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Fourier transform is undoubtedly one of the cornerstones of digital signal processing (DSP). The introduction of the now famous
FFT algorithm has not only breathed a new lease of life into an otherwise latent classical DFT algorithm, but also led to an explosion
in applications that have now far transcended the confines of the DSP field. For a good accuracy, the digital implementation of the
FFT requires that the input and/or the 2 basis functions be finely quantized. This paper exploits the use of coarse quantization of
the FFT signals with a view to further improving the FFT computational efficiency while preserving its computational accuracy and
simplifying its architecture. In order to resolve this apparent conflict between preserving an excellent computational accuracy while
using a quantization scheme as coarse as can be desired, this paper advances new theoretical results which form the basis for two
new and practically attractive FFT estimators that rely on the principle of 1 bit nonsubtractive dithered quantization (NSDQ). The
proposed theory is very well substantiated by the extensive simulation work carried out in both noise-free and noisy environments.
This makes the prospect of implementing the 2 proposed 1 bit FFT estimators on a chip both practically attractive and rewarding
and certainly worthy of a further pursuit.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. INTRODUCTION

The vast success of the Fourier transform is amply reflected
in the wide applicability it enjoys in a variety of engineer-
ing fields such as signal and image processing, control, com-
munications, filtering, geophysics, seismics, optics, acoustics,
radar, and sonar signal processing. This explosion in applica-
tions was brought about by the introduction of the now fa-
mous and ubiquitous fast Fourier transform (FFT) which has
transformed the classical discrete Fourier transform (DFT)
from being a mere “academic” curiosity, with limited appli-
cations, to being a powerful computational tool whose appli-
cations continue to grow unabatedly [1]. The original radix-2
structure of the FFT underwent several structural changes all
aiming at further increasing the computational speed and/or
adapting the original FFT algorithm to various data length
characteristics (e.g., prime and composite lengths) [2]. A
contemporary view as well as a review of the state of the art
of the FFT can be found in [3, 4], respectively.

The numerous variations of the original radix-2 FFT al-
gorithm were brought about through the dual use of the ex-
ploitation of symmetry properties inherent in the FFT al-
gorithm and the principle of “divide and conquer.” How-

ever, both the original FFT algorithm and all its existing
variants rely, in their conventional digital implementation,
on input signals that are sufficiently highly quantized (i.e.,
resolution ≥ 8 bits). In the practical implementation of a dig-
ital signal processing (DSP) system, the user has to minimize
what is commonly known as the finite wordlength effects,
otherwise these will introduce noise into the designed system
and lead to nonideal, if not unreliable, system responses. The
processes generating these adverse effects are classified into
the following 4 categories: (1) input quantization, (2) coef-
ficient quantization, (3) overflow (or underflow) in internal
arithmetic operations, and (4) rounding (or truncation) of
data for storage in memory or register. In this paper, we only
focus on the first process (input quantization) that is carried
out by the analog-to-digital converter (ADC) and briefly dis-
cuss its effect on the accuracy of both input coding and FFT
estimation. It is well known that a quantizer, which is part
of an ADC, with input x and output xQ, introduces an error
known as the quantization error (or noise) and defined by:
eQ = x − xQ. Given a B-bit quantizer with an input whose
peak-to-peak (or full scale) range is VPP , then the quantizer’s
step is given by q = VPP/2B. Provided that B is sufficiently
large, eQ will then behave like an additional white noise that
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Figure 1: MR-FFT estimation scheme.

is uncorrelated with the quantizer’s input, uniformly dis-
tributed (UD) over the range [−q/2, q/2], is zero-mean and
has a variance of σ2e = q2/12. One of the performance mea-
sures of a quantizer is its signal-to-quantization-noise ratio
(SQNR) defined by: SQNR = 10 log10(Px/σ

2
e ), where Px is

the input power. In the case of an input sinewave, it can be
shown [5] that: SQNR = (6.02B + 1.76) dB. This equation
which provides a good basis as a design guideline reveals the
interesting fact that a 1 bit increase in the quantizer’s res-
olution (B) leads to a 6 dB gain in its SQNR and hence in
its dynamic range. A further improvement to the quantizer’s
SQNR can be achieved through the use of the oversampling
technique which ensures a 6 dB improvement in the SNQR
for an oversampling factor of 4 (see [5] for further details).
The effect of a B-bit input quantization on a decimation-in-
time (DIT) radix-2 FFT algorithm of length N was studied
in [5] and showed that the total noise variance is given by:
σ2T = (N − 1)2−2B/3. This clearly shows that as the quan-
tization resolution B increases, the noise variance decreases
and hence the FFT estimation accuracy improves. However,
this improvement is gained at a cost of an increase in sys-
tem complexity, implementational cost, and computational
load. If these 3 system characteristics are to be reduced to
any desired level while preserving a good FFT estimation ac-
curacy, then the conventional approach, as described above,
offers no flexible solution at all since low complexity (achiev-
able with low quantization resolutions) and good accuracy
(achievable with high quantization resolutions) are clearly 2
incompatible requirements. This fact is clearly borne out by
the results of Figures 3 and 4 which depict the degradation
in performance of 2 FFT estimators using the lowest possible
(i.e., 1 bit) quantization resolution.

Although low quantization resolutions entail an irre-
versible loss of accuracy which becomes more prohibitive
as the resolution gets smaller, they nevertheless offer several
practically attractive advantages primarily associated with
the use of shorter wordlengths. Such practical advantages
include structurally simple, low-cost, and fast FFT process-
ing schemes that can only enhance the already high speed
boasted by existing FFT algorithms. These advantages will
in turn lead to the possibility of a fast fully parallel FFT
algorithm that can be cost effectively implemented using,
for example, FPGA technology. However, in order to unlock
all of these important potential practical advantages, a way
to reconcile two seemingly disparate requirements, namely,
achieving high accuracy in FFT processing while using only
coarsely quantized signals, has to be found.

The main objective of this paper is therefore to propose
a new and practical solution to this problem, in the form
of a new exact FFT recovery theory which forms the theo-
retical basis for two new and fast FFT estimators: a modi-
fied relay FFT estimator and a modified polarity coincidence
FFT estimator, referred to henceforth as the MR-FFT and the
MPC-FFT estimators, respectively. These 2 estimators have
the unique feature of permitting signal quantization resolu-
tion as low as 1 bit while incurring only an acceptable small
loss in FFT estimation accuracy. At the heart of this new solu-
tion lies the exact moment theory (EMR) which itself hinges
upon a conceptually simple signal coding scheme based on
the nonsubtractive dithered quantization (NSDQ) technique
[6] to be described below. Other related studies discussing
dithered quantization can be found in [7, 8]. However, un-
like these 2 studies, our work of [6] focuses on the exact re-
covery of any existing finite-order moments of the dithered
quantizer’s input from those of its output. It is this precise
feature of our work of [6] that is exploited and extended here.
It is of vital importance to point out here that, in addition to
being assumed stationary, all the signals used in this paper
are also assumed to be ergodic so as to justify the equiva-
lence between the ensemble averages upon which rely all of
the theoretical derivations in our approach, which is essen-
tially stochastic in nature, and the time averages used in our
simulation work.

The block diagrammatic description of the MR-FFT is
shown above in Figure 1. Here, only the input signal, x(n),
whose FFT spectrum is to be estimated, is fed into the NSDQ
quantizer. From this figure, it is clear that the NSDQ scheme
is basically equivalent to a classical uniform quantization
whose input has been dithered by a dither signal with cer-
tain specific statistical characteristics to be discussed later. In
order to reap the maximal benefits from this flexible archi-
tecture, we therefore need to use the crudest possible (i.e.,
1 bit) NSDQ scheme. In this scheme, the 2 multiplications
required are between the quantized version of the dithered
input, that is, xNSDQ(n), and the 2 FFT basis functions “cos”
and “sin” (not shown but included in the block-labeled DFT
(FFT) in Figure 1). When 1 bit NSDQ quantization is used,
as is the case in our proposedMR-FFT scheme, xNSDQ(n) will
simply be a random binary signal which, when multiplied
with the 2 basis functions, will in effect be switching them on
and off. Because this technique of implementing a multipli-
cation as a mere switching operation is commonly found in
relays, the 2multiplications required in our proposed scheme
of Figure 1 are therefore analoguous to 2 relay-type multipli-
cations. Since the switching signal xNSDQ(n) is derived from a
modified (here dithered) version of the input x(n), the result-
ing estimator is thus called a modified relay FFT (MR-FFT).

