obtain HWGs for these theories, we first form the characters of the fields for a given
SU(N¢)r x SU(Nf)r x SU(INV.) product group. The characters are given by:

Xo=[1,0,....00y [0....,0, 1], o
Xo =110, 015 [0,....0. 1y ) . :

While the colour group CSA coordinates are shared by the quarks and antiquarks, it
is necessary to use different CSA coordinates to distinguish the L. and R flavour groups.
We introduce the fugacities ¢; and ¢y for the quarks and anti-quarks respectively, reflecting
their different U(1) charges, and symmetrise their characters by applying the PE. A first
Weyl integration over the colour group projects out the SU(V,) singlets. We then introduce
the character generating functions ¢(No)t (1;, A7) and g™Vr)r(r;, &%), where the I; and r;
Dynkin label fugacities apply to the L and R flavour groups, respectively. We adopt a
particular labelling system for the Dynkin label slots by counting [l1,...,{,] from the left
and [ry,...,r1] from the right. Finally, we apply second and third Weyl integrations over
the L and R flavour groups. This procedure, which yields the HWG generating functions
that enumerate the GIOs formed from the quarks and antiquarks, can be encapsulated as:

g((Nf)L’(Nf)R’NC) l“T“ z % f fd,ug Nf lz,X ) SU(Nf) (TzaXR)

L SU(Ny),, SUMVe)
x PE [Xot1 + Xgta] .
(3.2)
The results of the calculation of (3.2) are summarised as HWGs in table 10. For
comparison with established results [4] (and for reasons to be explained shortly) this table
also includes cases where the symmetry group is SU(2Ny) x SU(2),, with just one flavour
group and a single fugacity labelled by t.
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The terms in the HWG encode the structure of the colour singlets of the theory and
the flavour group representations to which they belong. Thus, for example, the monomials
{tlg,tgg, l1r1tits, l2T2t12t22} for SU(3)f,L X SU(3)f,R X SU(3)C correspond, respectively, to
three quarks and three antiquarks transforming as flavour singlets, a quark antiquark pair
(meson) transforming in [1, 0], ®[0, 1] ; and a combination of two quarks and two antiquarks
(tetraquark) transforming in [0,1]; ® [1,0]4.

Interestingly, all the HWGs constructed are the same for all flavour groups of funda-
mental dimension exceeding the fundamental dimension of the colour group. This arises
because the antisymmetrisations of the fundamental of the flavour group generated by the
PE are limited by the length of the colour group epsilon tensor, which is the most anti-
symmetric invariant tensor available in the defining representation. The differences in the
unrefined HS as the rank of the flavour group is increased are simply due to the different
dimensions of the flavour group irreps. Thus, the HWGs of this SQCD theory are the same
for all SU(NV) flavour groups of fundamental dimension exceeding that of the SU(NN) colour
group.

A further interesting observation [4] is that with a SU(2) colour group, the left and
right flavour groups can be combined into a SU(2Ny¢) global symmetry. This particular
feature arises for a SU(2) colour group because SU(2) quarks and antiquarks share the same
character. Thus, we can set up a fugacity map in which the CSA flavour coordinates plus
fugacity degrees of freedom match between SU(Ny)y, x SU(Nf)r and SU(2Ny), equalling
2Ny on both sides.

The only proviso is that it is necessary to choose all the fugacities to differ only by a
U(1) phase. Such alternative ways of analysing the same problem give rise to correspon-
dences between the various Hilbert series as tabulated. Thus, for example, the unrefined
Hilbert series for SU(2) x SU(2) x SU(2) in table 11 is the same as the Hilbert series for
SU(4) x SU(2), (which we can obtain by taking the Hilbert series with distinct counting
for SU(4) x SU(4) x SU(2) and applying the mapping t; — t,t3 — 0).

If we are primarily interested in counting dimensions of flavour irreps, the HWGs can
be reduced to unrefined Hilbert series by replacing the monomial terms in {l;,7;} by the
dimensions of the irreps to which they refer. This is equivalent to replacing the coordinates
within the characters of the flavour group by unity. We then have:

g (V) (V) woNe) (1) = 7{ dp PENs [[o,...,o,l}SU(Nc)tlJr [1,0,...,0]SU(NC)tQ]. (3.3)
SU(Ne)

These unrefined Hilbert series, shown in tables 11 and 12, can be further simplified,
as shown, by equating the quark and antiquark fugacities. The results match those given
in [4]. We defer a comparison of the descriptions of the vacuum moduli spaces given by
the HWGs with those provided by Hilbert series to the concluding section.

3.2 GIOs of SU(Ns) x SO(IV,)

We can apply a similar methodology to the analysis of the SQCD gauge theories that
arise when the colour group is a member of the B, C or D series of classical groups. The
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unrefined Hilbert series of these theories have been studied extensively [3]. We can revisit
these analyses using HWG methodology.

In the case of the SU(Ny) x SO(INV,) product groups, the symmetrisations are carried
out on an object transforming in the fundamental representation of the flavour group and
in the vector representation of the colour group, with charge assignments as in table 13.

The theory consists of quarks QF transforming in the SU(Ny) x SO(N,) product group,
where the indices 7 and a range over the fundamental dimension of the SU(Ny) flavour
groups and the vector representation of the SO(N,) colour group, respectively. The GIOs
of the theory consist of colour singlets composed of quarks, with some combination of paired
and unpaired SU(Ny) indices determining the flavour irrep in which they transform. The
fields also carry U(1) charges, although these are not central to the analysis. The GIOs
are restricted to symmetrised combinations of the quarks.

The characters of the quarks are given by:

[1,0...7O]SU [Q]SO fOT NC:3
XQ — []., 0 e ’O:ISU [1, ].]SO fO’I” NC — 4 (3.4)
[1,0...,0]gy [1,0,...,0]gq for No > 4.

Proceeding as before, the HWG generating function is given by:

g(Nf’Nc) (mg,t) = 7{ 7{ dp g™ (m;, X*) PE [Xgt], (3.5)
SU(Ny) SO(Ne)

where we use the Dynkin label fugacities m;. The unrefined Hilbert series generating
function is given by:

g(NiNe) (1) = 7{ dp PENT [Xso (1] (3.6)
SO(N,)

The HWGs and unrefined Hilbert series for the SU(N¢) x SO(N,) product groups are
set out in table 14, table 15 and table 16. The unrefined HS replicate established results [3].

As before, the HWGs of this SQCD theory are the same for all flavour SU(Ny) groups
of fundamental dimension exceeding the vector dimension of the SO(N.) colour group.

3.3 GIOs of SU(Ny) x USp(2n.)

In the case of SU(NNf) x USp(2n.) product groups, the symmetrisations are carried out on
an object transforming in the fundamental representation of the flavour group and in the
defining 2n dimensional fundamental representation of the symplectic colour group. We
use the charge assignments in table 17 [3].

The theory consists of quarks Q' transforming in the SU(2Nf) x USp(2n.) product
group, where the indices i and a range over the fundamental dimension of the flavour group
and the 2n dimensional fundamental representation of the colour group, respectively. The
GIOs of the theory are colour singlets composed of quarks, with some combination of paired
and unpaired flavour indices determining the flavour irrep in which they transform. The
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Gauge/Colour Flavour
SON) | SUy) | UL U()r
Q' vector fundamental 1 (Ny+2—N.)/Ny

Table 13. SQCD Charge Assignments: SU(Ny) x SO(N,).

Theory HWG Unrefined Hilbert Series
1 1
1 1+¢3
SU(3) x SO(3) T—Em®) =B 1—Fma?) (1:72>6
SU(4) x SO(3) ! L
(1-t2m12)(1—t3m3) (1—t*ma2) (1—2)°

942 3 4 5 6y g7 9
SU(5) x SO(3) as above L3t~ +10¢ +(();_-:§;12+10t +3t A
SU(6) x SO(3) as above 1+6t2+20t3+21t4+36t5+56t6+13_6t7+21t8+201‘,9+61‘,10+t12
(1-t3)™
1+ 10¢2 4 3563 + 55¢* + 126> + 2205 + 225¢7
+225¢8 + 220t + 126¢10 + 55¢11 + 35¢12 10413 + ¢15
SU(7) x SO(3) as above

(1—t2)'8

Table 14. Hilbert Series of SU(Ny) x SO(3). product groups.

Theory HWG Unrefined Hilbert Series
SU(2) x SO(4) = oy
SU(3) x SO(4) (17t2m12)(1£t4m§)(17t6) ﬁ
1 1+t4
SU(4) x SO(4) (1-12my2) (1—t4m3) (1—t4) (1—tm3) (1-t2)"0
SU(5) x SO(4) 1 1+¢24-6t4 416448
(1=2m12) (1—t4m3) (1—tima) (1-15m2) (1—t2)™

2 4 6 0 12
SU(6) x SO(4) as above 14367 +21¢ Jﬁ(ittj)?glts*?’tl +
2 4 6 8 10 12 14 16
SU(7) X SO(4) as above 1+6t-“+56t*+126¢ +2(11()jt24;}2§6t +56t“+6t"*+t
14 10t2 4 125t* + 500t% + 1310t8 + 1652¢10
+1310t12 + 5008 + 125¢16 4 10¢18 4 ¢20
SU(8) x SO(4) as above

(1—2)%

Table 15. Hilbert Series of SU(Ny) x SO(4). product groups.
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fields also carry U(1) charges, although these are not central to the analysis. The GIOs are
restricted to symmetrised combinations of quarks. The further restriction in table 17 to
flavour groups of even fundamental dimension follows [17]. For greater generality, we derive
below the HWGs for any flavour group SU(Ny); these results can readily be specialised to
flavour groups of even dimension, as desired.

The characters of the quarks are given by:

Xo=11,...,0lsull,...,0lusp- (3.7)
Proceeding as before, the HWG generating function is given by:
nC,Nf

(g, t f 7{ dp g™ (mq, X*) PE[Xot], (3.8)

SU(Ny) USp(2n)

g(

where we use the Dynkin label fugacities m;, and the unrefined Hilbert series generating
function is given by:

USp(2n)

The HWGs and unrefined Hilbert series for the SU(Nf) x USp(2n.) product groups are
set out in table 18 and table 19. The unrefined Hilbert series for flavour groups of even
fundamental dimension match established results [3, 4].

Once again, the HWGs are the same for all flavour SU(Ny) groups of fundamental
dimension exceeding that of the colour group.

3.4 GIOs of SU(Ny) x G

Finally, it is interesting to examine the situation where the SQCD colour group is taken
as an exceptional group, of which G9 is the lowest rank example. We use the charge
assignments in table 20.

The theory consists of quarks QY transforming in the SU(Ny) x G2 product group,
where the indices ¢ and a range over the fundamental representation [1,0,...,0] of the
SU(Ny) flavour group and fundamental representation [0, 1] of the Ga colour group, re-
spectively. The GIOs of the theory consist of colour singlets composed of quarks, with
some combination of paired and unpaired flavour indices determining the irrep in which
they transform. U(1) charges are not shown. The GIOs are restricted to symmetrised
combinations of quarks.

The characters of the quarks are given by:

X = [1,0,...,Olsy(n,) [0, g, (3.10)

The HWG generating function is given by:

gSUNNC2) (1, 1) = f{ f dp g™t (mg, X*) PE [Xot] (3.11)
SU(Ny) G2
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Gauge/Colour Flavour
USp(an) SU(QNf) U(l)B U(l)R
Q! vector fundamental 1 (Ny —1—n)/Ny

Table 17. SQCD Charge Assignments: SU(2Ny) x USp(2n.).

Theory HWG Unrefined Hilbert series
SU@2) < USp(2) | 12 =
SU(4) x USp(2) | as above (11;';2)5
SU(5) x USp(2) | as above 1(453_'5:;;?
SU(6) x USp(2) | as above %

Table 18. Hilbert Series of SU(Ny) x USp(2). colour singlets.

