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Rescue of recombinant peste des petits
ruminants virus: creation of a GFP-expressing
virus and application in rapid virus neutralization
test
Qianqian Hu1,2, Weiye Chen1,2*, Kehe Huang1, Michael D Baron3 and Zhigao Bu1,2*
Abstract

Peste des petits ruminants virus (PPRV) causes high mortality in goats and sheep and the disease has shown a
greatly increased geographic distribution over the last 15 years. It is responsible for serious socioeconomic
problems in some of the poorest developing countries. The ability to create recombinant PPRV would provide a
useful tool for investigating the biology of the virus and the pathology of disease, as well as for developing new
vaccines and diagnostic methods. Here we report the first successful rescue of recombinant PPRV from a full-length
cDNA clone of the virus genome. Successful recovery of PPRV was achieved by using a RNA polymerase II promoter
to drive transcription of the full-length virus antigenome. We have used this technique to construct a virus
expressing a tracer protein (green fluorescent protein, GFP). The recombinant virus replicated as well as the parental
virus and could stably express GFP during at least 10 passages. The newly established reverse genetics system for
PPRV provides a novel method for constructing a vaccine using PPRV as a vector, and will also prove valuable for
fundamental research on the biology of the virus. We found that our recombinant virus allowed more rapid and
higher throughput assessment of PPRV neutralization antibody titer via the virus neutralization test (VNT) compared
with the traditional method.
Introduction
Peste des petits ruminants (PPR) is a highly contagious
disease of domestic and wild small ruminants caused by
peste des petits ruminants virus (PPRV); it is responsible
for serious socioeconomic problems in some of the
poorest developing countries [1-3]. PPR is a notifiable
disease listed by the World Organisation for Animal
Health (OIE). PPR was first reported in the Ivory Coast
in 1942, and later found in the Middle and Near East,
southwest and central Asia [4-6], and recently in China
[7]. PPRV, which is a member of the genus Morbillivirus
belonging to the family Paramyxoviridae [8], is a linear,
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reproduction in any medium, provided the or
non-segmented, single stranded, negative-sense RNA
virus with a genome length of 15948 bp. The PPRV gen-
ome encodes six structural proteins (nucleocapsid (N),
phosphoprotein (P), matrix (M), fusion (F),
hemagglutinin (H), and polymerase (L)), and two non-
structural proteins (C and V), which are in the order of
3′-N-P/C/V-M-F-H-L-5′ on the genome [9-12]. PPRV
vaccine strain (Nigeria 75/1, PPRV/N75/1) has been
widely used as a safe and efficacious live vaccine to con-
trol PPR infections [13].
Several studies have indicated that recombinant para-

myxoviruses are effective and genetically stable vectors
with many advantages [14-16] due to their relatively
simple reverse genetic systems. However, a reverse gen-
etic system for PPRV has so far not been possible, des-
pite effort in several laboratories, although a rescue
system for rinderpest virus (RPV), which is evolutionary
closest to PPRV, has been known since 1997 [17], and a
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PPRV mini-genome rescue system was described in
2007 [18].
Green fluorescent protein (GFP) is a useful tracer pro-

tein to observe and optimize virus rescue efficiency, and
to study the characteristics of rescued viruses. Recom-
binant viruses expressing GFP could also be utilized to
genetically mark vaccines to allow serological differenti-
ation between animals that have been vaccinated against
PPR and those recovering from natural infection [16,19]
or to improve the virus neutralization test (VNT) [20-
23]. In this study, we developed a system for recovering
recombinant PPRV and introduced the GFP open read-
ing frame into a recombinant form of PPRV/N75/1 to
create a marked recombinant PPRV which we have used
initially to improve PPRV VNT assays for use in studies
of immune responses to different vaccines.

Materials and methods
Cells and viruses
PPRV vaccine strain (Nigeria 75/1, PPRV/N75/1) was
obtained from the China Institute of Veterinary Drug
Control, Beijing, China. Vero cells (The American Type
Culture Collection, ATCC: CCL-81) were cultured in
Dulbecco’s modified Eagle’s medium (DMEM) (Gibco,
Carlsbad, CA, USA) containing 10% fetal bovine serum
(FBS) (Gibco). Vero cells expressing the canine form of
the general morbillivirus receptor, signaling lymphocyte
activation molecule (SLAM), (VDS cells) were the kind
gift of Dr P Duprex, Queen’s University Belfast, UK and
were maintained in DMEM/10% FBS/0.1 mg/mL Zeocin.
PPRV/N75/1 or rescued recombinant PPRV were propa-
gated and titrated in Vero cells cultured in DMEM con-
taining 2% FBS.