As to the architecture of the second proposed estimator,
it is shown in Figure 2 below where, as clearly shown, all of
the 3 signals involved, that is, the input x(n) and the 2 real ba-
sis signals s(n) and c(n) which make up the Fourier complex
kernel (K(n,ωi) = e− jωin), are now each NSDQ-quantized.
Each of the 3 required NSDQ quantizers in Figure 2 has ex-
actly the same internal architecture as the one shown above
in Figure 1. Here too, maximal benefits are obtained when
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Figure 2: MPC-FFT estimation scheme.
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Figure 3: FFT magnitude spectra of a single sinusoid: original
(true) spectrum (top), estimated with R-FFT estimator (middle)
and with PC-FFT estimator (bottom).

1 bit resolution is used in all 3 NSDQ quantizers since in this
case the 2 required multiplications are reduced to simple po-
larity coincidence-type of multiplications between the 2 pairs
of modified (here dithered) signals, hence the name of mod-
ified polarity-coincidence FFT (MPC-FFT) given to the re-
sulting estimator.

It is worth pointing out here that the preliminary tests
of these 2 FFT estimators proved successful in both noise-
free and moderately noisy environments [9–12]. Moreover,
the theory underlying the 2 proposed estimators can be in-
terpreted as a frequency-domain extension of the aforemen-
tioned EMR theory of [6] which has enjoyed other successful
applications [13–15].
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Figure 4: FFT phase spectra of a single sinusoid: original (true)
spectrum (top), estimated with R-FFT estimator (middle) and with
PC-FFT estimator (bottom).

This paper is organized as follows: Section 2 introduces
only some relevant fundamental results of the EMR theory
in its 1-D setting and shows how a key theorem (Theorem 1)
can be used to furnish the first proposed estimator (MR-
FFT). In Section 3, the 2-D extension of the results pre-
sented in Section 1 is given, leading to another key theorem
(Theorem 2) which is shown therein to lead to the second
proposed estimator (MPC-FFT). Section 4 presents some
simulation results which demonstrate the very good perfor-
mance of the 2 proposed 1 bit FFT estimators, using both
simulated signals as well as recordings of real signals. Finally,
some concluding remarks are given in Section 5.
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2. ONE-DIMENSIONAL EMR THEORY: FUNDAMENTAL
RESULTS AND APPLICATION TO THEMODIFIED
RELAY (MR)-FFT ESTIMATION

Some fundamental results of the EMR theory are presented
here and a new theorem (Theorem 1) is derived on the
moment-sense equivalence between the NSDQ-based DFT
and a frequency-domain mapping to be defined below in
Section 2.4.

2.1. Definition of the NSDQ quantization scheme

Given an input x and a (user-defined) dither signal D that
is statistically independent of x, then a nonsubtractively
dithered quantization (NSDQ) of x is equivalent to the clas-
sical quantization (Qa) of the dithered signal y = x +D, that
is,

x −→ xNSDQ = NSDQ(x) = Qa(y) = yQ. (1)

Here,Qa represents the entire class of uniform classical quan-
tizers parametrized by the step (q) and the shift factor a ∈
[−1/2, 1/2), that is,

yQ =
(
a + l +

1
2

)
q if y ∈ [(a + l)q, (a + l + 1)q

)
. (2)

Note here that the 2 well-known classical quantizers, namely,
the mid-riser (without any dead zone) and mid-stepper
(with dead zone), correspond to a = 0 and a = −1/2, respec-
tively. The quantizers used in this study are all of the mid-
riser type.

2.2. Definition of the pth-order class of
linearizing dither signalsDp

Given an ergodic and stationary dither signal D and its char-
acteristic functionWD(u), then

D ∈Dp ⇐⇒W (r)
D

(
2mπ

q

)
= 0 ∀r ∈ [0, p − 1], m �= 0.

(3)

A detailed discussion as to the origin of this definition can
be found in [6]. However, it suffices here to use it and show
that it holds the key to the solution of the problem of ex-
actly recovering the FFT spectrum of a given signal in an
NSDQ quantization setting. It is also interesting to note here
that this definition requires only that the characteristic func-
tions of the dither signal have a set of equispaced zeroes (ex-
cept at the origin), with the constant spacing controlled by
the uniform NSDQ quantizer’s step. We cite here 3 types of
member signals ofDp: the basic uniformly distributed (UD)
dither signal (type 1), a signal formed with any finite number
of statistically independent UD dither signals (type 2), and a
signal formed with a sum of at least one type-1 or type-2
member signal and any finite number of statistically inde-
pendent signals that are not necessarily members ofDp. The
last 2 types owe their existence to the closure property dis-
cussed next.

According to the closure property of Dp [6], we can say
that if D ∈ Dp and for any signal x that is statistically inde-
pendent of D, then the dithered signal y = (x + D) ∈ Dp.
Note that although the proof of this property for the impor-
tant case of p = 1 treated in this paper can be straightfor-
wardly carried out here, we have nevertheless provided it in
Appendix D where the proof of the general pth-case version
of the closure property is also carried out. The version of the
closure property with more than 2 signals is discussed in [6].

2.3. Statistical characterization of NSDQ: the
pth-ordermoment-sense input/output function

As shown in [6], every NSDQ quantizer is statistically char-
acterized by a special function called the pth-order moment-
sense input/output function (MSIOF) and denoted by hp(x).
The following important lemma, proved in [6], shows pre-
cisely the role played by this function in the EMR theory.

Lemma 1. A uniform NSDQ quantizer of step q, dither signal
D and shift factor a where a ∈ [−1/2, 1/2), is equivalent, from
a pth-order moment point of view, to a transformation hp(x),
henceforth called the quantizer’s MSIOF, which satisfies the
following relationship:

mNSDQp
� E

[
x
p
NSDQ

] = E
[
hp(x)

] ∀p ≥ 1, (4)

where

hp(x) =
p∑

k=0
ckx

k,

ck =
p−k∑
t=0

p!
(p − k − t + 1)!k!t!

(
q

2

)p−k−t
E
[
Dt
]
[P ⊕ k ⊕ t ⊕ 1],

(5)

with ⊕ denoting modulo-2 operation.

Note here that for the important case of p = 1, the re-
sulting first-order MSIOF becomes perfectly linearized, that
is, h1(x) = x, as shown in Appendix E.

2.4. A key theorem on the derivation of
theMR-FFT estimator

We will now state and prove a general theorem on the exact
recovery of the DFT of any finite-energy signal, that is, xp,
from the DFT of its NSDQ-quantized version, that is, x

p
NSDQ,

regardless of the quantization resolution used.

Theorem 1. Given (1) a 1-D NSDQ quantizer whose pth-
order MSIOF, input, output, and dither signals are given, re-
spectively, by hp(x), x, xNSDQ, and D where D is both zero-
mean and statistically independent of x, and (2) the follow-
ing (DFT) spectra: the quantizer’s input pth-order DFT de-
fined by: Xp(ωi) � ∑N−1

n=0 xp(n) · K(n,ωi), and the corre-
sponding quantizer’s output pth-order DFT, also called here
the 1-quantized channel pth-order DFT and defined by:

X [1]
NSDQp

(ωi) � ∑N−1
n=0 x

p
NSDQ(n) · K(n,ωi), for all i ∈ [1,N],
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where the complex DFT kernel is defined by: K(n,ωi) �
e− jωin, then X [1]

NSDQp
(ωi) is moment-sense equivalent to a p-D

frequency-domain mapping Hp(ωi) defined below, that is,

E
⌊
X [1]
NSDQp

(
ωi
)⌋ = E

[
Hp
(
ωi
)]
,

where Hp
(
ωi
)

� DFT
[
hp
(
x(n)

)] =
p∑

k=0
ckXk

(
ωi
)
,

∀i ∈ [1,N],

(6)

and the coefficient ck is as defined in (5).

Proof (see Appendix A). It is also important to note here that
exact recovery of a spectrum of a high-order signal, say
Xp(ωi), for all p > 1, would require 1 NSDQ quantizer
but the estimation of p different NSDQ-quantized spectra,

X [1]
NSDQk

(ωi), for all k ∈ [1, p]. An attractive alternative to this
would instead require the use of p different NSDQ quantiz-
ers, each with its own dither signal being statistically inde-
pendent of all the inputs and other dither signals, and the
estimation of only 1 p-D NSDQ-quantized spectrum. How-
ever this would involve the use of a p-D EMR theory which
is outside the scope of this paper.

2.5. Application of Theorem 1 to
theMR-FFT estimation

If we now let p = 1 in the two pth-ordermappings, hp(x) and
its DFT Hp(ωi), their resulting first-order expressions would
then simplify to

h1(x) = x =⇒ H1
(
ωi
) = DFT

[
h1(x)

] = X
(
ωi
)
. (7)

It is clear from (7) that (a) the first-order MSIOF, h1(x),
represents nothing but the perfectly linearized average
input/output (I/O) characteristics of the NSDQ quantizer.
In the absence of dither, h1(x) reduces to the well-known
staircase-like I/O function of the classical (i.e., undithered)
quantizer Qa(x). And (b), the first-order frequency-domain
mapping, H1(ωi), gives directly the desired input spectrum
X(ωi).