Theory HWG Unrefined Hilbert Series

SU(2) x USp(4) ﬁ (1,71,52)

1 1

SU(3) x USp(4) T=ma) 1—2)®

1 1
SUM < USel) | i =g
1 1

SU(5) x USp(4) A=mgz)(1=Fm1) =D

SU(6) x USp(4) as above (1:%

SU(7) x USp(4) as above wtﬁ#

SU(8) x USp(4) as above 1+6t2+21t4+£§t:2§2221t8+6t10+t12
14 10t? + 55¢* + 1365 + 190¢8
+136¢10 + 55¢12 + 10¢14 + ¢16

SU(9) x USp(4) as above o

(1-t?)
1+ 15¢% + 120t* + 470¢° 4 1065t + 1377¢10+
106512 + 47014 + 120¢16 4 15¢18 + ¢20
SU(10) x USp(4) as above

(1-t2)*

Table 19. Hilbert Series of SU(Ny) x USp(4). colour singlets.
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Gauge/Colour | Flavour
Go SU(Ny)
Ql [0,1] [1,0,...,0]

Table 20. SQCD Charge Assignments: SU(Ny) x Ga.

Theory HWG
SU(2) x G A=
SU(3) x G2 (el )8 (= ) (=)
SU(4) x Gz (1—m§t2)(1—m3t3)(1—t(4l)zfl—l7;n§tt47))((ll—+7:i§;:Ztlg—)mgtG)(1—t8)(1—m§t12)

Table 21. HWGs of SU(Ny) x G4 colour singlets.

Theory Unrefined Hilbert Series
SU(2) x G2 (1_12)3
SU(3) x Gy W
SU(4) x G, | W
SU(5) x Gy (1+t2+3t5+6t4+3t5+7(t10282§711r(71tj;?;t79+6t10+3t11+t12 )

Table 22. Unrefined Hilbert series of SU(Ny) x G2 colour singlets.

where we use the SU(Ny) Dynkin label fugacities m;. The unrefined Hilbert series gener-
ating function is given by:

g(SU(N7).G2) () = fdu PEN [[0,1]¢,t]- (3.12)
G2

The HWGs and unrefined Hilbert series for the SU(NNf) x G2 product groups are set out
in tables 21 and 22.

We can identify the roles of the G2 symmetric invariant tensors of order 2, 4, 6 and of
the antisymmetric invariant tensors of order 3 and 4, which appear in the HWGs for SU(2),
SU(3) and SU(4) flavour groups. There are also other invariant tensors that appear. In
the case of an SU(5) flavour group, proceeding as before, we can obtain the refined Hilbert
series in the form of a class function:

0,0,0,0
0,0,0,1

(1+t5 1 tQO [ ]
[ ]
[0,0,1,0]
t710,1,0,0]
[ ]

)

(1415 4 £19)

(SU(5),G2) X,t — (1 - t5 +t13

g (1) =(1-#) a (3.13)
)

—t% (1417 4 ¢1° 1000
x PE [[2,0,0,0]#*] PE [[0,0,1,0] £*] .

~99 —



To illustrate the rich nature of the series of GIOs arising in G2 gauge theories, we give below
the terms of the refined Hilbert series expansion up to order 15 in the fugacity t, using
HWG notation. The exact rational HWG corresponding to this series, however, remains
to be found:?

(SUGLG2) (1, 4) = 1+ m2¢% + mat® + mith + m2t* + mat® + m2mst® + mymat®

+ mat® + m8tS + m3m3t + 2m2t° + mImyt®

g

+ m2t7 + m‘llmgt7 + m%m3t7 + mi’m4t7 + m1m2m4t7 + m3m4t7
+ m‘%t8 + mEft8 + mymot® + m‘llmgts + m§t8 + Zm%mgts
+ m‘llm4t8 + m%m4t8 + m1m3m4t8 + 2mit8
+ m%mgtg + 2m1m3t9 + m?mgtg + m%m%mgtg + 2m§t9
+ m?m4t9 + m§m2m4t9 + m1m§m4t9 + m%m3m4t9
+ m2m3m4t9 + mlmitg + 10 4 m?tlo + m%otlo
+ mimat® + mym3t'® + mSm3tt0 + m2mitt
+ 2m2m3t10 + Qm%mgtm + 2mgm§t10 + m1m4t10
+ m?m4t10 + m%m%mﬂw + m‘;’mgm4t10
+ m1m2m3m4t10 + 2m§m4t10 + 3m%mit10 + ...
(3.14)

Moreover, it is clear that the HWGs calculated have not yet converged in the manner
noted earlier for classical colour groups (of defining dimension lower than G3). Noting the
seven dimensional epsilon tensor of G2, we can expect that such convergence of the HWG
should occur for flavour groups SU(8) and above.

4 HWGs of instanton moduli spaces

Instantons continue to attract considerable interest since their discovery as self-dual solu-
tions of Yang-Mills field equations in 1975 [18]. Many studies have been carried out on
different aspects of instantons, such as [19], which gives an ADHM construction for the
instantons of Yang-Mills fields transforming in Classical gauge groups. This paper focuses
just on the analysis of the moduli spaces of instantons, in terms of their Hilbert series
and character expansions. In this context, the Hilbert series for the moduli spaces of one
and two instantons of Classical gauge groups have been constructed from SUSY quiver
theories [6, 7]. Efforts have been made to construct the moduli spaces of two instantons
of Exceptional gauge groups [20]. Our aim here is to construct the HWGs for the moduli
spaces of some low rank SU(NN) instantons on C? and to show how HWGs can be used to
study the structure of these moduli spaces.

We set out in table 23 the field content of a quiver theory for the moduli space of k
SU(N) instantons on C2, following [6]. The instanton moduli space is identified with the
Higgs branch of the quiver theory [21]. The fields in the quiver theory transform in some
representation of a quiver gauge group determined by the number of instantons, in addition

2Due to computing constraints.
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Brane perspective k D3 branes N D7 branes C?
i Y ang-Mill
Quiver AT Global
Gauge : U(k) Gauge : Fugacity
Symmetry
Group Group
Field SU(k) U(1) SU(N) SU(2), U(1),
P [1,0,...,0,1]+1 0 [0,...,0] [0 0 -
@ [1,0,...,0,1]4+1 0 [0,...,0] 1] (1) ¢
X9 [1,0,...,0] (1) | [0,...,0,1] [0 (1) ¢
Xo1 [0,...,0,1] (-1) [1,0...,0] 0] (1) 3
CSA Coordinates Ylye ooy Ykl w T1,--,TN-1 T

Table 23. Field Content of Quiver Theory for Moduli Space of k SU(NN) Instantons on C2.

to transforming under the Yang-Mills gauge group (also referred to in the literature as a
flavour group). The instanton moduli spaces are given by field combinations that are
singlets of the quiver gauge group.

Since the representations of unitary groups do not contain antiparticles [14], it is helpful
to decompose the unitary representations within the quiver into special unitary represen-
tations, by extracting overall U(1) charges. Then the X5 and X bi-fundamental fields
transform in conjugate representations with respect to the SU(k) quiver gauge and SU(N)
Yang-Mills gauge groups and also carry conjugate U(1) charges. The fields {®, ¢(¥)} trans-
form in the U(k) adjoint, formed from the product of the fundamental U(k) representation
with its conjugate, which can be decomposed as a SU(k) adjoint plus a singlet. The U(1)
symmetry associated with the Yang-Mills gauge group has been absorbed into the local
U(1) symmetry of the quiver gauge group. We use a fugacity ¢, corresponding to the global
U(1) charge,? to count the fields.

The theory is defined not only by its basic fields, but also by its superpotential [6]:

W =Tr <X21<I>X12 n aaw(a)%(ﬁ)) . (4.1)

The trace is taken over all unpaired gauge group indices. We apply variational principles,
requiring that the superpotential should be extremised with respect to the field ®:
ow
W=——0® = 0. 4.2
0P (42)
This in turn leads to the following F-term constraints or selection rules between SU(NV)
singlets formed from the X fields and the global singlets of the ¢(®) fields, respectively,
where we denote quiver gauge indices by (a, b, ...) and Yang-Mills gauge indices by (3, j, .. .):

(Xi2),| (), = s (6) “(617) . (1.3

3Technically this global U(1) counts the highest weights of an SU(2) R-symmetry.
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For the gauge group U(k), there are k? relations in total. For a U(1) gauge symmetry the
commutator of the ¢(® fields vanishes and this imposes the F-term constraint that there
can be no SU(V) singlets formed from pairs of X fields. For k > 1, the commutator does
not vanish, and so the SU(N) singlets formed from pairs of X fields become identical to
global SU(2) singlets formed by contracting pairs of ¢(® fields.

If we specialise these relations to quiver gauge singlets, we obtain the general constraint:

(X12)," (X21);" = €ap (¢>(a)>: (¢(ﬁ)): = 0. (4.4)

We are interested in finding symmetrised combinations of the fields {gb(“),XlQ, Xo1}
that are also singlets of the U(k) gauge group. We can generate such combinations of the
fields using the PE followed by Weyl integration, however, the fields are also subject to
the relations (4.3). When we construct Hilbert series for the various theories we need to
incorporate the appropriate F-term constraints into our generating functions to exclude
any disallowed combinations and to avoid over-counting.

Following Plethystic Program methodology, we start by identifying the irreps of the
fields with their characters, which transform in the given product groups. Thus:

X(3') =[1,0...,0,suqw [Usuee) + [Usue),
X (X12) = [1,0...,0,0lsu[0,0. .., sumw)(Dua), (4.5)
X(X21) =1[0,0...,0,1gy)[1,0...,0lsum)(Du)-

We can choose to incorporate F-term constraints at this point by subtracting the PE of
the character of field combinations made redundant by the relations (4.3).

Next we extract the quiver gauge group singlets. This projection onto singlets is carried
out by Weyl integration over both the U(1) and SU(k) quiver gauge groups. The first inte-
gration imposes the constraint that the overall U(1) quiver gauge charge is zero and so the
X fields within the generating functions always consist of pairs of SU(k) fundamentals and
anti-fundamentals, and, similarly, of pairs of SU(N) fundamentals and anti-fundamentals.

HWG s can be calculated by projecting these generating functions onto the irreps of the
SU(N) Yang-Mills symmetry and the global SU(2) symmetry groups. The HWGs faithfully
encode the structure of the representation space and this can facilitate the application of
F-term constraints.

Instanton moduli spaces invariably contain a component generated by the fundamental
of the global SU(2) symmetry. This component represents the position of the instanton
on the on C? manifold. For multiple instanton theories, this corresponds to the centre of
mass. Instanton moduli spaces can be presented in reduced form by taking a quotient of
the full moduli space by this SU(2) symmetry. This can lead to significant simplifications
in the HWGs for the moduli spaces, as will be shown.

The Hilbert series of an instanton moduli space can also be summarised in an unrefined
form by replacing the characters of the SU(IV) and global SU(2) symmetry groups by their
dimensions.

We set out in the following sections the results of such calculations for one SU(3)
instanton on C? and also for two and three SU(2) instantons on C2.
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4.1 Moduli space of one SU(3) instanton

Using table 23 and noting that, for one instanton, the adjoint of U(k) becomes the adjoint
of U(1), we obtain the following characters in terms of the CSA coordinates {x, z1, x2, w}:

X(@) = 1z + 1.
X(Xi2) = (1 + 22 + 1/z122) W, (4.6)
X(XQ]_) = (1/$1 + 1/£2 + xll‘g) wt

In addition to symmetrising the various fields using the PE, we need to correct for the
relation (4.3). Since the commutator of two ¢ fields transforming in the Abelian U(1)
gauge group is zero, this relation entails that SU(3) singlets composed of pairs of X fields
should vanish and so the resulting F-term constraint is that t?m{m$ = > — 0. Singlets of
the Yang-Mills gauge group composed of pairs of X fields are therefore excluded. We can
achieve this by taking a hyper-Kahler quotient, which incorporates the redundancy of the
t? SU(3) singlets into the PE before the projection onto the quiver gauge singlets as:

g SO (4, 20) = 7{ dp PE[X (¢t + X (X12)t + X (Xo1)t — X([0,0;0]) 2], (4.7)
—_——
u(1) 1
The hyper-Kahler quotient follows from the last term of (4.7) (with negative sign) and the
Weyl integral evaluates as:

SO (4 2wy, m9) = (1 — 12)2((1 4 262 + 2¢* + 26% +£%)[0, 0] — #*[1,1])

x PE[[1,1] t}] PE[[1] #], (4.8)

where we are using character notation for the class functions of the SU(3) Yang-Mills gauge
and SU(2) global symmetry groups, for brevity.