Serum samples
Ten goats (nos. 1–10) and 10 sheep (nos. 11–20) were
vaccinated twice with 2 × 105 50% tissue culture infective
dose (TCID50) of recombinant capripoxvirus (rCPV)
expressing PPRV glycoprotein H (rCPV-PPRVH) [24]
with a three-weeks interval. Serum samples were col-
lected two weeks following the second vaccination.
Eleven additional goats (nos. 21–31) were vaccinated
with 107 TCID50 PPRV/N75/1, and serum samples were
collected four weeks post-vaccination. Serum samples
were collected from each test animal before vaccination
to act as negative controls.

Plasmid construction
PPRV/N75/1 was propagated in Vero cells, and RNA
from infected cells isolated. The entire viral genome was
amplified by RT-PCR using high-fidelity Pfx DNA poly-
merase (Invitrogen, Carlsbad, CA, USA) in four overlap-
ping sections (F1 to F4), which were assembled into a
full-length cDNA clone (Figure 1a). The complete cDNA
of the genome of the virus stock used was fully
sequenced and confirmed [GenBank: HQ197753]. A
number of minor differences between the sequence
determined for this stock of the PPRV/N75/1 vaccine
and that previously published for PPRV/N75/1 [Gen-
Bank: X74443] were noted, but it is not possible to tell if
these are due to mistakes in the earlier sequence or to
changes to the vaccine seed stock over time. The ham-
merhead ribozyme sequence (HamRz) and hepatitis
delta virus ribozyme sequence (HdvRz) were introduced
at the 5′ and 3′ ends of the antigenomic sequence, re-
spectively, as previously described by Inoue et al. [25,26].
The assembled HamRz-(full-length genomic cDNA)-
HdvRz was then cloned into the pCI vector (Promega,
Madison, WI, USA) under the control of the CMV pro-
moter. The resulting plasmid was named pN75/1
(Figure 1a).
New gene fragments were then inserted into pN75/1

between nt 3405 and 3406 of the PPRV/N75/1 sequence
(i.e. at the start of the M gene) as illustrated in
Figure 1b: a 32 nt gene start (GS) sequence (5′-aggag-
caagggcaactgagcttcacagacaag-3′), a Not I restriction site,
a Pme I restriction site, a 66 nt gene end (GE) sequence
(5′-cacatcctataatcaacatctcatactcggttgaaaacatcctctcaat-
caggctattacaaaaaa-3′) and a CTT intergenic trinucleo-
tide. In brief, the genome construction was carried out
as follows: DNA fragment Fa (ending at the GS of the M
gene with a Not I site introduced at 3′ end) and Fb
(starting from the GE of the P gene with Not I and Pme
I sites introduced at the 5′ end) were PCR-amplified
from pN75/1 and ligated together to get DNA Fab, then
DNA F1 used in the original construction of pN75/1
was replaced with DNA Fab to give plasmid pN75/1-in-
sertion (Figure 1b). The net result was equal to insertion
of the five genetic elements above into pN75/1 between
nt 3405 and 3406 of the PPRV/N75/1 genome cDNA
sequence.
Finally, we inserted the open reading frame (ORF) for

GFP into pN75/1-insertion. The GFP ORF was PCR-
amplified from pIRES2-EGFP (Clontech, Mountain
View, CA, USA) using PrimeSTAR HS DNA polymerase
(Takara, Shiga, Japan) with primers 5′-tctgcggccgc
gccgccaccatggtgagcaagggcgag-3′ (the Not I site is under-
lined and the Kozak sequence is in bold) and 5′-ctc
gtttaaacttacttgtacagctcgtc-3′ (the Pme I site is under-
lined). The amplified product was ligated into EcoR V-
cut pBluescript II KS(+), removed from that plasmid by
digestion with Not I and Pme I and cloned into pN75/1-
insertion, cut with the same enzymes, to produce plas-
mid pN75/1-GFP (Figure 1c).
In addition, the ORFs of the N, P and L genes were