Note here that, according to Theorem 1 and for p = 1,
the 1-quantized channel first-order DFT is nothing but the

MR-FFT spectrum of the input x since we haveX [1]
NSDQ1

(ωi) �
DFT[x1NSDQ] = X [1]

NSDQ(ωi). Thus combining (6) and (7) gives

E
⌊
X [1]
NSDQ

(
ωi
)⌋ = E

[
H1
(
ωi
)] = E

[
X
(
ωi
)]
. (8)

Note here that when the NSDQ quantizer’s input, x(n), is de-
terministic, then (8) reduces to E
X [1]

NSDQ(ωi)� = X(ωi). This
states that the DFT itself, rather than its average, of the NSDQ
quantizer’s input can be exactly recovered from the average of
the DFT of the quantizer’s output, irrespective of the quanti-
zation resolution used. This result has tremendous practical
benefits since this exact recovery is now possible even with
1 bit resolution as tested in our simulation work. Moreover,
in practice and as pointed out in Section 4, we can dispense
with the use of a separate expectation operation on the (1 bit)

quantized DFT, X [1]
NSDQ(ωi), since the DFT operation itself

involves some form of averaging. Note also that should the
NSDQ quantizer’s input be noisy, say x(n) = x0(n) + v(n)
where x0(n) and v(n) are the deterministic and noisy com-
ponents, respectively, and provided the noise signal v(n) is
both zero-mean and statistically independent of the input
and dither signals used, then exact recovery of the DFT of
the deterministic component will also be possible.

3. TWO-DIMENSIONAL EXTENSION OF EMR THEORY:
FUNDAMENTAL RESULTS AND APPLICATION TO
THEMODIFIED POLARITY-COINCIDENCE
(MPC)-FFT ESTIMATION

As the development of the MPC-FFT estimator would re-
quire the NSDQ quantization of 2 channels as indicated in
Figure 2, there is therefore a need to extend the 1-D EMR the-
ory of the previous section to its 2-D counterpart. This sec-
tion will introduce some fundamental results that emanated
from such an extension.

3.1. Two-dimensional definition of NSDQ

Given a 2-D input vector x = (x1, x2)T and a user-defined
2-D dither vector D = (D1,D2)T which is component-wise
statistically independent of x, then a 2-D nonsubtractively
dithered quantization (NSDQ) of x is equivalent to the clas-
sical quantization (Qa) of the dithered 2-D vector y = x +D,
that is,

x �−→ xNSDQ = NSDQ(x) = Qa(x) = xQ. (9)

Here,Qa represents the entire class of uniform classical quan-
tizers parametrized by the 2-D uniform quantization step
q = (q1, q2)T and the shift factor vector a = (a1, a2)T where
ai ∈ [−1/2, 1/2) for i = 1, 2, that is,

yQi =
(
ai + li +

1
2

)
qi

if yi ∈
[(
ai + li

)
qi,
(
ai + li + 1

)
qi
)
for i = 1, 2.

(10)

The 2-D mid-riser and mid-stepper quantizers are defined
here by a = (0, 0)T and a = (1/2, 1/2)T , respectively. Here
too, all 2-D quantizers used in this paper are of the mid-riser
type.

3.2. Definition of the 2-D(p1, p2)th-order class of
linearizing dither signalsDp1,p2

Given an ergodic and stationary dither vector D = (D1,D2)T

and its characteristic function (CF)WD(u1,u2), then

D ∈Dp1,p2 ⇐⇒W (r1,r2)
D

(
2m1π

q1
,
2m2π

q2

)
= 0

∀ri ∈
[
0, pi − 1

]
, mi �= 0 for i = 1, 2.

(11)

Note here that if either n1 or n2 is allowed to go to infinity,
then the definition of the 1-D pth-order class of linearizing
dither signalsDp, as given above in Section 2, is immediately
obtained.
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Moreover, note that if the component signals D1 and D2

are statistically independent of each other, then the 2-D class
Dp1,p2 becomes separable, that is,Dp1,p2 =Dp1 ×Dp2. This
important case will be exploited later in our simulation work.

3.3. Statistical characterization of 2-D NSDQ:
the 2-D (p1, p2)th-ordermoment-sense
input/output function

We will introduce here a new lemma (Lemma 2) which char-
acterizes the 2-D NSDQ quantizer by a new (p1, p2)th-order
statistical I/O function called the quantizer’s (p1, p2)th-order
moment-sense input/output function (MSIOF).

Lemma 2. A uniform 2-D NSDQ quantizer of step vector
q = (q1, q2)T and shift factor vector a = (a1, a2)T , where
ai ∈ [−1/2, 1/2) for i = 1, 2, is equivalent, from a (p1, p2)th-
order moment point of view, to a mapping hp1,p2 (x1, x2), hence-
forth called the quantizer’s (p1, p2)th-order MSIOF, which sat-
isfies the following relationship:

mNSDQ12
� E

[
x
p1
NSDQ1

x
p2
NSDQ2

]

= E
[
hp1,p2

(
x1, x2

)] ∀p1, p2 ≥ 1,
(12)

where

hp1,p2

(
x1, x2

)

=
∑
l1

∑
l2

[(
a1 + l1 +

1
2

)
q1

]p1[(
a2 + l2 +

1
2

)
q2

]p2

×
{
PD
[(
a1 + l1 + 1

)
q1 − x1,

(
a2 + l2 + 1

)
q2 − x2

]

− PD
[(
a1 + l1

)
q1 − x1,

(
a2 + l2 + 1

)
q2 − x2

]
− PD

[(
a1 + l1 + 1

)
q1 − x1,

(
a2 + l2

)
q2 − x2

]

+ PD
[(
a1 + l1

)
q1 − x1,

(
a2 + l2

)
q2 − x2

]}
.

(13)

Proof. (See [15, Appendix 2] and note that the summation
over l1 and l2 in (13) range from −∞ to +∞.)

Important property of separability

It is important to point out at this stage that if the 2 dither
signals used in the 2-D NSDQ quantizer are statistically
independent of each other and of the 2 quantizer’s inputs,
then the 2-D (p1, p2)th-orderMSIOF becomes separable into
its two 1-D (p1)th- and (p2)th-order MSIOFs, whose expres-
sions are given by (5), that is,

hp1,p2

(
x1, x2

) = hp1

(
x1
)
hp2

(
x2
)
. (14)

This important property provides the user with an easy and
effective practical way of implementing any multidimen-
sional (m-D) NSDQ quantizer with a set of m 1-D NSDQ
quantizers. This property is fully exploited in our simulation
work.

3.4. A key theorem on the derivation of
theMPC-FFT estimator

We will now state and prove a new theorem which guar-
antees, irrespective of the quantization resolution used, the

exact recovery of the pth-order DFT of a signal from a 2-
channel quantized pth-order DFT estimation scheme which
involves NSDQ quantizing both the input and the DFT ker-
nel (or equivalently the 2 basis functions). It is worth point-
ing out at this juncture that theMPC-FFT estimation scheme
represents a quadrature estimation of the DFT as it involves
2 basis functions that have a quadrature relationship in that
their phases differ by π/2.

Theorem 2. Given (1) a 2-D vector NSDQ quantizer, charac-
terized by its 2 signal triplets (xl, xNSDQl l,Dl), l = 1, 2, where
the 2 dither signals D1 and D2 are both zero-mean and statisti-
cally independent of each other and of the input signals x1 and
x2, and whose 2-D (p1, p2)th-order MSIOF is hp1,p2 (x1, x2),
and (2) the NSDQ quantizer’s input pth-order DFT defined
by: Xp(ωi) � ∑N−1

n=0 xp(n) · K(n,ωi) and the correspond-
ing 2-quantized channel pth order DFT, which involves quan-
tizing both the input and the DFT kernel and which is de-

fined by: X [2]
NSDQp

(ωi) �∑N−1
n=0 x

p
NSDQ(n) ·KNSDQ(n,ωi), where

KNSDQ(n,ωi) = (e− jωin)NSDQ and i ∈ [1,N], then X [2]
NSDQp

(ωi)
is moment-sense equivalent to a p-D frequency-domain map-
ping Hp(ωi) defined below, that is,

E
⌊
X [2]
NSDQp

(
ωi
)⌋ = E

[
Hp
(
ωi
)]
, (15)

where Hp(ωi) � DFT[hp(x(n))] =
∑p

k=0 ckXk(ωi), for all i ∈
[1,N] and the coefficient ck is as defined in (5).