To obtain a HWG we use the generating functions for the characters of SU(2) and
SU(3) as per (2.6) and table 2, using Dynkin label fugacities {m1, ma} for the Yang-Mills
symmetry and m for the global symmetry. We then apply Weyl integration over the SU(3)
and SU(2) symmetry groups to obtain the generating function:

HWGYSUO) (£, m, my, my) = j{ }1{ dp (1 —myime) PE[X™[1,0]my + X*[0, 1]ma]
SU(2) SU(3)
x PE[X[1m] ¢"SVG) (¢, 2, 21, x2) (4.9)
1
(1 —t2myime)(1 —tm)’

The HWG analysis explicates the basic objects that generate the moduli space. We can
identify the combinations of the fields within the HWG (4.9) as shown in table 24.

The Dynkin label fugacities mimo always appear paired and so this is an example of
the general result [6] that, for one instanton, the resulting tensor products between SU(N)
particles and antiparticles always transform in a real representation that is a symmetrisa-
tion [n,0,...,0,n] of the SU(N) adjoint representation. We can also see that the ¢* singlets
have been excluded, as intended, by the hyper-Kahler quotient.
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SU(3)vm; SU(2)global | HWG Terms Basic Objects
[1,1;0] t2myme SU(3) adjoint from Xi9 and X9
[0,0;1] tm SU(2) fundamental from ¢(©)

Table 24. Basic Objects of HWG for One SU(3) Instanton Moduli Space.

The physical interpretation of the HWG is that the term tm enumerates the repre-
sentations of the global SU(2) symmetry that describe the position of the instanton on
C? |, while the t>mms term enumerates the holomorphic operators in the reduced mod-
uli space. Thus the reduced moduli space for one SU(3) instanton is given by the one
dimensional HWG:

1,SU(3) o 2
HWG (t, mi, mg) = PE[mlmgt ] (410)

reduced

We can unrefine the series given by the HWG (4.9), by Taylor expansion followed by
replacement of the monomials in the Dynkin label fugacities by the dimensions of the

corresponding irreducible representations using the schema:
1
mitmy*m" — Dim[ni, ng]Dim[n] = §(n1 +1)(na+1)(ng+n2+2)(n+1). (4.11)
The resulting unrefined Hilbert series matches that given by [6]:

1,5U(3 144t +t4
HSunref(ln)ed(t> = 2 oNd” (412)
(I —1)"(1—1¢?)

4.2 Moduli space of two SU(2) instantons

The analysis for multiple instantons is complicated by the enlarged gauge group symmetry;
the characters combine the three separate non-Abelian product groups; quiver gauge U(k =
2), Yang-Mills SU(NN = 2) and the global SU(2), in addition to their U(1) charges. We use
the CSA coordinates {w,x,z1,y1} and apply table 23 to obtain the following characters
for the various fields:

1 1 1
X(p@)) = (y%+1+y%) <x+x)+<x+x),

X (X12) = <y1 + y11> <m1 + 1> w, (4.13)

I

1 1
X(Xo1) = <y1 + ) <£C1 + > w L.
Y1 z1

In addition to symmetrising the fields using the PE, we need to incorporate the F-term
constraints that follow from (4.3) and (4.4), corresponding to the tensor relations:

(X12), (X21);" = €ap (') (69)., (4.14)

and
(X12)g (X21);" = cap(6!™)S(6) 2 = 0. (4.15)
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Firstly, (4.15) entails that singlets under all three symmetries (quiver gauge, Yang-Mills
and global), which are composed just of pairs of ¢ fields (or pairs of X fields), should
vanish. Indeed, since the only Casimir of SU(2) is of degree 2, it follows that all singlets
formed from chains of odd numbers of pairs of ¢ fields (or X fields) should vanish. Thus:

(X12), (Xo1)% ... (X12) F(Xa1)* = 0. (4.16)

odd number of X12Xa1 pairs

This F-term constraint corresponds to adding the following term to the generating function:
PE[-[0;0;0]t*] = PE[—¢?]. (4.17)

Secondly, (4.14) entails that simple symmetrisation of the characters (4.13) over-counts
combinations of pairs of ¢ fields (or pairs of X fields) transforming in the adjoint of the
SU(2) quiver gauge group. The relation does not apply generally, but only between pairs
that are Yang-Mills gauge singlets and global singlets. We can correct for this duplication
by incorporating a generating function term containing the character for the adjoint of the
SU(2) quiver gauge group:

1
PE[—[2;0;0]t}] = PE [— (y% +1+ 2) tQ] : (4.18)
A1
We combine the characters (4.13) and the F-term constraints (4.17) and (4.18) into a
hyper-Kahler quotient and then apply Weyl integration, first over the U(1) and then over
the SU(2) of the quiver gauge group to obtain the generating function:

¢SV (¢ 2) = 7{ ]{ dp PE[X (@)t +X (X19)t+X (Xo1 )t — 12— X[2;0; 0]£%]. (4.19)
SU(2) U(1)

We evaluate (4.19) and then rearrange the resulting functions of the {x,z;} CSA coordi-
nates into characters, with Dynkin labels ordered as [Yang-Mills; global], to give the refined
HS generating function:

(1 +t2 t14 t16) [0;0]

2 SU) P +t2 (1 — ¢19) [0; 1]
g (t,X) = (1-1%) 65 (1— ) [2,0] (4.20)

(1 —1t%) [2;1]

x PE [[0; 1]t + [2; 0]* + [0; 2]¢* + [2; 1]¢* — [0; 1]¢°] .

We now introduce the Dynkin label fugacities m; and m to track the Yang-Mills SU(2)
and global SU(2) irreps respectively and use Weyl integration to project the generating
function (4.20) onto the irreps of the SU(2) groups to give the HWG:

HWGSO tm ) = f § d PE[Umn + Wgonamlg® 20 2). (@21
SU(2) SU(2)
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SU(2)ym; SU(2)global | HWG Terms Basic Objects
[0; 0] tt Singlets from ¢
[0; 1] mt Global SU(2) fundamental from ¢(@
[0; 2] m2t? Global SU(2) adjoint from ¢(®)
[2;0] mit? Yang-Mills SU(2) adjoint from Xi2 and Xo1
[2; 0] matt Yang-Mills SU(2) adjoint from ¢\, Xi5 and Xo;
9.3 Yang-Mills SU(2) adjoint & global SU(2) fund.
; mm
[Qa 1] 1t
from ¢(a),X12 and Xo1

Table 25. Basic Objects of HWG for Two SU(2) Instanton Moduli Space.

Evaluation yields the result:

Num(t,m,my)
(1 —mt) (1 —m?2) (1 — m3t?) (1 — mm3t3) (1 — t4)2(1 —mith)’
(4.22)

HWG2SY@) (¢ m,my) =

where
12,

(4.23)
Interestingly, the polynomial Num(t,m,mq) is anti-palindromic of degree (12,2,4) in the

Num (t,m,my) = 1+ mt> + mmit® + m3® —m?m2t% — mmt" — mmit® — m?m]

variables (t,m,m1). We can identify combinations of the fields giving rise to the HWG
denominator terms as shown in table 25.

We read off the exponents of the fugacities {m, m1 }, which give the Dynkin labels of the
global SU(2) and Yang-Mills SU(2) representations respectively, and identify the building
blocks of the theory according to the irreps in which they transform. In particular, while the
global SU(2) irreps include the fundamental, the only Yang-Mills SU(2) irreps that occur
are the adjoint and symmetrisations of the adjoint. We can identify the term mm2t®, which
is responsible for the mixing that occurs between the global and Yang-Mills symmetries in
multiple instanton theories. Num(t,m,m1) also contains the monomial term mt3, which
is not just a product of the other building blocks. Some of these basic objects can be
identified from the PE in (4.20), however, the HWG gives a complete enumeration.

We can verify that the addition of the terms (4.17) and (4.18) has had the desired
effect of excluding Yang-Mills gauge singlets formed from pairs of X fields from the Hilbert
series. Thus, if we specialise the series (4.22) to Yang-Mills singlets, by setting m; to zero,

we obtain:
14+ mt?

HWG?SY@) (¢, m, 0) = 5 .
(1 —=tH(1 — mt)(1 — m3t?)

(4.24)

This series does not contain any t?> monomials, confirming that all Yang-Mills singlet pairs
of X or ¢ fields have been excluded as intended by applying the F-term constraint terms
to the Hilbert series. Also, the only global and Yang-Mills singlets are at orders of t*,
confirming also that the singlets only contain even numbers of pairs of X or ¢ fields.
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Returning to the HWG for the two SU(2) instanton moduli space given by (4.22)
and (4.23), we can see that the global symmetry only appears in its generating monomials
as m or m?, corresponding to the [1] and [2] global irreps after Taylor expansion. This
appears to be part of a more general pattern, where the global symmetry appears amongst
the HWG generating monomials at orders up to m¥, where k is the instanton number and
equals the maximum degree of the Casimirs of the U(k) quiver gauge group.

Importantly, the [1] irrep of the global SU(2) arises from the PE[[0; 1]¢] term within
the refined HS generating function (4.20) and we can simplify the HWG considerably by
factoring out the tensor products that result from this term. This gives us the reduced
moduli space. Physically, the [1] irrep of the global SU(2) corresponds to the centre of
mass of a system of instantons and so working with the reduced moduli space corresponds
to an analysis in the instanton rest frame.

If we reduce the HS generating function (4.20) by taking a quotient by this PE term,
but otherwise proceed as before, the HWG (4.22) simplifies to the reduced two SU(2)
instanton moduli space:

1+ mmitd
(1 —m?2t2) (1 — m#t2) (1 — mm3t3) (1 —t4)

This result is equivalent to a series expansion of the HWG presented in [7], but uses the

HWG2SU®) (t,m,my) =

reduced

(4.25)

more concise HWG notation, which clarifies the structure of the basic objects in the moduli
space. Unlike the HWG (4.22) for the full moduli space, the HWG (4.25) for the reduced
moduli space constitutes a complete intersection. We can simplify an expansion of (4.25)
to give an unrefined series by replacing monomial terms in the {m,m;} fugacities by the
corresponding irrep dimensions using the mapping:

m"m1" — Dim[n]Dim[ni] = (n + 1)(n1 + 1). (4.26)
We obtain:
15U (U= t) (144 382+ 663 + 8t4 4 667 + 816 + 617 + 315 + 2 + ¢10)
reduced, unrefined (t) - .

(1—2)'(1—3)°

(4.27)
The numerator of the generating function (4.27) is a palindromic polynomial, and the result
matches that given in [7].

4.3 Moduli space of three SU(2) instantons

The presence of three instantons gives rise to a U(3) quiver gauge symmetry, and the field
characters combine three separate non-Abelian product groups: quiver gauge SU(k = 3),
Yang-Mills SU(N = 2) and the global SU(2), in addition to the local and global U(1)
symmetries. We express the characters using the CSA coordinates {y1,y2,x,z1,w} in
accordance with table 23:

1 1 1 1
X (¢! = (yzyf+y§y1+y1+2+z+y2+2> <$+> + (fv+>
Y2 YiY2  Y1yy; Y1 T x

X (X12) = <y1 +y2 + 1) w (a:l + 1) , (4.28)

Y1y2 X1
1 1 _ 1
X(Xo1) = (y1y2+ +) w ! (561-1-) -
Y1 Y2 x1
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We also need to identify the F-term constraints that follow from (4.3) and (4.4). As
before, (4.4) entails that singlets under all three symmetries (quiver gauge, Yang-Mills and
global), which are composed just of pairs of ¢ fields (or pairs of X fields), should vanish,
and this constraint corresponds to the generating function term:

PE[-[0,0;0;0]t*] = PE[—?]. (4.29)

Secondly, (4.3) entails that to avoid duplication of pairs of fields we should also incorporate
a generating function term to eliminate symmetrised characters from the adjoint of SU(3):

1 1
PE[—[L,1;0;0]t?] = PE [— <y2y? A L —+ 24 2) } . (4.30)
Y2 Yiy2 Ny; N
Combining the PEs of the characters (4.28) with the hyper-Kahler quotient terms (4.29)

and (4.30), we obtain a refined generating function by Weyl integration over the {w, y1, y2}
CSA coordinates:

¢SV (¢, 2) y{ jgd,u PE[X (¢t 4+-X (X19)t+ X (Xo1 )t —t2—[1,1;0;0]¢2]. (4.31)

We shall not give the explicit evaluation of the generating function in this form since it is
extremely unwieldy. Instead we simplify the analysis by taking a quotient by the global
symmetry and working with the reduced three instanton moduli space:
3,SU
greduc(e(i(t z,21) = >S5V (¢, 2, 21) PE[—[0,0;0;1]¢]. (4.32)
As before, we introduce character generating functions and the Dynkin label fugacities

my and m to track the Yang-Mills SU(2) and global SU(2) irreps respectively and apply
Weyl integration over the remaining {z1,z2} CSA coordinates to obtain an HWG:

3,5U _ 3,5U
HWGreduc(e()i ml’m t - % f d'u PE ym™1 +[ ]globalm greduc(e(i(t CE 1:1) (433)

Evaluation yields:

3,5U(2) _ Num(my,m,t)
HWGreduced(m17 m, t) - Den<m1, m, t) ) (434)
where the denominator is given by:
Den(mi,m,t) = (1—t*)% (1 — %) (1 — )
1—m??) (1 —mt?) (1 —m?t
< (1= m?) (1 - mt) (1 - ) .
X (1 — m%tz) (1 — m%t‘l) (1 — m?tlo)
X (1 — mm%t?’) (1 -m m1t4)
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SU(2)ywm; SU(2)global | HWG Terms Basic Objects

[0;0] 4,46, 48 Singlets from (@)

[0;1] mt3 Global SU(2)

[0; 2] m2t? irreps

[0; 3] m3t3 from ¢(®)

[2;1] m2mt? SU(2) adjoint & global SU(2) irreps

[2; 2] m%m2t4 from ¢, X195 and Xo

[2;0] mit? SU(2) adjoint from Xq2 and Xo1

[2;0] matt SU(2) adjoint from ¢, X195 and Xoy

[6;0] m§t0 SU(2) symmetrised adjoint from ¢\, X1o and Xo

Table 26. Basic Objects of HWG for Three SU(2) Instanton Reduced Moduli Space.

and the numerator Num(mi,m,t) consists of unity followed by 248 monomial terms, being
palindromic of degree (12,7,43) in the variables (m1, m,t):

L—mt® + mt® + m3t® — 16 + m%0 + mt” — mA® + mt? — mBtl 4 12 - 313 - 2 oAl - mt!® -
m3T — mM20 — m2tt + 2mm® + m2O + 2mPm2tS + 2mmiT + mAmHT + mAE — mPmA® — mimdeS—

mm3t® — 3m3m2t® — mPm3t® + 2m3t0 — m2mH0 — mAm2 0 — 2mmAtt — m3m2t + mOmAt — 2m2m2tt? + mAm3t? + mOmiti—
2mm2t' — 2m3mAtS — mA — m2m2 e — mm3 + mBm2t 4 mOmtS — m3® — m2mi6 4 mm AT + 2mBm2 T+

2m?mt'® — mOSm3 '8 4 mmt'® + mAmt + mOm3tt? — mAm?0 — mAmi — mSmI + mAmt?? £ mPmt - mAim3et - mSmt
mmitT + mits — 2mPmit? — 3mPmitl? — mAmitl0 — 3mPmitt + mAmit!? + mOmit'2 — mmit!d + mAmit! 4 2mPmittS -

2m2mit!t — mmit' + mPmt® — mOmt?® — mIm it + mPmittS — mOmit'S — mm it 4 2m3mit' T + 2mOmfe T+

m2mitt® + mAmitt® — mit + m2m it + mAmi?0 — mBmA? + mImit? + mOmit?? + mm B + mPmitB

2mAmit? + mOmit?t — mAmit?0 — mOmit?® — mPmit? — mTm it — mOmt?® — mmSett + m§t'? — m2m§ei24

m3mStS + m§t + mAmStt — mm§t® — mAmSt® 4 mOmSt'S — 2m2mbt1 — mAmSt6 — mOmGt'S — mAmSelT—

2mSt18 4 2mAm§t® + mmStt? — mPmtl 4 2mPmftl? + mTmftl0 — m§e?0 + mAm§t20 + mm§tH + mAm§t? — mTm§? -

m§t2 + mAmt?2 + mOm§t?2 + m3mft? — mTmft? + m§e*t 4+ 2mPmbt2t — mAmfe? + mOmSe 4 2m3m§t? — 2mTmbt? — mAm§e—
mm§t27 G427 — 2mPmSt2 + m2m§t® 5428 5828 4 m3mbt? + mTm$t® + mAm§t30 — mPm§t3! + mTmfe3 —
mSmit3? — mm$tlS — mftl0 — m2miel — mmStlT — M £ mm$t + 2m3mitt® + mAme + mOm$t0 + mmfe

m§t22 — mAmit?? + mAm$t? + mOm§e? $62 + mAmSt + mPm§t® 4+ 2m2m$t?0 + 2mAImft?6 — mOm§e20—

mm$t2T + mPmPt?T — mft? — mPmSt? + mAm§t?S — mOmSt? — 2mOmt? + 2m2mSt + mAmS30 — mOm$t0 + mmfe + mImied—
832 _ 8433 _ 8133 B3 8135 8136 10419 10419 1020 1021

- 'UlJ'Ul - ’/”47” - ’IYL[)TN

—m'm

3mtm m3m 3mom —2m +m’m +mSm +mm +mim +m?m +mim
m2mi%? — mAml0t?2 — m3mi%2 + m2mi0 + mAml1% + mSmi%t2t — mm {02 + 2mOmi0t® + 2mAm 20 + mOm{0e—
mPmi%2T — mTmi%%" 4 m2mi0%? 4 mAmit® — mOmi%2 — mSmi%t? — mTmi%2 — 2mAmi00 — 2mSmi004

mm B! + Mm%t — 2mOml0B + m2m 032 — mAmi0t3? — 2mOm 0?2 — Mm% — mOm]0 4 2mTm 033~

QO}Ot“ - 3m4m%0t34 — msm}ot34 — 7n37n}0t35 — mr’m%otf“r’ + 771777&01535 + 7n4rn}nt36 + Qme%Ot% + 2m5m}0t37 + m7m%0t37+
2mOmi0s — 1 Tm10g3 1223 1226 1228 1228 1229 1229 _ 1230 1231

mAmi%3? 4 mbmi2e3t — mSml2¢10

- -
m’m m*m +m'm
+mb m{zt'js

+mim
2438

— m“m — me

+ m,‘-’m{zt37 — m7m}2t37

+mim
2436

—mm
12435
1t

—m’m +mSmj +mtm] +mTmi213

(4.36)

We identify in table 26 the combinations of the fields in the denominator that contribute

to the HWG. We read off the exponents of the Dynkin label fugacities m; and m, which

label the Yang-Mills SU(2) and global SU(2) representations respectively, and identify the

building blocks of the theory according to the irreps in which they transform. In particular,

while the global SU(2) irreps include the fundamental, the only Yang-Mills SU(2) irreps

that occur in the PL are the adjoint and symmetrisations of the adjoint. The objects do

not include Yang-Mills singlets comprised of X fields, so we can verify that the F-term
constraints have been implemented as intended by the terms (4.29) and (4.30).

As before, we can also simplify the HWG into an unrefined version by either (a) setting

the Yang-Mills gauge and global SU(2) CSA coordinates in (4.32) to unity or (b) replacing

monomial terms in the m and m; Dynkin label fugacities in a Taylor expansion of (4.34)
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Theory PLHWG] PL[Unrefined HS|
SU(2) x SU(2). t? t2
SU(4)f x SU(2). Iot? 612 — 4
SU(2Ny > 6)5 x SU(2), Iot? infinite series
SU(2)s, x SU(2)f,r x SU(2). t12 + 622 + Irtty t12 + o + dtyty — t33
SU(Ny > 3)r, x SU(= 3)r x SU(2), lot12 + rote? + liritits infinite series
SU(2) 4. x SU(2) sk x SU(3). Irtyty + t12to2 4t 1ty
SU@3) s x SUB) sk x SU(3). 113 4+ 193 4 lritito 4 lorat1?te? | Otits + 113 + o — t13103
SU(Ns > 4) x SU(Ng > 4)g x SU(3). | Ist13 + rata® + liritats + lorati *to? infinite series

Table 27. PLs of HWGs and Hilbert Series of SU(Ny)r x SU(Ny)g x SU(NN,) colour singlets.

by the corresponding irrep dimensions using the mapping:
m"mi™ — Dim[n]Dim[ni] = (n+ 1)(n1 + 1). (4.37)

In either case we obtain the quotient of palindromic polynomials:*

— +54t11+55t12+36t13+31t14+16t15+12t16+6t17+3t18+t20
reduced,unreﬁned( (1—t2)3(1—t3)4(1—t4)3

<1+3t2+6t3—I—12t4—|—16t5—|—31t6—|—36t7—|—55t8—|—54t9—|—60t10 )
t) =

HS
(4.38)

5 Discussion and conclusions

We have shown how the HWG methodology takes the often complicated plethystic class
functions of refined Hilbert series and transforms them into corresponding generating func-
tions for the coefficients of the irreps in the series, identified by their Dynkin label fugacities.
Both refined and unrefined Hilbert series can be recovered in a straightforward manner from
these HWGs. It is instructive, therefore, to compare the properties of HWGs with those
of HS.> The geometric properties of refined Hilbert series largely follow from those of
unrefined Hilbert series and so we do not comment on them separately.

We use PLs for the purpose of comparison since these encode the geometric nature of
the series most concisely. Tables 27 through 29 set out the PLs of the HWG and unrefined
HS for the colour singlets of the various SQCD theories examined herein.

The PLs of the unrefined Hilbert series for SQCD theories correspond to established
results [3, 4]. The PLs of the HWGs differ from the unrefined Hilbert series for all but the
simplest series and explicate the structure of the GIOs of the theory. Thus, for example,
the PL t?ms + t* in table 29 indicates that the highest weight basis for all GIO colour
singlets formed from quarks transforming in a SU(4) x USp(4) product group consists of
a contraction of two quarks transforming in the [0, 2, 0] irrep of the SU(4) flavour group

4This is consistent with the series obtained by using instanton counting methods set out in [22].
5Tt is worth commenting that both palindromic properties and the use of unrefined Hilbert series can be
extremely useful as a check on the overall counting of dimensions during the calculation of HWGs.
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Theory PLHWG] PL[Unrefined HS]
SU(2) x SO(3) t2m? 4 4 3t2
SU(3) x SO(3) £2m? + 13 + ttmy? 6% 4 t3 — 10

SU(> 4) x SO(3) t2m? + t3ms + t*my? infinite series
SU(2) x SO(4) 2m? + ¢4 3t2
SU(3) x SO(4) t2m? + ttmo? + 16 61>
SU(4) x SO(4) t2m? + t*mg? + t5m3 + ¢4 1062 + 4 — 8

SU(>5) x SO(4) 2my? + thma? + thmy + t°m3 infinite series
SU(2) x SO(5) t2m? 4+ 4 3t2
SU(3) x SO(5) t2my? + ttmo? + 16 612
SU(4) x SO(5) t2mq? + t*mo? + t5m3 + 8 10t2
SU(5) x SO(5) t2my? + t4ma? + 5 + t5m3 + ¥m? 152 + 5 — ¢10

SU(> 6) x SO(5) | t2m1? + t*ma? + toms + t°mZ + t3m3 infinite series

Table 28. PLs of HWGs and Hilbert Series of SU(NNf) x SO(N,) colour singlets.

Theory PLHWG] | PL[Unrefined Hilbert Series]

SU(2) x USp(2) t2 t2

SU(3) x USp(2) t2meo 3t2

SU(4) x USp(2) t2mo 6% — ¢4
SU(> 5) x USp(2) t2meo infinite series

SU(2) x USp(4) t2 t2

SU(3) x USp(4) t2mo 3t2

SU(4) x USp(4) t2mg + t 61>

SU(5) x USp(4) | t>mg + timy 102

SU(6) x USp(4) | t?ma + timy 15t2 — 5
SU(>7) x USp(4) | t?mq + t*my infinite series

Table 29. PLs of HWGs and Hilbert Series of SU(Ny) x USp(2n.) colour singlets.

and a contraction of 4 quarks transforming as a [0, 0, 0] flavour singlet. This HWG has all
positive terms in the PL and is a freely generated series. Negative terms in a PL indicate
that a series is a complete intersection or the quotient of two freely generated series. When
a PL does not terminate, this shows that the GIOs of the theory cannot be reduced to
symmetrisations of a finite basis set of GIOs, or their quotients, and the series is termed a
non-complete intersection [4]. In the case of SQCD, tables 27 through 29 illustrate how the
HWGs can have moduli spaces that are freely generated or complete intersections, when
the unrefined HS do not have finite PLs.
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Theory PL [HWG]

SU (Nf) x SU (NC) mNCtNC
. N¢ ,N
Ny < N.: 'ty
min(N¢,Ng)—1 o Zf / L2
SU(Ny), x SU (Ny), x SU (N.) ; Lritity + S if Np= No: e e

if Np>Netly ) +rythe

N if Ny <Ng: 2N
min(N¢,N¢)—1

SU (Ny) x SO (N.) > mit*+qif Np=N,: N
=1

if Np> Ne:my the

nlin(LNf‘ilJ &) . : N
2 172 . if Ny < N.& Nyiseven: ¢/
SU (Nyf) x USp (N.) mot% 4+

i=1 if Ny > N,: mNtNC

c

Table 30. Generalised PLs of HWGs for SQCD with Classical Colour Groups.