amplified from pN75/1 and inserted into pCAGGS to
construct helper plasmids. The resultant plasmids were
named pCA-N, pCA-P and pCA-L, respectively. All
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Figure 1 Construction of plasmids for PPRV rescue. (A) The cDNA fragments F1, F2, F3 and F4 were reverse transcribed and amplified from
PPRV/N75/1 genomic RNA. The hammerhead ribozyme sequence (HamRz) and the hepatitis delta virus ribozyme sequence (HdvRz) were
introduced to the 5′ end of F1 and the 3′ end of F4, respectively. All fragments were then subcloned stepwise into the pCI vector to produce
plasmid pN75/1. (B) DNA fragments Fa (from the HamRz to the GS sequence of M with a Not I site introduced at 3′ end) and Fb (from GE of P
gene to the end of F1 with Not I and Pme I sites introduced at the 5′ end) were PCR-amplified from pN75/1 and ligated together to get fragment
Fab, then section F1 of pN75/1 was replaced with Fab to get plasmid pN75/1-insertion. The net result was equal to insertion of a morbillivirus
gene start (GS) sequence, Not I and Pme I sites, gene end (GE) sequence and CTT intergenic trinucleotide into pN75/1 between nt 3405 and 3406
of the PPRV/N75/1 genome cDNA sequence. (C) The GFP ORF with a Kozak sequence at the 5′ end of the ORF was inserted into plasmid
pN75/1-insertion to produce plasmid pN75/1-GFP.
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primer sequences used in this study are available from
the corresponding author upon request.

Transfection of Vero cells and rescue of recombinant
viruses from cloned cDNA
To rescue the recombinant PPRV or PPRV/GFP, 90%
confluent Vero or VDS cells in one well of a 6-well plate
were transfected with the plasmids pCA-N (2 μg), pCA-
P (1 μg) and pCA-L (1 μg) together with 4 μg of pN75/
1-GFP. Lipofectamine 2000 (Invitrogen) or TransIt-LT1
(Mirus Biologicals) were used for transfections following
the manufacturers’ instructions. After 7–9 days of incu-
bation at 37°C, the cells and supernatants were collected
and freeze-thawed twice and then passaged in fresh cells
to propagate the rescued virus. Supernatants from cyto-
pathic effect-positive wells were used to propagate viral
stocks in Vero or VDS cells. The complete genomic
sequences of the rescued viruses were confirmed by se-
quencing. The rescued viruses were named rPPRV/N75/
1 and rPPRV/GFP.
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Growth curves
Vero cells were grown to 70% confluence in 6-well
plates and infected with 0.1 multiplicity of infection
(MOI) of virus for 1 h. The inoculum was removed and
the cells were washed twice with medium, then 2 mL of
medium were added to each well. Cells with medium
were stored at −70°C each day from 3 to 8 days post-
infection, and were freeze-thawed twice before titration.
The TCID50 of released virus was quantitated by estab-
lished methods [27].

Immunofluorescence assays
Vero-SLAM cells grown in 12-well plates on glass cover-
slips were infected with PPRV/N75/1 or rPPRV/GFP at
a MOI of 0.05 and incubated for 2 d. Cells were fixed
with 3% paraformaldehyde in PBS and stained with
monoclonal antibody recognizing PPRV H followed by
AlexaFluor 568-labelled anti-mouse IgG (Invitrogen).
Cells were stained with DAPI for 5 min before mounting
to stain the nuclei of all cells. Images were taken by se-
quential scanning at each wavelength on a Leica con-
focal microscope. Mock-infected cells were used as
controls. For live cell imaging, Vero cells were infected
at a MOI of 0.1 and imaged at the indicated time post
infection using an inverted fluorescence microscope
(Zeiss, Oberkochen, Germany).

Western blotting
Vero cells were infected with PPRV/N75/1 or rPPRV/
GFP at a MOI of 0.1 and incubated until the cytopathic
effect (CPE) involved 60–80% of cells. The cell extracts
were then analyzed by SDS-PAGE and blotted on a
nitrocellulose membrane. The membrane was incubated
with mouse anti-GFP monoclonal antibody (Sigma) as a
primary antibody, and with peroxidase-conjugated goat
anti-mouse IgG (Sigma) as a secondary antibody. Immu-
nostained proteins were visualized using 3,3′-diamino-
benzidine reagent. Mock-infected Vero cells were used
as controls.