Proof (see Appendix B). It is easy to see that the DFT kernel
has the following Cartesian expression K(n,ωi) � e jωin =
c(n)− js(n) where c(n) and s(n) are simply the basis (cosine
and sine) functions shown in Figure 2. As such, the NSDQ-
quantized version of this kernel is given by KNSDQ(n,ωi) �
(e jωin)NSDQ = cNSDQ(n,ωi) − jsNSDQ(n,ωi), which indicates
why in practice 2 NSDQ quantizers are required to quantize
this complex kernel, as clearly shown in Figure 2.

As Theorem 2 addresses the exact recovery of the DFT
of a particular signal using 2 NSDQ-quantized channels, it
clearly represents a 2-D generalization of Theorem 1 which
addresses the same problem using only 1 NSDQ-quantized
channel.

3.5. Application of Theorem 2 to
theMPC-FFT estimation

Proceeding along similar lines to those in Section 2.5, and
since the same signal-domain and frequency-domain map-
pings, that is, hp(x) and Hp(ωi), respectively, are involved
here as well, it then becomes clear that by letting p = 1
in the general expressions of these 2 mappings, both h1(x)
and H1(ωi) will assume their respective simplified expres-
sions given in (7).

Combining (7) and (14) leads directly to the desired re-
sult:

E
⌊
X [2]
NSDQ

(
ωi
)⌋ = E

[
H1
(
ωi
)] = E

[
X
(
ωi
)]
. (16)

Here too, for a deterministic signal x(n), we will have from
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(15): E
X [2]
NSDQ(ωi)� = X(ωi) which shows that in this par-

ticular case, it is the DFT itself, rather than its average, of
the NSDQ quantizer’s input which will be exactly recovered
from the average of the DFT of the NSDQ quantizer’s output,
irrespective of the quantization resolution used. The same
remark, made in Section 2.5, on the dispensation with the
expectation operation in the estimation scheme also applies
here to the MPC-FFT estimator. In the event that x(n) is
noisy and provided that its noisy component is both zero-
mean and statistically independent of the dither signals used,
then exact recovery of the DFT of the deterministic compo-
nent will also be possible. In either case, the MPC-FFT es-
timator offers far greater practical advantages than its MR-
FFT counterpart since its practical implementation is purely
digital (as opposed to the hybrid one for theMR-FFT estima-
tor), involves the processing of 1 bit (binary) signals only and
hence would require only 1 bit logic devices for its multiply-
and-accumulate operation.

3.6. Remarks on some statistical properties
of the 2 proposed estimators

3.6.1. Unbiasedness and consistency

Given a random variable (RV) Y , its true mean μY = E[Y]
and its sample mean estimator Ŷ � (1/K)

∑K−1
k=0 Yk, it is

well known [16] that the sample mean estimator is an un-
biased and consistent estimator of the true mean. In our
case and for each discrete frequency ωi, the RVs are rep-
resented by the samples of the NSDQ-quantized spectra

which are X [1]
NSDQ(ωi) (for MR-FFT) and 
X [2]

NSDQ(ωi)� (for
MPC-FFT). In our simulation, the true mean of these quan-
tized RVs, that is, E
X [1]

NSDQ(ωi)� and E
X [2]
NSDQ(ωi)�, are re-

spectively estimated by the following sample mean estima-

tors, X̂ [1]
NSDQ(ωi) � (1/K)

∑K−1
k=0 X

[1]
NSDQk

(ωi) and X̂ [2]
NSDQ(ωi) �

(1/K)
∑K−1

k=0 X
[2]
NSDQk

(ωi). As pointed out above, these sample
mean estimators are therefore unbiased and consistent esti-
mators of their respective true means, namely, E
X [1]

NSDQ(ωi)�
and E
X [2]

NSDQ(ωi)�. Moreover, since (8) and (16) show that
each of these 2 true means is in fact equal to the desired
true mean of the unquantized spectrum, that is, E[X(ωi)],
it then follows that the 2 sample mean estimators used in
our simulation, that is, X̂ [1]

NSDQ(ωi) and X̂ [2]
NSDQ(ωi), are un-

biased and consistent estimators of the desired true mean
E[X(ωi)].

3.6.2. Variance analysis

According to Appendix C, the variance expression for the
MD-FFT and MH-FFT estimators are given by

σ2MD-FFT = σ2SD-FFT +
1
K

[ N−1∑
n=0

E
[(
x
p
NSDQ(n)

∣∣KNSDQ
(
n,ωi

)∣∣)2 − (xp(n)∣∣K(n,ωi
)∣∣)2]

]

︸ ︷︷ ︸
MD-FFT excess variance

, (17)

σ2MH-FFT = σ2SD-FFT +
1
K

[ N−1∑
n=0

E
[(
x
p
NSDQ(n)

∣∣K(n,ωi
)∣∣)2 − (xp(n)∣∣K(n,ωi

)∣∣)2]
]

︸ ︷︷ ︸
MH-FFT excess variance

. (18)

First note that the 2 excess-variance terms, involved in both
(17) and (18), account solely for the contribution of NSDQ
quantization to the variance of each of the 2 quantized esti-
mators. This fact can be easily checked from both (17) and
(18) since these extra terms vanish in the absence of NSDQ
quantization. These extra terms also vanish if an infinite
number of spectrum estimates is used (i.e., if K → ∞). This
last fact then reveals that both the MD-FFT and MH-FFT
estimators are 2 equally asymptotically efficient estimators.
However, the rate at which the variance of the 3 estimators
(i.e., SD-FFT, MH-FFT, and MD-FFT) converges to zero is
the smallest for the MD-FFT and highest for the SD-FFT, as
expected.

In terms of the relative sizes of these variance excesses,
we have obtained new results to be reported later, which
show that, in the general setting of multibit, multivariable
NSDQ-quantized FFT estimators, the variance excess due to
the MH-FFT estimator is smaller than that due to the MD-

FFT one. This is to be expected as the MD-FFT estimator
involves more quantization, and hence more distortion and
quantization error, and a higher excess in variance, than the
MH-FFT one.

The above generalized variance expressions of (17) and
(18) can now be applied to the 2 proposed FFT estimators,
that is, the MR-FFT and the MPC-FFT, which are merely
1 bit versions of the MH-FFT and MD-FFT estimators, re-
spectively. If the gains of all of the 1 bit NSDQ quantizers
used in the proposed estimators are set to (±q/2), then the
corresponding variance expressions of these 1 bit estimators
are obtained as explained in the following. As the MD-FFT
estimator consists of 2 channels (cosine and sine) whose es-
timates are uncorrelated with each other, the total impact of
NSDQ quantization on the variance of this estimator, repre-
sented by the first summation term on the RHS of (17), will
therefore be made of the sum of similar impacts emanating
from both channels, namely,

∑N−1
n=0 (x

p
NSDQ(n)cNSDQ(n,ωi))2
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for the cosine channel and
∑N−1

n=0 (x
p
NSDQ(n)sNSDQ(n,ωi))2 for

the sine channel. Since, for the MPC-FFT estimator, all the
dithered signals (the input and the 2 real basis functions)
are clipped at ±q/2, it can be easily shown that the quantiza-
tion impacts from both channels are each equal to (q4N/16)
and that the combined impact of both channels is twice that
amount. In view of this, (17) now becomes

σ2MD-FFT = σ2SD-FFT

+
q4N

8K
− 1

K

N−1∑
n=0

E
[(
xp(n)

∣∣K(n,ωi
)∣∣)2]

︸ ︷︷ ︸
MD-FFT excess variance

. (19)

It is clear from (19) that the excess variance increases with
the size of the quantization step q and the FFT length (N)
and decreases with the number (K) of spectrum estimates

being averaged. The reason why this excess variance increases
with N is that the amount of quantization-related distortion
(and hence quantization error) introduced in the estimation
process increases with the number of samples being quan-
tized. Also, since the amplitude variation of the 2 dither sig-
nals used is fixed at (±q) (so as to render them optimal in the
sense of minimizing this excess variance), then an increase in
q will increase the power of these dither signals and hence
will also increase the amount of excess variance introduced.
However, in practice, the choice of N and q is dictated by the
desired frequency resolution and the amplitude range of the
signal, respectively. This then leaves us with only 1 free ex-
perimental parameter (K) to use as a way of controlling the
amount of excess variance introduced.

Using the fact that, in the case of the MH-FFT estimator,
only the dithered input signal is clipped at±q/2, the variance
of the MR-FFT estimator is then readily obtained from (18):

σ2MH-FFT = σ2SD-FFT +
1
K

[ N−1∑
n=0

{
q2

4
E
[∣∣K(n,ωi

)∣∣2]− E
[(
xp(n)

∣∣K(n,ωi
)∣∣)2]}

]

︸ ︷︷ ︸
MH-FFT excess variance

.
(20)

Using the fact that the Fourier kernel is a deterministic quan-
tity and carrying out the first summation on the RHS of (20)
yields

σ2MH-FFT = σ2SD-FFT +
q2N

4K
− 1

K

N−1∑
n=0

E
[(
xp(n)

∣∣K(n,ωi
)∣∣)2]

︸ ︷︷ ︸
MH-FFT excess variance

.