As noted in section 3, providing one adopts a labelling system that reflects group sym-
metries, the HWG generating functions are identical for all the SU(V) flavour groups once
their fundamental dimension exceeds the defining space dimension of the colour group.
This arises because the antisymmetrisations of the fundamental of the flavour group gener-
ated by the PE are limited by the length of the colour group epsilon tensor. The differences
in the unrefined Hilbert series as the rank of the flavour group is increased are simply due
to the different dimensions of the flavour group irreps. Thus, we can reason that the HWGs
of SQCD are the same for all SU(N) flavour groups of fundamental dimension exceeding
that of the colour group. This important insight makes it possible to calculate the Hilbert
series for GIOs of SQCD theories with high rank flavour groups, for which a direct calcula-
tion using Weyl integration might not be feasible. The result corresponds to observations
within [3, 4].

Following similar tensorial reasoning, it is possible to relate all the HWGs for classical
SQCD to the primitive invariant tensors of the classical groups, as set out in table 8, with
each HWG monomial corresponding to a contraction of delta and epsilon tensors with the
numbers of quarks identified by the fugacities. Using this knowledge of the structure of
the primitive invariant tensors, we can write down expressions for the HWGs describing
the SQCD theory for a given classical product group as in table 30 .

The HWGs typically contain a different number of generators and relations to the
HS. The generators can be identified by PL terms with positive coeflicients, while the
relations between the generators are given by PL terms with negative coefficients. The
overall dimension of a moduli space is given by the number of generators less relations [4].
We summarise the HWG and HS descriptions of the moduli spaces of a selection of classical
SQCD theories in table 31. The dimensions are obtained by summing the PLs in tables 27
through 29 with all coordinate fugacities set to unity, or, in the case of the non-terminating
PLs of unrefined Hilbert series, by summing the orders of the poles calculated in section 3.
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HWG

Moduli Space

HWG
HWG Irrep Dimension
Theory Dimension
Irrep Degree (HS)
“ 0 (@) + )
SU(2) x SU(2) 1 [0] 0 1
SU(4) x SU(2) 1 [0,7,0] 4 5
SU(6) x SU(2) 1 [0,7,0,0,0] 8 9
SU(8) x SU(2) 1 [0,7,0,0,0,0,0] 12 13
SU(10) x SU(2) 1 [0,7,0,0,0,0,0,0,0] 16 17
SU(2) x SU(2) x SU(3) 2 [n][n] 2 4
SU(3) x SU(3) x SU(3) 4 [n1, na][n1, nal 10
SU(4) x SU(4) x SU(3) 4 [n1,n2, ng][n1, ng, N4l 12 16
SU(2) x SO(3) 2 [2n] 1 3
SU(3) x SO(3) 3 [2n1, 2n9] 3 6
SU(4) x SO(3) 3 [2n1, 2n9, ng] 6 9
SU(2) x SO(4) 2 2n] 1 3
SU(3) x SO(4) 3 211, 2ns) 3 6
SU(4) x SO(4) 4 [2n1, 2n9, 2n3] 6 10
SU(5) x SO(4) 4 [2n1, 2n9, 2n3, n4) 10 14
SU(2) x SO(5) 2 [2n] 1
SU(3) x SO(5) 3 211, 2n) 3
SU(4) x SO(5) 4 [2n1, 2n9, 2n3] 6 10
SU(5) x SO(5) 5 [2n1, 2n2, 2ng, 2n4] 10 15
SU(6) x SO(5) 5 [2n1, 2n2, 2n3, 2n4, 5] 15 20
SU(2) x USp(2) 1 [0] 0 1
SU(3) x USp(2) 1 [0, n] 2 3
SU(4) x USp(2) 1 [0,7,0] 4 5
SU(5) x USp(2) 1 [0,7,0,0] 6 7
SU(2) x USp(4) 1 [0] 0 1
SU(3) x USp(4) 1 [0, n] 2 3
SU(4) x USp(4) 2 [0,7,0] 4 6
SU(5) x USp(4) 2 [0,n1,0,n2] 8 10
SU(6) x USp(4) p [0, 11,0, na, 0] 12 14
SU(7) x USp(4) 2 [0, 71,0, 2,0, 0] 16 18

Table 31. Dimensions of Moduli Spaces of Classical SQCD Theories.
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HWG HWG Moduli Space
Theory Dimension Irrep Degree Dimension (HS)
(a) (b) (a) + (b)
SU(2N;) x SU(2) 1 ANy —4 AN; -3
SU(Ny) x SU(N;) x SUN,) | Ne+1 2N/N, — N2 — N, 9NN, — N2+ 1
SU(N) x SO(V.) Ne | NyNe— Nu(Not 1)/2 | NyNo— Nu(N. — 1)/2
SU(Ny) x USp(N.) N./2 N¢N.— Ne(Ne+2)/2 | NyNeo— Ne(Ne +1)/2

Table 32. Dimensions of Moduli Spaces of Classical SQCD Theories for Ny > N..

As can be seen, the Hilbert series typically describe moduli spaces with a higher di-
mension than those of the HWGs. We can develop a systematic account of the relationship
between the dimensions of a Hilbert series and those of its underlying HWG by expanding
the latter and analysing the dimensional structure of its irreps. For example, the expansion

for SU(4) ¢, x SU(4)s r x SU(3). in table 27 takes the form:

S
PE [lgt%+T3t§—|—l1?”1t1t2—|—l27’2t%t%] = Z [nl, na, TL3] [nl, na, n4]t?1+2n2+3n3 t;zl+2n2+3n4‘

n1,n2,n3,n4=0

(5.1)
The Dynkin labels in this HWG series expansion are described by four different parameters
{n1,m2,n3,n4} corresponding to the four generators {l1r1t1ta, loratits, I3t3, rsts} respec-
tively. These parameters define the sub-lattice of the group spanned by the irreps of the
HWG. The dimensions of the irreps are given by a polynomial function of the parameters
and the degree of this polynomial accounts for the extra dimensions of the Hilbert series
compared to the HWG.
We now define the HWG Irrep Degree as the total degree of the polynomial that gives
the dimensions of the HWG irreps.% Example (5.1) is built from irreps of SU(4), for which
the dimension formula is:

1
Dim[ny,ng, ng] = E(nl—i—l)(ng—i—l)(ng+1)(n1+n2+2)(n2+n3+2)(n1+n2—|—n3—|—3). (5.2)

The degree of this polynomial is six and thus the HWG Irrep Degree is 12, being the sum
of the degrees for the two SU(4) sub-groups. In HWGs where some Dynkin labels are fixed
at zero, the HWG Irrep Degree is reduced. The HWG Irrep Degree, as defined, exactly
accounts for the difference between the dimensions of the HWG and the Hilbert series. This
analysis can be repeated for all the SQCD theories studied and is summarised in table 31.

Noting the constant nature of the HWG dimension for Ny > N, we can, by inspection,
generalise the dimensions of the moduli spaces for large Ny as in table 32.

In all these cases, for Ny > N, the gauge group is completely broken, and the di-
mension of the Hilbert series is given by the dimension of the underlying product group
representation less the group dimension of the colour group. This Hilbert series dimension

5This definition leads to HWG Irrep Degrees that are consistent with the degrees of dimensional poly-
nomials given in [7].
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Theory PLHWG] PL[Unrefined Hilbert Series]

SU(2) x G2 m?t? 4 t4 3t2
SU(3) x G t3 + 15 + m¥? + mt t3 + 612
mit? + mgt? + t*
SU(4) x G +m3tt 4+ mat® + m3t 4+ mymat” 4 18 1062 + 4¢3 + 4 — ¢8
+mamgt? + m3t'2 — m2m3tt — m3m3t!®
SU(5) x Go to be calculated infinite series

Table 33. PLs of HWGs and Hilbert Series of SU(Ny) x G colour singlets.

HWG Moduli Space
HWG
HWG Irrep Dimension
Theory Dimension
(@ Irrep Degree (HS)
a
(b) (a) +(b)

SU(2) x Go 2 [n] 1 3
SU(3) X GQ 4 [nl,ng] 3 7
SU(4) X GQ 8 [nl, no, ng] 6 14
SU(5) X G2 t.b.c. [nl, ng, N3, n4] 10 21

Table 34. Dimensions of Moduli Spaces of SU(Ny) x G5 colour SQCD Theories.

reduces into the dimension of the HWG and the degree of the dimensional polynomial for
its irreps.

The Hilbert series of the GIOs of exceptional gauge groups are considerably more
complicated than those of classical gauge groups. This complicated structure can be seen
from table 33, which contains some Hilbert series and HWGs for G3. We can identify
basic GIOs built on the G9 primitive symmetric invariant tensor of rank two and the Go
primitive antisymmetric invariant tensors of rank three and four, being m%tz, mat® and
t* respectively, corresponding to the [2,0,0], [0,0,1] and [0,0,0] irreps of SU(4). The HWG
identifies, in addition, the complicated pattern of GIOs in the many other SU(N) irreps
that can be formed from combinations of these basic objects, taking account of the relations
amongst them. The dimensions of the Hilbert series and the HWGs are related to each
other in a similar manner to those of the classical SQCD theories analysed above, as can
be seen from table 34.

It is argued that the Hilbert series of SQCD are always palindromic, which entails that
the moduli spaces of the fugacities are Calabi-Yau [4]. All the Hilbert series, and also all the
HWGs for SQCD calculated herein, are palindromic, considering that the numerators of
freely generated series and complete intersections are also simple palindromes, and therefore
Calabi-Yau. This palindromic property of many generating functions for Hilbert series is
shared with the character generating functions discussed in section 2 that are used to derive
the HWGs and Hilbert series.
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Instanton Theory PLHWG:educed] PLHWG] PL[HSnrefined)
One SU(2) mq2t? mt + my %t infinite series

m*t? + m3t? + mm3t3 + ¢4

Two SU(2) infinite series | infinite series
mm2t5 — m2m A0

Three SU(2) infinite series infinite series | infinite series

One SU(3) mimat? mt + mimat? | infinite series

Table 35. PLs of Moduli Spaces of Selected Instanton Theories.

An important demonstration from the HWG analysis is that, in all cases, the unrefined
HS are reducible to sums of series associated with individual flavour group irreps. This
contrasts with the conjecture regarding SQCD [4] (Observation 3.11) that:

“l...] we find in all case studies that M(Ny, N;) is irreducible using primary
decomposition and conjecture this to hold in general.”

The group theoretic reducibility of the unrefined Hilbert series follows from the facts that
the PE and PEF map class functions into other class functions and that these can always be
decomposed in terms of characters. This reducibility corresponds to the precise description
of the group structures underlying the Hilbert series in terms of the HWG generating
functions.

Turning to instanton moduli spaces, we have set out in section 4, the HWG for one
SU(3) instanton on C? and for two and three SU(2) instantons on C2. We have shown that
all the operators in the moduli space of three SU(2) instantons on C? transform in some
symmetrised irrep of the adjoint, with Dynkin labels [0,0; 2n; ; n |, for non-negative

~ ~~

gauge flavour global
integers n and ni. This is similar to the established result for one instanton Hilbert

series [6]. It results from the initial choice of gauge group as U(k), since this has no epsilon
tensor, and its singlets can only be formed from equal numbers of U(k) representations and
conjugate U(k) representations.

The HWGs for instanton moduli spaces are generally considerably more complicated
than those of SQCD, since they involve symmetrisations of the adjoint in addition to those
of basic irreps. This can be seen from table 35.

While the generating functions for the HWGs and Hilbert series of instanton moduli
spaces are all palindromic, only some of these spaces turn out to be freely generated. In
particular, the HWGs for single instanton theories are freely generated. We have also
shown that the reduced moduli space for two SU(V) instantons is a complete intersection,
although this is the case neither for the higher multiple instanton theories examined, nor
for any of the unrefined Hilbert series.