Analysis of GFP fluorescence
Vero cells grown in 6-well plates were infected with
rPPRV/GFP at a MOI of 0.1. The cells together with
their medium were freeze-thawed twice when the CPE
reached 100%, and 200 μL of this broken cell prepar-
ation was added to 100 μL of cell-lysis buffer (0.15 M
Tris-Cl, pH 8.0, 1.5% Triton X-100). After incubating for
15 min, 100 μL aliquots of cell lysate were transferred to
wells of a 96-well white plate (Corning, Lowell, MA,
USA). Mock-infected cells were used as controls. The
GFP fluorescence of each well was read on a Microplate
Fluorescence Reader (Bio-Tek, Winooski, VT, USA). The
excitation peak was set at 485 nm, the emission peak at
528 nm, and the sensitivity at 50. The relative
fluorescence units (RFU) were calculated as: [(fluores-
cence of the test well) - (fluorescence of the control
well)].

Virus neutralization tests
Titrating of PPRV-neutralizing antibody (VNA) in serum
samples were performed in quadruplicate in 96-well
plates as previously described [24] following OIE recom-
mendations [28]. All serum samples were inactivated by
heating at 56°C for 30 min before testing. The inacti-
vated sera were diluted five-fold in triplicate, and then
serially diluted two-fold for VNA titration. PPRV/N75/1
or rPPRV/GFP (100 TCID50 in 100 μL cell culture
medium) was mixed with 100 μL of diluted serum in a
96-well plate and incubated at 37°C for 1 h. Vero cells
(50 μL) were added to each well and the plates were
incubated at 37°C. The CPE was recorded at day 14 for
PPRV/N75/1 as described previously [28]. A titer ≥ 10
was considered positive.

Statistical analysis
The statistical analyses of the comparison between the
results of assays using PPRV/75/1 and rPPRV/GFP were
carried out using a paired t test as calculated using the
GraphPad Prism program. A P value< 0.05 was consid-
ered significant.

Results
Rescue of rPPRV and GFP expression of rPPRV/GFP
in vitro
Previous attempts to rescue PPRV from full-length cop-
ies of the genome had used T7 RNA polymerase-driven
transcription of the virus antigenome, since this method
has been successful with all other morbilliviruses, indeed
most viruses of the order Mononegavirales, rescued to
date. We hypothesised that the PPRV rescue may not
have worked because of some sequence element in the
PPRV genome (e.g. cryptic transcription termination sig-
nals) that were preventing full genome synthesis. We
therefore attempted the recovery of recombinant PPRV
using an RNA pol II promoter to drive transcription,
and ribozymes at both ends of the PPRV sequence to en-
sure that the final transcript had exact viral termini, as
has been shown to be effective for rabies virus rescue
[25]. We therefore constructed the PPRV genome plas-
mid as described in Methods (Figure 1) as well as appro-
priate helper plasmids expressing the N, P and L
proteins of PPRV, and rPPRV/N75/1 and rPPRV/GFP
were rescued successfully on Vero cells. Because rPPRV/
GFP is much easier than rPPRV/N75/1 for evaluating or
optimizing the reverse genetic system, rPPRV/GFP was
used in all following experiments. Optimum ratios of
plasmids were determined based on the frequency of
GFP-positive cells after transfection, and we were able to
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recover recombinant PPRV/GFP in 50%–80% of trans-
fected wells using the final method as described.
To confirm rPPRV/GFP replication and normal viral

protein expression as well as GFP expression, infected
VDS cells were immunostained with anti-PPRV H MAb
as described in Methods. Immunofluorescence micros-
copy showed clear labeling of cells infected with either
PPRV/N75/1 or rPPRV/GFP (Figure 2a), while only cells
infected with rPPRV/GFP showed the green fluorescence
expected of GFP expression (Figure 2a). The GFP expres-
sion was strong enough to be seen even in early stages of
infection, as shown by the appearance of cells at the bor-
ders of infection foci which were clearly green but had not
yet expressed detectable amounts of the viral H protein.
Infected cells could easily be seen by live cell imaging
(Figure 2b). The expression of GFP was further confirmed
by Western blot analysis, which showed that a protein of
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Virus growth and stability in vitro
To determine whether the rescue procedure or exogen-
ous gene insertion affected the replicative ability of our
recombinant virus, growth curves of rPPRV/GFP and
PPRV/N75/1 in infected Vero cells were determined.
The results (Figure 3a) show that there was no discern-
ible difference in growth rate or maximum titre between
the two viruses. To determine whether repeated passage
of rPPRV/GFP in Vero cells affected replication and ex-
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10 passages, and samples of culture medium plus cells
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assayed for total (cell associated and medium) virus titre
and for GFP expression. The results show that the virus
titer (Figure 3b) and GFP expression (Figure 3c) from
different passages changed only slightly.