(21)

Here too, the excess variance is affected by the 3 parameters
q, N , and K . As pointed out above, of all 3 parameters, only
K is used in practice to control the amount of excess variance
introduced by NSDQ quantization.

It is to be pointed out here that the dither signals used in
all of our simulation are all called “optimal” in the sense that
they minimize the excess variance introduced by the NSDQ
quantization. This “optimality” result is not yet published
and requires that these dither signals satisfy the following
criteria: (a) each dither signal is uniformly distributed over
the peak-to-peak range of the input it is added to and (b)
the quantizer’s gain, in each channel, is set to twice the peak
value of the input to this channel. Both of these criteria have
been adhered to in our simulation work.

4. SIMULATION

In order to test the new theoretical developments presented
in this paper and to assess the performance of the 2 pro-
posed 1 bit FFT estimators, namely, MR-FFT and MPC-FFT,
we carried out a substantial simulation work on a variety of
signals, both simulated and real ones. Here we will discuss a

representative set of these results which were partly reported
earlier in [9–12] along with other new results obtained in
both noise-free and noisy environments.

It is important to point out at this juncture that from an
implementation (or simulation) point of view and with ref-
erence to Figures 1 and 2, it can be easily shown that the
discrete averaging block “E[·],” of gain K−1 (say), can be
subsumed in the N-point “DFT” operation, by simply over-
sampling the NSDQ quantizer’s input at a rate equal toK and
then processing all of the resulting (KN) samples. It is also
worth pointing out here that each of the dither signals used
in our simulation is zero-mean, uniformly distributed over
the peak-to-peak amplitude range of the signal it is added to
and statistically independent of both the input and all other
(if any) dither signals used.

The four simulation examples which are used here as
a testbed and which are made of 2 simulated signals and
2 real ones derived from the recordings of 2 sound signals
are now briefly described. In each example, both the mag-
nitude and phase spectra of the original (i.e., unquantized
and undithered) signal are used as a reference against which
the performance in estimation accuracy of the 2 proposed
1 bit nonsubtractively dither-quantized (NSDQ) estimators,
that is, MR-FFT and MPC-FFT, is measured. The first ex-
ample involves a single sinusoid and is used primarily to
demonstrate, in detail, the excellent estimation accuracy of
the 2 proposed 1 bit MR-FFT and MPC-FFT schemes when
compared to their 1 bit undithered counterparts, referred to
here simply as relay-FFT (R-FFT) and polarity coincidence-
FFT (PC-FFT), respectively. The second example builds on
the success of the dithering technique employed in the first
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example, by testing the FFT spectrum estimation accuracy of
the 2 proposed estimators on amore general signal, namely, a
multisine signal. In the third example, the proposedMR-FFT
and MPC-FFT estimators are used to estimate the FFT spec-
trum of a real musical signal. As a final test, the 2 proposed
FFT estimators are tested on the record of a sound signal ob-
tained from the utterance of the word “Matlab.” The simu-
lation work carried out here is based on the diagrammatic
descriptions of the 2 proposed estimators given in Figures 1
and 2.

A detailed description of each simulation example now
follows.

A sinusoidal signal of amplitude A = 10 and frequency
f = 1000Hz is sampled at f s = 8000Hz and used as the
input signal x(n). A total of 80 000 points are used for the
estimation of the FFT magnitude spectrum. This simulation
consists of 2 parts: the first part demonstrates the deleterious
effects, on the FFT spectrum estimation, of undithered 1 bit
quantization, be it applied to one or both of the estimator’s
channels, as shown in Figures 3 and 4. These figures show,
respectively, the amplitude and phase spectra of the original
(i.e., unquantized) signal and those of the undithered 1 bit
quantized estimators, that is, R-FFT and PC-FFT. Figure 3
shows that: (a) at the test frequency, both of the R-FFT and
PC-FFT estimators suffer from a large relative estimation er-
ror of about 60% in the FFT magnitude spectrum at the
test frequency and (b) there is a noticeable presence of non-
negligible spurious signal peaks located at the third harmonic
(and at other not-shown odd harmonics) of the test fre-
quency in the magnitude spectra obtained with both the R-
FFT and PC-FFT estimators, thus resulting in an unwanted
and well-structured error pattern which only increases the
total estimation error. Note here that the relative estimation
error is defined here as the estimation error normalized by
the peak magnitude spectrum value at the test frequency. As
to Figure 4, it shows that, with both of the R-FFT and PC-
FFT estimators and in addition to the correct phase value at
the test frequency, there is another non-negligible spurious
phase value at the third harmonic (and at other not-shown
odd harmonics) of the test frequency.

Thus it is clear from the above that both the R-FFT and
PC-FFT estimators greatly suffer from the adverse effect of
1 bit quantization on the FFT spectrum estimation, thus pro-
hibiting them from exploiting all of the practical advantages
that the simple and attractive 1 bit signal coding scheme
brings to them.

The second part of this simulation sets out to demon-
strate the excellent performance improvement brought to
both the R-FFT and PC-FFT estimators by the nonsubtrac-
tive dithering technique which, when applied, modifies both
of them to the 2 proposed MR-FFT and MPC-FFT estima-
tors. To test this fact, the input signal, a sinewave of ampli-
tude A = 10 and frequency f = 1000Hz, is first sampled
at f s = 8000Hz, then added to a zero-mean random uni-
formly distributed dither signal which has the input’s peak-
to-peak amplitude range, and finally their sum is 1 bit quan-
tized. This combined process of nonsubtractively dithering a
signal and then 1 bit quantizing the dithered signal (i.e., the
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Figure 5: FFT magnitude spectra of a single sinusoid: original
(true) spectrum (top), estimated with MR-FFT estimator (middle)
and with MPC-FFT estimator (bottom).

sum signal) is what is referred to here as a 1 bit NSDQ quan-
tization. For the MPC-FFT estimator, both the sine and co-
sine basis functions are also 1 bit NSDQ-quantized by using,
as pointed out above, a second dither signal that is statisti-
cally independent of both the dither used for the input sig-
nal, and of the input itself. Next the FFT spectra of this 1 bit
quantized signal are estimated using the proposed schemes
and a total of 80 000 samples. The results, shown in Figures
5 and 6, clearly demonstrate the superior performance of
the proposed MR-FFT and MPC-FFT estimators. These es-
timators have not only fully recovered the correct FFT mag-
nitude and phase spectra, with a maximum relative mag-
nitude error of at most 4%–5% for the worst-affected es-
timator (MPC-FFT), but have also virtually eliminated the
structured harmonics-related error in the magnitude spec-
trum of Figure 3. It is important to note here that, in order
for the MPC-FFT estimator’s performance to match that of
the MR-FFT, the former estimator has to process more sam-
ples than the latter one. This fact is to be expected as the
MPC-FFT estimator involves more quantization, and hence
more signal distortion, since both of its channels are quan-
tized, than does the MR-FFT one which has only one of its
channels quantized. It is also worth pointing out here that,
if needed, then increasing the number of samples will lead
to an enhanced performance for both estimators because of
the earlier-mentioned consistency of the sample mean esti-
mators used.
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Figure 6: FFT phase spectra of a single sinusoid: original (true)
spectrum (top), estimated with MR-FFT estimator (middle) and
with MPC-FFT estimator (bottom).

6

4

2

0

M
ag
n
it
u
de

−40 −30 −20 −10 0 10 20 30 40
×102Frequency (Hz)

(a)

6

4

2

0

M
ag
n
it
u
de

−40 −30 −20 −10 0 10 20 30 40
×102Frequency (Hz)

(b)

6

4

2

0

M
ag
n
it
u
de

−40 −30 −20 −10 0 10 20 30 40
×102Frequency (Hz)

(c)

Figure 7: FFTmagnitude spectra of a noisy single sinusoid: original
(true) spectrum (top), estimated with MR-FFT estimator (middle)
and with MPC-FFT estimator (bottom). SNR = 15dB.
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Figure 8: FFT phase spectra of a noisy single sinusoid: original
(true) spectrum (top), estimated with MR-FFT estimator (middle)
and with MPC-FFT estimator (bottom). SNR = 15dB.