We should mention also, without giving details, that the moduli spaces of multiple
instanton theories all contain the moduli spaces of one instanton theories and so an alter-
native approach to multiple instanton theories is to study the quotient space between the
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HWG Moduli Space
HWG
. _ HWG Irrep Dimension
Theory Dimension
(@) Irrep Degree (HS)
a
() (a) + ()
One SU(2) Instanton 2 [2n1,n] 2 4
Two SU(2) Instantons 6 [2n1;n] 2 8
Three SU(2) Instantons 10 [2n1;n] 2 12
One SU(3) Instanton 2 [n1,n1;n] 4 6

Table 36. Dimensions of Moduli Spaces of Selected Instanton Theories.

multiple instanton theory and its underlying one instanton theory. Such quotient spaces
lend themselves naturally to analysis in terms of HWGs.

Finally, the dimensions of the instanton moduli spaces decompose into the dimension
of their HWGs and the degrees of the dimensional polynomial of the HWG irreps in a
similar manner to the SQCD theories, as can be seen from table 36.

The instanton moduli spaces calculated in table 36 all include a contribution from
global SU(2) symmetries. If this contribution is excluded, we obtain reduced instanton
moduli spaces, as discussed earlier. The HWGs of these reduced instanton moduli spaces
of one instanton theories based on simple Lie groups are all one dimensional. For example,
the HWG of the reduced moduli space for one SU(3) instanton is just mimat?. This
leads to an elegant decomposition of the moduli spaces of one instanton theories into one
dimensional HWGs and corresponding HWG dimensional polynomials, calculated in the
same manner as above, and these are set out in table 37. All the reduced one instanton
moduli spaces have a dimension equal to the sum of the Dual Coxeter labels of the group [6].

Conclusion. In conclusion, the HWG approach provides an efficient means of encoding,
calculating and decomposing Hilbert series and opens up many avenues for further inves-
tigation. These could include explication of the general relationship between the invariant
tensors of groups and the structures of GIOs that arise within product groups. Specific
theories that could merit further study include SQCD with fields transforming in various
representations of classical and/or exceptional gauge groups and multiple instanton theories
generally. Finally, it could prove interesting to understand more fully the geometric nature
of the HWG manifolds, which all appear to be palindromic and therefore Calabi-Yau in
nature, and to relate this more precisely to the geometry of the Hilbert series manifolds.

It should be added that these investigations make extensive use of contour integration
and face the challenge of implementing algorithms in Mathematica to combine and simplify
large numbers of residues within the computing constraints of memory limits and a practical
timescale. The development of more effective algorithms would therefore facilitate the
extension of the results herein to a wider range of theories built from other group or
product group representations.
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o _ Degree of ) Sum Dual
Series Adjoint Instanton | Dim Dimensional Dim Cozeter
Representation HWG HWG Instanton
Polynomial Labels
(a) (b) () + () | 3((@)+0)
Ay [2] m2t 1 1 2 1
Ay, As i [1,1] mimat? 1 3 4 2
A>3 :[1,0,...,1] mymy,t? 1 2n — 1 2n n
By : [2] m2t 1 1 2 1
B, Bs : [0,2] mo’t 1 3 4 2
B>3:[0,1,...,0] mot 1 dn —5 dn —4 2n — 2
Cy (2] m2t 1 1 2 1
Cn Cy : [2,0] my %t 1 3 4 2
C>3:[2,0,...,0] m3t 1 oan—1 2n n
Dy:[2,00@[0,2] | m2tomit | 1o1 1®1 202 1®1
D, D3 :[0,1,1] maomst? 1 5 6 3
D>4:[0,1,...,0] mot 1 dn —7 4n — 6 2n — 3
Es [0,0,0,0,0,1] mgt 1 21 22 11
Er [1,0,0,0,0,0,0] myt 1 33 34 17
Eg [0,0,0,0,0,0,1,0] myt 1 57 58 29
Fy [1,0,0,0] myt 1 15 16 8
Go [1,0] myt 1 5 6 3

Table 37. Dimensional Analysis of Reduced One Instanton Moduli Spaces.
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A Plethystic exponential and logarithm

Consider a function in some variable t, which can be expressed as a power series:
o
&)= ant™ (A1)
n=0

The Plethystic Exponential (“PE”) for such a function is defined [4] as:

00 By
PE[f(t),1] = exp (Z f<t>kf(0)>
k=1

i 1
=11 e

n=1
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The PE can be generalised for power series of more than one variable, so that for:

oo N
Fltr, o tn) =D 0D ant, (A.3)

we obtain the PE:

0 k k\ _
PE[f(t1,...,tN), (t1,...,tN)] =exp (Z f(tl"”’tN)k f<0"”70))

- N (A.4)
Sifife—
LL(1 =)t
In order to avoid ambiguities, we shall, where necessary, use the notation:

PE[f(t1,...,tn), (t,...,tx)], (A.5)

to clarify the variables with respect to which the PE is being taken (and similarly for
the PL).

The Plethystic Logarithm (“PL”) can be used to invert the PE. The PL makes use of
the Mobius function p(k) , which is defined as (—1)™ for an integer that is the product of
n distinct primes other than unity, and zero otherwise, such that u(1) = 1, u(2) = u(3) =
—1,... etc. For the general case, the PL is defined as:

o0
1
k=1
If we set g(t1...,tn) = PE[f(¢t1...,tn)], we then obtain f(¢1...,tx) = PL[g(t1,...,tN),
(t1,...,tn)], as required. The identity can be proved by manipulation of the various series

using the properties of the Mobius function [2], which include the key simplifying identity:

Z Z t“m =t (A7)

=1 m=1

The PE, which is a symmetrising function, has a related antisymmetrising function called
the Fermionic Plethystic Exponential (“PEF”). This is defined as:

> flk k) — £(0,...,0)
exp (Z (_1)k+1 1 N : )

k=1

oo N
11 R

PEF[f(t1,...,tn), (t1,...,tN)]

Like the PE, the PEF also has an inverse function, which we term the Fermionic Plethystic
Logarithm (or “PLF”), given by:

g

PLF[g(t1, ... tn), (tr,....tn)] = > PL[g(", ..., t% ), (8", .., 13

m; ~ (A.9)
:ZZ logg )k...,t% )k).
m=0 k=1



The PE and PEF have the useful properties that:
PE[f1 + f2] = PE[/1] PE[f2]

(A.10)
PEF([f1 + fo] = PEF[f1] PEF[f5]
and the PL and PLF have the related properties that:
PL = PL|g1] + PL
[9192] [91] [g2] (A.11)

PLF[glgg] = PLF[gl] + PLF[QZ]

All the above results are exact, providing that the series are convergent.

We can use the Plethystic Exponential to symmetrise the character of an irrep of
some group G as follows. Suppose the character X of the irrep is composed of monomials
Ai(x1,...,x,), where the z; are CSA coordinates ranging over the rank 7 of the group and
the index ¢ ranges over the dimension Dim(X ) of the irrep:

Dim(x

Z A (z1,..., @) (A.12)

We form a generating function g% (¢, X') by taking the PE of the sum of fugacities f; = tA;,
which are given by the products of each coordinate monomial with a fugacity ¢, where
0<Jt| <1
g%(t, X) = PE[Xt]
Dim(X)

=PE Z fis (Frs- 5 Ipim(x)) (A.13)

1
- H 1—tA)

The Taylor expansion of g% (t, X') generates an infinite polynomial in the fugacity ¢, whose
coefficients are functions of the coordinate monomials. Importantly, the PE of a character
is a class function and the Peter Weyl Theorem [10] entails that the characters of a com-
pact group form a complete basis for its class functions, so this Taylor expansion can be
decomposed as a sum of characters of irreps, each of which is related to the initial character
by symmetrisation, and each of which has a distinct coefficient in the form of a polynomial
in the fugacity t.
Z glrrep 1rrep(A ) (A.14)
irreps
The symmetrising PE is complemented by the PEF, which we can use in a similar manner
to antisymmetrise the character of an irrep.

¢%(t, X) = PEF[X1]
Dim(X)

= PEF Z fis (1,5 Fpim(x)) (415

Dim(X)

= [] @+t

i=1
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Following similar reasoning to that above, the PEF can also be expanded as a sum of
characters:
PEF[Xt] = Z gg irrep(t))(irrep(Ai)' (A16)

irreps

In this case, the sum of characters is finite.

B Weyl integration

Weyl integration (also known as Molien-Weyl integration) provides a helpful method for
integrating the class functions of a group G, such as characters, which depend only upon
the identity of a chosen irrep, over the volume of the group. Normally, group integration of
a function f[y], where v € G, requires taking the integral over all the dimensions Dim(G)
of the group:

I= / dp()f (), (B.1)

G

where dy(7) is the Haar measure. In Weyl integration the integral is simplified to one over
the maximal torus of the group (as generated by its Cartan subalgebra), by conjugating
the class function with other elements of the Group, such that it is always represented
by an element of the maximal torus. This is permissible since the integral is effectively a
trace over the group. This conjugation reduces the number of integrations required from
the dimension of the group to the rank of the group. To do this consistently, the Haar
measure, which is effectively a volume element, has to be modified by scaling to reflect the
projection of the entire group onto its maximal torus [10, 23].

Without digressing further into the technical details, we can usefully tabulate the
modified Haar measures for U(r) and the classical groups [24] as in table 38. In this table,

the rank of a group is always labelled by r and {61, ...,6,} are coordinates of periodicity
27 on its maximal torus. The Haar measure is normalised such that it integrates to unity:
2
[ du=1.

It can be helpful to express the Weyl integral and Haar measures as unimodular contour
integrals. If we make the coordinate substitution:

xj = e, (B.2)

we can then rewrite the Weyl integrals in table 38 as in table 39. This form of the Weyl
integral readily lends itself to application of the residue theorem.

Importantly, the characters of irreps are orthonormal under the Weyl integral [10]); if
we consider the characters of two irreps of a group G labelled by &]4 and X{p), their inner
product (appropriately normalised) is given by:

G
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Thus, the Weyl integral can be used to form an inner product that projects out the singlet
content of products of characters (or functions of characters) and, as a corollary, the Weyl
integral of a single character is zero for any irrep other than the singlet itself.

We can obtain the characters of irreps by the usual methods from Cartan matrices and
by using the Freudenthal recursion formula to find the correct multiplicities of weights [10,
25]. The modified Haar measures do however depend on the CSA coordinate system
used. The modified Haar measures in table 39 are correct for the characters of defining
representations as set out in table 40. If a different choice of weights is used for the
coordinate monomials of the defining representations, then the modified Haar measures
must be transformed to the new coordinate system to ensure that the orthonormality
relations (B.3) remain satisfied.

A simpler form of the Haar measure is noted in [5], which is based on characters whose
coordinate monomials carry canonical weights derived from the Cartan matrix and gives
the Haar measure in terms of the positive root space only. This generalises to exceptional
groups and can produce simpler expressions that can be evaluated more quickly.

?{du: (2711')7" % deil H (1= Aa(z1,.. s 20)). (B.4)

¢ |zi|=1 =1 acd+
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Haar Measure on Maximal Torus

2w
U(r) s [ I €% — % *doy ..., do,
0;=0 1<j<k<r
2T r
SU(r +1) s S I e — e e db, where 0,1 = — 3 0
0;=0 1<j<k<r+1 J=1
2 27 r
SO(2r +1) W J [T (cos(8;) — cos(dy))® 1 sin? (36,)db: ..., db,
9,=0 1<j<k<r n=1
2 27 r
Usp(2r) | o S I1 (cos(8)) - cos(0))? ] sin?(6,)db; ..., do,
9,=0 1<j<k<r n=1
r— 2 2
SO(2r) e [ (cos(6;) — cos(6x))%d6; ..., db,
0;=0 1<j<k<r
Table 38. Modified Haar Measures on the Maximal Torus.
Group Haar Measure on Maximal Torus
d./i 2
U(r) wa $ S I ey —
los)=1  1<j<k<r
T T
dz; 2 _
SU(r +1) eruc=ayl I | G R w1 =11 5
i=l|g=1 = 1<j<k<r+1 J=1
r ) e 2 (1—ziz )2 —zm) (@ —
SO(QT + 1) 2T(27}'i)rr! H -.(ﬁ dTl;z H = II;)QJ(kax]zk) H Loz 2?)7(; =
i=1|z;]=1 1<j<k<r m=1
T . —x)2(1—z521)? 1o (1—22m)(a2m—1
USp(2r) W 1 ¢ % I (z; m,;)zj(ﬂkzg:rk) 11 (1-= x%(j )
i=1|z;|=1 1<j<k<r ' m=1
T L 209 ... 2
SO(2r) 7= 11 o e

z 2202
i=1|z;|=1 = 1<j<k<r gk

Table 39. Modified Haar Measures on the Maximal Torus: Contour Integrals.