PPR virus neutralization test using rPPRV/GFP
GFP expression from our rPPRV/GFP is easily observed
in live cells by fluorescence microscopy. We took advan-
tage of this to help us observe virus growth during the
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4 (Figure 4a (i)), and was very clear after day 6
(Figure 4a (ii-iv)), whereas the PPRV/GFP (Figure 4a (xi-
xii)) and PPRV/N75/1 CPE (Figure 4a (xv-xvi)) were
only clearly observed from day 10. Therefore, the
rPPRV/GFP VNT results were available at least four
days earlier than if using PPRV/N75/1.
In order to verify that the two methods gave the same

titre, 20 PPRV-positive sera from rCPV-PPRVH vacci-
nated goats (nos. 1–10) or sheep (nos. 11–20) were
assayed for PPR VNA titer using either PPRV/N75/1 or
rPPRV/GFP. As shown in Figure 4b, there was no statisti-
cally significant difference (P> 0.05, paired t-test) between
the VNA titer results using the two viral strains. Ten add-
itional positive serum samples from PPRV/N75/1-vacci-
nated goats (nos. 21–30), which have much higher VNA
titres, were assayed in the same manner, and with same
results (P> 0.05, Figure 4c). The VNA titer of 30 (nega-
tive) serum samples collected from 30 test animals (nos.
1–30) before vaccination were all lower than 5 (data not
shown) using either rPPRV/GFP or PPRV/N75/1.

Discussion
Here, a full PPRV reverse genetics system has been
established for the first time. Since the establishment of
a RPV reverse genetics system more than a decade ago
[17], several groups have attempted to establish a PPRV
reverse genetics system [18,29]. However, the attempts
have been unsuccessful to date (personal communica-
tion). We have now successfully rescued a recombinant
PPRV expressing GFP. Rescue efficiencies were accept-
able, but not high, and rescue efficiency may have to be
improved to enable recovery of PPRV with more exten-
sive or deleterious mutations, either to use PPRV as a
novel vaccine vector or for fundamental research.
Our results showed that neither rescue conditions nor

insertion of an additional gene affected recombinant virus
replication and passage stability in Vero cells. This is in
contrast to the findings with similar recombinant viruses
made using the vaccine strain of RPV [19,30], where the
insertion of an extra gene between the virus P and M
genes led to a reduction in growth rate. GFP expression
was high, suggesting potential use of a PPRV reverse gen-
etics system to construct recombinant multivalent vac-
cines by replacing the GFP ORF with the coding sequence
for an immunogenic antigen from another virus, or the
creation of tagged viruses for use in fundamental research
on the growth and spread of PPRV in its hosts, as has
been recently carried out with measles virus [31,32]. A
version of rPPRV/GFP could be used as a marker vaccine,
especially if GFP is expressed as a membrane-anchored
protein, which was necessary with RPV-based constructs
to elicit a serum antibody response to the GFP [16,19].
PPRV/N75/1 replicates relatively slowly in Vero cells,

with 14 days typically required for observation of CPE in
VNT assays where low initial MOIs are used. CPE dur-
ing early infection (1–6 d post-infection) can be very dif-
ficult to observe. In addition, complex serum
components may cause CPE-like cell death at dilutions
below 20-fold even when the sera are heat-inactivated at
56°C. When the VNA titer is between 5 and 20, it is dif-
ficult to judge whether cell death has been caused by
virus or by the serum itself, which may lead to false-
negative results and underestimation of VNA titre.
rPPRV/GFP could easily solve the two above-mentioned
problems. First, virus growth can be observed with the
help of GFP fluorescence as early as four days post infec-
tion in these assays, and VNT results could be deter-
mined with confidence as early as six days post
infection. Thus, eight days could be saved compared
with traditional methods using PPRV/N75/1. Secondly,
viral CPE could be distinguished easily from CPE-like
cell death caused by serum with the help of GFP fluores-
cence, even though only a limited number of cells are
infected by rPPRV/GFP. There is also the potential to
use machine scanning of wells of 96-weel plates in a
fluorescence plate reader to automate scoring of VNT
assays, allowing higher throughput of samples, an im-
portant consideration where large scale trials of vaccines
or tests for vaccine effectiveness are taking place.
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