Although the performance of the 2 proposed estimators
was also successfully tested in a noisy (Gaussian) environ-
ment with a SNR of 15 dB, only the results on the recovery
of the FFT magnitude spectrum were reported [12]. We will
now report on new results that corroborate the fact that this
noise robustness is also enjoyed by the proposed estimators
in the recovery of FFT phase spectra. However and as is ex-
pected with noisy environments, if the additional estimation
error due to the effect of the added noise is to be reduced to
a negligible level, more samples are to be processed than in
noise-free environments. The test signal is a single sinewave,
of amplitude A = 10 and frequency f = 1000Hz, that is
sampled at f s = 8000Hz and then buried in a noisy environ-
ment characterized by a SNR of 15 dB. The total number of
samples used here is 104 000 representing an excess of 24 000
samples as compared to the noise-free case discussed above.
Both Figures 7 and 8 show an excellent performance by the
proposed estimators in recovering both the magnitude and
phase spectra at this moderate noise contamination level. Al-
though not shown here, when the SNR is lowered to 5 dB
representing a more severe noise contamination of the input
signal and when the number of samples is kept unchanged,
the performance of both estimators remains acceptable on
the whole except for the MPC-FFT’s performance in recov-
ering the phase spectra which has been the worst affected.
Nevertheless, this loss in performance can, if desired, be re-
duced through processing more samples.
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Figure 9: FFT magnitude spectra of a multisine signal: original
(true) spectrum (top), estimated with MR-FFT estimator (middle)
and with MPC-FFT estimator (bottom).

In our second example, a multisine input signal, com-
prised of 3 sine signals of amplitudes 10, 9, and 8 at frequen-
cies 1000, 1500, and 2500Hz, respectively, and sampled at
f s = 8000Hz, is considered. The results, displayed in Figures
9 and 10 and obtained with a total number of 80 000 samples,
clearly show the excellent performance of the 2 proposed es-
timators in estimating the FFTmagnitude and phase spectra,
respectively. The worst-affected estimator (MPC-FFT) suf-
fers from only a very negligible error of about 3% in esti-
mating the magnitude spectrum and an additional spurious
phase value. As explained above in the single sine example,
the superior performance of the MRC-FFT estimator over
the MPC-FFT one is also to be expected here.

In this case, the noise robustness of the 2 proposed es-
timators was also successfully tested in [12] where the mag-
nitude spectra of a multisine signal were estimated by both
proposed estimators with a very good accuracy and in a noisy
environment characterized by a SNR = 15dB. The noise ro-
bustness test in [12] showed that, as in the single sine case
therein, the maximum relative estimation error of the MPC-
FFT estimator at the 3 test frequencies had increased but not
exceeded the value of 10. However, the noise floor peak value
had increased to about 20%. Such increases in the maximum
relative errors can be prevented or controlled by increasing
the number of samples to be processed. This prediction is
well supported by the consistency property of the estimators
used and the extra computational cost involved in this case is
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Figure 10: FFT phase spectra of a multisine signal: original (true)
spectrum (top), estimated with MR-FFT estimator (middle) and
with MPC-FFT estimator (bottom).

only small as all the samples to be processed are binary and
hence can be processed very fast.

In our third example, a clarinet tune is selected as a prac-
tical example to test the performance of the two proposed
estimators on a real signal. The tune was recorded at a quan-
tization resolution of 16 bits per sample. This tune was sam-
pled at a frequency of 16000 samples per second and its du-
ration is 1.8 seconds. As such, a single record of this tune
contains only N = 28800 samples. This number of sam-
ples was found insufficient for an acceptable estimation ac-
curacy. Since the estimation accuracy increases with the total
number of samples processed (consistency property), the
limited number of samples emanating from a single record
of the clarinet tune data had to be replicated a number of
times (i.e.,K = 10) to increase the total number of samples to
be processed in order to achieve a good estimation accuracy.
This augmented data set, totalling 288 000 samples, was then
used to test the 2 proposed 1 bit FFT estimators. Despite the
short length of the available single record, the results of this
performance test, reported in Figures 11 and 12, show that, as
expected, a much better recovery of the original magnitude
and phase spectra of the recorded tune was achieved by the
MR-FFT estimator than by theMPC-FFT one.Moreover, due
to the limited total number of samples used, the maximum
level of the noisy pattern at the baseline of Figure 11 has
reached about 20% of the peak magnitude value of the spec-
trum for the MPC-FFT estimator. With regard to the phase
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Figure 11: FFTmagnitude spectra of a clarinet tune: original (true)
spectrum (top), estimated with MR-FFT estimator (middle) and
with MPC-FFT estimator (bottom).

recovery by the MPC-FFT, Figure 12 shows that there is a lot
of spurious nonzero phase values, especially in the end re-
gions where the phase should be zero. Although this may be
unacceptable in certain applications, we regard this possibly
unacceptable performance of the MPC-FFT estimator as be-
ing due solely to the limitation of the memory capacity of the
PC used rather than to the theory underpinning the opera-
tion of the estimator itself.

In our last example, a sound recording of the utterance
“Matlab,” of duration 0.5 second, is used as a test signal for
the 2 proposed estimation schemes. The sound recording was
saved at a resolution of 16 bits per sample using a sampling
frequency of 8 KHz. As such, this single record accounts for
N = 4000 samples. As with the clarinet tune, the process-
ing of a single record (regardless of the number of frames
used) was not found sufficient for a good spectrum estima-
tion accuracy. Hence, the available record had to be dupli-
cated K = 25 times yielding a total of 100 000 samples that
was used in our simulation. Figures 13 and 14 show below the
satisfactory performance of the 2 proposed 1 bit estimators
in recovering both the magnitude and phase spectra. Here
too, the simulation results demonstrate the superiority of the
MR-FFT estimator over the MPC-FFT one. As in the previ-
ous experiment (clarinet tune), the noise floor in Figure 13
and the spurious nonzero phase values in Figure 14 that were
generated by both theMR-FFT andMPC-FFT estimators can
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Figure 12: FFT phase spectra of a clarinet tune: original (true) spec-
trum (top), estimated with MR-FFT estimator (middle) and with
MPC-FFT estimator (bottom).

be both further reduced to any acceptable level by processing
further samples.

5. CONCLUSION

In this paper, we studied the problem of improving the com-
putational accuracy and efficiency of the FFT through the use
of 1 bit NSDQ quantization. We showed that the solution to
this problem resides in extending the EMR theory to the fre-
quency domain and in the process, derived new results which
provided the theoretical underpinnings for a large class of
computationally efficient FFT estimators. These dithered es-
timators were shown to be capable, in theory at least, of ex-
actly recovering the true FFT spectrum (or its average if the
input signal is stochastic), irrespective of the quantization
resolution used. This flexibility in the choice of the quan-
tization resolution to be used was thoroughly exploited in
our simulation work by considering only the most practi-
cally attractive signal coding scheme based on 1 bit NSDQ
quantization. This led to the 2 proposed 1 bit MR-FFT and
MPC-FFT estimators. The estimation accuracy of these 2 es-
timators was thoroughly tested using a variety of simulated
and real signals and in both noise-free and noisy environ-
ments (as reported elsewhere). The simulation results show
that the maximum relative estimation error (incurred by the
worst-affected MPC-FFT estimator), although not zero as
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Figure 13: FFT magnitude spectra of the utterance “Matlab”: origi-
nal (true) spectrum (top), estimated with MR-FFT estimator (mid-
dle) and with MPC-FFT estimator (bottom).

prescribed by the proposed theory since only a finite number
of samples were used in estimating the different FFT spec-
tra, remains nevertheless acceptable even in severely noisy
environments and can always be reduced to any desired level
through processingmore samples. As such, these excellent re-
sults therefore strongly substantiate the proposed exact FFT
recovery theory. The attractive practical advantages that ac-
crue from the use of these 1 bit FFT estimators, such as sim-
ple architecture, low-cost implementation, very good accu-
racy, and fast and efficient computational capability, certainly
provide ample encouragement not only to pursue their hard-
ware implementation on a chip using either VLSI or FPGA
technology but also to extend the 1 bit NSDQ quantization-
based exact recovery theory advanced in this paper to other
important transforms and to study the feasibility of paral-
lelizing the proposed 1 bit low-cost estimation scheme for
further possible computational gains. Finally, although the
hardware implementation of the 2 proposed estimators is be-
yond the scope of this paper, it must be noted here that since
the FFT used here is the one available in popular packages
such as Matlab, the 1 bit nature of the input to the “FFT”
block will be lost at the output of the first stage (or butterfly)
of the FFT algorithm. In order to preserve this 1 bit nature
throughout the FFT algorithm so as to have a purely 1 bit
FFT, it is necessary to re-NSDQ-quantize the input to each
subsequent stage of the FFT algorithm using statistically in-
dependent dither signals that are also members of D1.
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Figure 14: FFT phase spectra of the utterance “Matlab”: original
(true) spectrum (top), estimated with MR-FFT estimator (middle)
and with MPC-FFT estimator (bottom).