Defining Character
Group Defining
) ) used by
Series | Representation
Haar Measure
T T
A, [1,...,0] Sai+ [[az;!
i=1 i=1
B S Nt 14 Yot
x; x;
' 1,...,0] r>1 = iz’
T T
C, [1,...,0] Sai+ St
i=1 i=1
1,1 r=2 T4
D Yo+ >
' 1,...,0] r>2 S ar

Table 40. Characters used by Haar Measures.
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C Numerator of generating function for G, characters

Pgy (ti) Character

(1-t1) (-1+t2)? (1+t3)

(T+ti+ta+tito+titorti o+t to vt vty t3 + 6] €3+t £ + 85 +
tro+td it rtitl st 2t th o2 el el el vt td ) 4 {0, 0}
i+t 2t )+ttt atS et e at2 el il S et el ]+
trtl e el vttt vty t) v e2 e] t] £ 2] €] + 1] €] + 1 £)

(-1+ty) (-1+t2)% s

(tr+ti+titarti ity + 2t ) +t7 3 +ef+ta td+ 2t ¢4 + (0, 1)
tiedtttl vt 2e) e et e+ e] €5 vty ]+t €5 + 1] £F)

(1-t1) (-1+t2)? ¢,

(B2+titr+tlito+td+tyt3+t2 e+t e +t) bty + 22 £5 + Lo
Bttt ittt 2ttt St 328280 4 (0
e+t ey vt ey +td ) +t] £+ ef €5 vt ] -] ] + €3 £F)

(-1+t1) (-l+t)? &

(tr+ta+trto+tdto+t3+2tr td+2ed e +t] t3+tft3 + 65 + 11 15 + o s
3ttt +titi2titi il e 3ty +td e ti el (0:2)
tietr ey 2t 2] ef et eS vl e 8] £] £l £] + £] £F)

(L-ty) (-1+ty)%¢2

(tr+ta+tito+tito+t3+trtd+2ed e+t el v el + 2t 65 -t &5 + (1, 1}
2ej gyttt etd 2t el el el et el ey €] ] €] +£] 5 4 1] £F)

(-1+t1)2t1 (-1+tp)2 5 (£, -t3) {2, 0}

(-1+t1) (-1+t2)?t] (-t1-t]to+t3+tr 3 -ttd+ 0, 3
2ty vttt -t el e] tf ot el -ty 5 -] £5) '

(-1+t1) £ty (-1+ty)2 t3

{1, 2}

(T+tr+tp+t2to+ 2t £3 + 13 +£3 £ + £y £f + 2 t)

(1-t1) t3 (-1+t2)% ] (1+1t3) {2, 1}

(1-t1) t1 (-1+t2)% 8] (1+ty+ty+td £y +ty t3 +t2 £3) {0, 4}

(-1+ty) t2 (-1+t2)2 ¢35 {1, 3}
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D Numerator of generating function for A, characters

Pas (ty)

Character

IT-tdtp+totdetitf -3+t tdvtits-tota+titity-totlta+rttdt;-
t2tti-tptitd-tlti el el -ededtd-2efel el 2t o td e eSS -
(SRR - PR R ot g = R PR VAR IS o of O R - I R < AR AR = P -
tielvedede]-tptstl-tfelS el vl -td el el -ttt -ti ]ttt tsty -
2t2tltytg+2titata-2tititatartititata -l ot vtdit, -
titotitya+ 3t totita+titlitita vt t)tita+titita-totdta ittty
2tptititgv2ti el ittt -tl el -t ta el el ity -
2ttt vtleS el -t edtartd el it 22 eS e -2 5t e, -
22ttt totSta -2t el e+ttt -ti s e+ttt ty -
tfeitltartitita-tieStltar i tjtityu vttt -tits el et e et s
(PR E R o P o oA RIS 0 TR o3 PR PN oA v o o SRR oY o o SR oL 0 o S ol o AR
tieltl+tittati-titatirti el tati -t titati et titati i tliel
tieititd-2t 5 titd el et -2ttt -2tfeleded -2, e5e3ed
titi-tltotitl ettt tl -2t eseiel vt ed -l eSedtl -t el el
Lo oAl o AN JR R o8 o o RSN o o o o SR 0 il o SR o S o o o R P o100 - o Y

(R P S R S S ol R A o S R 3 IR A o o S P KA o IR ol o A o
A R AR o SR ok SR o A AR GRS ok g o A o IR RIS DA ok o SR o -4 - o
tati+tltotatl—totitatl—tiedtsti vl oty —tiedtstl —t2tltel
totitl-tiededtl v el - titiel vttt vt tied el releltel -
tiefedeirtiedeitl vttt -2ttt -t tSes e +ef e -

Lo e e KR i o o SRR R A 0 5 JROR L o o R o g o G 5 B o A E AT - =
(SRIR LA KA o SR R ok o S - o LA o SR R o o o ISR i 8 - o S R R o B R

{Ol OI OI 0}

t2e-tietitd -t ti-tits-titits -ttt -t toti-2tiededetiei -t eled -
trtfti-tfeled+td-ti i3t tied sty -tieStd ettt otiel -
toti+titied it o3l tiel -ttt -t el +tiefes -

(oA NS T U o o IR b o5 7R PR ot RIS okl A o o -4 SRR o R S o -4 RS
trtStl-titdta vttt -titSta+ 2ttt -2ttt tat v 4ttt

2t2 ettty +3tittit-titita ity tita v 2t tytit vttt -
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22ttt vtl ottt titit -l el tdt et titit vt el el e, -

3 +5 34+4 45 2434+6 2 2 3 4+3 2 4 2

tledta il -2l rtitsti i titsti v 2t s tatl s

trtiti+stitititi+ 2ttt -ttt titiedtielelei-2¢e5te3ed

A G R o o SR JR R ok o o AR/ G R R o SR o o A cE A o o o SR P Al I o
2454542 446 42 2+ £33 34243 2454243 _ 42 34+3

2e2edtitl et tieS el tltati -2t e tdel -2l el -ttt
2 +3 43 3434343 2424443 34443 34444 .3 54443 2 4+3 4543

tiedty-tieeled+tfedel el vt -l el el es el e eef el ese])

{OI 1/ OI 2}

—t, t; (t§t§t3—t1tztg—tlt§t§—2t§t§t§+t1t§t§—tlt§t4—2t1t§t3t4—

N}

2t2titytg-tittit g r2titit -2t el el 43 titl b,
trtdtg+rat?eledit 2ttt vl et -titde rtd el tdt, -

2t ittt -tiei ity vttt e2ti ettt il i a3l el ei el
trtiti+titieiti-6t it -2tfeteiei-2tfe,eieietieited -

Lo oA o IR PR P o o SR ol bl o SRTOR o o o SRR o o oI SRR R o o o
efedefei-ciededelitotil et eied el e2eieledel -ty el el e])

{0, 1, 1, 1}

trtitity (trtp-ts-trtits+toti-tre3ti+tsited

tltgtg+t1tztgt47t§t4+t1t§tgtrtztgtrtltgtgu)

{0, 1, 2, 0}

totd (trtdvtititsrtitdts-tititd-tlta+titita-ti 3ty
2titrtata-3titltat,-3tititit, +3 3 t3ta vt titi-tiestd
titsti-titltsti+ 4t titatirt it +3t2ttel-tleited+
(o Rl E o AR R chh ok o SR PR P Al o SRR bk o 8 ot/ SR cE A - o o SRR R o B
2efeledef v atiti—ttitat el ed e -t el i ety ey €3 t])

{0, 2, 0, 1}

-t titity, (tz+t1tgftgt3+t1t‘2‘t37t§t§7t3t47
t1t§t3t4+t2t§t4—t1t§t§t4+t§t§t4+t1tgt§t4—t;tgt;;)

{0, 2,1, 0}

titytity (to-tsta+tythtsty-tytty)

{0, 3, 0, 0}
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Pag (t;)

Character

—tpty (Eftprty g2 ti it -ttty ity -2t o ti-tf el -ty it el
trtied-3tltitd el -ti et et el el -2ttt -l el e -ttty t
totstya-tititats-2t titaty-2t2t5taty-titotits+3t5t5t,-
3titltita v Attt -l Sttt v2t it 522ttt vttty
il +dttitdt g+ 5titdtit -2ttt v2e e et vt tStit, -
2t ittt -tiei ity -ttt rti eSSttt tft -ttt
tielel a2ttt v Al tatl -l el el el -3, il
R R S = R - B I T T o i o S PUR o R AR o E I G o R PR A o o
2tfeledti-2td ettt vtieiel i el et -3 et -2ef el el
2ttt -2tfes e eiv2t oty eie2tf el e ed ettt ottt -

R G R R o SRR oG Al SR cE i o o o SRV R P Al o SRV cElh o o o SR o Al o
gleiededrttdedel+3eleied el -l eeleeieielel -t esede])

{1, 0, 0, 2}

-ty ts

(t2e3-2t1t2t-3t3td-2e2efe2-tfeptdr2eded-2efe3ed+2e 6563+
22ttt el el el -ttt -ttty tt byt -2t5 ittt v 2ttty -
2tititata vt titata+ 5t totit +8 ettt ittty
titotdty-trtitdita+ 8ttt -totdta+titltit-2t,t5
283 t2t5t-9t titit-2t2 sttt -2ttt titt -t el sty -
2ttt -ti eSSty vt titi el el el -ttt el el el -
trtitsti+tiedtati-2tit, et -2eseieiv2ed el il -6t t5 il
t2efeitd-otdtsed i+ 3 et -3ttt -titoedtiedt o titd-
tledededr2efeie? 2 el edtl v et edva el St entl el el el
t2eseSei-tiedtativ2t el e+ 3 il tie2tf el el et ti el -
2edeieir2eieleiel -2t epefel-2efedelel -t egeseg -efedefe])

{1, 0,1, 1}

ety (tftptd-trtd-tieded-ededed+tftefta-2¢t tptsty-
titdtsta+tit -titotit-tleititvtitita ottt -ttt
3tptdtdtg+td el el vt tit -ttt el et -t t3 et
t2eiesty+3titstiti -3t ttiti -3 tititi -2t eftedts-
tieltivtptiti-tieieiei -l ety eieg el el vl ele])

{1, 0, 2, 0}

t, ts (tltg+t§tzt3+2tltgt3+2tft§t§—2t§t§+2tft;‘tg—tltgtg—zqtztg—
3tftiti-2tftlt vt titl -t tota -5t titata-4tititatya -ttty
2tytitg-2ti ettt ittt -4t el it tit 43ttty
3tdtdtdt+ 0t titditartititarotitieit -2ttt e2t ettt
2tittita-titotlta vttty -to i ta vttt -t el et -ti i ety
trtsti+2t?tltstivtitati-tititati+2t ttsti+2t 55+
otZedeiti-2tititi 2t el titl-tied et titi -8 il
(R B R T o o SO i 0 A o S okl b o S I P o o o ST E 0 e o B
titptsti+2tiestl-2eiede el 2t s es el -l e el e e? el efel 4
trtseStl -ttt -tl ity -2t tiedel-2¢e2esed el v 2l el -
2eitsede v ts it 2o tied a3 ed el el el e 2ed el el el -ty el et

{1, 1, 0, 1}

tots (tfedts-2tptded-edesed-cdefed+tptptd-titlty-titatyty+tltyty-
titltatyrtititg+tieitit vttt -tititit v2t 5t
2titrtita+v6titltit-totita ity tita -3t titi vt titit,-
2t titita -l Sttt titatir2tl s tsti ot el eiedes -
dtptdtitl-2t e, tdtd a2 eSed el -3l il
2tititi-2ef el ei et tititi a2ttt e2t2 el +
tiegefei-tieieied 2 efed el e el el et ed el -t el )

{1, 1, 1, 0}
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Pag (t;)