APPENDICES

A. PROOF OF THEOREM 1

Recall that, by definition, the 1 channel-quantized pth-order
DFT of the NSDQ quantizer’s output is given by

X [1]
NSDQp

(
ωi
)

�
N−1∑
n=0

x
p
NSDQ(n) · K

(
n,ωi

)
. (A.1)

Taking the expectation of both sides of (A.1) and using the
fact that the expectation operation is a linear operation, that
is, the expectation of a sum of random variables (RVs) is the
sum of the expectations of these RVs, the following is ob-
tained:

E
[
X [1]
NSDQp

(
ωi
)]

� E

{ N−1∑
n=0

[
x
p
NSDQ(n)K

(
n,ωi

)]}

=
N−1∑
n=0

E
[
x
p
NSDQ(n)K

(
n,ωi

)]
.

(A.2)

Now, from (4) of Lemma 1, we know that x
p
NSDQ(n) is

moment-sense equivalent to the pth-order polynomial map-
ping hp(x(n)) defined in (5). Hence, by virtue of this, we can
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write that

E
⌊
x
p
NSDQ(n)K

(
n,ωi

)⌋ = E
[
hp
(
x(n)

)
K
(
n,ωi

)]
. (A.3)

Using (A.3) with (A.2) and taking the expectation operator
E[·] out of the summation gives

E
[
X [1]
NSDQp

(
ωi
)] = E

[ N−1∑
n=0

hp
(
x(n)

)
K
(
n,ωi

)
︸ ︷︷ ︸
=DFT[hp(x(n))]�Hp

(
ωi

)

]
= E

[
Hp
(
ωi
)]
.

(A.4)

Now using the expression of hp(x(n)) given in (5), it is easy
to show that

Hp
(
ωi
) =

N−1∑
n=0

{ p∑
k=0

ckx
k

}
K
(
n,ωi

)

=
p∑

k=0
ck
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n=0

xkK
(
n,ωi

)
︸ ︷︷ ︸

�Xk(ωi)

=
p∑

k=0
ckXk

(
ωi
)
.

(A.5)

Combining (A.4) and(A.5) leads to the final desired result,
that is,

E
[
X [1]
NSDQp

(
ωi
)] = E

[
Hp
(
ωi
)] =

p∑
k=0

ckXk
(
ωi
)
. (A.6)

B. PROOF OF THEOREM 2

Using the definition of the 2-quantized channel pth-order
DFT and the Cartesian expression of the NSDQ-quantized
DFT kernel, the following is obtained:

X [2]
NSDQp

(
ωi
)

�
N−1∑
n=0

x
p
NSDQ(n) · KNSDQ
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n,ωi
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n,ωi

)

− j
N−1∑
n=0

x
p
NSDQ(n) · sNSDQ

(
n,ωi

)
.

(B.1)

Taking the expectation of both sides of (B.1) and using the
linearity property of the expectation operator E[·] yield

E
[
X [2]
NSDQp

(
ωi
)]

� E

{ N−1∑
n=0

x
p
NSDQ(n)cNSDQ

(
n,ωi
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− j
N−1∑
n=0

E
[
x
p
NSDQ(n)sNSDQ

(
n,ωi

)]
.

(B.2)

Now, using (12) in Lemma 2, we know that both prod-
ucts x

p
NSDQ(n)cNSDQ(n,ωi) and x

p
NSDQ(n)sNSDQ(n,ωi) are mo-

ment-sense equivalent to the 2-D (p, 1)th-order polynomial
mappings hp,1[x(n), c(n,ωi)] and hp,1[x(n), s(n,ωi)] which
characterize the input-cosine and input-sine 2-D NSDQ
quantizers, respectively (see Figure 2). These moment-sense
equivalences are then given by

E
⌊
x
p
NSDQ(n)cNSDQ

(
n,ωi

)⌋ = E
[
hp,1

[
x(n), c

(
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NSDQ(n)sNSDQ

(
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)⌋ = E
[
hp,1

[
x(n), s

(
n,ωi

)]]
.

(B.3)

Moreover, assuming that the dither signal used for the input
x(n) and the common dither signal used for the 2 basis func-
tions c(n) and s(n) are statistically independent of each other
and of x(n), this then warrants the use of the separability
property of the two 2-D MSIOFs which, together with the
result of (7), that is, h1(x) = x, finally lead to the following
new form of (B.3):
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= E
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(
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.

(B.4)

Combining (B.4) with (B.2), and using the linearity property
of the expectation operator E[·] by taking this operator out
of the summation, the following is obtained:
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(B.5)

Hence, combining (A.5) with (B.5) gives the final desired re-
sult

E
[
X [2]
NSDQp

(
ωi
)] = E

[
Hp
(
ωi
)] =

p∑
k=0

ckXk
(
ωi
)
. (B.6)

C. GENERALIZED VARIANCE ANALYSIS

We will first define the 3 FFT estimators to be considered
here, namely, the conventional sampled-data (i.e., totally
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unquantized) FFT estimator (SD-FFT), the modified hy-
brid FFT estimator (MH-FFT) which incorporates a single
multibit NSDQ-quantized channel (in our case, the input
signal channel is the quantized one), and finally the modi-
fied digital (i.e., fully quantized) FFT (MD-FFT) estimator
which comprises 2 multibit NSDQ-quantized channels. It is
clear that the MH-FFT and MD-FFT are nothing but gener-
alizations of the 2 proposed estimators, that is, MR-FFT and
MPC-FFT, respectively:

SD-FFT : X̂p
(
ωi
) = 1

K

K−1∑
k=0

{
Xpk

(
ωi
)}

= 1
K

K−1∑
k=0

{ (k+1)N−1∑
n=kN

xp(n)K
(
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)}
;

(C.1)

MH-FFT : X̂MHp
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(C.2)

MD-FFT : X̂MDp
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= 1
K
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= 1
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(
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(C.3)

We will first define the variance of the SD-FFT estimator
which will then be used as a reference against which the vari-
ances of both the MH-FFT and the MD-FFT estimators will
be compared.

As pointed out in Section 3.6.1, all sample mean esti-
mators used here, including the one for the SD-FFT esti-
mator, are both unbiased and consistent estimators of the
true spectrum Xp(ωi). It is also worth pointing out here that
since both the true and average spectra are both complex-
and scalar-valued quantities, the usual “Hermitian” opera-
tion (denoted by the superscriptH) involved in the definition
of the variance of a complex- and vector-valued random sig-
nal reduces here to the complex conjugation operation (de-
noted by the superscript (∗)) only. It then follows that, in this
case, the definition of the variance of the SD-FFT estimator,
denoted here by σ2SD-FFT, is expressed by
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(C.4)

Note that in (C.4), use was made of the identity
Xp(ωi)X∗p (ωi) = |Xp(ωi)|2 and the complex conjugation op-
eration (∗) was applied only to the complex Fourier kernel
K(m,ωi) and not to the signal xp(m) as this one is real. It
is clear from (C.4) that the variance of the SD-FFT estima-
tor can be minimized to any desired level by simply increas-
ing the number (K) of estimated spectra (Xpk (ωi)) being av-
eraged. Note here that increasing K clearly implies process-
ing more samples of both the signal being analyzed and the
Fourier kernel.

Since the MH-FFT estimator is a special case of the MD-
FFT one, we will therefore first derive the expression of the
variance of the latter (MD-FFT) and then infer from it the
expression of the variance of the former (MH-FFT).

By definition, the variance of the MD-FFT estimator, de-
noted here by σ2MD-FFT, is given by
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(C.5)

Now combining (C.5) and (C.3) yields
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(C.6)

If we now split the elements of the double summation over
k and l in (C.6) into 2 sets, one for k �= l and the other for
k = l, and noticing that the conditions k �= l and k = l also
imply that n �= m and n = m, respectively, then the following
is obtained:
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(C.7)

Note that in (C.7), use was made of the following iden-
tity: KNSDQ(n,ωi)K∗NSDQ(n,ωi) = |KNSDQ(n,ωi)|2.

Note also that in (C.7), the expectation E
xpNSDQ(n)
KNSDQ(n,ωi)x

p
NSDQ(m)K∗NSDQ(m,ωi)� involves 4 different sig-

nals, namely, xp(n),K(n,ωi), xp(m), and K∗(m,ωi), that are
NSDQ-quantized by 4 different and statistically independent
dither signals, each of which is a member of the 1-D first-
order class of linearizing dither signals D1. We now need to
extend (12) of Lemma 2 to the case of the above-mentioned 4
different signals and invoke the facts that in this case, (a) sta-

tistical independence between the 4 dither signals used en-
sures separability of the quantizer’s 4-D first-order MSIOF,
h1,1,1,1(·, ·, ·, ·), into 4 different 1-D first-orderMSIOF, h1(·),
and (b) membership of each of the 4 statistically indepen-
dent dither signals toD1 will, according to (7), perfectly lin-
earize the first-order MSIOF, h1(·), of the associated NSDQ
¬ quantizer. Making use of these 2 facts will then yield the
following:
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(C.8)

A direct 4-D extension of (12) in Lemma 2 (see [6] for
further details), combined with (C.8), leads to
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(C.9)

Combining (C.7) and (C.9) gives
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(C.10)

Let us now add and subtract the term: Q = (1/K2)
[
∑K−1

k=0
∑(k+1)N−1

n=kN E[(xp(n)|K(n,ωi)|)2]] to the RHS of
(C.10) in the following order: first, add Q to the first term

on the RHS of (C.10) and then group these 2 terms together
and next subtractQ from the last term on the RHS of (C.10).
As a result of these small manipulations, (C.10) becomes
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(C.11)

Since, according to (C.4), the first 2 terms on the RHS of
(C.11) are nothing but σ2SD-FFT, (C.11) then takes on the

following form:

σ2MD-FFT = σ2SD-FFT +
1
K2

[ K−1∑
k=0

(k+1)N−1∑
n=kN

E
[(
x
p
NSDQ(n)

∣∣KNSDQ
(
n,ωi

)∣∣)2 − (xp(n)∣∣K(n,ωi
)∣∣)2]

]

︸ ︷︷ ︸
MD-FFT excess variance

. (C.12)

It can be readily shown that the expectation term in the sec-
ond term on the RHS of (C.12) can be expressed as the auto-
correlation function E[e2NSDQ(n,ωi)] of the following NSDQ

quantization error: eNSDQ(n,ωi) � (xp(n)|K(n,ωi)|)NSDQ −
(xp(n)|K(n,ωi)|). According to the theory of NSDQ quanti-
zation and provided that the dither used to NSDQ-quantize
the product signal, (xp(n)|K(n,ωi)|), is a member of D1,
then this error is both zero-mean and uncorrelated with the

product signal (xp(n)|K(n,ωi)|) itself. Since an autocorre-
lation function is known to be positive definite, it therefore
follows that the entire second term on the RHS of (C.12) is
positive and thus represents an excess in variance brought
about by the NSDQ quantization.

Moreover, since the signal and the Fourier kernel are both
assumed to be ergodic and stationary, the excess-variance
term in (C.12) can be further simplified, leading to

σ2MD-FFT = σ2SD-FFT +
1
K

[ N−1∑
n=0

E
[(
x
p
NSDQ(n)

∣∣KNSDQ
(
n,ωi

)∣∣)2 − (xp(n)∣∣K(n,ωi
)∣∣)2]

]

︸ ︷︷ ︸
MD-FFT excess variance

. (C.13)

It is clear from (C.13) that no matter how large the NSDQ-
induced excess variance is, it can always be reduced to any
desired level by choosing a sufficiently large value of K ,
or equivalently by processing a sufficiently large number of
samples.

The expression of the variance of the MH-FFT estimator
can now be readily inferred from (C.13) by simply replacing
the quantized Fourier kernel, KNSDQ(n,ωi), with its unquan-
tized counterpart, K(n,ωi), in the “excess-variance” term on
the RHS of (C.13).This yields

σ2MH-FFT = σ2SD-FFT +
1
K

[ N−1∑
n=0

E
[(
x
p
NSDQ(n)

∣∣K(n,ωi
)∣∣)2 − (xp(n)∣∣K(n,ωi

)∣∣)2]
]

︸ ︷︷ ︸
MH-FFT excess variance

. (C.14)
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Here too, the “excess-variance” term can be reduced to any
desired level in the manner described above for the MD-FFT
estimator.

D. PROOF OF THE CLOSURE PROPERTY (SECTION 2.2)

Let the input signal be x, the dither signal D, and their sum
signal y = x + D and let their respective characteristic func-
tions be Wx(u), WD(u), and Wy(u). Assume further that x
andD are statistically independent of each other, which leads
to

Wy(u) =Wx(u)WD(u), (D.1)

where q is the already defined uniform step of the NSDQ
quantizer.

We first start with the proof of the first-order (p = 1)
version of this property which is rather straightforward. It
is clear that if we express (D.1) at u = 2mπ/q, m �= 0, we
get Wy(2mπ/q) = Wx(2mπ/q)WD(2mπ/q), m �= 0. If we
now use the definition of the first-order class D1, that is,
D ∈ D1 ⇔ WD(2mπ/q) = 0, m �= 0, then it follows that
Wy(2mπ/q) = Wx(2mπ/q)WD(2mπ/q) = 0, for m �= 0, and
for all x which leads to y ∈ D1.

We will now prove the general pth case by first differen-
tiating (D.1), r times, with r ∈ [0, p − 1] and p ≥ 1, at the
point u = 2mπ/q,m �= 0. The following is then obtained:

W (r)
y

(
2mπ

q

)
=

r∑
k=0

Cr
kW

(r−k)
x

(
2mπ

q

)
W (k)

D

(
2mπ

q

)
,

where Cr
k �

(
r

k

)
= (r!)/

[
(k!)(r − k)!

]
.

(D.2)

Recall that by definition,D is a member ofDp if and only
if its characteristic function satisfies (3) which is restated here
for convenience:

D ∈ Dp ⇐⇒W (r)
D

(
2mπ

q

)
= 0 ∀r ∈ [0, p − 1], m �= 0.

(D.3)

It is clear from (D.2) that since we have 0 ≤ k ≤ r ≤ p − 1,
it then follows from (D.3) that if D ∈ Dp, then the rela-

tionship W (k)
D (2mπ/q) = 0, m �= 0, is true not only within

the range for all k ∈ [0, p − 1] but also within any of the
(p− 1) subranges defined by: for all k ∈ [0, (p− λ)− 1] with
λ ∈ [1, p], that is,

W (k)
D

(
2mπ

q

)
= 0 ∀k ∈ [0, (p − λ)− 1

]

with λ ∈ [1, p], m �= 0.
(D.4)

Since the subrange “for all k ∈ [0, r] with for all r ∈ [0, p −
1]” is one subranges mentioned above in (D.4), it then fol-
lows that

W (k)
D

(
2mπ

q

)
= 0, m �= 0, ∀k ∈ [0, r]. (D.5)

Using (D.5) in (D.2) yields the following desired result:

W (r)
y

(
2mπ

q

)
= 0 ∀r ∈ [0, p − 1], m �= 0. (D.6)

By virtue of the definition of the pth-order class Dp, (D.6)
leads to y = (x +D) ∈ Dp.

It is worth pointing out here that (D.4) reveals an inter-
esting property of the class Dp which states that if D belongs
to a pth-order class Dp, it will then belong to any (p − 1)
subclasses of lower orders, that is, if D ∈ Dp ⇒ D ∈ Ds for
all s ∈ [1, p− 1]. This is the property of inclusion enjoyed by
the class Dp of linearizing dither signals (see [6]).

E. PROOF OF THE LINEARIZATION OF
THE FIRST-ORDERMSIOF h1(x)

Setting p = 1 in (5) gives the direct expression of the first-
order MSIOF of the uniform NSDQ quantizer, that is,

h1(x) = c0 + c1x, (E.1)

where the coefficients c0 and c1 are derived as follows.
The expression of c0 is obtained directly from the general

expression ck in (5) by setting k = 0 and p = 1 therein. After
a direct substitution followed by a simplification, we get

c0 =
1−0∑
t=0

1!
(1− 0− t + 1)0!t!

(
q

2

)1−0−t
E
[
Dt
]
[1⊕ 0⊕ t ⊕ 1]

=
1∑

t=0

1
(2− t)!t!

(
q

2

)1−t
E
[
Dt
]
[0⊕ t].

(E.2)

Since t is limited here to the values of 0 or 1 and since the
factor [0 ⊕ t] is equal to 1 for odd values of t only, it then
follows that this factor is equal to 1 for t = 1 and is zero,
otherwise. Thus, we have

c0 = 1
(2− 1)!1!

(
q

2

)1−1
E
[
D1][0⊕ 1] = E[D] = 0 (E.3)

since the dither signal is assumed to be zero-mean.
Repeating the same process for c1 by setting k = 1 and

p = 1 in the general expression of ck in (5) yields the
following:

c1 =
1−1∑
t=0

1!
(1− 1− t + 1)1!t!

(
q

2

)1−1−t
E
[
Dt
]
[1⊕ 1⊕ t ⊕ 1]

=
1∑

t=0

1
(1− t)!t!

(
q

2

)−t
E
[
Dt
]
[1⊕ t].

(E.4)

Since we only have one value of t here, that is, t = 0, and
since in this case [1⊕ t] = 1, we then have

c1 = 1
(1− 0)!0!

(
q

2

)−0
E
[
D0][1⊕ 0] = 1. (E.5)

Combining (E.1), (E.3), and (E.5) leads directly to the de-
sired result h1(x) = x.
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