Character

—tyt? (tltg—tltztz;—t%tgtz;—t1t§t3t4—2t§t‘Z‘t3t4+2tlt§t§t4—t§t§t§t4+
trtitdty+tititi vt tatirtieltati vttty tati 22l il -tiedes+
tiestiti-2neieded-cfefeded-efeded el vt il tl - tr t) tsty)

{11 2/ OI O}

tyts
(E2td-titpta+titdts-3t tded-t2efedrtotd-tieded-toejed-2¢e2e3ed+

teed-tledtd 2t el vt el et st -2ttt -2t tat v 22ttty
2t tdtstg 2t tit el el tl e vtitit -l il 2t e3 i,
2titotitg+8titltit-titit ittt vt tS it -ttt
titotitya -4t titita+ 3ttty -totitavtititita-4t et
2tititita-titotStartrtati vl ti—tati+titotta i+ttt +
2t2tdtati-tieitl -2t titi e 2ttt -5ttt Al titd
tsedtd-titdedti -5t tredti-2efeSeded e it -atiedielel s
3tdtiti-3telestitiet i titiv2t ot tir2t? el el el vl td -
(o ol AR o SN R oA ok o R PR o i o SO o R R o S chlh o o o JNED R P o o
t2eleitei+3ttstdel el el —totiei et v el el el 4

2 3 2 3 3+3 3 3 24+2 4643 643
2efestieg-tdeled el ele] -2t el -efedefel -t ey efel)

{21 OI OI 1}

—tots (trtits+titoti-eded el el titi-eled+eieied -ttt
trtoti-2t2eled-t2eit vttt -2t tatyta-titltst vttty
titatity -2t totit -atieitit 2ttt -2t ti el v At Ittty
t2eltdtg+2titotita+ 5ttt vl el titav2ti il -ttty
tiefesta -t titi+titati -l el st vt e tati+5t2 ittt elied
tledeltlat 3 tlt? 2t o tdtZat? el el el i3 el el el el -
trtfedti-ettititi -2t edtiti vt ed -l -2, el e3ts -
2tfeleiti -t edtit -ttt eti et -tiedieitl e ei el 4
tieftl-titaeitl ettt el ettty v2ef el e vt e efed)

{2, 0,1, 0}

—tpty (B2t -titotiotredtd-tfeled el eled et il -t tit sty
titltsty-tititata+rtitit -l vt titi e etytit 32l s
2ttt + 3ttt -titita i ettt ti St -ttty 4
trtotsti+2tititati-titdvtittiti-2¢6t5t5ti+e2estdted-

S o R R A B o B R R A S I S P o o I o R T R TR TR
R o o B o o b o IR oF =R o ch i b iR o SR R b b SO L A o o B
tiededef vttt titg et eieiedefef el el eef el -ty ehefe])

{21 1/ OI O}

tots
(trtits-totd+tiedtdrtied-ededveieded-tieded-efedel-titotde,-
2t2tititartita-titatita vt tiedt - 2t2 it 2t 8ttt
2t ittt tititotati-titltstirt ittt v 2t e —t2 il
e T T o TR ok o SR Gl o ol o SRR cBUR b A o SO R P o o SO i o b o S o b
(SRR S Tl - R PI S G o I bk b R I SR A o SR RIS o
tprdtl-titieitl-trtiefel+ it -eiel el i3 3t e e3ede])

{3, 0, 0, 0}

el (tftp-titsty-titdty 4
tieltdta-titititartytotatl vty eded el -t tatg)

{Ol OI OI 4}

trtltity (trtp+trtied-t2e3 -ttty

{0, 0, 1, 3}

3t (tftpts-titdty-totitg+ttitity -t titdty -
titptita-titptivtitati+ 2t totdti ety el e el -t e, tde])

{Ol 1/ OI 3}

— 63 —




Pag (ty) Character
—trtltdty (trto+tr ity —tp 3 -ttty {0, 1, 1, 2}
trtltity (t2ts+titaty—tsty-tytdty) {0, 2, 0, 2}
2 +2
t2t3
(tlt2+t§t§—tft2t4—t1t3t4—2t§t§t3t4—t§t3t4+tft§t3t4—2t§t§t§t4+ (1,0, 0,3
trtltdtg-tlededt ety ittty rt 2t otltati 42t titati+tit, tiel T
tregeiti-tiedeieeieieiel-eiel el -t tp g - tf €3ty tg)
342
7t2t3
(ot +trtyrtdtdtg+t2tdtaty-tit+tftotit -2t 2t -2eded ey {1, 0, 1, 2}
titjtita-titi-2eitttie2ttitf 2t o tded v il el el -t e, el t])
trtitite (2t1ty-ts-titsty) {1, 0,2, 1}
-t3t? (t1t2t3+tft§t3—tft2t3t4—t§t3t4+tft§t3t4—tltgt3t4—t1t§t4—
4tititity+titotitg-titdtdt sttt -ti el i3t tiestieei el | {1, 1,0, 2}
34242 2 342 24342 3434342 242 2 243 2434243
3tptyeiti+titpeiti-tiede el el e -l el -t el -efe3 el e])
tititdt, (1+2t1t§—2t2t3—t§t§—t1t4—2t1t2t3t4+2t§t4+t1t§t§t4) {1, 1,1, 1}
—tititity (ta+titata-2t3ty) {1, 2, 0, 1}
—t2ed (ot tfelel ottty -tdtdt -2t ittty -2ti st tit mti ity t
2ttt -titititrtitit 2t el el et tti ottt it vt 4
342 2 2 4 2 242 2424242 3,22 3.4,242 {2, 0,0, 2}
trtltZ+2t2ttat2 ety titst? -t il e2t2 el el el el el el el el -
2titptitf -2l et esedel-efeleiel - edes e ef el el e])
it (trtoti+titledvtitita-tataty+t]ttyty-
tititsty-3titotita-tititita-3t2tlitit vttty
{2, 0, 1, 1}
titltlet ittt -titltsti o4t it vt el 4
efedef-tptitdeeiededel vl el -t ed el -t ed el eg)
—tptltdt, (t1t2+t1 tity-totli-t;t; t4) {2, 0, 2, 0}
23
t2t3
(tltg—t1t4—2tft§t4—2t%tgt3t4+2t1t§t§t4+t1tgt§t4+t%t§+2t1t§tf+ {2, 1, 0, 1}
2tftptatf-titstirtileati-treded -t tpted i e el -ty td ey e;)
tyt3tdty (tg ty+titoty-taty-tyth t4) {2, 1, 1, 0}
242
7t2t3
(t1t2t§+t§t§t§+t1t2t4—t3t4+tft2t3t4—tft%t4—t1t§t§t4—2t§t2t§t4— (3,0, 0, 1)
4 r 4
trtidty-tdededt -l td et st -tl el tati 2t o tiel el
tiptdtiv2tedededecfeieded e teied -t tptdel -2 el edel)
—titd (trtits-titata-2tititat-tieititato il byt
242 2 2 2 342 2 3 2 242 .3 3,0, 1,0}
tititivtitsti-totati+tititati+ty ] tat] -ty 3 el e])
—t 23ty (tg t24tytyty -ty t4—t§t§t4) {3, 1, 0, 0}
t2ed (trt2t? -ttt st -t2tdtle,+
2 -3 1%2 %3 1-2 -3 -4 1 -2 -3 -4
< {4, 0, 0, 0}

titoti-tsti+titotati+ty3eied -t edede])
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E Generating function for dimensions of A, irreps

(1+3€,-10t t,+5€3 tp-tito+t3-5t1t3+10t2 €2 -3¢7 -t t3+3¢t3-5tt5+tits-16t, ts+
100t tots+8t2 bty -3t tots -T2 t3+70t t3t3-69t3 t3ts+16t] t3ts-21¢)t) ta+7t] ¢ ts+
Ttitits-tityta+t3 -5t t23+382 82 -Tt,t2+35t,t,t3-16t2t,t3-t] totd+42¢2 €2 -105¢; t] 2+
28t3 32 +7ei it -7titd-28 el td 10582 i td a2t el el titl 16t ti el 3582 ei el
7323 i tdesti -ttt el -7 el 7Rl e 2182 62 ed - 16t) €3+ 69t t) t] -
702l i+l g3t tl s titl -0t eltetd el el -ttt oty el -3t t5 )
t2ti+3titi-10, sl -l tl et -stded 0t ei el -3l i) -td s g
Bty -5totg+Ttitota -5ttt +24t; tty-24 2ty +5t ti by -T2t by + 5ttty 4ttty -
10t3tg+7t1 3ty +10to t3ty +50t) to taty 50 t2 £y ty ty +10 €3 £y ty ty +35 €2 t3 tg - 161 t1 t3 ts ty +
93t2 2ttt -10t3 titaty -ty titata+75 2t tats -35 3ttt —14tith taty vt} t) ta ty -
5t2t,+24t; t3tg-10t3 2ty +70tyt ta-161t tytd by +45t3 ty t2 by +51] ty t] ty-105¢t3 t] by +
100t t3 ety +141t3 €3 t2 6, -70t €2 €264 +217 ¢y 3 2ty -364 2 £ £ £+ 10583 t] £ £y -
70t titita+ 752ttt + 10t it ta -7t 5 3 ta -5t ti by — 21ttty -ty bt tg 4
352t td e -28 8336, 4217t tR el ey -210 2 3t ey 421 td e ed by +69t) £ £y - 266t t) ] by +
112l tg+28td )l b -0t el by + 15t t3 ta+ 93t tf 3t -69 8] eI ta 45t £ t3 tg -
243 53t +20t 33ty + Tttty 163t by 70t tR e by 4352ttty -7 ] t3 td by -
8titits+15t it ta+45tititita-16ti i tdta-5tdtdta+25¢; tht)ta-50t2tftdty+
8tltitita+5titititu-totita-3titta+10t e t3ta-5t2 ettty +t ettty -] t] g +
S5ttt t-10t3 e it +3 i it ta+td i S ta+totd+ 3ttt -10t ti el +5ti el el -t tdtd +
-5t ti+10t2 3t -3t el el -tdtdtl 45t tl + 8ttty t2 -50t; ty ty tl +25 €2 £y ty td -
Stltytyt2-16t3t3t2+45t; tityt2+15t2t3tat2-8¢t3 t2tyt2-7t) t3t2+35¢; ]t td -
7023t tl+16 3 titat2+7td thtati 10t t2 24t t3 245t t2t2-69t, t2 2 +93 ¢, t, t2td +
152, t3t2-10t3t,t2t2+28 et t2+141t, e t2t2-266t3t2t2t3+69¢] 22t 214 e3¢l
210t 3 t2 e +217 2 it el -28d el e 2 +35 it el -l e el el —21 el et ti -5t b5 td il -
Tttit2+10t2 32 +75 ot t2 702t t3 t2+105¢3 e t2-364t, th 3 t2 2178 €3 13 td -
70t ti 141t it edvr00ti it el o105l el el el st edtieast ti e el o161l ef el el
7otdtieiel oty edte2ati it el sl st tl et titl -1t td el -35¢d ei .
75t t3ti el -tied el -0l e i 93t t)titl 161 el ) ed el 435t ) ede 10 td )t}
sot titdti+sotdeititl+r0l eiti el +7i ey titi-0el il el ety oty el a5l el el
Tt tistititl-2an i estie2ati il sl il el a7t el el st el el el otde) st
tyti -3ty taty+10t totaty -5t totaty +tl totaty —t3tati +5t i tat; 1083 td s ) +
3ttt td it tatl -3 t2 45ttt -t ti el 16t ti el 10t ty t2t -8l b, t2 ) 4
3l 2l 7t td el -70t ti 2t 60 ti 2t el —16 el ti el 21t e2 e 73 t) e2 el -
Tttt tl e it -l sttt -3 3l 4Tt tl o35ttty v 162 by 3 ) 4
e tdel 422t el 105t 2l el -28 il el -7l il el a7l e el 28t t) el )

1052 tied el a2l el el -t edel 1ot titd el a3l ei el el -7ed il el 3t td] -
sl il i il el -2t Tti ot 7t ei el 21t el el el vl6 el el 69ttt )+
7023 tity-7ed it -3tititi sttt rt0tded el el —1e el ed ettty ) el
st?estiti+3ti it el -l -3l il 10t 3ty -stelel el ti el eyl -titlt) .
stptd el -10tded el el 3t el el el eed e ) /((-1+t1)® (1+tp)7 (1+ts)? (-1+ty)®)
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